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W

1,n
p (R+, ν) and weighted Lp-spaes L

r
p(R

+, ν). We ask for the on-sequenes of the interpretation of the integral within the objetive asa Lebesgue or an improper Riemann integral. In order to justify theuse of both types of integrals, various appliations of in�nite horizonproblems are presented. We provide examples showing that lowersemiontinuity may fail for objetives involving Lebesgue as well asimproper Riemann integrals. Further we prove a lower semionti-nuity theorem for an objetive with Lebesgue integral under morerestritive growth onditions on the integrand.Keywords: optimal ontrol, in�nite horizon, weighted Sobolevspaes, lower semiontinuity, Lebesgue integral, improper Riemannintegral.1. Introdutiona) Optimal ontrol with in�nite horizonIn the present paper we investigate in�nite horizon optimal ontrol problems.The motivation for studying them arises primarily from eonomis and biologywhere the in�nite time horizon is a very natural phenomenon. Starting withthe paper of Halkin (1974), the researh in the �eld of optimal ontrol problemswith in�nite horizon has dramatially inreased. From the extensive literature,we mention only a few referenes, namely the textbook of Carlson, Haurie andLeizarowitz (1991) and the related hapters in Feihtinger and Hartl (1986) aswell as some examples for papers with bakground in eonomis (Benveniste and
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452 S. PICKENHAIN, V. LYKINA, M. WAGNERSheinkman, 1982; Magill, 1982), ontinuum mehanis (Leizarowitz and Mizel,1989; Zaslavski, 1995) and biology (Colonius and Kliemann, 1989; Goh, Leit-mann and Vinent, 1974). Throughout the development of the theory, neessaryand su�ient optimality onditions as well as existene results were obtained.However, it must be emphasized that, with very few exeptions (e.g. Blot andHayek, 1996, 2000; Blot and Mihel, 1996; as well as Dmitruk and Kuz'kina,2005), no attention was given to the important question whether the interpre-tation of the objetive as a Lebesgue or as an improper Riemann integral isappropriate to the problem formulation.The �rst aim of our paper is to demonstrate that di�erent integral typesan be useful in appliations but lead to ompletely di�erent theoretial results.Further, we point out that, for a orret setting of the problem, the hoie ofan appropriate state spae is essential. Let us mention that the Lagrange mul-tipliers assoiated with the onstraints belong to the dual of the spae whereinthe onstraint set has a nonempty interior.Our paper is organized as follows. In order to demonstrate how Lebesgueand improper Riemann integrals as well as weighted Lebesgue and Sobolev spaesome into onsideration, we start in this setion with the presentation of sometypial appliations. Then we provide the general formulation of the in�nitehorizon problem. In Setion 2, we prepare some analytial tools onerningweighted Lebesgue and Sobolev spaes and the Nemytskij operator. In Setion 3,we state the main results of the paper.In the ase of the Lebesgue integral, we provide an example where lowersemiontinuity is violated. Under additional assumptions, we sueed in prov-ing lower semiontinuity of the objetive with respet to an appropriate weaktopology.In the ase of the improper Riemann integral, we provide two examples. The�rst one demonstrates that, for the same data, the di�erent interpretations ofthe integral lead to di�erent feasible sets. In the seond one, the weak lowersemiontinuity of the objetive fails.Consequently, in the ases where semiontinuity of the objetive is missingit is impossible to develop an existene theory via the Weierstrass theorem. Bythis observation, one is led to treat in�nite horizon problems by means of dualitytheory (see Klötzler, 1979), as outlined in Pikenhain and Lykina (2006).b) Appliation: Optimal eonomi growthSine Ramsey's pioneering work, the problem of optimal eonomi growth hasbeen treated with an in�nite time horizon. In a reent version, the problem anbe formulated as follows (see Carlson, Haurie and Leizarowitz, 1991, pp. 6 �.):
J(K, Z, C) =

∫ ∞

0

e−̺ t U(C(t) ) dt −→ Max ! ; (1.1)
F (K(t) ) = Z(t) + C(t) ; (1.2)
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K̇(t) = Z(t) − µ K(t) ; (1.3)
K(0) = k0 . (1.4)Here the prodution funtion F and the utility funtion U are given, while theinvestment, respetively onsumption rates Z and C and the apital stok Kare optimization variables. Under ertain assumptions on the data, it an beshown that there exists a onstant apital level k suh that, � for any nonneg-ative value of ̺ the optimal trajetory over an in�nite time horizon exists andonverges toward k, and this is true for any initial state k0� (Carlson, Haurieand Leizarowitz, 1991, pp. 8). From this property it is lear that the funtion Kannot belong to any usual Sobolev spae but to a weighted spae as introduedbelow.) Appliation: Prodution-inventory modelThis model has been presented in Sethi and Thompson (2000), pp. 154 �.:

J(I, P ) =

∫ ∞

0

e−̺ t
( h

2

(
I(t) − Î(t)

)2
+

c

2

(
P (t) − P̂ (t)

)2
)

dt −→ Min ! ; (2.1)
İ(t) = P (t) − S(t) ; I(0) = i0 . (2.2)Here Î and P̂ are given goal levels for inventory and prodution, S is the givensales rate, h and c are given positive oe�ients, and the urrent inventory andprodution rates I and P are optimization variables.Again, the optimal trajetory of the problem belongs to a weighted Sobolevspae. Sine the objetive in this problem is similar to the norm in the weightedspae W

1
p(R

+, ν̃) with ν̃(t) = e−̺ t (see Setion 2.b) below), it seems to be verynatural to hoose W
1
p(R

+, ν̃) as the state spae. We mention that here and inthe preeding example, the integrals have to be understood in the Lebesguesense. In the following example, however, the appropriate integral notion is nota priori determined.d) Appliation: Pest ontrolLet X and Y denote the population numbers of two interating speies where
X is a pest and Y is its natural predator. Then X and Y obey the follow-ing dynamis (see Carlson, Haurie and Leizarowitz, 1991, pp. 4 �., and Goh,Leitmann and Vinent, 1974):

Ẋ(t) = X(t)
(
1 − Y (t)

)
, X(0) = x0 ; (3.1)

Ẏ (t) = Y (t)
(
X(t) − 1

)
, Y (0) = y0 . (3.2)It is well known that this system admits a nontrivial stationary point, namely

x̂ = ŷ = 1, while the trajetories in the state spae irle around the equilibrium.



454 S. PICKENHAIN, V. LYKINA, M. WAGNERAssume now that the population X is supressed to a rate 0 ≤ U ≤ Umax bytreatment with some pestiide. Then Y will be in�uened with a rate c U aswell, and the dynamis of the ontrolled system beome
Ẋ(t) = X(t)

(
1 − Y (t) − U(t)

)
, X(0) = x0 ; (4.1)

Ẏ (t) = Y (t)
(
X(t) − 1 − c U(t)

)
, Y (0) = y0 . (4.2)The objetive for the �nite time interval [ 0 , T ] is

J(X, Y, U) =

∫ T

0

(
X(t) + α U(t)

)
dt −→ Min ! , (5)balaning the damage aused by the pest and the ost of its ontrolling witha onstant α > 0. However, �there is no natural reason for bounding thetime interval on whih the system has to be ontrolled� (Carlson, Haurie andLeizarowitz, 1991, p. 5). In the in�nite horizon, the Lebesgue integral

∫ ∞

0

(
X(t) + α U(t)

)
dt (6)beomes in�nite for any admissible ontrol U . When normalizing with respetto X , i. e., replaing the integral (6) by

∫ ∞

0

( (
X(t) − x̂

)
+ α U(t)

)
dt , (7)the integral has to be understood in the Riemann sense while the absoluteonvergene annot be guaranteed.e) General formulation of the in�nite horizon problemsAs mentioned before, the in�nite horizon ontrol problem

(P)∞ : J(x, u) =

∫ ∞

0

r(t, x(t), u(t)) ν̃(t) dt −→ Min ! ; (8.1)
(x, u) ∈ W

1,n
p (R+, ν) × L

r
p(R

+, ν) ; (8.2)
ẋ(t) = f(t, x(t), u(t)) a. e. on R+ ; x(0) = x0 ; (8.3)
u(t) ∈ U ⊂ Rr a. e. on R+ (8.4)is not well de�ned sine the interpretation of the integral within the objetiveis ambiguous. In order to make this point preise, we denote the set of pairs

(x, u) satisfying (8.2) � (8.4) by A and formulate the following basi problems:
(P)L

∞ : JL(x, u) = L-∫ ∞

0

r(t, x(t), u(t)) ν̃(t) dt −→ Min ! ; (9.1)
(x, u) ∈ A ∩ AL (9.2)



Lower semiontinuity of funtionals involving Lebesgue or improper Riemann integrals 455where the integral in the objetive is understood as a Lebesgue integral, and ALonsists of all proesses (x, u) ∈ A, whih make the Lebesgue integral in (9.1)onvergent. In the seond problem,
(P)R

∞ : JR(x, u) = R-∫ ∞

0

r(t, x(t), u(t)) ν̃(t) dt −→ Min ! ; (10.1)
(x, u) ∈ A ∩ AR , (10.2)the integral in the objetive is understood as an improper Riemann integral,and AR onsists of all proesses (x, u) ∈ A, whih make the improper Riemannintegral in (10.1) (at least onditionally) onvergent.The funtion ν is a density funtion in the sense explained below. Thefuntion ν̃ is assumed to be nonnegative, but not neessarily a density funtion.The weighted spaes W

1,n
p (R+, ν) and L

r
p(R

+, ν) will be de�ned in Setion 2.b)below.f) Consequenes of the distintion between Lebesgue and improperRiemann integralsLet us remind that
R-∫ ∞

0

f(t) dt := lim
T→∞

R-∫ T

0

f(t) dt (11)where f : R+→ R has to be R-integrable over any losed interval [ 0 , T ] ⊂ R+.If, under this assumption, the Lebesgue integral onverges absolutely, i. e.
L-∫ ∞

0

| f(t) | dt < ∞ , (12)then the Lebesgue and the improper Riemann integral oinide,
L-∫ ∞

0

f(t) dt = R-∫ ∞

0

f(t) dt = lim
T→∞

L-∫ T

0

f(t) dt (13)(see Elstrodt, 1996, p. 151 f., Theorem 6.3.). It may happen, however, as in thefamous example with f(t) = sin t/t, that the improper Riemann integral
R-∫ ∞

0

sin t

t
dt , (14)onverges onditionally (i.e., the orresponding series onverges non-absolutely,see Fihtenholz, 1990, p. 520 f.) while the Lebesgue integral over the samedomain does not exist (see Elstrodt, 1996, p. 152). As a onsequene of thesefats, the feasible domains AL and AR are, in general, inomparable. Apply-ing the Lebesgue integral notion, we exlude from A all feasible trajetories,



456 S. PICKENHAIN, V. LYKINA, M. WAGNERwhih make the improper Riemann integral non-absolutely onvergent. On theother hand, by applying the improper Riemann integral, we lose all trajetoriesfrom A, whih are Lebesgue integrable but not Riemann integrable even onompat sets. For these reasons, it is very important to formulate an in�nitehorizon problem with the proper integral notion re�eting the situation behindthe model in an appropriate way. As we will see in Setion 3 below, the prob-lems with distint integral types require a ompletely di�erent mathematialtreatment.2. Some bakground from funtional analysisa) Basi notationsLet us write [ 0 , ∞ ) = R+. We denote by M
n
(R+), L

n
p (R+) and C

0,n
(R+)the spaes of all vetor funtions x : R+ → Rn with Lebesgue measurable, inthe pth power Lebesgue integrable or ontinuous omponents, respetively (seeDunford and Shwartz, 1988, p. 146 and pp. 285 �., Elstrodt, 1996, pp. 228 �.).The Sobolev spae W 1,n

p (R+) is de�ned then as the spae of all vetor funtions
x : R+ → Rn, whose omponents belong to Lp(R

+) and admit distributionalderivatives ẋi (see Yosida, 1980, p. 49) belonging to Lp(R
+) as well. For n = 1,we suppress the supersript in the labels of the spaes. The interpretation ofthe integrals will be made preise by the symbols L-∫ for the Lebesgue and R-∫for the Riemann integral.b) Weighted Lebesgue and Sobolev spaesA ontinuous funtion ν : R+ → R+ with positive values is alled a densityfuntion i� it is Lebesgue integrable over R+:

L-∫ ∞

0

ν(t) dt < ∞ (15)(see Kufner, 1985, p. 18, 3.4.). By means of a density funtion ν ∈ C
0
(R+), wede�ne for any 1 ≤ p < ∞ the weighted Lebesgue spae

Ln
p (R+, ν) =

{
x ∈ Mn(R+)

∣∣ ‖ x ‖Ln

p
(R+,ν) =

(
L-∫ ∞

0

|x(t) |pν(t) dt
)1/p

< ∞
}as well as (16)

L
n
∞(R+, ν) =

{
x ∈ M

n
(R+)

∣∣ ‖ x ‖Ln

∞
(R+,ν) = ess sup

0≤ t <∞

∣∣x(t) ν(t)
∣∣ < ∞

} (17)and the weighted Sobolev spae
W

1,n
p (R+, ν) =

{
x ∈ M

n
(R+)

∣∣ x ∈ L
n
p (R+, ν) , ẋ ∈ L

n
p (R+, ν)

} (18)
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‖ x ‖W 1,n

p
(R+,ν) = ‖ x ‖Ln

p
(R+,ν) + ‖ ẋ ‖Ln

p
(R+,ν) , (19)

W
1,n
p (R+, ν) beomes a Banah spae (this an be on�rmed analogously toKufner, 1985, p. 19, Theorem 3.6.). Any linear, ontinuous funtional ϕ :

Lp(R
+, ν) → R an be represented by a funtion y ∈ Lq(R

+, ν) with p−1+q−1 =
1 if 1 < p < ∞ and q = ∞ if p = 1:

〈ϕ , x 〉 =

∫ ∞

0

y(t)x(t) ν(t) dt ∀x ∈ L
1
p(R

+, ν) . (20)We may apply Elstrodt (1996), p. 287, Theorem 3.2, sine the measure generatedby the density funtion ν is σ-�nite on R+. Note that in the ase 1 < p < ∞,the representation (20) remains valid even if ν misses the property (15) of νdoes not hold.) Compat imbedding for weighted Sobolev spaesLet us reall �rst an imbedding result for non-weighted Sobolev spaes overunbounded domains. We state it as
Lemma 2.1. (Adams and Fournier, 2007, p. 194, Example 6.48, together withp. 197 f., Theorem 6.52) Assume that 1 ≤ p < ∞, and a positive, noninreas-ing, ontinuously di�erentiable funtion ν : R+→ R with bounded derivative isgiven. By means of ν, we de�ne the open set

Ων =
{

(t, ξ) ∈ R2
∣∣ 0 < t , 0 < ξ < ν(t)

}
. (21)Then the imbedding W

1
p(Ων) → Lp(Ων) is ompat i� the funtion ν satis�esthe ondition

lim
t→∞

ν(t + ε)

ν(t)
= 0 (22)for every �xed ε > 0.For weighted Sobolev spaes, we mention the following theorem reentlyproved by Antoi (2003):

Theorem 2.1. (Antoi, 2003, p. 63, Theorem 4.3.) Assume that 1 ≤ p < ∞,and a ontinuous density funtion ν : R+ → R is given. By means of ν, wede�ne the open set
Ων =

{
(t, ξ) ∈ R2

∣∣ 0 < t , 0 < ξ < ν(t)
}

. (23)If the imbedding W 1
p(Ων) → Lp(Ων) is ompat then the imbedding W 1

p(R
+, ν) →

Lp(R
+, ν) for the weighted spaes is ompat as well.



458 S. PICKENHAIN, V. LYKINA, M. WAGNERd) Properties of the Nemytskij operatorFor a given Carathéodory funtion g(t, ξ) : R+ × Rs → R ( i. e., g( · , ξ) isLebesgue measurable for all ξ ∈ Rs, and g(t, · ) is ontinuous for almost all
t ∈ R+), the insertion of a s-vetor funtion x(t) : R+ → Rs into g de�nes aNemytskij operator N( · ) with

(Nx)(t) = g(t, x(t)) . (24)Note that the following theorem, whih has been stated in Vainberg (1964), isvalid for Lebesgue spaes on unbounded domains as well.
Theorem 2.2. (Vainberg, 1964, p. 162, Theorem 19.2., together with pp. 154f., Theorem 19.1.) Let g(t, ξ) : R+ × Rs → R be a Carathéodory funtion.Then the Nemytskij operator N assoiated with g by (24) is a bounded andontinuous operator between the spaes L

s
p(R

+) and Lp′(R
+) with 1 ≤ p < ∞and 1 ≤ p′ < ∞ i� g satis�es the growth ondition

∣∣ g(t, ξ)
∣∣ ≤ A(t) + B ·

s∑
i=1

| ξi |p/p′ ∀ (t, ξ) ∈ R+ × Rs (25)with a funtion A ∈ Lp′(R
+) and a onstant B > 0.3. Semiontinuity of funtionals with integrals over [ 0 , ∞ )a) A semiontinuity theorem in the ase of Lebesgue integralsWe state now a semiontinuity theorem for the objetive (9.1) involving theLebesgue integral.

Theorem 3.1. Let 1 < p < ∞.Consider a nonnegative integrand r(t, ξ, v) : R+ × Rn × Rr → R, a positivefuntion ν̃(t) : R+ → R and a density ν(t) : R+ → R under the followingassumptions:1) The funtion r(t, ξ, v) is ontinuous with respet to t, ontinuously di�eren-tiable with respet to ξ and v, and onvex with respet to v.2) The integrand r satis�es the following growth ondition with respet to itsseond and third arguments:
∣∣ r

(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

)
· ν̃(t)

∣∣ (26)
≤ A1(t) + B1 ·

n∑
i=1

| ξi |p/q

ν(t)1/q
+ B1 ·

r∑
k=1

| vk |p/q

ν(t)1/q
∀ (t, ξ, v) ∈ R+ × Rn × Rrwith a funtion A1 ∈ L1(R

+), a onstant B1 > 0, and p−1 + q−1 = 1.



Lower semiontinuity of funtionals involving Lebesgue or improper Riemann integrals 4593) The gradient ∇v r satis�es the following growth ondition with respet to itsseond and third arguments:
∣∣∇v r

(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

)
· ν̃(t)

ν(t)1/p

∣∣ (27)
≤ A2(t) + B2 ·

n∑
i=1

| ξi |p/q

ν(t)1/q
+ B2 ·

r∑
k=1

| vk |p/q

ν(t)1/q
∀ (t, ξ, v) ∈ R+ × Rn × Rrwith a funtion A2 ∈ Lq(R

+), a onstant B2 > 0 and p−1 + q−1 = 1.4) The density funtion ν is monotonially dereasing and ontinuously di�er-entiable with a bounded derivative. Moreover, the ondition
lim

t→∞

ν(t + ε)

ν(t)
= 0 (28)holds for arbitrary ε > 0.Consider two weakly onvergent sequenes { xN } −⇀ x0 and { uN } −⇀ u0with xN , x0 ∈ W

1,n
p (R+, ν) and uN , u0 ∈ L

r
p(R

+, ν). Then the following lowersemiontinuity relation holds:
JL(x0, u0) = L-∫ ∞

0

r(t, x0(t), u0(t)) ν̃(t) dt

≤ lim inf
N→∞

L-∫ ∞

0

r(t, xN (t), uN (t)) ν̃(t) dt = lim inf
N→∞

JL(xN, uN ) . (29)Proof. • Step 1 : Compatness of the imbedding W
1,n
p (R+, ν) → L

n
p (R+, ν). Byassumption 4), we an apply Lemma 2.1 in order to ensure the ompatness ofthe imbedding W

1,n
p (Ων) → L

n
p (Ων) where Ων ⊂ R2 is de�ned by

Ων =
{

(t, ξ) ∈ R2
∣∣ 0 < t , 0 < ξ < ν(t)

}
. (30)Then from Theorem 2.1 we get the ompatness of the imbeddingW

1,n
p (R+, ν) →

L
n
p (R+, ν). Consequently, from the weak onvergene of the sequene { xN } inthe spae W

1,n
p (R+, ν) follows its onvergene in L

n
p (R+, ν)-norm.

• Step 2 : A lower estimate for JL(xN, uN ). From di�erentiability and on-vexity of r with respet to v, we derive
r(t, xN (t), uN (t)) > r(t, xN (t), u0(t)) (31)

+∇v r(t, xN (t), u0(t))
T

(
uN (t) − u0(t)

)
=⇒
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r(t, xN (t), uN (t)) ν̃(t) > r(t, xN (t), u0(t)) ν̃(t) (32)

+∇v r(t, x0(t), u0(t))
T

(
uN (t) − u0(t)

)
ν̃(t)

+
(
∇v r(t, xN (t), u0(t)) −∇v r(t, x0(t), u0(t))

)T (
uN(t) − u0(t)

)
ν̃(t) =⇒

L-∫ ∞

0

r(t, xN (t), uN (t)) ν̃(t) dt (33)
> J1(x

N, u0) + J2(x0, u
N, u0) + J3(x

N, x0, u
N, u0)with

J1(x
N, u0) = L-∫ ∞

0

r(t, xN (t), u0(t)) ν̃(t) dt ; (34.1)
J2(x0, u

N, u0) = L-∫ ∞

0

∇v r(t, x0(t), u0(t))
T

(
uN(t) − u0(t)

)
ν̃(t) dt ; (34.2)

J3(x
N, x0, u

N, u0) = L-∫ ∞

0

(
∇v r(t, xN (t), u0(t)) (34.3)

−∇v r(t, x0(t), u0(t))
)T ·

(
uN (t) − u0(t)

)
ν̃(t) dt .The existene of the integrals J1(x

N, u0), J2(x0, u
N, u0) and J3(x

N, x0, u
N, u0)on the right-hand side of (33) will be on�rmed in Step 4 below.

• Step 3 : Consequenes of the growth onditions.
Lemma 3.1. The Nemytskij operator N( · , · ) with

(N(xN, u0))(t) = r(t, xN (t), u0(t)) (35)is a ontinuous map between the spaes Ln+r
p (R+, ν) and L1(R

+, ν̃).Proof. Sine
(xN, u0) ∈ Ln+r

p (R+, ν) ⇐⇒
(
xNν1/p, u0 ν1/p

)
∈ Ln+r

p (R+) (36)and
r( · , xN ( · ), u0(·)) ∈ L1(R

+, ν̃) ⇐⇒ r( · , xN ( · ), u0(·)) · ν̃( · ) ∈ L1(R
+) ,(37)the growth ondition from Theorem 2.2. reads as

∣∣ r
(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

)
· ν̃(t)

∣∣ (38)
≤ A1(t) + B1 ·

n∑
i=1

| ξi |p/q

ν(t)1/q
+ B1 ·

r∑
k=1

| vk |p/q

ν(t)1/q
∀ (t, ξ, v) ∈ R+ × Rn × Rrwith A1 ∈ L1(R

+) and B1 > 0. Sine this ondition was assumed, the Nemytskijoperator (35) maps Ln+r
p (R+, ν) ontinuously into L1(R

+, ν̃).
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Lemma 3.2. The Nemytskij operator N( · , · ) with

(N(x0, u0))(t) =
∣∣∇v r(t, x0(t), u0(t))

∣∣ ν̃(t)

ν(t)
(39)is a (ontinuous) map between the spaes L

n+r
p (R+, ν) and Lq(R

+, ν).Proof. Sine
(x0, u0) ∈ L

n+r
p (R+, ν) ⇐⇒

(
x0 ν1/p, u0 ν1/p

)
∈ L

n+r
p (R+) (40)and

∣∣∇v r( · , x0( · ), u0( · ))
∣∣ ν̃( · )
ν( · ) ∈ Lq(R

+, ν)

⇐⇒
∣∣∇v r( · , x0( · ), u0( · ))

∣∣ ν̃( · )
ν( · )1/p

∈ Lq(R
+) , (41)the growth ondition from Theorem 2.2. reads as

∣∣∇v r
(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

)
· ν̃(t)

ν(t)1/p

∣∣ (42)
≤ A2(t) + B2 ·

n∑
i=1

| ξi |p/q

ν(t)1/q
+ B2 ·

r∑
k=1

| vk |p/q

ν(t)1/q
∀ (t, ξ, v) ∈ R+ ×Rn ×Rrwith A2 ∈ Lq(R

+) andB2 > 0. Sine this ondition was assumed, the Nemytskijoperator (39) maps the spae L
n+r
p (R+, ν) ontinuously into Lq(R

+, ν).
Lemma 3.3. The Nemytskij operator N( · , · , · ) with
(N(xN, x0, u0))(t) =

∣∣ (
∇v r(t, xN (t), u0(t)) −∇v r(t, x0(t), u0(t))

)
· ν̃(t)

ν(t)

∣∣ (43)is a ontinuous map between the spaes L
n+n+r
p (R+, ν) and Lq(R

+, ν).Proof. We have (44)
(xN, x0, u0) ∈ L

n+n+r
p (R+, ν) ⇐⇒

(
xNν1/p, x0 ν1/p, u0 ν1/p

)
∈ L

n+n+r
p (R+)and

∣∣ (∇v r( · , xN ( · ), u0( · )) −∇v r( · , x0( · ), u0( · ))
)
· ν̃( · )
ν( · )

∣∣ ∈ Lq(R
+, ν) (45)

⇐⇒
∣∣ (

∇v r( · , xN ( · ), u0( · )) −∇v r( · , x0( · ), u0( · ))
)
· ν̃( · )
ν( · )1/p

∣∣ ∈ Lq(R
+) .



462 S. PICKENHAIN, V. LYKINA, M. WAGNERThen from assumption 3) we derive the following growth ondition:
∣∣∇v r

(
t,

ξ̃1

ν(t)1/p
, ... ,

ξ̃n

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

)

−∇v r
(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

) ∣∣ · ν̃(t)

ν(t)1/p

≤
∣∣∇v r

(
t,

ξ̃1

ν(t)1/p
, ... ,

ξ̃n

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

) ∣∣ · ν̃(t)

ν(t)1/p
(46)

+
∣∣∇v r

(
t,

ξ1

ν(t)1/p
, ... ,

ξn

ν(t)1/p
,

v1

ν(t)1/p
, ... ,

vr

ν(t)1/p

) ∣∣ · ν̃(t)

ν(t)1/p

≤ 2 A2(t) + B2 ·
n∑

i=1

| ξ̃i |p/q

ν(t)1/q
+ B2 ·

n∑
i=1

| ξi |p/q

ν(t)1/q
+ 2 B2 ·

r∑
k=1

| vk |p/q

ν(t)1/q
(47)

∀ (t, ξ̃, ξ, v) ∈ R+ × Rn × Rn × Rrwhere A2 ∈ Lq(R
+) and 2 B2 > 0. Consequently, the Nemytskij operator (43)maps the spae L
n+n+r
p (R+, ν) ontinuously into Lq(R

+, ν).
• Step 4 : The integrals J1(x

N, u0), J2(x0, u
N, u0) and J3(x

N, x0, u
N, u0). FromLemma 3.1. we onlude that the integrals J1(x

N, u0) are �nite for all N ∈ N.Together with Step 1, we an further derive the limit relation
lim inf
N→∞

J1(x
N, u0) = lim

N→∞

J1(x
N, u0) = L-∫ ∞

0

r(t, x0(t), u0(t)) ν̃(t) dt , (48)and the last integral is �nite as well. Next we estimate J2(x0, u
N, u0) by Hölder'sinequality (see Elstrodt, 1996, p. 222, Theorem 1.5):

∣∣J2(x0, u
N, u0)

∣∣ =
∣∣∣L-∫ ∞

0

∇v r(t, x0(t), u0(t))
T

(
uN (t) − u0(t)

)
ν̃(t) dt

∣∣∣

≤ L-∫ ∞

0

∣∣∇v r(t, x0(t), u0(t))
ν̃(t)

ν(t)

∣∣ ·
∣∣ uN(t) − u0(t)

∣∣ ν(t) dt

≤
(

L-∫ ∞

0

∣∣∇v r(t, x0(t), u0(t))
ν̃(t)

ν(t)

∣∣q ν(t) dt
)1/q

·
(

L-∫ ∞

0

∣∣uN (t) − u0(t)
∣∣p ν(t) dt

)1/p

=
∥∥∇v r( · , x0( · ), u0( · ))

ν̃( · )
ν( · )

∥∥
L

q
(R+,ν)

·
∥∥ uN − u0

∥∥
L

p
(R+,ν)

. (49)From Lemma 3.2. it follows that the �rst norm in (49) is �nite, and J2(x0, u
N, u0)an be understood as the appliation of a linear, ontinuous funtional to the dif-ferene (uN − u0) ∈ Lr

p(R
+, ν). Then from the weak onvergene { uN } −⇀ u0
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p(R

+, ν) it follows that
lim inf
N→∞

J2(x0, u
N, u0) = lim

N→∞

J2(x0, u
N, u0) = 0 . (50)In order to estimate J3(x

N, x0, u
N, u0), we apply Hölder's inequality again:

∣∣ J3(x
N, x0, u

N, u0)
∣∣

=
∣∣∣L-∫ ∞

0

(
∇v r(t, xN (t), u0(t)) −∇v r(t, x0(t), u0(t))

)T(
uN(t) − u0(t)

)
ν̃(t) dt

∣∣∣

≤ L-∫ ∞

0

∣∣ (∇v r(t, xN (t), u0(t)) −∇v r(t, x0(t), u0(t))
) ν̃(t)

ν(t)

∣∣

·
∣∣ uN(t) − u0(t)

∣∣ ν(t) dt

≤
(

L-∫ ∞

0

∣∣ (∇v r(t, xN (t), u0(t)) −∇v r(t, x0(t), u0(t))
) ν̃(t)

ν(t)

∣∣q ν(t) dt
)1/q

·
(

L-∫ ∞

0

∣∣uN (t) − u0(t)
∣∣p ν(t) dt

)1/p

=
∥∥ (

∇v r( · , xN ( · ), u0( · )) −∇v r( · , x0( · ), u0( · ))
) ν̃( · )

ν( · )
∥∥

L
q
(R+,ν)

(51)
·
∥∥ uN − u0

∥∥
Lr

p
(R+,ν)

.Sine the weakly onvergent sequene { uN } is bounded, the seond norm dif-ferene in (51) is bounded as well, and from Step 1 and Lemma 3.3. it followsthat
lim

N→∞

∥∥ (
∇v r( · , xN ( · ), u0( · )) −∇v r( · , x0( · ), u0( · ))

) ν̃( · )
ν( · )

∥∥
L

q
(R+,ν)

= 0 .Consequently, we have (52)

lim inf
N→∞

J3(x
N, x0, u

N, u0) = lim
N→∞

J3(x
N, x0, u

N, u0) = 0 . (53)
• Step 5 : The lower semiontinuity relation for JL. From (33), (48), (50) and(53), we get �nally
lim inf
N→∞

JL(xN, uN)

> lim inf
N→∞

J1(x
N, u0) + lim inf

N→∞

J2(x0, u
N, u0) + lim inf

N→∞

J3(x
N, x0, u

N, u0)

= lim
N→∞

J1(x
N, u0) + lim

N→∞

J2(x0, u
N, u0) + lim

N→∞

J3(x
N, x0, u

N, u0)

= L-∫ ∞

0

r(t, x0(t), u0(t)) ν̃(t) dt = JL(x0, u0) , (54)and the proof of Theorem 3.1. is omplete.
Remark 3.1. We assumed 1 ≤ p < ∞ in view of Theorem 2.1. used in theproof.



464 S. PICKENHAIN, V. LYKINA, M. WAGNERb) Counterexamples in the ase of improper Riemann integralsIn the �rst example we on�rm that the di�erent interpretations of the integralwithin the objetive of an in�nite horizon problem lead to di�erent feasiblesets. Moreover, the problem has to be formulated in the framework of weightedspaes.
Example 3.1. Let the integrand r(t, v) : R+ ×R → R be given by

r(t, v) =






sin t

t
· v

∣∣ 2kπ ≤ t ≤ (2k + 1)π ;

2
sin t

t
· v

∣∣ (2k + 1)π ≤ t ≤ (2k + 2)π .
(55)Consider the �loosely formulated� in�nite horizon ontrol problem

(P1)∞ : J(x, u) = −
∫ ∞

0

r(t, u(t)) dt −→ Min ! ; (56.1)
(x, u) ∈ W

1
p(R

+, ν) × Lp(R
+, ν) ; (56.2)

ẋ(t) = u(t) a. e. on R+, x(0) = 0 ; (56.3)
u(t) ∈ U = [

1

2
, 1 ] a. e. on R+. (56.4)As in Setion 1.e), we denote by A the set of pairs ful�lling (56.2) � (56.4), by

AL the subset of pairs (x, u) ∈ A, whih make L-∫ ∞

0

(
−r(t, u(t))

)
dt onvergent,and by AR the subset of pairs (x, u) ∈ A, whih make R-∫ ∞

0

(
−r(t, u(t))

)
dtonvergent. Sine the integral is of type (14) it is obvious that

AL = Ø and AR 6= Ø . (57)The optimal ontrol in (P1)
R
∞ is given through

u∗(t) =





1
∣∣ 2kπ ≤ t ≤ (2k + 1)π ;

1

2

∣∣ (2k + 1)π ≤ t ≤ (2k + 2)π .
(58)If we de�ne the funtions ν̃ and ν by

ν̃(t) ≡ 1 , ν(t) = e−̺ t (59)with ̺ > 0, then the orresponding state x∗ aording to (56.3) satis�es
x∗ /∈ W 1

p(R
+) but x∗ ∈ W 1

p(R
+, ν) (60)for any 1 < p < ∞ what justi�es the hoie of a weighted Sobolev spae as thestate spae.



Lower semiontinuity of funtionals involving Lebesgue or improper Riemann integrals 465The seond example shows that an objetive with an improper Riemannintegral an fail to be weakly lower semiontinuous.
Example 3.2. Consider the problem
(P2)∞ : J(x, u) = −

∫ ∞

0

sin
(
x1(t)

)
dt −→ Min ! ; (61.1)

(x, u) ∈ W
1,2
p (R+, ν) ×

(
Lp(R

+, ν) ∩ C
0
(R+)

)
; (61.2)

ẋ1(t) = x2(t) a. e. on R+, x1(0) = 0 ; (61.3)
ẋ2(t) = u(t) a. e. on R+, x2(0) = 0 ; (61.4)
u(t) ∈ U = [ 0 , 1 ] a. e. on R+. (61.5)Let the funtions ν̃ and ν be de�ned as in (59). Again, we denote by A theset of pairs ful�lling (61.2) � (61.5), by AL the subset of pairs (x, u) ∈ A,whih make L-∫ ∞

0

(
− sin

(
x1(t)

) )
dt onvergent, and by AR the subset of pairs

(x, u) ∈ A, whih make R-∫ ∞

0

(
− sin

(
x1(t)

) )
dt onvergent. In this problem,we get AL 6= Ø, AR 6= Ø sine (x0, u0) ≡ (

(
0
0

)
, 0) ∈ AL ∩ AR. Consider nowthe sequene {uN} of ontrols

uN(t) =
2

N
(62)admissible in (P2)

R
∞. Then the orresponding states xN

1 and xN
2 aording to(61.3)-(61.4) belong to the weighted Sobolev spae W

1
p(R

+, ν) for any 1 < p <
∞, and

lim
N→∞

∥∥ xN − x0

∥∥
W 1,2

p
(R+,ν)

= 0 as well as (63.1)
lim

N→∞

∥∥ uN − u0

∥∥
L

p
(R+,ν)

= 0 . (63.2)However, the lower semiontinuity of the objetive fails along the sequene
{ (xN, uN ) } −⇀ (x0, u0) ∈ W 1,2

p (R+, ν) × Lp(R
+, ν). We alulate (see Fiht-enholz, 1990, p. 554, Nr. 491, Examples 3 and 4)

R-∫ ∞

0

sin
(
xN

1 (t)
)
dt = R-∫ ∞

0

sin
( t2

N

)
dt =

√
N

2
· R-∫ ∞

0

sin s√
s

ds

=

√
N

2
·
√

π

2
. (64)Consequently, we have

JR(x0, u0) = 0 > lim
N→∞

JR(xN, uN )

= lim
N→∞

R-∫ ∞

0

(
− sin

(
xN

1 (t)
) )

dt = −∞ , (65)and the funtional with the improper Riemann integral is not weakly lowersemiontinuous.



466 S. PICKENHAIN, V. LYKINA, M. WAGNER) Counterexample in the ase of Lebesgue integralsThis example was onsidered by Halkin (1974) in order to demonstrate thatthe adjoint funtion y of this problem does not satisfy the natural transversalityondition limT→∞ y(T ) = 0, orresponding to the terminal ondition that x(∞)is free.
Example 3.3. Consider the problem
(P3)

L
∞ : JL(x, u) = L-∫ ∞

0

(
−(1 − x(t))u(t)

)
dt −→ Min ! ; (66.1)

(x, u) ∈ W
1
p(R

+, ν) × Lp(R
+, ν) ; (66.2)

ẋ(t) = (1 − x(t))u(t) a. e. on R+, x(0) = 0 ; (66.3)
u(t) ∈ U = [ 0 , 1 ] a. e. on R+. (66.4)Let the funtions ν̃ and ν be de�ned as in (59). Again, we denote by A the setof pairs ful�lling (66.2) � (66.4), and by AL the subset of pairs (x, u) ∈ A, whihmake L-∫ ∞

0
(1 − x(t))u(t) dt onvergent. Integrating the separated di�erentialequation (66.3) with the initial ondition x(0) = 0, we obtain x(t) = 1 − e−F (t)with F (t) =

∫ t

0 u(s) ds. We study the following sequene of feasible proesses
(xN , uN) ∈ AL:

uN(t) =






0
∣∣ 0 ≤ t < N ;

1

N

∣∣ N ≤ t < ∞
(67)and

xN (t) =





0
∣∣ 0 ≤ t < N ;

−e1−t/N + 1
∣∣ N ≤ t < ∞ .

(68)We see again that
uN /∈ Lp(R

+) but uN ∈ Lp(R
+, ν) (69)and

xN /∈ W
1
p(R

+) but xN ∈ W
1
p(R

+, ν) (70)for any 1 ≤ p < ∞, what justi�es the hoie of a weighted Sobolev spaeas the state spae. Moreover, { (xN , uN ) } onverges to (x0, u0) ≡ (0, 0) in
W 1

p(R
+, ν) × Lp(R

+, ν)-norm, sine
lim

N→∞

∥∥ xN
∥∥

L
p
(R+,ν)

= 0 ; (71.1)
lim

N→∞

∥∥ ẋN
∥∥

L
p
(R+,ν)

= 0 ; (71.2)
lim

N→∞

∥∥ uN
∥∥

L
p
(R+,ν)

= 0 (71.3)
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JL(xN , uN) = L-∫ ∞

0

(
−(1 − xN (t))uN

)
dt

= L-∫ ∞

N

(
−(1 − xN (t))uN

)
dt = −1 , (72)but the insertion of (x0, u0) ≡ (0, 0) gives

JL(x0, u0) = L-∫ ∞

0

0 dt = 0 . (73)Consequently, we arrive at
JL(x0, u0) = 0 > lim

N→∞

JL(xN, uN) = −1 , (74)and the funtional with the Lebesgue integral is neither strongly nor weaklylower semiontinuous within the spaes W 1
p(R

+, ν) × Lp(R
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