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Abstract: This paper deals with infinite horizon optimal con-
trol problems, which are formulated in weighted Sobolev spaces
W;’"(RJF7 v) and weighted Ly-spaces L (R%v). We ask for the con-
sequences of the interpretation of the integral within the objective as
a Lebesgue or an improper Riemann integral. In order to justify the
use of both types of integrals, various applications of infinite horizon
problems are presented. We provide examples showing that lower
semicontinuity may fail for objectives involving Lebesgue as well as
improper Riemann integrals. Further we prove a lower semiconti-
nuity theorem for an objective with Lebesgue integral under more
restrictive growth conditions on the integrand.
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1. Introduction
a) Optimal control with infinite horizon

In the present paper we investigate infinite horizon optimal control problems.
The motivation for studying them arises primarily from economics and biology
where the infinite time horizon is a very natural phenomenon. Starting with
the paper of Halkin (1974), the research in the field of optimal control problems
with infinite horizon has dramatically increased. From the extensive literature,
we mention only a few references, namely the textbook of Carlson, Haurie and
Leizarowitz (1991) and the related chapters in Feichtinger and Hartl (1986) as
well as some examples for papers with background in economics (Benveniste and
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Scheinkman, 1982; Magill, 1982), continuum mechanics (Leizarowitz and Mizel,
1989; Zaslavski, 1995) and biology (Colonius and Kliemann, 1989; Goh, Leit-
mann and Vincent, 1974). Throughout the development of the theory, necessary
and sufficient optimality conditions as well as existence results were obtained.
However, it must be emphasized that, with very few exceptions (e.g. Blot and
Hayek, 1996, 2000; Blot and Michel, 1996; as well as Dmitruk and Kuz’kina,
2005), no attention was given to the important question whether the interpre-
tation of the objective as a Lebesgue or as an improper Riemann integral is
appropriate to the problem formulation.

The first aim of our paper is to demonstrate that different integral types
can be useful in applications but lead to completely different theoretical results.
Further, we point out that, for a correct setting of the problem, the choice of
an appropriate state space is essential. Let us mention that the Lagrange mul-
tipliers associated with the constraints belong to the dual of the space wherein
the constraint set has a nonempty interior.

Our paper is organized as follows. In order to demonstrate how Lebesgue
and improper Riemann integrals as well as weighted Lebesgue and Sobolev spaces
come into consideration, we start in this section with the presentation of some
typical applications. Then we provide the general formulation of the infinite
horizon problem. In Section 2, we prepare some analytical tools concerning
weighted Lebesgue and Sobolev spaces and the Nemytskij operator. In Section 3,
we state the main results of the paper.

In the case of the Lebesgue integral, we provide an example where lower
semicontinuity is violated. Under additional assumptions, we succeed in prov-
ing lower semicontinuity of the objective with respect to an appropriate weak
topology.

In the case of the improper Riemann integral, we provide two examples. The
first one demonstrates that, for the same data, the different interpretations of
the integral lead to different feasible sets. In the second one, the weak lower
semicontinuity of the objective fails.

Consequently, in the cases where semicontinuity of the objective is missing
it is impossible to develop an existence theory via the Weierstrass theorem. By
this observation, one is led to treat infinite horizon problems by means of duality
theory (see Klotzler, 1979), as outlined in Pickenhain and Lykina (2006).

b) Application: Optimal economic growth

Since Ramsey’s pioneering work, the problem of optimal economic growth has
been treated with an infinite time horizon. In a recent version, the problem can
be formulated as follows (see Carlson, Haurie and Leizarowitz, 1991, pp. 6 ff.):

J(K,Z,C) = /Oo e et U(C(t))dt — Max !; (1.1)
0

F(K(t)) = Z() + C(t); (1.2)



Lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals 453

K(t) = 2(t) — nK(1); (13)
K(0) = k.

Here the production function F' and the utility function U are given, while the
investment, respectively consumption rates Z and C and the capital stock K
are optimization variables. Under certain assumptions on the data, it can be
shown that there exists a constant capital level k such that, “for any nonneg-
ative value of p the optimal trajectory over an infinite time horizon exists and
converges toward k, and this is true for any initial state ko” (Carlson, Haurie
and Leizarowitz, 1991, pp. 8). From this property it is clear that the function K
cannot belong to any usual Sobolev space but to a weighted space as introduced
below.

c) Application: Production-inventory model

This model has been presented in Sethi and Thompson (2000), pp. 154 ff.:

J(I,P) = /Oooeet (g (It)—1(t))* + g (P(t) - P(t) )2) dt — Min !; (2.1)
it) = P(t) — S(t); 1(0) =g . (2.2)

Here I and P are given goal levels for inventory and production, S is the given
sales rate, h and c are given positive coefficients, and the current inventory and
production rates I and P are optimization variables.

Again, the optimal trajectory of the problem belongs to a weighted Sobolev
space. Since the objective in this problem is similar to the norm in the weighted
space W;(RJC V) with 7(t) = e~2! (see Section 2.b) below), it seems to be very
natural to choose W;(RJC v) as the state space. We mention that here and in
the preceding example, the integrals have to be understood in the Lebesgue
sense. In the following example, however, the appropriate integral notion is not
a priori determined.

d) Application: Pest control

Let X and Y denote the population numbers of two interacting species where
X is a pest and Y is its natural predator. Then X and Y obey the follow-
ing dynamics (see Carlson, Haurie and Leizarowitz, 1991, pp. 4 ff., and Goh,
Leitmann and Vincent, 1974):

X(t) = X(@t)(1-Y(t), X(0)=z0; (3.1)
Y(t)=Y(®) (Xt —1), Y(0)=yo. (3.2)

It is well known that this system admits a nontrivial stationary point, namely
=y = 1, while the trajectories in the state space circle around the equilibrium.

=>
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Assume now that the population X is supressed to a rate 0 < U < Upax by
treatment with some pesticide. Then Y will be influenced with a rate cU as
well, and the dynamics of the controlled system become

X() = X() (1= Y(H) = U(t)), X(0) =0 (4.1)
V() =Y(t)(X(t)—1-cU®)), Y(0)=yo. (4.2)
The objective for the finite time interval [0, T'] is
T
J(X,Y,U):/ (X(t)+ozU(t))dt—>Min!, (5)
0
balancing the damage caused by the pest and the cost of its controlling with
a constant o > 0. However, “there is no natural reason for bounding the

time interval on which the system has to be controlled” (Carlson, Haurie and
Leizarowitz, 1991, p. 5). In the infinite horizon, the Lebesgue integral

/OOO(X(tH—ozU(t))dt (6)

becomes infinite for any admissible control U. When normalizing with respect
to X, i. e., replacing the integral (6) by

h (X(t)—2&)+aU(t) )dt, (7)
0

the integral has to be understood in the Riemann sense while the absolute
convergence cannot be guaranteed.

e) General formulation of the infinite horizon problems

As mentioned before, the infinite horizon control problem

Ploo:  J(z,u) = /000 r(t, z(t), u(t)) v(t) dt — Min !; (8.1)
(z,u) € W, " (RN v) x LT (RY v); (8.2)
@(t) = f(t,z(t),u(t)) a. e onRT; z(0) = zp; (8.3)
u(t) eUCR" a.e.onR" (8.4)

is not well defined since the interpretation of the integral within the objective
is ambiguous. In order to make this point precise, we denote the set of pairs
(x,u) satisfying (8.2) — (8.4) by A and formulate the following basic problems:

P)L . Jp(z,u) = L—/OOO r(t,x(t),u(t)) v(t) dt — Min !; (9.1)

(x,u) e AN Ap (9.2)



Lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals 455

where the integral in the objective is understood as a Lebesgue integral, and Af,
consists of all processes (z,u) € A, which make the Lebesgue integral in (9.1)
convergent. In the second problem,

P2 . Jr(z,u) = R—/OOO r(t, x(t),u(t)) v(t) dt — Min !; (10.1)
(z,u) e AN Ag, (10.2)

the integral in the objective is understood as an improper Riemann integral,
and Apg consists of all processes (z,u) € A, which make the improper Riemann
integral in (10.1) (at least conditionally) convergent.

The function v is a density function in the sense explained below. The
function v is assumed to be nonnegative, but not necessarily a density function.
The weighted spaces Wllj’n(RjL7 v) and L (R v) will be defined in Section 2.b)
below.

f) Consequences of the distinction between Lebesgue and improper
Riemann integrals

Let us remind that

00 T
@Af@ﬁ:nmR%f@ﬁ (1)

T—o0

where f : RT — R has to be R-integrable over any closed interval [0, T] C R*.
If, under this assumption, the Lebesgue integral converges absolutely, i. e.

L%|ﬂMﬁ<m, (12)

then the Lebesgue and the improper Riemann integral coincide,

0o 0o T

L—/ fit)ydt = R—/ f(#)dt = lim L—/ flt)dt (13)
0 0 T—o0 0

(see Elstrodt, 1996, p. 151 f., Theorem 6.3.). It may happen, however, as in the

famous example with f(t) = sint/t, that the improper Riemann integral

R-/ st (14)
0 t

converges conditionally (i.e., the corresponding series converges non-absolutely,
see Fichtenholz, 1990, p. 520 f.) while the Lebesgue integral over the same
domain does not exist (see Elstrodt, 1996, p. 152). As a consequence of these
facts, the feasible domains Aj;, and Apg are, in general, incomparable. Apply-
ing the Lebesgue integral notion, we exclude from .4 all feasible trajectories,
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which make the improper Riemann integral non-absolutely convergent. On the
other hand, by applying the improper Riemann integral, we lose all trajectories
from A, which are Lebesgue integrable but not Riemann integrable even on
compact sets. For these reasons, it is very important to formulate an infinite
horizon problem with the proper integral notion reflecting the situation behind
the model in an appropriate way. As we will see in Section 3 below, the prob-
lems with distinct integral types require a completely different mathematical
treatment.

2. Some background from functional analysis
a) Basic notations

Let us write [0, c0) = RT. We denote by M"(R"), L) (R") and " (RT)
the spaces of all vector functions = : RT — R™ with Lebesgue measurable, in
the pth power Lebesgue integrable or continuous components, respectively (see
Dunford and Schwartz, 1988, p. 146 and pp. 285 ff., Elstrodt, 1996, pp. 228 ff.).
The Sobolev space W;’"(RJF) is defined then as the space of all vector functions
r: RT — R", whose components belong to Lp(R+) and admit distributional

derivatives @; (see Yosida, 1980, p. 49) belonging to LP(RJF) as well. Forn =1,
we suppress the superscript in the labels of the spaces. The interpretation of
the integrals will be made precise by the symbols L-[ for the Lebesgue and R-[
for the Riemann integral.

b) Weighted Lebesgue and Sobolev spaces

A continuous function v : R — R™ with positive values is called a density
function iff it is Lebesgue integrable over R™:

L—/O v(t)dt < oo (15)

(see Kufner, 1985, p. 18, 3.4.). By means of a density function v € CO(R+), we
define for any 1 < p < oo the weighted Lebesgue space

p

Ly (R v) = {z € M"R) ||| 2]l 0 nr) = (L_/OOO| () [Pu(t) dt)l/p< o0}

as well as (16)

L (RLv)={zeM"R" || ”LZO(RWJ) = 0eists<up |z(t)v(t)| < oo} (17)

and the weighted Sobolev space

W "Ry ={ze M"RY) |z LI(R ), i€ LI (R v)} (18)
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(see Kufner, 1985, pp. 11 f.). Equipped with the norm
1 lwrnmewy = 12 lonmeny + 12 Ln@e0) (19)

W;’"(RJF, v) becomes a Banach space (this can be confirmed analogously to
Kufner, 1985, p. 19, Theorem 3.6.). Any linear, continuous functional ¢ :
L,(R%v) — R can be represented by a function y € L (R%v) with p~'+¢7" =
lifl<p<ooand g=o0if p=1:

(p,x) = /000 y(t)zt)v(t)dt Ve L;(R*‘7 v). (20)

We may apply Elstrodt (1996), p. 287, Theorem 3.2, since the measure generated
by the density function v is o-finite on R™". Note that in the case 1 < p < oo,
the representation (20) remains valid even if v misses the property (15) of v
does not hold.

¢) Compact imbedding for weighted Sobolev spaces

Let us recall first an imbedding result for non-weighted Sobolev spaces over
unbounded domains. We state it as

LEMMA 2.1. (Adams and Fournier, 2007, p. 194, Example 6.48, together with
p. 197 f., Theorem 6.52) Assume that 1 < p < co, and a positive, nonincreas-
ing, continuously differentiable function v : RY — R with bounded derivative is
given. By means of v, we define the open set

Q ={tHeR*|0<t, 0<E<v(t)}. (21)

Then the imbedding W;(QU) — L, () is compact iff the function v satisfies
the condition

lim v(t+e)
t—o0 I/(t)

-0 (22)

for every fized € > 0.

For weighted Sobolev spaces, we mention the following theorem recently
proved by Antoci (2003):

THEOREM 2.1. (Antoci, 2003, p. 63, Theorem 4.3.) Assume that 1 < p < oo,
and a continuous density function v: RT — R is given. By means of v, we
define the open set

Q ={(tHeR*|0<t, 0<E<v(t)}. (23)

If the imbedding W;(Q,,) — L, () is compact then the imbedding W;(R"’, v) —
LP(RJF7 v) for the weighted spaces is compact as well.
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d) Properties of the Nemytskij operator

For a given Carathéodory function g(t,¢): RT x R® — R (i. e., g(-,&) is
Lebesgue measurable for all £ € R®, and g(¢, -) is continuous for almost all
t € RT), the insertion of a s-vector function z(¢) : Rt — R’ into g defines a
Nemytskij operator N(-) with

(Nz)(t) = g(t,z(t)). (24)

Note that the following theorem, which has been stated in Vainberg (1964), is
valid for Lebesgue spaces on unbounded domains as well.

THEOREM 2.2. (Vainberg, 1964, p. 162, Theorem 19.2., together with pp. 154
f., Theorem 19.1.) Let g(t,¢): R x R® — R be a Carathéodory function.
Then the Nemytskij operator N associated with g by (24) is a bounded and
continuous operator between the spaces L;(R"’) and L, (RY) with 1 < p <
and 1 <p' < oo iff g satisfies the growth condition

lg(t.6)] < AMt) + B3 &P ¥(1,€) e R x R® (25)
=

(2

with a function A € L, (R™) and a constant B > 0.

3. Semicontinuity of functionals with integrals over [0, co0)
a) A semicontinuity theorem in the case of Lebesgue integrals

We state now a semicontinuity theorem for the objective (9.1) involving the
Lebesgue integral.

THEOREM 3.1. Let 1 < p < o0.

Consider a nonnegative integrand r(t,&,v) : Rt x R" x R” — R, a positive
function v(t) : RT — R and a density v(t) : RT — R under the following
assumptions:

1) The function r(t,&,v) is continuous with respect to t, continuously differen-
tiable with respect to & and v, and convex with respect to v.

2) The integrand r satisfies the following growth condition with respect to its
second and third arguments:

£ én v Up ~
7 S - s v v 0! (26)
| & |p/q o |p/q

V(t,&v) ERTx R"x R”

< . ‘ .
< A(t) + By ; 0L + B k; (O

with a function Ay € Ll(R+), a constant B >0, andp~t 4+q ' =1.
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3) The gradient V., r satisfies the following growth condition with respect to its
second and third arguments:

& &n U1 Ur ) v(t) ‘

O RO O N ORE

| & [P/ ro |y P79
Bs -

OO 27O

| Vor(t, -~ (27)

V(t,&v) ERTx R"x R”

< As(t) + By Y
=1

with a function As € Lq(R+), a constant Bo >0 and p~ ' 4+q~ 1 =1.

4) The density function v is monotonically decreasing and continuously differ-
entiable with a bounded derivative. Moreover, the condition

t
lim p(t +¢)

) =0 (28)

holds for arbitrary € > 0.

Consider two weakly convergent sequences {xN} — zg and {u™} — ug
with =V, zo € W;’n(RJr, v) and u™,ug € L;(RJF7 v). Then the following lower
semicontinuity relation holds:

i (20, 10) = L-/O "t 30 (), uo(t)) () dt

< liminf L—/ r(t, ™ (t),u™ (1)) D(t) dt = liminf Jp (=N, u"). (29)
0

N —o0 N—o0

Proof. e Step 1: Compactness of the imbedding W;’"(Rt v) — LZ(Rf v). By
assumption 4), we can apply Lemma 2.1 in order to ensure the compactness of
the imbedding W;’W(Q,,) — L, () where Q, C R? is defined by

Q ={tHeR*|0<t, 0<E<u(t)}. (30)

Then from Theorem 2.1 we get the compactness of the imbedding W;’n(Rf v) —
L;(Rf v). Consequently, from the weak convergence of the sequence {2V } in

the space leo’"(R‘L7 v) follows its convergence in LZ(RjL7 v)-norm.

e Step 2: A lower estimate for Jp(x™, u™)

vexity of r with respect to v, we derive

. From differentiability and con-

T'(tv ‘TN (t)v uN (t)) > ’I“(t, ‘TN (t)v Uo (t)) (31)

+ Vo r(t, ™ (1), uo(t) " (uN(t) — up(t) ) =
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r(t, 2™ (), N () v(t) = r(t, 2N (t), uo(t)) D(t) (32)
+ Vo r(t, xo(t), uo(t))" (u™ () — uo(t)) v(t)
+ (Vor(t, 2™ (£),uo(t)) — Vo r(t, m0(t), uo() ) (u™(£) —uol(t)) () —
L-/ r(t, 2™ (t),u () D(t) dt (33)
0
> Jl(a:N,uo) + JQ(IQ,UN,Uo) + Jg(ZEN,iEo,UN,Uo)

with
Ji(2N,ug) = L—/OOO r(t, x™N (), uo(t)) v(t) dt ; (34.1)
Jo(xo, ul, ug) = L—/OOO Vo r(t, xo(t), uo(t))T (uN(t) — up(t) ) v(t)dt; (34.2)
Js(xN, 2o, uN, up) = L—/OOO(VU r(t, xN (t), uo(t)) (34.3)

—Vor(t,zo(t),uo(t))) - (uM(t) —uo(t)) v(t)dt.

The existence of the integrals Ji(zV,ug), Ja(wo,u™,ug) and J3(x, xq, u’, ug)
on the right-hand side of (33) will be confirmed in Step 4 below.

T

e Step 3: Consequences of the growth conditions.

LEMMA 3.1. The Nemytskij operator N(-, -) with

(N (@™, u))(t) = r(t, 2™ (£), uo(t)) (35)
is a continuous map between the spaces LZ'M(RJF7 v) and Ll(RJr, v).
Proof. Since

(N, up) € LZ+T(R": v) (xNul/p, uo 1/1/”) € LZJFT(R"’) (36)
and

r(-, 2™ (o) € LiRED) = r(-,aV()uo() P(-) € Li(RY),

(37)
the growth condition from Theorem 2.2. reads as
51 g’ﬂ U1 Uy "
t, s ey , s eees ot 38
‘T( v(t)1/r v(t)1/e’ v(t)l/p V(t)1/p) ( )‘ (38)
<Al + B i|§i|p/q+3 ZE'U’“W V(t,¢&v) eRTx R"x R’
. ] ;
>~ 1 1 = V(t)l/q 1 = V(t)l/q 3 Sy

with 41 € L (R™) and B; > 0. Since this condition was assumed, the Nemytskij
operator (35) maps L, ""(R* v) continuously into L, (R, 7). "
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LEMMA 3.2. The Nemytskij operator N (-, -) with
(t

N

~—

(N (@0, u0))(t) = | Vo r(t,wo(t), uo(?)) | p) (39)
is a (continuous) map between the spaces L;;JFT(RJF7 v) and Lq(RJr7 v).
Proof. Since

(o, up) € LZJFT(R"', v) — (3:0 Vl/p, U I/l/p) € LZ+T(R+) (40)
and

V(oo )| 2 € 1, (R )

) ) V( . ) q )
= [ Vor(-mo(Youo( )| 2 e 1 (Y (41)
v s L0 s U0 I/( ] )l/p q ’
the growth condition from Theorem 2.2. reads as
& én v Oy v(t)
v, r(t, o , — : 42
[ Vor( v(t)/p v(t)YP v(t)t/p v(t)L/p ) v(t)1/p | (42)
< Ay(t) + By- S0 & g 3 ok PV V(t, € v) e RY x R" x R”
= =GR =70 o
with Ay € L (R™) and By > 0. Since this condition was assumed, the Nemytskij
q
operator (39) maps the space LZ+T (R*,v) continuously into Lq(R"’, v). m
LEMMA 3.3. The Nemytskij operator N(-, -, -) with
v(t

(N(xNv X0, uo))(t) = | (VU T(tv 'rN (t)v ’U,O(t)) -V T(tv xo(t), U‘O(t)) ) ' % ‘ (43)
is a continuous map between the spaces LZ"”HW(R*'7 v) and L, (R v).
Proof. We have (44)

(IN, Zo,Up) € LZJrnJrT(IZPL7 V) — (a:Nul/p, o I/l/p, Uo Vl/p) S LZJrnJrT(RJr)

and

\(vvr«,xN(-),uo(-))—vvr<-,xo<->,uo<->>)-%|eLq<Rtu> (45)

= [(TorCeaa™ () = T anl) o)) 70 | € L, (R,
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Then from assumption 3) we derive the following growth condition:

gl §~n (%1 ()
v tu LR ) g eeey
Vet S S s )
& &n v vy v(t)
— Voo tv PR ) ) e !
Vor( v(t)/p V()P u(t)/p y(t)l/P)| v(t)/p
& &n v vy (t)
< | Vor(t, ST TR s V(t)l/p)|.y i (46)
& &n v Uy v(t)
HIVerlt S o s v i) | e
C oty 4 By LGP LG s Ll
- ° ? =1 v(t)e 2 =1 v(t)a ? =1 v(t)/a

V(t,EEv) eRTX R"x R x R

where Ay € Lq(R+) and 2 B > 0. Consequently, the Nemytskij operator (43)

TR Y v) continuously into L,(R%v). .

maps the space L,

e Step 4: The integrals J1(zN,ug), Ja(wo, uN,up) and J3 (™, 2o, u™, up). From
Lemma 3.1. we conclude that the integrals J;(z", ug) are finite for all N € N.
Together with Step 1, we can further derive the limit relation

liminf Jy (2™, ug) = lim Jy (2™, up) = L—/OOO r(t, zo(t), uo(t)) U(t)dt, (48)

N —o0 N—o0

and the last integral is finite as well. Next we estimate Ja(zo, ul, up) by Holder’s
inequality (see Elstrodt, 1996, p. 222, Theorem 1.5):

| Ja (o, u™,uo) | = ‘L-/OOO Vo r(t, 2o (t), uo ()™ (uM (£) — uo(t) ) H(t) dt‘

L-/O | Vor(t,zo(t), uo(t)) V(—? || u™(t) — uo(t) | v(t) dt

(L_/OOO} Vo r(t, wo(t), uo(t)) % 1 u(t) dt)l/q

. (L-/Ooo’ u™ (t) — uo(t) ’p v(t) dt)

()
V( 3 H L, (R*w) . H uN — Up ||Lp(R+7V) . (49)

IN
<

~—

N

IN
<

~—

1/p

N

= | Vor(-, zo(+),uo(+))

From Lemma 3.2. it follows that the first norm in (49) is finite, and Ja(zo, u”, ug)
can be understood as the application of a linear, continuous functional to the dif-
ference (u"' —ug) € L, (R%,v). Then from the weak convergence {u™} — ug
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in L, (R v) it follows that

liminf Jo(zo,u™ ug) = lim Ja(zo,u™,ug) = 0. (50)
N—o00 N—o00

In order to estimate J3(z%, 2o, u™, up), we apply Holder’s inequality again:

| J3(IN5 Zo, qu ’Lbo) |

’L'/OOO (Vort,a™ (), uo(t)) — Vo r(t, zo(t), uo(t)) )T(uN(t) —wo(8)) 7(t) dt‘

< L—/OOO} (Vor(t, 2N (1), uo(t) — Vur(t,zo(t),uo(t))) % |
N () — uolt) | v(t) dt
< (L/O ‘(er(t,xN(t),uo(t))—er(t,xo(t),uo(t)))%r]u(t)dt)l/q

. (L./Ooo}uN(t) —uo(t) | v(t) dt)l/p
(-

[ (Vor(a™()suo(-)) = Vor(- () uol-))) (—; (P (51)

[ u = uo | LI(Rtw) "

Since the weakly convergent sequence { u" } is bounded, the second norm dif-
ference in (51) is bounded as well, and from Step 1 and Lemma 3.3. it follows

that
. N ;() _
]\}E}noo H (VU’I”(',.I ()au()()) _vvr('aIO(')v’UJO('))) T) ||Lq(R+7,j) = 0.
Consequently, we have (52)
liminf J3(z™, 2o, u™, ug) = lim J3(z, zo,u™,ug) = 0. (53)
N—o0 N—oco

e Step 5: The lower semicontinuity relation for Ji,. From (33), (48), (50) and
(53), we get finally

lgninf Jr (2N, uY)
> lgninf Ju (2N ug) + li\rfninf Jo(zo, uN,up) + 1}\I,ninf Js(xN, o, ul, ug)
= lim Ji(@Nuo) + lim Jo(wo,u™ ug) + lim Js(a, zo, u, up)
N oo N—oo N—oo
= L—/OOO r(t,xo(t),uo(t)) v(t)dt = Jr(xo,uo), (54)
and the proof of Theorem 3.1. is complete. m

REMARK 3.1. We assumed 1 < p < oo in view of Theorem 2.1. used in the
proof.
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b) Counterexamples in the case of improper Riemann integrals

In the first example we confirm that the different interpretations of the integral
within the objective of an infinite horizon problem lead to different feasible
sets. Moreover, the problem has to be formulated in the framework of weighted
spaces.

EXAMPLE 3.1. Let the integrand r(¢,v) : R* x R — R be given by

SI—nt-v ‘ 2k <t < (2k+ )7;
r(to) = § Ly (55)
2— v | (2k+ )7 <t < (2k+2)m.
Consider the “loosely formulated” infinite horizon control problem
(P1)oo:  J(z,u) = —/ r(t,u(t)) dt — Min !; (56.1)
0
(z,u) € W (R w) x L, (RYv); (56.2)
@(t) = u(t) a.e.on RT, 2(0) =0; (56.3)
1
u(t) e U = [5, 1] a.e.on RT. (56.4)

As in Section 1.e), we denote by A the set of pairs fulfilling (56.2) — (56.4), by
Al the subset of pairs (z,u) € A, which make L[~ (—r(t, u(t)) ) dt convergent,
and by Apg the subset of pairs (z,u) € A, which make R-[;~ (—r(t,u(t))) dt
convergent. Since the integral is of type (14) it is obvious that

A =0 and Agr # 0. (57)

The optimal control in (P1)£ is given through

1| 2kr <t < (2k+1)m;
wi(t) = ¢, (58)
5]@k+nwgt§@k+mm

If we define the functions 7 and v by

v(t) =1, v(t)=e 2" (59)
with ¢ > 0, then the corresponding state x* according to (56.3) satisfies

z* ¢ W (RY) but 2" € W,(R%v) (60)

for any 1 < p < co what justifies the choice of a weighted Sobolev space as the
state space.



Lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals 465

The second example shows that an objective with an improper Riemann
integral can fail to be weakly lower semicontinuous.

ExAMPLE 3.2. Consider the problem

(Pa)oo i J(z,u) = _/000 sin(z1(t) ) dt — Min !; (61.1)
(z,u) € W2 (RYv) x (L,(Rv) N CORY)); (61.2)
@1(t) = z2(t) a.e.on RY, 21(0) =0; (61.3)
#o(t) = u(t) a.e.on RT, 22(0) =0; (61.4)
u(t) € U=[0,1] a.e.on R". (61.5)

Let the functions 7 and v be defined as in (59). Again, we denote by A the
set of pairs fulfilling (61.2) — (61.5), by Ar the subset of pairs (z,u) € A,
which make L—fooo ( — sin(;vl (t) ) ) dt convergent, and by Apg the subset of pairs
(z,u) € A, which make R-[;*(—sin(21(t)))dt convergent. In this problem,
we get Ap # O, Ar # O since (zg,ug) = ((8),0) € Ar N Ag. Consider now
the sequence {u™} of controls

2
N
t) = — 62
admissible in (P2)Z. Then the corresponding states #3¥ and x) according to
(61.3)-(61.4) belong to the weighted Sobolev space W;(RJF7 v) forany 1 <p <
00, and

Nlin | 2N — o HW;Q(Rﬁy) =0 as well as (63.1)
. N o
leloo [| u™ = uo ||LP(R+7U) =0. (63.2)

However, the lower semicontinuity of the objective fails along the sequence
{ (@™ uN)} — (20,u0) € W;’Q(R"’, V) % LP(R*} v). We calculate (see Ficht-
enholz, 1990, p. 554, Nr. 491, Examples 3 and 4)

[e'e] t2 /
R/ sin xl dt—R/ sm(N)dt — R/ Smsds

/[T o

Consequently, we have

Jr(zo,u0) = 0 > lim Jr(z™ u)
N —oc0
= lim R- (—sm(wl (t )))dt ) (65)

N—oo 0

and the functional with the improper Riemann integral is not weakly lower
semicontinuous.
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c) Counterexample in the case of Lebesgue integrals

This example was considered by Halkin (1974) in order to demonstrate that
the adjoint function y of this problem does not satisfy the natural transversality
condition lim ,_, o y(T') = 0, corresponding to the terminal condition that a(oo)
is free.

ExaAMPLE 3.3. Consider the problem

Pl . Jp(x,u) = L—/Ooo( —(1 —a(t) u(t) ) dt — Min !; (66.1)
(z,u) € W (R v) x L, (RYv); (66.2)
i(t) = (1 —2z(t)u(t) a. e.on RY, 2(0)=0; (66.3)
u(t) € U=[0,1] a.e.on RT. (66.4)

Let the functions v and v be defined as in (59). Again, we denote by A the set
of pairs fulfilling (66.2) — (66.4), and by A, the subset of pairs (z,u) € A, which
make L—fooo(l — x(t)) u(t) dt convergent. Integrating the separated differential
equation (66.3) with the initial condition z(0) = 0, we obtain z(t) = 1 — e~ F(®
with F(t) = fg u(s) ds. We study the following sequence of feasible processes
(N ulV) € Ap:

00<t<N;
uN(t) = {4 (67)
and
0 0<t< N,
aN(t) = 0= (68)
—el7t/N 41 ‘ N <t< .
We see again that
N + N +
u™ ¢ L(R") but u” €L (Rv) (69)
and
N ¢ W RY) but 2N e W (RYv) (70)

for any 1 < p < oo, what justifies the choice of a weighted Sobolev space

as the state space. Moreover, { (z™,u’)} converges to (z,up) = (0,0) in
VV;(RJF7 v) X LP(R*, v)-norm, since

Jim 2™, g,y = 05 (71.1)
Nlinoo | & HLP(RtU) =0; (71.2)
A}Enoo H u® HLP(RJQV) =0 (71.3)
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for all 1 < p < co. Finally, we obtain
Jp (N, ul) = L—/ (—(1- a:N(t))uN) dt
0

= L-/Oo(—(1 — N uN)dt = -1, (72)

N

but the insertion of (zg, ug) = (0,0) gives
JL(LL'Q,’U,()) = L—/ 0dt = 0. (73)
0

Consequently, we arrive at

Jr(xo,up) = 0 > lim Jp(a™ o) = -1, (74)

N —o0

and the functional with the Lebesgue integral is neither strongly nor weakly
lower semicontinuous within the spaces W;(R"’, V) X Lp(R"’, v), 1 <p < .
In this example, the growth conditions (26) and (27) of Theorem 3.1. are not
satisfied, and the theorem is not applicable. Let us finally note that the replace-
ment of the control set U = [0, 1] by an interval [, 1] with 0 < o < 1 leads
to a problem where the objective is constant and, therefore, continuous in any
topology on the feasible domain.
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