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ient optimality 
onditions for a bang�singularextremal in the minimum time problem ∗byLaura Poggiolini and Gianna StefaniDipartimento di Matemati
a Appli
ata "G. Sansone",Università degli Studi di Firenze, ItalyAbstra
t: The paper gives se
ond order su�
ient 
onditions forthe strong lo
al optimality of a bang�singular extremal in a mini-mum time problem. The 
onditions are given in terms of regularityassumptions on the extremal and of the 
oer
ivity of the extendedse
ond variation asso
iated to the minimum time problem with �xedend-points on the singular ar
. The 
onditions are 
lose to the ne
-essary ones in the usual sense, namely we require stri
t inequalitieswhere ne
essary 
onditions have mild inequalities.Keywords: minimum time, se
ond order su�
ient 
onditions,bang�singular ar
, Hamiltonian formalism.1. Introdu
tionThis paper is part of a resear
h proje
t aiming to use a Hamiltonian approa
hto study se
ond order 
onditions in optimal 
ontrol. Indeed, we prove su�
ientse
ond order 
onditions for the strong lo
al optimality of a bang�singular ex-tremal for the minimum time problem between �xed end�points with dynami
sgiven by
ξ̇(t) = f0(ξ(t)) + uf1(ξ(t)) (1)
u ∈ [−1, 1] (2)and 
onstrained to
ξ(0) = x̂0 , ξ(T ) = x̂f . (3)The state spa
e is a smooth n−dimensional manifold M and f0, f1 : M → TMare smooth ve
tor �elds, by smooth we mean C∞.We study the strong lo
al optimality of a referen
e triplet (T̂ , ξ̂, û), a

ordingto the following
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470 L. POGGIOLINI, G. STEFANIDefinition 1 The traje
tory ξ̂ is a strong lo
al minimizer if there is a neigh-borhood V of its graph in R×M su
h that ξ̂ is a minimizer with respe
t to thoseadmissible traje
tories whose graph belongs to V, independently of the values ofthe asso
iated 
ontrols.Note that this kind of optimality is lo
al with respe
t to both time and spa
e.In this paper we 
onsider the strong lo
al optimality of a referen
e traje
-tory asso
iated to a bang�singular 
ontrol, namely we study a referen
e triplet
(T̂ , ξ̂, û) satisfying (1), (2), (3) and su
h that û has the following stru
ture:

û(t) ≡ u1 ∈ {−1, 1} ∀t ∈ [0, τ̂) (4)
û(t) ∈ (−1, 1) ∀t ∈ (τ̂ , T̂ ) , (5)

τ̂ is 
alled swit
hing time of the referen
e 
ontrol û.Thanks to the stru
ture of û we are able to prove that the su�
ient 
ondi-tions for lo
al optimality of (T̂ , ξ̂, û) with end�point 
onstraint (3) are su�
ientalso for the minimum time problem with the same dynami
s and relaxing the�nal 
onstraint to the integral 
urve Γf of the 
ontrolled ve
tor �eld f1 throughthe �nal point of the referen
e traje
tory. Namely, we give se
ond order su�-
ient optimality 
onditions for the problemminimize T (6)subje
t to (1), (2) and
ξ(0) = x̂0, ξ(T ) ∈ Γf := {exp sf1(x̂f ) : s ∈ R}. (7)In this paper we 
onsider the 
ase when there is a feedba
k singular 
ontrol,i.e. there is a smooth fun
tion υS : M → R su
h that any singular state�extremal

ξ asso
iated to the dynami
s (1) is an integral line of the ve
tor �eld fS =
f0 + υSf1 and any singular 
ontrol 
an be written as υS ◦ ξ. Note that this
ase is generi
 in dimension 2 and 3, see the subsequent Se
tion 2.5. Underthis assumption we have that both the referen
e traje
tory ξ̂ and the referen
e
ontrol û are smooth on the singular ar
 and that the referen
e ve
tor �eld 
anbe written as

f̂t =

{
h1 := f0 + u1f1 t ∈ [0, τ̂ )

fS t ∈ (τ̂ , T̂ ].The Hamiltonian approa
h to su�
ient 
onditions in Optimal Control 
orre-sponds to the 
lassi
al 
onstru
tion in Cal
ulus of Variations of a �eld of non�interse
ting state extremals 
overing a neighborhood of the referen
e traje
tory,see for example Giaquinta and Hildebrandt (1996). The idea is to 
omparethe 
osts of admissible traje
tories, independently of the asso
iated 
ontrols, bylifting them to the 
otangent bundle.



Bang�singular extremals in the minimum time problem 471When the maximized Hamiltonian Hmax is su�
iently smooth, the �eld ofextremals 
an be obtained by proje
ting on the state manifold the �ow of −→Hmaxemanating from a suitable Lagrangian sub�manifold. Then the 
oer
ivity ofthe se
ond variation permits to invert the proje
tion and lift the admissibletraje
tories, see Agra
hev et al. (1998b, 2002) and the referen
es therein.An important feature is that the 
omparison of 
osts 
an also be obtainedwith a Hamiltonian, whi
h is greater than or equal to Hmax. This possibilityhas been employed in Stefani (2004 and 2007) to prove se
ond order 
onditionsfor a totally singular traje
tory.In addition to the �rst order ne
essary optimality 
onditions, in the formof Pontryagin Maximum Prin
iple (Assumption 1), we make regularity assump-tions on the bang ar
 (Assumption 2), and the strengthened generalized Legendre
ondition (SGLC) (Assumption 3). Moreover, to over
ome the di�
ulties in-trodu
ed by the jun
tion point ξ̂(τ̂ ) between the bang and the singular ar
, weintrodu
e a se
ond�order regularity 
ondition at the jun
tion point (Assumption4). This 
ondition, under SGLC, is proved to be equivalent to the dis
ontinuityof û at time τ̂ . These regularity 
onditions allow us to de�ne a new Hamilto-nian, greater than or equal to Hmax, smooth enough to apply the Hamitonianapproa
h.As far as the se
ond variation is 
on
erned, we require the 
oer
ivity of theextended se
ond variation for the minimum time problem with �xed end�pointsalong the singular ar
, as de�ned in Se
tion 4.Some partial result was already obtained in Poggiolini and Stefani (2005,2006), but there the 
onditions were not 
ompletely satisfa
tory, sin
e strongerse
ond order 
onditions were required.For referen
es on singular traje
tories see Goh (1966), Gabasov and Kir-illova (1972), Gardner Moyer (1973), Dmitruk (1977, 1983), Agra
hev andSa
hkov (2004), and the referen
es therein. To our knowledge su�
ient 
ondi-tions for strong lo
al optimality do not appear in the literature even for totallysingular traje
tories.The plan of the paper is as follows: in Se
tion 2 we give the notation used,the assumptions and the main result of the paper, in Se
tion 3 we des
ribe theHamiltonian approa
h to strong optimality, we de�ne a suitable time�dependentHamiltonian and we prove its properties whi
h allow us to use the method inthe present 
ase, in Se
tion 4 we de�ne the 
oordinate�free extended se
ondvariation J
′′

E and des
ribe its properties. Finally, in Se
tion 5 we prove themain result.2. Statement of the results2.1. NotationIn this paper we use some basi
 element of the theory of symple
ti
 man-ifolds related to the 
otangent bundle T ∗M. For a general introdu
tion see



472 L. POGGIOLINI, G. STEFANIArnold (1980), for spe
i�
 appli
ation to Control Theory we refer to Agra
hevand Gamkrelidze (1997) and Agra
hev and Sa
hkov (2004). Let us re
all somebasi
 fa
ts and introdu
e some spe
i�
 notations.Denote by π : T ∗M →M the 
anoni
al proje
tion, the spa
e T ∗
πℓM is 
anon-i
ally embedded in TℓT ∗M as the spa
e of tangent ve
tors to the �bers.The 
anoni
al Liouville one�form s on T ∗M and the asso
iated 
anoni
alsymple
ti
 two�form σ = ds make it possible to asso
iate to any, possibly time-dependent, smooth Hamiltonian Ht : T

∗M → R, a Hamiltonian ve
tor �eld −→
H t,by

σ(v,
−→
H t(ℓ)) = 〈dHt(ℓ) , v〉, ∀v ∈ TℓT

∗M.In this paper, time τ̂ plays a spe
ial role, hen
e we 
onsider all the �ows asstarting at time τ̂ . In parti
ular, we denote the �ow of −→H t from time τ̂ to time
t by

H : (t, ℓ) 7→ H(t, ℓ) = Ht(ℓ).Sin
e no misunderstanding 
an o

ur, we shall also say that H is the �ow ofthe Hamiltonian Ht. We keep this notation throughout the paper, namely theoverhead arrow denotes the ve
tor �eld asso
iated to a Hamiltonian and thes
ript letter denotes its �ow from time τ̂ .Remark 1 If M = R
n, then

T ∗M = (Rn)
∗
× R

n =
{
(p1, . . . , pn, q

1, . . . , qn), pi, q
i ∈ R

}
,and s =

n∑

i=1

pi dq
i, σ =

n∑

i=1

dpi ∧ dqi.With this notation, Ht(p0, q0) = (µ(t), ξ(t)) is the solution at time t of theHamiltonian system





µ̇i(t) = −
∂

∂qi
Ht(µ(t), ξ(t))

ξ̇i(t) =
∂

∂pi
Ht(µ(t), ξ(t))

µ(τ̂ ) = p0, ξ(τ̂ ) = q0.For a general manifold M , this is the notation in lo
al 
oordinates.Finally, re
all that any ve
tor �eld f on the manifold M de�nes, by liftingto the 
otangent bundle, a Hamiltonian
F : ℓ ∈ T ∗M 7→ 〈ℓ , f(πℓ)〉 ∈ R,in 
oordinates ℓ = (p, q) and F (p, q) = 〈p , f(q)〉.



Bang�singular extremals in the minimum time problem 473We denote by F0, F1, FS , H1 the Hamiltonians asso
iated to f0, f1, fS , h1,respe
tively and by
Fi1i2...ik := {Fi1 , {. . . {Fik−1

, Fik} . . . }, i1, . . . , ik ∈ {0, 1, S}the Hamiltonian asso
iated to fi1i2...ik := [fi1 , [. . . [fik−1
, fik ] . . . ], where {·, ·}denotes the Poisson parentheses between Hamiltonians and [·, ·] denotes the Liebra
kets between ve
tor �elds.The �ow from time τ̂ of the referen
e ve
tor �eld f̂t is a map lo
ally de�nedin a neighborhood of x̂ := ξ̂(τ̂ ). We denote it as

Ŝt : x 7→

{
exp(t− τ̂)h1(x) if t ∈ [0, τ̂ ]

exp(t− τ̂)fS(x) if t ∈ [τ̂ , T̂ ]while
F̂t =

{
H1 if t ∈ [0, τ̂ ]

FS if t ∈ [τ̂ , T̂ ]denotes the time�dependent referen
e Hamiltonian de�ned by f̂t.We also use the following notation from di�erential geometry: Lfα is theLie derivative of a fun
tion α with respe
t to the ve
tor �eld f . Moreover, if Gis a C1 map from a manifold X in a manifold Y , we denote its tangent map ata point x ∈ X as TxG. If the point x is 
lear from the 
ontext, we also write
TxG = G∗ .2.2. Pontryagin Maximum Prin
ipleIn this se
tion we re
all the �rst order optimality 
ondition whi
h the referen
e
ouple must satisfy.We 
all extremal any 
urve in the 
otangent bundle whi
h satis�es PMP andstate�extremal its proje
tion on the state spa
e, namely we give the followingDefinition 2 Let u ∈ L∞([0, T ],R) be an admissible 
ontrol, we 
all extremalof the 
ontrol system (1)-(2) any non trivial traje
tory λ : [0, T ] → T ∗M of theHamiltonian ve
tor �eld −→

F 0 + u(t)
−→
F 1, whi
h satis�es

F0 ◦ λ(t) + u(t)F1 ◦ λ(t) = max
u∈[−1,1]

{F0 ◦ λ(t) + uF1 ◦ λ(t)} a.e. t ∈ [0, T ]and we 
all its proje
tion on the state spa
e ξ := πλ : [0, T ] → M a state ex-tremal.We require the referen
e traje
tory to be a state extremal, namely (ξ̂, û) satis�esthe following



474 L. POGGIOLINI, G. STEFANIAssumption 1 (PMP) There exist p0 ∈ {0, 1} and a solution λ̂ : t ∈ [0, T̂ ] 7→

λ̂(t) ∈ T ∗M of the Hamiltonian system
λ̇(t) =

−→
F t ◦ λ(t)su
h that πλ̂ = ξ̂ , λ̂(0) 6= 0 and

F̂t(λ̂(t)) = max{〈λ̂(t) , f0(ξ̂(t)) + uf1(ξ̂(t))〉 : |u| ≤ 1} = p0 a.e. t ∈ [0, T̂ ].We assume that PMP holds in the normal form, i.e. p0 = 1.
λ̂ : [0, T̂ ] → T ∗M is 
alled adjoint 
ove
tor and we denote ℓ̂ := λ̂(τ̂).Given the stru
ture of the referen
e 
ontrol û, as de�ned by equations (4)-(5), PMP implies

u1F1 ◦ λ̂(t) ≥ 0 ∀t ∈ [0, τ̂ ], (8)
F1 ◦ λ̂(t) = 〈λ̂(t) , f1(ξ̂(t)〉 = 0 ∀t ∈ [τ̂ , T̂ ]. (9)By di�erentiation of equation (9) we also have
F01 ◦ λ̂(t) = 〈λ̂(t) , fS1(ξ̂(t))〉 ≡ 0 t ∈ [τ̂ , T̂ ] (10)
(F001 + û(t)F101) ◦ λ̂(t) = 〈λ̂(t) , fSS1(ξ̂(t))〉 = 0 t ∈ (τ̂ , T̂ ) (11)while equations (8) and (10) give
lim
t→τ̂−

d2

dt2

(
u1F1 ◦ λ̂

)
(t) = u1 (F001 + u1F101) (ℓ̂) ≥ 0. (12)It is also known that a ne
essary 
ondition for the lo
al optimality of a Pon-tryagin extremal is the generalized Legendre 
ondition (GLC) along the singularar
:

F101 ◦ λ̂(t) = 〈λ̂(t) , [f1, [fS , f1]](ξ̂(t))〉 ≥ 0 t ∈ [τ̂ , T̂ ] ,see, for example, Agra
hev and Sa
hkov (2004), Corollary 20.18 p. 318; for a
lassi
al result see Gabasov and Kirillova (1972).2.3. Regularity 
onditionsThe regularity 
onditions we impose 
onsist in requiring stri
t inequalities wherene
essary 
onditions yield mild inequalities.Assumption 2 (Regularity along the bang ar
)
u1F1 ◦ λ̂(t) > 0 ∀t ∈ [0, τ̂).



Bang�singular extremals in the minimum time problem 475Assumption 3 (Strong generalized Legendre 
ondition (SGLC))
F101 ◦ λ̂(t) > 0, t ∈ [τ̂ , T̂ ]. (SGLC)Assumption 4 (Regularity at the jun
tion point)
u1 (F001 + u1F101) (ℓ̂) > 0.Remark 2 We point out that, if SGLC holds, then Assumption 4 is equivalentto the dis
ontinuity of û at time τ̂ : in fa
t, from equation (11) and the 
ontinuityof λ̂, we have
u1 (F001 + û(τ̂+)F101) (ℓ̂) = u1 lim

t→τ̂+

(
F001 ◦ λ̂(t) + û(t)F101 ◦ λ̂(t)

)
= 0.Hen
e, thanks to Assumption 3, we have u1F001(ℓ̂) + F101(ℓ̂) > 0 if and only if

lim
t→τ̂+

û(t) 6= u1.2.4. Main resultThe remaining su�
ient 
onditions are derived from the sub�problem obtainedby keeping the referen
e �nal point and the referen
e bang 
ontrol �xed and al-lowing the singular 
ontrol to vary, namely we study the minimum time problemsubje
t to (1) for t ∈ [τ̂ , T̂ ] and
ξ(τ̂ ) = x̂ , ξ(T ) = x̂f . (13)For this problem we require the se
ond order 
onditions for singular traje
toriesstated in Stefani (2004), whi
h will be des
ribed in Se
tion 4.Assumption 5 (2nd order 
ondition on the singular ar
) We assumethe 
oer
ivity of the extended se
ond variation J ′′

E asso
iated to the singulartraje
tory ξ̂|[τ̂ ,T̂ ] of the minimum time problem with �xed end-points x̂ and x̂f ,as de�ned in Se
tion 4, see also Stefani (2004 and 2007).Theorem 1 (Main theorem) Suppose that ξ̂ is a normal bang�singular state-extremal and that the regularity 
onditions (Assumptions 2�4) are satis�ed. Ifthe extended se
ond variation J ′′
E on the singular ar
 is 
oer
ive, then ξ̂ is astri
t strong lo
al minimizer for the minimum time problem between x̂0 and theintegral 
urve Γf of f1 through x̂f .2.5. Geometry near the singular ar
In this se
tion we assume SGLC and we des
ribe some properties of the Hamil-tonians linked to our system near the singular ar
 of the adjoint 
ove
tor.



476 L. POGGIOLINI, G. STEFANIFor t ∈ [τ̂ , T̂ ], û(t) =
−F001

F101
(λ̂(t)) and λ̂|[τ̂ ,T̂ ] is 
alled a singular extremalof the �rst kind, see for example Zelikin and Borizov (1994).By (9) and (10), any singular extremal of the �rst kind belongs to the (2n−

2)�dimensional symple
ti
 manifold
S = {ℓ : F1(ℓ) = F01(ℓ) = 0, F101(ℓ) > 0}whi
h is 
ontained in the hyper-surfa
e
Σ := {ℓ ∈ T ∗M : F1(ℓ) = 0},where the maximized Hamiltonian
Hmax : ℓ 7→ max{F0(ℓ) + uF1(ℓ) : u ∈ [−1, 1]}
oin
ides with F0.Note that S and Σ are independent of the 
ontrol 
onstraints but, by (2),any singular extremal of our problem belongs to
S ∩

{
ℓ :
F001

F101
(ℓ) ∈ (−1, 1)

}
.By SGLC it is easy to prove the following result:Lemma 2.1 There is a neighborhood U of S in T ∗M where the following 
laimshold true.1. Σ is an hyper-surfa
e 
ontaining the symple
ti
 manifold S and it separatesin U the regions de�ned by: Hmax = F0 + F1, Hmax = F0 − F1.2. −→

F 1 is tangent to Σ and transversal to S, while −→
F 01 is transversal to Σ.3. The maps (s, ℓ) 7→ exp s

−→
F 1(ℓ) and (τ, s, ℓ) 7→ exp τ

−→
F 01 ◦ exp s

−→
F 1(ℓ)are lo
al di�eomorphisms from R × S to Σ and from R × R × S to T ∗Mrespe
tively.Property (3) in Lemma 2.1 yields the possibility of de�ning the smooth fun
tion

υ : U → R as
υ :=

−F001

F101
on S (14)and then extending it 
onstant �rst on the integral lines of −→F 1 and then onthose of −→F 01. In this way we get the Hamiltonian of singular extremal of the�rst kind by de�ning

K := F0 + υ F1.In this paper we 
onsider the 
ase when the ratio F001/F101 restri
ted to S is afun
tion υS depending only on πℓ ∈ M . Indeed, in this 
ase the Hamiltonian
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K|S is the lift of the ve
tor �eld fS and we say that any singular 
ontrol isfeedba
k.Note that this 
ase is generi
 in dimensions 2 and 3, as proved in the followinglemma.Lemma 2.2 Let ℓ ∈ S, x = πℓ and f1(x) 6= 0.

• If dimM = 2, then υ(ℓ) depends only on x.
• If dimM = 3, then υ(ℓ) depends only on x either if f1(x), f01(x) arelinearly independent or if f1(x), f101(x), f001(x) are linearly dependent.Therefore, in dimension two, f1 non-null onM implies that any singular 
ontrolof the �rst kind is feedba
k, while, in dimension three, the existen
e of a feedba
ksingular 
ontrol of the �rst kind is implied either by f1, f01 linearly independentof M or by f1, f101, f001 linearly dependent on M .Proof. f1(x) 6= 0 implies f1, f101 linearly independent at x. If dimM = 2, we
hoose {ω1, ω2} as the dual base of {f1(x), f101(x)} and it is easy to see that

υ(ℓ) = −〈ω2 , f001(x)〉.Analogously, if dimM = 3 and f1, f01 are linearly independent at x, thenwe 
hoose {ω1, ω2, ω3} as the dual base of {f1(x), f101(x), f01(x)} and we getagain υ(ℓ) = −〈ω2 , f001(x)〉.If f1, f01 are linearly dependent at x, then we 
hoose {ω1, ω2, ω3} as the dualbase of a base of type {f1(x), f101(x), g} and we get ℓ ∈ S if ℓ = a2ω2 + a3ω3with a2 > 0. Therefore υ(ℓ) = −〈ω2 , f001(x)〉 −
a3

a2
〈ω3 , f001(x)〉 and the 
laimfollows.3. Hamiltonian approa
h to strong lo
al optimalityThe 
lassi
al Hamiltonian approa
h to prove su�
ient 
onditions for strong opti-mality is based on the 
onstru
tion of a �eld of non�interse
ting state extremals
overing a neighborhood of the given traje
tory: i.e. by proje
ting on the statespa
e the �ow of −→

Hmax starting from a suitable horizontal Lagrangian sub�manifold. Indeed, if H = Hmax is C2 and we 
an �nd a Horizontal Lagrangiansub�manifold Λ su
h that
id×πH : [0, T ]× Λ → [0, T ]×M , (t, ℓ) 7→ (t, πHt(ℓ)) (15)is a di�eomorphism, then we 
an use symple
ti
 arguments to 
ompare the
osts by lifting admissible traje
tories to the 
otangent bundle, independentlyof the asso
iated 
ontrols, and �nally to prove su�
ient 
onditions. In this 
ase

id×πH is a C1 map and the 
oer
ivity of the se
ond variation allows us to de�nea suitable manifold Λ for whi
h id×πH is lo
ally one�to�one, see Agra
hev etal. (1998b).The same ideas have been used in Agra
hev et al. (2002) for bang�bangtraje
tories. In this 
ase H is not C1 but suitable regularity 
onditions at theswit
hing points of the referen
e extremal imply that H is pie
ewise C∞. Again



478 L. POGGIOLINI, G. STEFANIthe 
oer
ivity of a suitable se
ond variation permits us to �nd Λ, for whi
h
id×πH is a pie
ewise di�eomorphism.The presen
e of a singular ar
 prevents the existen
e of a su�
iently smooth�ow of −→Hmax; on the other hand one 
an observe that a 
omparison of the 
osts
an be obtained also with a Hamiltonian H whi
h is greater than or equal to
Hmax. For this reason we are led to introdu
e a time�dependent Hamiltonian
Ht and the notion of almost�extremal. We 
all almost�extremal a solutionof the Hamiltonian system asso
iated to a Hamiltonian Ht with the followingproperties

Ht ≥ Hmax , Ht ◦ λ̂ = Ĥt ◦ λ̂ ,
˙̂
λ =

−→
H t ◦ λ̂ . (16)See Stefani (2004) for the appli
ation to a totally singular ar
 and Subse
tion3.2 for further details on the bang�singular 
ase.The paradigm is as follows: the regularity assumptions allow us to 
hoosean over�maximized Hamiltonian satisfying (16) and whose �ow is C1. The
oer
ivity of the se
ond variation gives the possibility of de�ning a manifold Λsu
h that map (15) is invertible.This general paradigm 
an be followed to prove su�
ient 
onditions also inother situations.3.1. The Hamiltonian χWe use the strategy adopted in Stefani (2007) to over
ome the problems arisingfrom the existen
e of a singular ar
, that is we add, near the singular ar
 ofthe adjoint 
ove
tor, a positive Hamiltonian χ to the referen
e one, see Se
tion3.2. This possibility is given by Regularity Assumption 3 and is des
ribed inthe following lemma.Lemma 3.1 By possibly restri
ting U , it is possible to de�ne a smooth fun
tion

ρ : U ⊂ T ∗M → R, with the following propertiesi. The Hamiltonian χ = ρ
2 F

2
01 is su
h that the Hamiltonian ve
tor �eld −→

F 0+
−→χis tangent to Σ.ii. For any ℓ ∈ S, ρ(ℓ) =

1

F101(ℓ)
, hen
e, without loss of generality, we 
ansuppose ρ > 0iii. ρ 
an be 
hosen so that

χ(ℓ) = F0 ◦ expϑ(ℓ)
−→
F 1(ℓ) − F0(ℓ)where ϑ(ℓ) is de�ned by

F01(expϑ(ℓ)
−→
F 1(ℓ)) = 0 and ϑ(ℓ) = 0 , ∀ℓ ∈ S,hen
e

(
−→
F 0 + −→χ )(ℓ) = (exp(−ϑ(ℓ))

−→
F 1)∗

−→
F 0 ◦ (expϑ(ℓ)

−→
F 1)(ℓ) , ∀ℓ ∈ Σ.



Bang�singular extremals in the minimum time problem 479Proof. The proof is given in Stefani (2007) with a reversed inequality, indeedin that paper the �rst order 
onditions are 
onsidered in the form of Lagrangemultipliers rule, whi
h leads to an adjoint 
ove
tor whi
h is opposite to the onewe 
onsider.In the following lemma we 
olle
t the main properties of the Hamiltonian χin 
onne
tion with the Hamiltonians H1 and
HS := K + χ = F0 + υF1 + χ, (17)whi
h allow us to pursue our paradigm.Lemma 3.2 The following statements hold true:1. HS ≥ Hmax on Σ and −→

HS is tangent to Σ2. H1 + χ ≥ Hmax on Σ and −→
H 1 + −→χ is tangent to Σ3. ~χ is null and −→

K =
−→
F S on S hen
e, λ̂|[τ̂ ,T̂ ] is a traje
tory of −→HS.4. −→

F 1 is invariant both with respe
t to the �ow of −→HS and with respe
t to the�ow of −→H 1 + −→χ , namely let H be either equal to HS or equal to H1 + χ,then
−→
F 1 ◦ Ht(ℓ) = Ht∗

−→
F 1(ℓ) , ℓ ∈ Σ5. 〈ℓ , π∗

−→χ (ℓ)〉 = χ(ℓ) for all ℓ ∈ Σ.Proof. Claims 1, 2, 3 follow easily from the de�nitions and Lemma 3.1.To prove 
laim 4, take ℓ ∈ Σ, noti
e that L−→
F 1
υ ≡ 0 by de�nition, and
ompute

∂t

(
H−1
t∗

−→
F 1 ◦ Ht

)
(ℓ) = H−1

t∗

[−→
F 0 + −→χ ,

−→
F 1

]
◦ Ht(ℓ).From 
laim iii. of Lemma 3.1 we obtain on Σ

[
−→
F 0 + −→χ ,

−→
F 1] =

[
exp(−ϑ

−→
F 1)∗

−→
F 0 ◦ exp(ϑ

−→
F 1) ,

−→
F 1

]
=

= exp(−ϑ
−→
F 1)∗{

−→
F 01 − L−→

F 1
ϑ
−→
F 10} ◦ exp(ϑ

−→
F 1) = 0sin
e L−→

F 1
ϑ ≡ −1 on Σ.The proof of 
laim 5 follows easily from iii. of Lemma 3.1.3.2. Almost extremalsIn this se
tion we prove that regularity Assumptions 2, 3 and 4 imply the exis-ten
e of a Hamiltonian Ht with the desired properties (16) on its �ow startingfrom Σ.The �ow of H1 ba
kward in time emanating from ℓ ∈ Σ at time τ̂ behavesdi�erently a

ording to the sign of u1F01(ℓ). Namely, if u1F01(ℓ) ≤ 0 then
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u1F1(exp(t − τ̂ )

−→
H 1)(ℓ) > 0 for t < τ̂ , hen
e H1 is the maximized Hamiltonianalong its own �ow. If u1F01(ℓ) > 0 then u1F1(exp(t − τ̂)

−→
H 1)(ℓ) < 0 for t < τ̂ ,hen
e H1 is no longer the maximized Hamiltonian. We over
ome this problemby substituting H1 with H1 + χ for these bad points so that the �ow is kept on

Σ until it rea
hes a good point, as pre
ised in the following lemma.Lemma 3.3 Let Assumptions 3 and 4 be satis�ed. Then1. There exists a neighborhood O of ℓ̂ in Σ su
h that the impli
it equation
{
τ(ℓ) = τ̂ ,

F01 ◦ exp(τ(ℓ) − τ̂)(
−→
H 1 + −→χ )(ℓ) = 0de�nes a smooth fun
tion

τ : ℓ ∈ O 7→ τ(ℓ) ∈ R.2. 〈dτ(ℓ) , δℓ〉 =
−σ

(
δℓ,

−→
F 01(ℓ)

)

(F001 + u1F101) (ℓ)
∀ℓ ∈ O ∩ S.3. F01(ℓ) = 0 ⇐⇒ τ(ℓ) = τ̂ and sgn (u1F01(ℓ)) = sgn (τ̂ − τ(ℓ)).4. There exists ε > 0 su
h that

|τ(ℓ) − τ̂ | < ε ∀ℓ ∈ O (18)and su
h that, for any ℓ ∈ O and for any t, s with τ̂ − ε ≤ t ≤ s ≤ τ̂ , thefollowing inequality holds:
u1 (F001 + u1F101)◦ exp(t− s)

−→
H 1 ◦ exp(s− τ̂)

(−→
H 1 + −→χ

)
(ℓ) > 0. (19)Proof. 1. and 2. Sin
e the partial derivative

∂tF01 ◦ exp(t− τ̂)(
−→
H 1 + −→χ )(ℓ)

∣∣∣
(t,ℓ)=(τ̂ ,ℓ̂)

= (F001 + u1F101) (ℓ̂) (20)is not zero by Assumption 4, then the impli
it fun
tion theorem applies.3. From equation (20) and Assumption 4 the fun
tion
t 7→ u1∂tF01 ◦ exp(t− τ̂)(

−→
H 1 + −→χ )(ℓ)is lo
ally stri
tly in
reasing, hen
e 
laim 3. follows.4. Inequalities (18)�(19) are satis�ed in a neighborhood of t = s = τ̂ , ℓ = ℓ̂, by
ontinuity.Now we are able to de�ne a Hamiltonian Ht, visualized in Fig. 1, whi
h allowsus to pursue the paradigm:

Ht(ℓ) =






H1(ℓ)
if 0 ≤ t ≤ τ̂ − ε orif τ̂ − ε < t < τ̂ , u1F01(ℓ) ≤ 0

(H1 + χ)(ℓ) if τ̂ − ε < t < τ̂ , u1F01(ℓ) > 0

HS(ℓ) if τ̂ ≤ t ≤ T̂

(21)
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H1

H1 + χ

HS

t

T ∗M
t = τ̂

t
=
τ(
ℓ)

t = τ̂ − ε

(τ̂ , ℓ̂) (T̂ , ℓ̂)

Figure 1. Constru
tion of the over�maximized HamiltonianNote that the above de�ned Hamiltonian Ht has the required properties onlyon its �ow starting from Σ, as shown in the following lemma.Lemma 3.4 The Hamiltonian
H : (t, ℓ) ∈ [0, T̂ ] × T ∗M 7→ Ht(ℓ) ∈ Rsatis�es the following properties:1. H is C1 with respe
t to ℓ, for any t.2. −→
H t(ℓ) is Lips
hitz 
ontinuous with respe
t to ℓ, for any t ∈ [0, T̂ ]. Theonly dis
ontinuities, with respe
t to time, of −→H t(ℓ) o

ur at t = τ̂ , i.e. theyo

ur at the dis
ontinuity of the referen
e 
ontrol fun
tion û.3. The �ow H of −→H t is C1([0, T̂ ] ×O).4. The restri
tion of the Hamiltonian H to (id×H)([0, T̂ ] ×O) is 
ontinuous.5. Ht(ℓ̂) = λ̂(t), for any t ∈ [0, T̂ ].6. F1 ◦ Ht(ℓ) = 0 for any (t, ℓ) ∈ [min{τ(ℓ), τ̂}, T̂ ] ×O.7. Possibly restri
ting O,

u1F1 ◦ Ht(ℓ) > 0 ∀(t, ℓ) ∈ [0,min{τ(ℓ), τ̂}) ×O. (22)8. Ht ◦ λ̂(t) = Ĥt ◦ λ̂(t) for any t ∈ [0, T̂ ] and
Ht ◦ Ht(ℓ) ≥ Hmax ◦ Ht(ℓ) for any (t, ℓ) ∈ [0, T̂ ] ×O.Proof. 1. and 2. are easy 
orollaries of Lemma 3.3, taking into a

ount that χis C∞, by Lemma 3.1.



482 L. POGGIOLINI, G. STEFANI3. For t ∈ (τ̂ , T̂ ], the property is obvious, sin
e Ht = HS is C∞.For t ∈ [0, τ̂ ], the only dis
ontinuities of the map ℓ 7→ TℓHt may o

ur at the
(t, ℓ) su
h that F01(ℓ) = 0 or su
h that u1F01(ℓ) ≥ 0 and t = τ(ℓ). By de�nitionwe obtain

TℓHt =

{
Tℓ exp(t− τ̂ )

−→
H 1 if u1F01(ℓ) < 0

Tℓ exp(t− τ̂ )(
−→
H 1 + −→χ ) if u1F01(ℓ) > 0, t ∈ (τ(ℓ), τ̂ ).Moreover, if u1F01(ℓ) > 0 and t ∈ [0, τ(ℓ)) then, taking into a

ount that

−→χ ◦ Hτ(ℓ)(ℓ) = 0, we get
TℓHt = THτ(ℓ)(ℓ) exp(t− τ(ℓ))

−→
H 1 ◦ Tℓ exp(τ(ℓ) − τ̂ )(

−→
H 1 + −→χ ).An easy 
omputation 
ompletes the proof.4. and 5. follow easily from 1. and 2.6. is obvious, by Lemma 3.1.7. Consider the 
ases1. τ̂ ≤ τ(ℓ) and t < τ̂ . Ht(ℓ) = exp(t− τ̂ )

−→
H 1(ℓ) and u1F01(ℓ) ≤ 0 so that

u1F1◦Ht(ℓ) = (t−τ̂ )u1F01(ℓ)+
(t− τ̂ )2

2
u1 (F001 + u1F101) (ℓ)+o((t−τ̂ )2).2. τ(ℓ) < τ̂ , and t < τ(ℓ). Ht(ℓ) = exp(t − τ(ℓ))

−→
H 1(Hτ(ℓ)(ℓ)), u1F01(ℓ) > 0so that

u1F1 ◦Ht(ℓ) =
(t− τ(ℓ))2

2
u1 (F001 + u1F101)◦Hτ(ℓ)(ℓ)+o((t− τ(ℓ))2).Using (19), 7. follows.8. The proof is straightforward from 7., sin
e χ is a non�negative fun
tion.4. The extended se
ond variationIn Stefani (2004) the extended se
ond variation J ′′, asso
iated to a totally singu-lar extremal of a minimum time problem is de�ned starting from the 
oordinate�free se
ond variation given in Agra
hev et al. (1998a). Lo
ally around x̂ de�nethe time�dependent ve
tor �eld

gt := Ŝ−1
t∗ f1 ◦ Ŝt : W → TM, t ∈ [τ̂ , T̂ ]and 
hoose a fun
tion β on W su
h that

dβ(x̂) = −λ̂(τ̂ ). (23)Then the se
ond variation as de�ned in Agra
hev et al. (1998a) is a quadrati
form on L2([τ̂ , T̂ ],R) realized as the following intrinsi
 LQ problem on the ve
tor
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e Tx̂M :
J ′′[δu]2 =

∫ T̂

τ̂

δu(t)Lδη(t) Lgt
β(x̂0) dt

δ̇η(t) = δu(t)gt(x̂), δη(τ̂ ) = δη(T̂ ) = 0.This result is independent of the 
hoi
e of the fun
tion β with property 23, seeAgra
hev et al. (1998a), hen
e we 
an 
hoose β so that Lf1β ≡ 0. Applying thete
hniques in Stefani (2004), developed in Stefani (2007), we obtain a quadrati
form on R×L2([τ̂ , T̂ ],R) realized as an intrinsi
 LQ problem on the ve
tor spa
e
Tx̂M . Setting for t ∈ [τ̂ , T̂ ]

R(t) := L[ġt , gt]β(x̂) = 〈dβ(x̂) , [ġt, gt]〉 = 〈λ̂(t) , f101(ξ̂(t)〉

Q(t) := L(·) Lġt
β(x̂)

δe := (w0, w) ∈ R × L2([τ̂ , T̂ ],R)we 
an write the extended se
ond variation as
J ′′
E [δe]2 =

1

2

∫ T̂

τ̂

w(t)2R(t) + 2w(t)Q(t)ζ(t) dt,

ζ̇(t) = w(t)ġt(x̂), ζ(τ̂ ) = w0f1(x̂), ζ(T̂ ) = 0.See Stefani (2007) for further details and note that the same se
ond variation,written in symple
ti
 form, is 
onsidered in Agra
hev and Sa
hkov (2004). InStefani (2007) the ne
essary and su�
ient 
onditions are proved for the 
oer-
ivity of J ′′
E from di�erent points of view, in parti
ular a redu
tion to a nonsingular problem is proved: denote

Γ := {exp sf1(x̂), s ∈ R}the integral 
urve of f1 through x̂, and let α be any fun
tion su
h that dα(x̂) = ℓ̂and L2
f1
α(x̂) = 0. Then, J ′′

E is proved to be the standard se
ond variation,relative to the extremal λ̂|[τ̂ ,T̂ ] and to the referen
e 
ontrol ŵ ≡ 0, of the Mayerproblemminimize α(ξ(τ̂ )) subje
t to (24)
ξ̇(t) = fS(ξ(t)) + w(t)fS1(ξ(t)) +

1

2
w(t)2f1S1(ξ(t)) (25)

ξ(τ̂ ) ∈ Γ , ξ(T ) = x̂f . (26)Note that the 
oer
ivity of J ′′
E implies that SGLC must be satis�ed and that

f1(x̂) 6= 0. Moreover, easy 
al
ulations show that SGLC is the strong Legendre
ondition for the above non-singular problem.
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e in our 
ase the Hamiltonian of singular extremals FS is the lift of ave
tor �eld fS , we 
an use Lemma 6.4 in Stefani (2007) to give ne
essary andsu�
ient 
onditions for the 
oer
ivity of J ′′
E in terms of the ve
tor �elds fS and

f1.Lemma 4.1 Ne
essary and su�
ient 
ondition for the 
oer
ivity of J ′′
E.If f1, f01 are linearly dependent at x̂, then J ′′

E is 
oer
ive if and only if
f1(ξ̂(t)) 6= 0 for all t ∈ [τ̂ , T̂ ].If f1, f01 are linearly independent at x̂, then J ′′

E is 
oer
ive if and only if
f1(ξ̂(t)) and Ŝt∗f1(x̂) are linearly independent for all t ∈ (τ̂ , T̂ ].4.1. Redu
tion to a free initial point problemIn this se
tion we show how the 
oer
ivity of J ′′

E allows us to add a penalty onthe initial point of problem (24)�(25)�(26) so that the se
ond variation remains
oer
ive also removing the 
onstraint on the initial point. This allows us tode�ne the Lagrangian sub�manifold with the property required in Se
tion 3.Lemma 4.2 If J ′′
E is 
oer
ive, then there is a fun
tion α de�ned in a neighbor-hood W of x̂, with the following propertiesi) Lf1α ≡ 0ii) dα(x̂) = ℓ̂iii) Let Λ = {dα(x) : x ∈ W} be the Lagrangian sub�manifold de�ned by α andlet H be the Hamiltonian �ow asso
iated to the Hamiltonian Ht de�ned in(21), then π∗Ht∗ : T

ℓ̂
Λ → T

ξ̂(t)M is an isomorphism for t ∈ [τ̂ , T̂ ].Proof. Sin
e f1(x̂) 6= 0, we 
an 
hoose 
oordinates (x1, · · · , xn) at x̂ su
h that
f1 = ∂

∂x1
, therefore ℓ̂ =

∑n
i=2 λi dxi and we 
an 
hoose β in (23) as

β = −
n∑

i=2

λixi.In these 
oordinates 
hoose the non-negative quadrati
 form on Tx̂M
Ω =

1

2

n∑

i=2

dxi ⊗ dxiand extend it to Tx̂M × L2([τ̂ , T̂ ],R) by Ω[δe]2 = Ω[δx]2. The quadrati
 formde�ned on Tx̂M × L2([τ̂ , T̂ ],R) by
(δx, w) 7→ Ω[δx]2 +

1

2

∫ T̂

τ̂

w(t)2R(t) + 2w(t)Q(t)ζ(t) dt

ζ̇(t) = w(t)ġt(x̂), ζ(τ̂ ) = δx, ζ(T̂ ) = 0,
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oin
ides with J ′′
E on the kernel of Ω, hen
e we 
an apply Theorem 13.2 ofHestenes (1951) and 
on
lude that there is a positive 
onstant s su
h that

J ′′
E + sΩ is 
oer
ive on W = {δe ∈ Tx̂M × L2([τ̂ , T̂ ],R) : ζ(T̂ ) = 0}.By de�ning
α(x) =

n∑

i=2

λixi +
1

2
s

n∑

i=2

x2
i ,we get that α satis�es i), ii) and that γ′′ := D2(α+ β)(x̂) = sΩ.

J ′′
E+sΩ turns out to be the standard se
ond variation of the Mayer problemminimize α(ξ(τ̂ )) subje
t to (25) and ξ(T ) = x̂f .Therefore the proof of iii) follows from Corollary 6.1 in Stefani (2007).5. Proof of the Main TheoremIn this se
tion we 
omplete the proof of the main result. We start by provingthe existen
e of a Lagrangian sub�manifold having the required properties withrespe
t to the Hamiltonian de�ned in (21).Lemma 5.1 Let α : W → R and Λ be the fun
tion and the asso
iated Lagrangiansub�manifold de�ned in Lemma 4.2. Possibly restri
ting W, the map
id×πH : (t, ℓ) ∈ [0, T̂ ] × Λ 7→ (t, πHt(ℓ)) ∈ [0, T̂ ] ×Mis one�to�one onto a neighborhood V of the graph of ξ̂ in [0, T̂ ] ×M .Proof. Sin
e [0, T̂ ] is 
ompa
t, it su�
es to show that πHt : ℓ 7→ πHt(ℓ) is lo
allyone�to�one around (t, ℓ̂) for any t ∈ [0, T̂ ]. Sin
e Ht is C1, it su�
es to showthat π∗Ht∗ : T

ℓ̂
Λ → T

ξ̂(t)M is an isomorphism for any t ∈ [0, T̂ ]. In fa
t, if t ≥ τ̂ ,the 
laim is proved in Lemma 4.2, while if t ∈ [0, τ̂ ] an easy 
al
ulation showsthat π∗Ht∗ = exp(t− τ̂ )h1 ∗.We 
an now use symple
ti
 arguments to 
omplete the proof of the maintheorem. First, observe that the one�form ω de�ned by
ω = H∗(s −Ht dt)is exa
t on [0, T̂ ] × Λ, see Arnold (1980).Let (T, ξ, u) be an admissible triplet su
h that τ̂ < T ≤ T̂ and su
h that thegraph of ξ : [0, T ] →M is in the neighborhood V de�ned in Lemma 5.1.By assumption ξ(T ) belongs to the integral line of f1 emanating from x̂f i.e.

∃ s ∈ R su
h that ξ(T ) = exp sf1(x̂f ). De�ne
φ : r ∈ [0, 1] 7→ exp s(1 − r)f1(x̂f ) ∈M.Consider the paths in V :



486 L. POGGIOLINI, G. STEFANI1. Ξ := (id, ξ) : t ∈ [0, T ] 7→ (t, ξ(t)) ∈ R ×M ,2. Φ: r ∈ [0, 1] 7→
(
(T̂ − T )r + T, φ(r)

)
∈ R ×M ,3. Ξ̂ := (id, ξ̂) : t ∈ [0, T̂ ] 7→ (t, ξ̂(t)) ∈ R ×Mand denote ψ := (id×πH)−1. Sin
e the 
on
atenation of ψ ◦ Ξ, ψ ◦ Φ, and of

ψ ◦ Ξ̂ ran ba
kward in time, is a 
losed path in [0, T̂ ] × Λ, then
0 =

∮
ω =

∫

ψ◦Ξ

ω +

∫

ψ◦Φ

ω −

∫

ψ◦Ξ̂

ω. (27)From the properties of Ht (point 8. of Lemma 3.4) we get
∫

ψ◦Ξ̂

ω = 0,

∫

ψ◦Ξ

ω ≤ 0 (28)so that
∫

ψ◦Φ

ω ≥ 0. (29)Sin
e H ◦ ψ ◦ Φ takes values in Σ, then
〈H ◦ ψ ◦ Φ(r) , f1(πH ◦ ψ ◦ Φ(r))〉 = F1 ◦ H ◦ ψ ◦ Φ(r) ≡ 0,so that
0 ≤

∫

ψ◦Φ

ω = −(T̂ − T )

∫ 1

0

HS(H ◦ ψ ◦ Φ(r)) dr. (30)Assume that T ≤ T̂ , then (30) is equivalent to
0 ≤−

∫ T̂

T

HS ◦ H ◦ ψ(t, exp
s(T̂ − t)

T̂ − T
f1(x̂f )) dt

=

∫ T̂

T

(
HS ◦ H

T̂
◦ ψ(T̂ , x̂f ) + O(t− T̂ )

)
dt =

∫ T̂

T

(
HS ◦ H

T̂
(ℓ̂) +O(t− T̂ )

)
dt

=

∫ T̂

T

−
(
1 +O(t− T̂ )

)
dt = T − T̂ +O

(
(T − T̂ )2

)whi
h implies T = T̂ , so that (ξ̂, û) is a (time, state)�lo
al minimizer.To prove that su
h minimum is stri
t, let us assume, by 
ontradi
tion, that
T = T̂ . Then Φ(r) =

(
T̂ , exp s(1 − r)f1(x̂f )

), and ∫

ψ◦Φ

ω = 0. From equa-tion (27) we also get
0 =

∫

ψ◦Ξ

ω =

∫ T̂

0

〈H ◦ ψ(t, ξ(t)) , ξ̇(t)〉 −Ht ◦ H ◦ ψ(t, ξ(t)) dt,
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〈H ◦ ψ(t, ξ(t)) , (f0 + u(t)f1)(ξ(t))〉 = Ht ◦ H ◦ ψ(t, ξ(t))

= Hmax ◦ H ◦ ψ(t, ξ(t)) (31)for any t ∈ [0, T̂ ]. De�ne λ(t) := H ◦ ψ(t, ξ(t)). If λ(t) ∈ Σ, then (31) implies
λ(t) ∈ S, while if λ(t) /∈ Σ, then 
laim 7. of Lemma 3.4 and equation (31)yield u(t) = u1. In parti
ular, we get u(t) = u1 for any t ∈ [0, τ̂ − ε], therefore
λ(t) = λ̂(t) for any t ∈ [0, τ̂ − ε], sin
e λ(0) = λ̂(0).For t ∈ (τ̂ − ε, T̂ ) we 
an 
ompute

λ̇(t) =
−→
H t ◦ λ(t) −Ht∗(πHt)

−1
∗

{
π∗

−→
H t ◦ λ(t) − (f0 + u(t)f1) ◦ ξ(t)

}
=

=






−→
H 1 ◦ λ(t) + (u(t) − u1)Ht∗(πHt)

−1
∗ f1 ◦ ξ(t) t ∈ (τ̂ − ε, τ̂)

−→
HS ◦ λ(t) + (u(t) − υS ◦ ξ(t))Ht∗(πHt)

−1
∗ f1 ◦ ξ(t) t ∈ (τ̂ , T̂ ).Sin
e, whenever λ(t) ∈ Σ, Ht∗(πHt)

−1
∗ f1 ◦ πλ(t) =

−→
F 1 ◦ λ(t) (by point 4 ofLemma 3.2), in any 
ase we get

λ̇(t) = (
−→
F 0 + u(t)

−→
F 1) ◦ λ(t) ∀t ∈ (τ̂ − ε, T̂ ),whi
h, together with (31), means that λ satis�es PMP on [τ̂ − ε, T̂ ]. Sin
e

λ(τ̂ − ε) = λ̂(τ̂ − ε), we easily get λ = λ̂ on [0, τ̂ ]. Moreover, on [τ̂ , T̂ ], λ is aPontryagin extremal and its range is in S, so that λ is a solution to the Cau
hyprobleṁ
λ(t) =

(
−→
F 0 −

F001

F101

−→
F 1

)
◦ λ(t) λ(τ̂ ) = ℓ̂on the interval [τ̂ , T̂ ]. Hen
e λ(t) = λ̂(t) for any t ∈ [τ̂ , T̂ ]. Proje
ting on thestate manifold M , we �nally get ξ(t) = ξ̂(t).6. An exampleConsider the Dodgem 
ar problem:minimize Tsubje
t to

ẋ1(t) = cos(x3) x1(0) = 0 x1(T ) = b1

ẋ2(t) = sin(x3) x2(0) = 0 x2(T ) = b2

ẋ3(t) = u x3(0) = 0 x3(T ) ∈ R

u ∈ [−1, 1]
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3.We have

f0(x) =




cos(x3)
sin(x3)

0



 , f1(x) =




0
0
1



 ,hen
e, with a simple 
omputation, we also get
f01(x) =




sin(x3)

− cos(x3)
0



 , f101(x) = f0(x), f001(x) =




0
0
0



and the asso
iated Hamiltonians are
F0(p, x) = F101(p, x) = p1 cos(x3) + p2 sin(x3) F1(p, x) = p3

F01(p, x) = p1 sin(x3) − p2 cos(x3) F001(p, x) = 0.Sin
e, along any singular ar
 of a normal Pontryagin extremal, the 
ondition
F0(λ̂(t)) = 1 must hold, then SGLC is satis�ed and the only admissible singular
ontrol is u(t) ≡ 0, so that any singular ar
 is driven by fS = f0, and our theoryapplies.Let us 
he
k that along any singular ar
 the hypotheses of Lemma 4.1 aresatis�ed. In fa
t, sin
e f0(x) and f01(x) are linearly independent at any point of
R

3, we just need to show that f1(x) and exp(tf0)∗f1 ◦ exp(−tf0)(x) are linearlyindependent for any t 6= 0.A simple 
omputation shows that
exp(tf0)(x) =




x1 + t cos(x3)
x2 + t sin(x3)

x3





exp(tf0)∗f1 ◦ exp(−tf0)(x) =




−t sin(x3)
t cos(x3)

1



 ,whi
h proves our 
laim.Any bang�singular ar
 satisfying PMP in normal form is a strong lo
al op-timizer for the problem. It is known, see Craven (1995), Teo et al. (1991),Fleming and Rishel (1975), Dmitruk (2007), that if b21 + (b2 − 1)2 > 1, then anyminimum time extremal is bang�singular with jun
tion point on the 
ylinder
x2

1 + (x2 − 1)2 = 1.Referen
esAgra
hev, A.A. and Gamkrelidze, R.V. (1997) Symple
ti
 methods foroptimization and 
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k and Optimal Control. Pure and Applied Mathemati
s,Mar
el Dekker, New York, 1�58.
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