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Abstract: The paper gives second order sufficient conditions for
the strong local optimality of a bang-singular extremal in a mini-
mum time problem. The conditions are given in terms of regularity
assumptions on the extremal and of the coercivity of the extended
second variation associated to the minimum time problem with fixed
end-points on the singular arc. The conditions are close to the nec-
essary ones in the usual sense, namely we require strict inequalities
where necessary conditions have mild inequalities.
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1. Introduction

This paper is part of a research project aiming to use a Hamiltonian approach
to study second order conditions in optimal control. Indeed, we prove sufficient
second order conditions for the strong local optimality of a bang—singular ex-
tremal for the minimum time problem between fixed end—points with dynamics
given by

£(t) = fo(&(t)) + ufr(&(t) (1)

ue[-1,1] (2)
and constrained to

£0) =m0, &(T)=uzy. (3)

The state space is a smooth n—dimensional manifold M and fo, f1: M — TM
are smooth vector fields, by smooth we mean C°. o

We study the strong local optimality of a reference triplet (T', &, ), according
to the following
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DEFINITION 1 The trajectory E is a strong local minimizer if there is a neigh-
borhood V of its graph in R x M such that £ is a minimizer with respect to those
admissible trajectories whose graph belongs to V, independently of the values of
the associated controls.

Note that this kind of optimality is local with respect to both time and space.

In this paper we consider the strong local optimality of a reference trajec-
tory associated to a bang-singular control, namely we study a reference triplet
(T, &, u) satisfying (1), (2), (3) and such that @ has the following structure:

i) =u; € {~1,1}  vte[0,7) (4)
alt) € (—-1,1) vt e (7,T), (5)

T is called switching time of the reference control u.

Thanks to the structure of 4 we are able to prove that the sufficient condi-
tions for local optimality of (T, £, ) with end—point constraint (3) are sufficient
also for the minimum time problem with the same dynamics and relaxing the
final constraint to the integral curve I'y of the controlled vector field f; through
the final point of the reference trajectory. Namely, we give second order suffi-
cient optimality conditions for the problem

minimize T (6)
subject to (1), (2) and

£0) =20,  &T)ely:={expsfi(Zs): s € R}. (7)

In this paper we consider the case when there is a feedback singular control,
i.e. there is a smooth function vg: M — R such that any singular state—extremal
¢ associated to the dynamics (1) is an integral line of the vector field fs =
fo + vsf1 and any singular control can be written as vg o £&. Note that this
case is generic in dimension 2 and 3, see the subsequent Section 2.5. Under
this assumption we have that both the reference trajectory £ and the reference
control @ are smooth on the singular arc and that the reference vector field can
be written as

f: hq :=f0+u1f1 tE[O,?)
T s te®T)

The Hamiltonian approach to sufficient conditions in Optimal Control corre-
sponds to the classical construction in Calculus of Variations of a field of non—
intersecting state extremals covering a neighborhood of the reference trajectory,
see for example Giaquinta and Hildebrandt (1996). The idea is to compare
the costs of admissible trajectories, independently of the associated controls, by
lifting them to the cotangent bundle.
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When the maximized Hamiltonian H™®* is sufficiently smooth, the field of
extremals can be obtained by projecting on the state manifold the flow of Fmax
emanating from a suitable Lagrangian sub—manifold. Then the coercivity of
the second variation permits to invert the projection and lift the admissible
trajectories, see Agrachev et al. (1998B, 2002) and the references therein.

An important feature is that the comparison of costs can also be obtained
with a Hamiltonian, which is greater than or equal to H™®*. This possibility
has been employed in Stefani (2004 and 2007) to prove second order conditions
for a totally singular trajectory.

In addition to the first order necessary optimality conditions, in the form
of Pontryagin Maximum Principle (Assumption 1), we make regularity assump-
tions on the bang arc (Assumption 2), and the strengthened generalized Legendre
condition (SGLC) (Assumption 3). Moreover, to overcome the difficulties in-
troduced by the junction point &{ (7T) between the bang and the singular arc, we
introduce a second—order regularity condition at the junction point (Assumption
4). This condition, under SGLC, is proved to be equivalent to the discontinuity
of w at time 7. These regularity conditions allow us to define a new Hamilto-
nian, greater than or equal to H™**, smooth enough to apply the Hamitonian
approach.

As far as the second variation is concerned, we require the coercivity of the
extended second variation for the minimum time problem with fixed end—points
along the singular arc, as defined in Section 4.

Some partial result was already obtained in Poggiolini and Stefani (2005,
2006), but there the conditions were not completely satisfactory, since stronger
second order conditions were required.

For references on singular trajectories see Goh (1966), Gabasov and Kir-
illova (1972), Gardner Moyer (1973), Dmitruk (1977, 1983), Agrachev and
Sachkov (2004), and the references therein. To our knowledge sufficient condi-
tions for strong local optimality do not appear in the literature even for totally
singular trajectories.

The plan of the paper is as follows: in Section 2 we give the notation used,
the assumptions and the main result of the paper, in Section 3 we describe the
Hamiltonian approach to strong optimality, we define a suitable time—dependent
Hamiltonian and we prove its properties which allow us to use the method in
the present case, in Section 4 we define the coordinate—free extended second
variation Jg and describe its properties. Finally, in Section 5 we prove the
main result.

2. Statement of the results

2.1. Notation

In this paper we use some basic element of the theory of symplectic man-
ifolds related to the cotangent bundle T*M. For a general introduction see
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Arnold (1980), for specific application to Control Theory we refer to Agrachev
and Gambkrelidze (1997) and Agrachev and Sachkov (2004). Let us recall some
basic facts and introduce some specific notations.

Denote by 7: T*M — M the canonical projection, the space 177, M is canon-
ically embedded in TyT*M as the space of tangent vectors to the fibers.

The canonical Liouville one—form s on 7T*M and the associated canonical
symplectic two—form o = ds make it possible to associate to any, possibly time-

dependent, smooth Hamiltonian Hy: T*M — R, a Hamiltonian vector field ﬁt,
by

o(v, Hy(0)) = (dH,(0), v), Vv e T T*M.

In this paper, time 7T plays a special role, hence we consider all the flows as

=
starting at time 7. In particular, we denote the flow of H; from time 7 to time
t by

M (t0) — H(E €)= Hy(0).

Since no misunderstanding can occur, we shall also say that H is the flow of
the Hamiltonian H;. We keep this notation throughout the paper, namely the
overhead arrow denotes the vector field associated to a Hamiltonian and the
script letter denotes its flow from time 7.

REMARK 1 If M = R"”, then
"M = (Rn)* x R™" = {(plu (R 7pn7q17 . '7qn)7 Di, ql € R} )
and s = Zpi d¢', o= dei Adgt.
i=1 i=1

With this notation, H(po,qo) = (u(t),£&(t)) is the solution at time t of the
Hamiltonian system

ai(t) = — (;Zi Hy(u(t),€(1))

(1) = 5 Hlu1). (1)

w(T) = po, §(T)=qo

For a general manifold M, this is the notation in local coordinates.

Finally, recall that any vector field f on the manifold M defines, by lifting
to the cotangent bundle, a Hamiltonian

F:leT*Mw— {{, f(rf)) € R,

in coordinates ¢ = (p,q) and F(p,q) = (p, f(q)).
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We denote by Fy, Fi, Fg, H; the Hamiltonians associated to fo, f1, fs, h1,
respectively and by

E1i2...ik = {F‘ilu{-"{F‘ik,laFi }}, 11, ...,0k € {0,1,5}

the Hamiltonian associated t0 fi ir..ip = [firs[--- [fin_1> fir) - - -], where {-,-}
denotes the Poisson parentheses between Hamiltonians and [-, -] denotes the Lie
brackets between vector fields. R

The flow from time 7 of the reference vector field f; is a map locally defined

o~

in a neighborhood of Z := £(7). We denote it as

Syt x— =

N exp(t — T)hi(x) if ¢t €[0,7]
exp(t —7)fs(x) if te€[7,T]

while

= H, if te [0,?]
F, = . A
Fs if te[7,T]
denotes the time—dependent reference Hamiltonian defined by fAt
We also use the following notation from differential geometry: Lya is the
Lie derivative of a function o with respect to the vector field f. Moreover, if G
is a C! map from a manifold X in a manifold Y, we denote its tangent map at

a point z € X as T,G. If the point x is clear from the context, we also write
T.G =G.,.

2.2. Pontryagin Maximum Principle

In this section we recall the first order optimality condition which the reference
couple must satisfy.

We call extremal any curve in the cotangent bundle which satisfies PMP and
state—extremal its projection on the state space, namely we give the following

DEFINITION 2 Let u € L*([0,T],R) be an admissible control, we call extremal
of the control system (1)-(2) any non trivial trajectory \: [0,T] — T*M of the
— —
Hamiltonian vector field F o+ u(t) F 1, which satisfies
FooA(t) +u(t)FroA(t) = maxl] {FooA(t) + uF1 o A(t)} a.e. t€][0,T]

ue[—1,

and we call its projection on the state space & := w\: [0,T] — M a state ex-
tremal.

We require the reference trajectory to be a state extremal, namely (2, u) satisfies
the following
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AssuMPTION 1 (PMP) There exist po € {0,1} and a solution Nite 0,7] —
A(t) € T*M of the Hamiltonian system

At) = FroA()

such that A = ¢, :\\(0) #0 and

o~

EA®) = max{(A(®), fo(€(t) +ufi€(t): Jul <1} =po ace. t€[0,T).
We assume that PMP holds in the normal form, i.e. pg = 1.

X: [0, 7] — T*M is called adjoint covector and we denote £ := A(7).
Given the structure of the reference control @, as defined by equations (4)-
(5), PMP implies

wFyoA(t) >0 Vite[0,7], (8)

Fro(t) = (\1), hE(1) =0 Vie[7T]. (9)

By differentiation of equation (9) we also have

~ ~.

ForoM(t) = (\(t), fs1(€1)) =0 te[7,T] (10)

(Foor + @(t)Fio) 0 A(t) = (A1) , fss1(E(1))) =0t € (7,T) (11)
while equations (8) and (10) give

Jlim (‘;—; (u1F1 o X) (t) = w1 (Foor + w1 Fion) () > 0. (12)

It is also known that a necessary condition for the local optimality of a Pon-
tryagin extremal is the generalized Legendre condition (GLC) along the singular
arc:

Fior o A(t) = (A®), [, [fs, ANE®) >0 te[7T],

see, for example, Agrachev and Sachkov (2004), Corollary 20.18 p. 318; for a
classical result see Gabasov and Kirillova (1972).

2.3. Regularity conditions

The regularity conditions we impose consist in requiring strict inequalities where
necessary conditions yield mild inequalities.

ASSUMPTION 2 (REGULARITY ALONG THE BANG ARC)

uwFyoA(t) >0 Vtel0,7).
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ASSUMPTION 3 (STRONG GENERALIZED LEGENDRE CONDITION (SGLC))
Fiop o A(t) >0, tel7T). (SGLC)

ASSUMPTION 4 (REGULARITY AT THE JUNCTION POINT)

~

u1 (Foo1 + u1Fio1) (£) > 0.

REMARK 2 We point out that, if SGLC holds, then Assumption 4 is equivalent
to the discontinuity of U at time T: in fact, from equation (11) and the continuity
of \, we have

~

U1 (F001 + a(?—f—)le) (f) = U1 tlin+ (Fool [¢] X(t) + a(f)FlOl o X(t)) =0.

Hence, thanks to Assumption 3, we have u1 Foo1(€) + Fio1(€) > 0 if and only if
lim u(t) # u;.

t—T

2.4. Main result

The remaining sufficient conditions are derived from the sub—problem obtained
by keeping the reference final point and the reference bang control fixed and al-
lowing the singular control to vary, namely we study the minimum time problem
subject to (1) for ¢ € [7,T] and

)=z, &T) =1y (13)

For this problem we require the second order conditions for singular trajectories
stated in Stefani (2004), which will be described in Section 4.

ASSUMPTION 5 (2ND ORDER CONDITION ON THE SINGULAR ARC) We assume
the coercivity of the extended second variation Jp associated to the singular
trajectory El[?)ﬂ of the minimum time problem with fized end-points T and Ty,
as defined in Section 4, see also Stefani (2004 and 2007).

THEOREM 1 (MAIN THEOREM) Suppose that gz's a normal bang-singular state-
extremal and that the regularity conditions (Assumptions 2—4) are satisfied. If
the extended second variation Jj, on the singular arc is coercive, then E is a
strict strong local minimizer for the minimum time problem between To and the
integral curve I'y of fi through T¢.

2.5. Geometry near the singular arc

In this section we assume SGLC and we describe some properties of the Hamil-
tonians linked to our system near the singular arc of the adjoint covector.
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~ — Fyoq ~ N
For t € [7,T], u(t) = F—Om()\(t)) and Az 7 is called a singular extremal
101 ’

of the first kind, see for example Zelikin and Borizov (1994).
By (9) and (10), any singular extremal of the first kind belongs to the (2n —
2)—dimensional symplectic manifold

S={l: F1({) = Fp1(£) = 0, F101(¢) > 0}
which is contained in the hyper-surface
Y:={{eT*M: F,(¢) =0},
where the maximized Hamiltonian
H™: v max{Fo({) + uF1(¢): v € [-1,1]}

coincides with Fj.
Note that S and ¥ are independent of the control constraints but, by (2),
any singular extremal of our problem belongs to

. Foor _
SN {e. E O 1,1)}.

By SGLC it is easy to prove the following result:

LEMMA 2.1 There is a neighborhood U of S in T* M where the following claims
hold true.
1. X is an hyper-surface containing the symplectic manifold S and it separates
in U the regions defined by: H™** = Fy + Iy, H™* = Iy — F}.
2. ?1 is tangent to X and transversal to S, while ?01 1s transversal to 2.
3. The maps (s,{) — exp 5?1(6) and (71,8,0) — exp T?Ol o exp 5?1(6)
are local diffeomorphisms from R x S to X and from R xR x S to T*M
respectively.

Property (3)in Lemma 2.1 yields the possibility of defining the smooth function
v:U — Ras

_ —Fon
Fio1

S (14)

—
and then extending it constant first on the integral lines of F'; and then on

those of F}m- In this way we get the Hamiltonian of singular extremal of the
first kind by defining

K = Fy + v Fi.

In this paper we consider the case when the ratio Fyo1/Fio1 restricted to S is a
function vg depending only on 7¢ € M. Indeed, in this case the Hamiltonian
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K|s is the lift of the vector field fs and we say that any singular control is
feedback.

Note that this case is generic in dimensions 2 and 3, as proved in the following
lemma.

LEMMA 2.2 Let L € S, x =7l and fi(x) # 0.

o Ifdim M = 2, then v({) depends only on x.

o If dim M = 3, then v({) depends only on x either if fi(x), foi(x) are

linearly independent or if f1(x), fio1(x), foo1(x) are linearly dependent.

Therefore, in dimension two, f1 non-null on M implies that any singular control
of the first kind is feedback, while, in dimension three, the existence of a feedback
singular control of the first kind is implied either by f1, fo1 linearly independent
of M or by f1, fio1, foo1 linearly dependent on M.

Proof. fi(x) # 0 implies f1, fip1 linearly independent at x. If dim M = 2, we
choose {w1,wa} as the dual base of {f1(x), fi01(z)} and it is easy to see that
v(l) = —(w2, foor(x))-

Analogously, if dim M = 3 and f1, fo1 are linearly independent at z, then
we choose {w1,ws2,ws} as the dual base of {f1(x), fi01(x), fo1(z)} and we get
again v(£) = —(wa, foo1(x)).

If f1, fo1 are linearly dependent at x, then we choose {w1,ws, w3} as the dual
base of a base of type {f1(z), fi01(z), g} and we get £ € S if £ = asws + azws
with az > 0. Therefore v(¢) = —(w2, foo1(z)) — §2(ws, foo1(z)) and the claim
follows. [

3. Hamiltonian approach to strong local optimality

The classical Hamiltonian approach to prove sufficient conditions for strong opti-
mality is based on the construction of a field of non—intersecting state extremals
covering a neighborhood of the given trajectory: i.e. by projecting on the state
space the flow of H™* starting from a suitable horizontal Lagrangian sub—
manifold. Indeed, if H = H™® is C? and we can find a Horizontal Lagrangian
sub—manifold A such that

idxnH: [0,T)]x A—[0,T]x M, (t,¢)— (t, 7H:({)) (15)

is a diffeomorphism, then we can use symplectic arguments to compare the
costs by lifting admissible trajectories to the cotangent bundle, independently
of the associated controls, and finally to prove sufficient conditions. In this case
id x7H is a C' map and the coercivity of the second variation allows us to define
a suitable manifold A for which id x7H is locally one-to—one, see Agrachev et
al. (1998B).

The same ideas have been used in Agrachev et al. (2002) for bang—bang
trajectories. In this case H is not C! but suitable regularity conditions at the
switching points of the reference extremal imply that H is piecewise C*°. Again
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the coercivity of a suitable second variation permits us to find A, for which
id x7H is a piecewise diffeomorphism.

The presence of a singular arc prevents the existence of a sufficiently smooth
flow of ﬁmax; on the other hand one can observe that a comparison of the costs
can be obtained also with a Hamiltonian H which is greater than or equal to
H™#*_ For this reason we are led to introduce a time—dependent Hamiltonian
H; and the notion of almost—extremal. We call almost—extremal a solution
of the Hamiltonian system associated to a Hamiltonian H; with the following
properties

Hy > H™™ Hyoh=HoX, A=H,0N. (16)

See Stefani (2004) for the application to a totally singular arc and Subsection
3.2 for further details on the bang—singular case.

The paradigm is as follows: the regularity assumptions allow us to choose
an over-mazimized Hamiltonian satisfying (16) and whose flow is C'. The
coercivity of the second variation gives the possibility of defining a manifold A
such that map (15) is invertible.

This general paradigm can be followed to prove sufficient conditions also in
other situations.

3.1. The Hamiltonian yx

We use the strategy adopted in Stefani (2007) to overcome the problems arising
from the existence of a singular arc, that is we add, near the singular arc of
the adjoint covector, a positive Hamiltonian x to the reference one, see Section
3.2. This possibility is given by Regularity Assumption 3 and is described in
the following lemma.

LEMMA 3.1 By possibly restricting U, it is possible to define a smooth function
p:U CT*M — R, with the following properties
i. The Hamiltonian x = § F2, is such that the Hamiltonian vector field FO—FY
1s tangent to 2.

1
ii. For any ¢ € S, p(¥) = , hence, without loss of generality, we can
Fio1(¢)
suppose p > 0

1. p can be chosen so that
X(0) = Fo 0 expd(£) F () — Fy(0)
where 9(£) is defined by
For(expd(O)F1(0) =0 and 9(¢) =0, V€ S,
hence

(Fo+ 1)) = (exp(—9(0))F1). Foo (expd() F1)(£), VLeX.
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Proof. The proof is given in Stefani (2007) with a reversed inequality, indeed
in that paper the first order conditions are considered in the form of Lagrange
multipliers rule, which leads to an adjoint covector which is opposite to the one
we consider. [

In the following lemma we collect the main properties of the Hamiltonian x
in connection with the Hamiltonians H; and

Hg =K+ x=Fy+vF +x, (17)
which allow us to pursue our paradigm.

LEMMA 3.2 The following statements hold true:
—
1. Hg > H™* on Y and Hg zs tangent to X
2. Hi+x> Hmax onZ and H1—|— X s tangent to X
3. x is null and K = FS on S hence, )\ 7 is a tmyectory of Hg
4. F1 is tnvariant both with respect to the ﬂow of Hg and with respect to the

flow of ﬁl + X, namely let H be either equal to Hs or equal to Hy + Y,
then

FroHy(l) = Hp Fr(f), (€X
5.0, X (0) = x(0) for all £ € X.

Proof. Claims 1, 2, 3 follow easily from the definitions and Lemma, 3.1.
To prove claim 4, take ¢ € X, notice that LJ_?HU = 0 by definition, and
compute

—

o (M Frotte) (0) = 1 [Fo+ X, Fa o 1a(0).

From claim iii. of Lemma 3.1 we obtain on X

— = - = — —
[Fo+ X, F41] = [exp(—ﬁFl)*Fo oexp(¥Fq), Fl] =
— — — —
= exp(=0F1){Fo1 — Ly 9F1o}cexp(dF1) =
since L1—51 =—1on X.
The proof of claim 5 follows easily from iii. of Lemma 3.1. [

3.2. Almost extremals

In this section we prove that regularity Assumptions 2, 3 and 4 imply the exis-
tence of a Hamiltonian H; with the desired properties (16) on its flow starting
from X.

The flow of H; backward in time emanating from ¢ € ¥ at time 7 behaves
differently according to the sign of w;Fpi(¢). Namely, if uqFp1(¢) < 0 then
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u1 Fy (exp(t — ?)ﬁl)(f) > 0 for t < 7, hence H; is the maximized Hamiltonian
along its own flow. If uq F1(¢) > 0 then uq Fy(exp(t — ?)ﬁl)(f) <0fort<T7,
hence H; is no longer the maximized Hamiltonian. We overcome this problem
by substituting H; with H; + x for these bad points so that the flow is kept on
> until it reaches a good point, as precised in the following lemma.

LEMMA 3.3 Let Assumptions 3 and 4 be satisfied. Then
1. There exists a neighborhood O of £ in X such that the implicit equation

() =7,
{Fm o exp(7(f) — ?)(ﬁl +X)(0) =0
defines a smooth function
T:4eO—T1(l) €R.
2. (dr(t), 5¢) = _U(M;?mw» Veons
' ’ (Foo1 + u1F101) (£) '

Fou(f) =0<= 7(¢) =7 and sgn (u1 Fp1(£)) = sgn (7 — 7(¢¥)).
4. There exists € > 0 such that

|7(6) = 7| < e YleO (18)

and such that, for any ¢ € O and for any t, s withT —e <t < s <7, the
following inequality holds:

o

(5% (F001 + ulFlol) OGXp(t— S)Hl OGXp(S —?) (Hl + 7) (é) > 0. (19)

Proof. 1. and 2. Since the partial derivative
A - ~
0y For oexp(t —7)(Hy 4+ X)(¢) 03D = (Foo1 + u1F101) (£) (20)

is not zero by Assumption 4, then the implicit function theorem applies.
3. From equation (20) and Assumption 4 the function

t— w0 For 0 exp(t — 7)(Hq1 + X)(¢)

is locally strictly increasing, hence claim 3. follows. R
4. Inequalities (18)—(19) are satisfied in a neighborhood of t = s =7, £ = ¢, by
continuity. [

Now we are able to define a Hamiltonian Hy, visualized in Fig. 1, which allows
us to pursue the paradigm:
if 0<t<7T—¢ or

Hy (¢
15 if T—e<t<7, uFp(f)<0

Hy(f) = (21)
(Hi+x)(0) if T-e<t<7, uiFpi(f) >0

Hg(¢) if 7<t<T
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Figure 1. Construction of the over-maximized Hamiltonian

that the above defined Hamiltonian H; has the required properties only
flow starting from 3, as shown in the following lemma.

LEMMA 3.4 The Hamiltonian

-~

H: (t,0) € [0,T] xT*M — Hy(£) e R

satisfies the following properties:

1.
2.

NS G o

Proof.

H is C' with respect to ¢, for any t.

ﬁt(ﬂ) is Lipschitz continuous with respect to {, for any t € [0,T]. The
only discontinuities, with respect to time, of ﬁt(é) occur att =T, i.e. they
occur at the discontinuity of the reference control function u.

The flow H of H, is c([0,7] x 0).

The restriction of the Hamiltonian H to (id xH)([0,T] x O) is continuous.
Hy(0) = \(t), for any t € [0,T).

FyoHy(£) = 0 for any (t,£) € [min{r(¢),7},T] x O.

Possibly restricting O,

urFyoHy(0) >0 VY(t,£) € [0,min{7(¢),7}) x O. (22)
H,oA(t) = H, o A(t) for any t € [0,T] and
H, o Hy(€) > H™ o Hy(€)  for any (t,0) €[0,T] x O.

1. and 2. are easy corollaries of Lemma 3.3, taking into account that x

is C*°, by Lemma 3.1.
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3. For t € (7, f], the property is obvious, since H; = Hg is C*°.

For ¢ € [0,7], the only discontinuities of the map ¢ — T;H; may occur at the
(t,£) such that Fp1(¢) = 0 or such that u; Fo1(€) > 0 and ¢ = 7(¢). By definition
we obtain

Ty exp(t — ?)ﬁl if uq For (é) <0
Tth = ~ /T — . PR
Tpexp(t —T)(H1 4+ X) ifuiFpi1(€) >0, t e (7(£),7).

Moreover, if u1Fo1(¢) > 0 and ¢ € [0,7(£)) then, taking into account that
—
X o Hre)(€) =0, we get

TyHy = Ty, 0y xp(t — 7(£)) Hy1 0 Tyexp(r(£) — 7)(H1 + X).

An easy computation completes the proof.
4. and 5. follow easily from 1. and 2.
6. is obvious, by Lemma 3.1.
7. Consider the cases R
1. 7<7(0) and t < 7. H(¢) = exp(t — 7)H1(£) and u1Fp1(¢) < 0 so that

(t—7)?
2

uy FyoH, (£) = (t—=7)uy Foy (6)+ u1 (Foor + w1 Fion) (£)+o((t=7)?).

2. 7(0) < 7,and t < 7(£). H(¢) = exp(t — T(é))ﬁl(HT(g)(é)), u1 Fo1(4) > 0
so that

urFroHy(€) = %UI (Foor + u1Fio1) o He (o) () + o((t—T(£))?).

Using (19), 7. follows.
8. The proof is straightforward from 7., since x is a non—negative function. =
4. The extended second variation

In Stefani (2004) the extended second variation J”, associated to a totally singu-
lar extremal of a minimum time problem is defined starting from the coordinate—
free second variation given in Agrachev et al. (19984). Locally around Z define
the time—dependent vector field

gt::§;1flo§t:W—>TM, te[?,f]
and choose a function 3 on W such that
dB(@) = —A(7). (23)

Then the second variation as defined in Agrachev et al. (19984) is a quadratic
form on L?([7, T, R) realized as the following intrinsic LQ problem on the vector



Bang-singular extremals in the minimum time problem 483

space T3 M:

T
76 = [ dult) Loy Ly G0)

n(t) = du(t)ge(®), on(7) = on(T) = 0.

This result is independent of the choice of the function § with property 23, see
Agrachev et al. (19984), hence we can choose [ so that Ly, 5 = 0. Applying the
techniques in Stefani (2004), developed in Stefani (2007), we obtain a quadratic
form on R x L2([7, T], R) realized as an intrinsic LQ problem on the vector space
T:M. Setting for ¢ € [7, T

~

R(t) == Lyg, 41 B@) = (AB(), g1, 9¢)) = (A1), Faon (E(t))
Q(t) := L) Ly, B(Z)
Se := (wo,w) € R x L*([7,T],R)

we can write the extended second variation as

1 (T
TP =5 [ wltPR) + 200@(0(0) dt
{0 = w03(@), (7 =wh(@). o) =0.

See Stefani (2007) for further details and note that the same second variation,
written in symplectic form, is considered in Agrachev and Sachkov (2004). In
Stefani (2007) the necessary and sufficient conditions are proved for the coer-
civity of J7 from different points of view, in particular a reduction to a non
singular problem is proved: denote

I':={expsfi(Z),s € R}

the integral curve of f; through Z, and let o be any function such that da(z) = v
and Lfcla(i’\) = 0. Then, J% is proved to be the standard second variation,
relative to the extremal X\[? 71 and to the reference control @w = 0, of the Mayer
problem

minimize «(§(7)) subject to (24)
) = 5 6(0) +w(O)fsr (€0) + qu(®Pfisi(E®)  (29)
§F)eT, &T) =7, (26)

Note that the coercivity of J7 implies that SGLC must be satisfied and that
f1(Z) # 0. Moreover, easy calculations show that SGLC is the strong Legendre
condition for the above non-singular problem.
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Since in our case the Hamiltonian of singular extremals Fyg is the lift of a
vector field fg, we can use Lemma 6.4 in Stefani (2007) to give necessary and
sufficient conditions for the coercivity of JJ; in terms of the vector fields fs and

.

LEMMA 4.1 Necessary and sufficient condition for the coercivity of Ji.
If f1, for are linearly dependent at T, then J7, is coercive if and only if

~ ~.

f1(E(®)) #0 for all t € [7,T].

If f1, fo1 are linearly independent at Z, then Jp is coercive if and only if

fl(g(t)) and Sy, f1(Z) are linearly independent for all t € (7,T).

4.1. Reduction to a free initial point problem

In this section we show how the coercivity of Jj; allows us to add a penalty on
the initial point of problem (24)-(25)-(26) so that the second variation remains
coercive also removing the constraint on the initial point. This allows us to
define the Lagrangian sub—manifold with the property required in Section 3.

LEMMA 4.2 If J} is coercive, then there is a function « defined in a neighbor-
hood W of T, with the following properties
i) Lpa=0
i) do(@) =1
iii) Let A = {da(x): © € W} be the Lagrangian sub—manifold defined by o and
let H be the Hamiltonian flow associated to the Hamiltonian Hy_defined in

(21), then m.Hyw: ToA — Tg, M is an isomorphism for t € (7, 7).

Proof. Since f1(Z) # 0, we can choose coordinates (z1,- - ,2,) at & such that
fi= 8%17 therefore £ = """ , \; dz;; and we can choose § in (23) as

ﬁ = — i )\zmz
=2

In these coordinates choose the non-negative quadratic form on T3 M

1 n
0= E;dxi@)dxi

and extend it to T5M x L2([7,T],R) by Q[de]> = Q[6z]2. The quadratic form
defined on T3 M x L*([7,T],R) b
1 j\-‘
(6x,w) — Q[éx]* + 5/ w(t)? R(t) + 2w(t)Q(¢)¢(t) dt

) =wt)p@), (F)=0dx, (T)=0,
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coincides with J7 on the kernel of Q, hence we can apply Theorem 13.2 of
Hestenes (1951) and conclude that there is a positive constant s such that

Jih+ s is coercive on W = {de € ToM x L*([7,T),R) : ¢(T) = 0}.

By defining

a(z) = é)\lxl + %s éx?,

we get that o satisfies 1), ii) and that " := D?(a + 8)(Z) = sQ.
Ji+ sQ turns out to be the standard second variation of the Mayer problem

minimize «(§(7)) subject to (25) and &(T') = Zy.
Therefore the proof of iii) follows from Corollary 6.1 in Stefani (2007). L]

5. Proof of the Main Theorem

In this section we complete the proof of the main result. We start by proving
the existence of a Lagrangian sub-manifold having the required properties with
respect to the Hamiltonian defined in (21).

LEMMA 5.1 Leta: W — R and A be the function and the associated Lagrangian
sub—manifold defined in Lemma 4.2. Possibly restricting W, the map

id xH: (¢,0) € [0,T] x A — (¢, 7H.(€)) € [0,T] x M
is one—to—one onto a neighborhood V of the graph ofgin [O,f] x M.

Proof. Since [0, T] is compact, it suffices to show that 7H, : £ — 7H,(¢) is locally
one-to-one around (t,Z) for any t € [0, f] Since H; is C!, it suffices to show
that T Hp.o: T;A — T¢(;yM is an isomorphism for any ¢ € [0, f] In fact, if t > 7,
the claim is proved in Lemma 4.2, while if ¢ € [0,7] an easy calculation shows
that m,Hye = exp(t — T)hy «- u

We can now use symplectic arguments to complete the proof of the main
theorem. First, observe that the one—form w defined by

w=H"(s— H,dt)

is exact on [0,7] x A, see Arnold (1980).

Let (T, ¢, u) be an admissible triplet such that 7 < T < T and such that the
graph of £: [0,7] — M is in the neighborhood V defined in Lemma 5.1.

By assumption £(T") belongs to the integral line of f; emanating from Z; i.e.
335 € R such that £(T") = exp3f1(Zy). Define

¢:r€[0,1] —exps(l—r)fi(Zy) € M.
Consider the paths in V:
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1. 2= (id,€): t € [0,T] — (£, £(t)) € R x M,
2. ®:re0,1] — ((f—T)r+T,¢(r)) R x M,
3. 2:=(id,&): t € [0,T] — (£, E(t) e R x M

and denote ¥ := (id x7H)~!. Since the concatenation of 1) o =, ¥ o ®, and of
¥ o Z ran backward in time, is a closed path in [0, T] x A, then

o:fwz/oaw/w@w—/méw. 27

From the properties of H; (point 8. of Lemma 3.4) we get

so that

/w w0 (29)

Since H o ¢ o @ takes values in X, then
(Howpod(r), filrHotod(r))) = Fi o Howod(r) =0,

so that
Og/w@w:—(T—T)/O Hs(H o 0 0(r)) dr. (30)

Assume that 7 < T, then (30) is equivalent to

o< [ tsortovtnon T )
:/TT(HsonO¢(T, 7))+ Ot — ))dt ‘/:FT(HSOH;?(Z)—FO(t—f))dt

T
:/ (1+O(t— )) at = T—T+O((T—T)2)
T
which implies T = T, so that (E, u) is a (time, state)-local minimizer.

To prove that such minimum is strict, let us assume, by contradiction, that
T = T. Then ®(r) = (f,exp?(l —r)fl(ff)), and / w = 0. From equa-

Pod

tion (27) we also get

OZ/QE‘U:/O (How(t,&(1), £()) — He o Hotp(t, &(t)) dt
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and, by property 8. of Lemma 3.4,
(Hot(t,&(t), (fo+ u(t)fr)(E(t)) = HioHop(t,&(1))
— Mo Hop(nE(n) (31)

for any t € [0,7]. Define A(t) := H o (¢, £(t)). If A(t) € ¥, then (31) implies
A(t) € S, while if A(t) ¢ X, then claim 7. of Lemma 3.4 and equation (31)
yield wu(t ) = uy. In particular, we get u(t) = uq for any ¢ € [0,7 — €], therefore
A(t) = A(t) for any t € [0,7 — €], since A(0) = A(0).
For t € (T —¢,T) we can compute
A(t) = Heo M) = Hoe (7H) T {mH oo M) = (fo +u(t) f1) 0 60} =
HioA(t) + (u(t) — wr)Hau(wHy); 1 f1 0 £(2) te(®—e7)
Hs o Mt) + (u(t) = vs o €0 Hun(nH) T fr o €(1) 1€ (7).

Since, whenever A(t) € X, Hu(mHe) 1 f1 0o mA(t) = ?1 o A(t) (by point 4 of
Lemma 3.2), in any case we get

At) = (Fo+u®)F1)oAt) Vie (F—eT),

which, together with (31), means that A satisfies PMP on [7 — ¢, 7). Since
A7 — ) = A(F —€), we easily get A = A on [0,7]. Moreover, on [7,7], A is a
Pontryagin extremal and its range is in S, so that A is a solution to the Cauchy
problem

A) = (FO—%?1> M) AR =T

on the interval [7, 7). Hence A(t) = A(t) for any ¢ € [7,T]. Projecting on the
state manifold M, we finally get £(¢) = £(t).

6. An example
Consider the Dodgem car problem:

minimize T

subject to
il (t) = ( ) T (0) =0 X1 (T = bl
ig(t) = 1D(LL'3) $2(0) =0 X9 (T) = b2
i3(t) = z3(0)=0  x3(T)€R
u € [— 1, 1]
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where x = (21,72, 23) € R3.

We have
cos(z3) 0
fo(z) = | sin(x3) |, filxy=10],
0 1
hence, with a simple computation, we also get
sin(xs) 0
for(z) = | —cos(x3) |, fro1(z) = fo(z), foor(z) =0
0 0

and the associated Hamiltonians are

Fo(p, z) = Fio1(p, x) = p1cos(x3) + pzsin(zz)  Fi(p,z) = ps
FOl(p; I) =D1 Sin(.fg) — P2 COS(IQ,) F()Ql(p, I) =0.

Since, along any singular arc of a normal Pontryagin extremal, the condition
Fy(A(t)) = 1 must hold, then SGLC is satisfied and the only admissible singular
control is u(t) = 0, so that any singular arc is driven by fs = fo, and our theory
applies.

Let us check that along any singular arc the hypotheses of Lemma 4.1 are
satisfied. In fact, since fo(x) and fo1(2) are linearly independent at any point of
R3, we just need to show that fi(z) and exp(tfo)s«f1 o exp(—tfo)(z) are linearly
independent for any t # 0.

A simple computation shows that

x1 + tcos(xg)
exp(tfo)(z) = | @2 + tsin(zs)

3
—tsin(zs3)
exp(tfo)«f1 0 exp(—tfo)(z) = | tcos(zs) |,
1

which proves our claim.

Any bang—singular arc satisfying PMP in normal form is a strong local op-
timizer for the problem. It is known, see Craven (1995), Teo et al. (1991),
Fleming and Rishel (1975), Dmitruk (2007), that if b2 + (ba — 1)? > 1, then any
minimum time extremal is bang—singular with junction point on the cylinder

2 12—
27+ (22 — 1) =1
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