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ξ̇(t) = f0(ξ(t)) + uf1(ξ(t)) (1)
u ∈ [−1, 1] (2)and onstrained to
ξ(0) = x̂0 , ξ(T ) = x̂f . (3)The state spae is a smooth n−dimensional manifold M and f0, f1 : M → TMare smooth vetor �elds, by smooth we mean C∞.We study the strong loal optimality of a referene triplet (T̂ , ξ̂, û), aordingto the following
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470 L. POGGIOLINI, G. STEFANIDefinition 1 The trajetory ξ̂ is a strong loal minimizer if there is a neigh-borhood V of its graph in R×M suh that ξ̂ is a minimizer with respet to thoseadmissible trajetories whose graph belongs to V, independently of the values ofthe assoiated ontrols.Note that this kind of optimality is loal with respet to both time and spae.In this paper we onsider the strong loal optimality of a referene traje-tory assoiated to a bang�singular ontrol, namely we study a referene triplet
(T̂ , ξ̂, û) satisfying (1), (2), (3) and suh that û has the following struture:

û(t) ≡ u1 ∈ {−1, 1} ∀t ∈ [0, τ̂) (4)
û(t) ∈ (−1, 1) ∀t ∈ (τ̂ , T̂ ) , (5)

τ̂ is alled swithing time of the referene ontrol û.Thanks to the struture of û we are able to prove that the su�ient ondi-tions for loal optimality of (T̂ , ξ̂, û) with end�point onstraint (3) are su�ientalso for the minimum time problem with the same dynamis and relaxing the�nal onstraint to the integral urve Γf of the ontrolled vetor �eld f1 throughthe �nal point of the referene trajetory. Namely, we give seond order su�-ient optimality onditions for the problemminimize T (6)subjet to (1), (2) and
ξ(0) = x̂0, ξ(T ) ∈ Γf := {exp sf1(x̂f ) : s ∈ R}. (7)In this paper we onsider the ase when there is a feedbak singular ontrol,i.e. there is a smooth funtion υS : M → R suh that any singular state�extremal

ξ assoiated to the dynamis (1) is an integral line of the vetor �eld fS =
f0 + υSf1 and any singular ontrol an be written as υS ◦ ξ. Note that thisase is generi in dimension 2 and 3, see the subsequent Setion 2.5. Underthis assumption we have that both the referene trajetory ξ̂ and the refereneontrol û are smooth on the singular ar and that the referene vetor �eld anbe written as

f̂t =

{
h1 := f0 + u1f1 t ∈ [0, τ̂ )

fS t ∈ (τ̂ , T̂ ].The Hamiltonian approah to su�ient onditions in Optimal Control orre-sponds to the lassial onstrution in Calulus of Variations of a �eld of non�interseting state extremals overing a neighborhood of the referene trajetory,see for example Giaquinta and Hildebrandt (1996). The idea is to omparethe osts of admissible trajetories, independently of the assoiated ontrols, bylifting them to the otangent bundle.



Bang�singular extremals in the minimum time problem 471When the maximized Hamiltonian Hmax is su�iently smooth, the �eld ofextremals an be obtained by projeting on the state manifold the �ow of −→Hmaxemanating from a suitable Lagrangian sub�manifold. Then the oerivity ofthe seond variation permits to invert the projetion and lift the admissibletrajetories, see Agrahev et al. (1998b, 2002) and the referenes therein.An important feature is that the omparison of osts an also be obtainedwith a Hamiltonian, whih is greater than or equal to Hmax. This possibilityhas been employed in Stefani (2004 and 2007) to prove seond order onditionsfor a totally singular trajetory.In addition to the �rst order neessary optimality onditions, in the formof Pontryagin Maximum Priniple (Assumption 1), we make regularity assump-tions on the bang ar (Assumption 2), and the strengthened generalized Legendreondition (SGLC) (Assumption 3). Moreover, to overome the di�ulties in-trodued by the juntion point ξ̂(τ̂ ) between the bang and the singular ar, weintrodue a seond�order regularity ondition at the juntion point (Assumption4). This ondition, under SGLC, is proved to be equivalent to the disontinuityof û at time τ̂ . These regularity onditions allow us to de�ne a new Hamilto-nian, greater than or equal to Hmax, smooth enough to apply the Hamitonianapproah.As far as the seond variation is onerned, we require the oerivity of theextended seond variation for the minimum time problem with �xed end�pointsalong the singular ar, as de�ned in Setion 4.Some partial result was already obtained in Poggiolini and Stefani (2005,2006), but there the onditions were not ompletely satisfatory, sine strongerseond order onditions were required.For referenes on singular trajetories see Goh (1966), Gabasov and Kir-illova (1972), Gardner Moyer (1973), Dmitruk (1977, 1983), Agrahev andSahkov (2004), and the referenes therein. To our knowledge su�ient ondi-tions for strong loal optimality do not appear in the literature even for totallysingular trajetories.The plan of the paper is as follows: in Setion 2 we give the notation used,the assumptions and the main result of the paper, in Setion 3 we desribe theHamiltonian approah to strong optimality, we de�ne a suitable time�dependentHamiltonian and we prove its properties whih allow us to use the method inthe present ase, in Setion 4 we de�ne the oordinate�free extended seondvariation J
′′

E and desribe its properties. Finally, in Setion 5 we prove themain result.2. Statement of the results2.1. NotationIn this paper we use some basi element of the theory of sympleti man-ifolds related to the otangent bundle T ∗M. For a general introdution see



472 L. POGGIOLINI, G. STEFANIArnold (1980), for spei� appliation to Control Theory we refer to Agrahevand Gamkrelidze (1997) and Agrahev and Sahkov (2004). Let us reall somebasi fats and introdue some spei� notations.Denote by π : T ∗M →M the anonial projetion, the spae T ∗
πℓM is anon-ially embedded in TℓT ∗M as the spae of tangent vetors to the �bers.The anonial Liouville one�form s on T ∗M and the assoiated anonialsympleti two�form σ = ds make it possible to assoiate to any, possibly time-dependent, smooth Hamiltonian Ht : T

∗M → R, a Hamiltonian vetor �eld −→
H t,by

σ(v,
−→
H t(ℓ)) = 〈dHt(ℓ) , v〉, ∀v ∈ TℓT

∗M.In this paper, time τ̂ plays a speial role, hene we onsider all the �ows asstarting at time τ̂ . In partiular, we denote the �ow of −→H t from time τ̂ to time
t by

H : (t, ℓ) 7→ H(t, ℓ) = Ht(ℓ).Sine no misunderstanding an our, we shall also say that H is the �ow ofthe Hamiltonian Ht. We keep this notation throughout the paper, namely theoverhead arrow denotes the vetor �eld assoiated to a Hamiltonian and thesript letter denotes its �ow from time τ̂ .Remark 1 If M = R
n, then

T ∗M = (Rn)
∗
× R

n =
{
(p1, . . . , pn, q

1, . . . , qn), pi, q
i ∈ R

}
,and s =

n∑

i=1

pi dq
i, σ =

n∑

i=1

dpi ∧ dqi.With this notation, Ht(p0, q0) = (µ(t), ξ(t)) is the solution at time t of theHamiltonian system





µ̇i(t) = −
∂

∂qi
Ht(µ(t), ξ(t))

ξ̇i(t) =
∂

∂pi
Ht(µ(t), ξ(t))

µ(τ̂ ) = p0, ξ(τ̂ ) = q0.For a general manifold M , this is the notation in loal oordinates.Finally, reall that any vetor �eld f on the manifold M de�nes, by liftingto the otangent bundle, a Hamiltonian
F : ℓ ∈ T ∗M 7→ 〈ℓ , f(πℓ)〉 ∈ R,in oordinates ℓ = (p, q) and F (p, q) = 〈p , f(q)〉.



Bang�singular extremals in the minimum time problem 473We denote by F0, F1, FS , H1 the Hamiltonians assoiated to f0, f1, fS , h1,respetively and by
Fi1i2...ik := {Fi1 , {. . . {Fik−1

, Fik} . . . }, i1, . . . , ik ∈ {0, 1, S}the Hamiltonian assoiated to fi1i2...ik := [fi1 , [. . . [fik−1
, fik ] . . . ], where {·, ·}denotes the Poisson parentheses between Hamiltonians and [·, ·] denotes the Liebrakets between vetor �elds.The �ow from time τ̂ of the referene vetor �eld f̂t is a map loally de�nedin a neighborhood of x̂ := ξ̂(τ̂ ). We denote it as

Ŝt : x 7→

{
exp(t− τ̂)h1(x) if t ∈ [0, τ̂ ]

exp(t− τ̂)fS(x) if t ∈ [τ̂ , T̂ ]while
F̂t =

{
H1 if t ∈ [0, τ̂ ]

FS if t ∈ [τ̂ , T̂ ]denotes the time�dependent referene Hamiltonian de�ned by f̂t.We also use the following notation from di�erential geometry: Lfα is theLie derivative of a funtion α with respet to the vetor �eld f . Moreover, if Gis a C1 map from a manifold X in a manifold Y , we denote its tangent map ata point x ∈ X as TxG. If the point x is lear from the ontext, we also write
TxG = G∗ .2.2. Pontryagin Maximum PrinipleIn this setion we reall the �rst order optimality ondition whih the refereneouple must satisfy.We all extremal any urve in the otangent bundle whih satis�es PMP andstate�extremal its projetion on the state spae, namely we give the followingDefinition 2 Let u ∈ L∞([0, T ],R) be an admissible ontrol, we all extremalof the ontrol system (1)-(2) any non trivial trajetory λ : [0, T ] → T ∗M of theHamiltonian vetor �eld −→

F 0 + u(t)
−→
F 1, whih satis�es

F0 ◦ λ(t) + u(t)F1 ◦ λ(t) = max
u∈[−1,1]

{F0 ◦ λ(t) + uF1 ◦ λ(t)} a.e. t ∈ [0, T ]and we all its projetion on the state spae ξ := πλ : [0, T ] → M a state ex-tremal.We require the referene trajetory to be a state extremal, namely (ξ̂, û) satis�esthe following



474 L. POGGIOLINI, G. STEFANIAssumption 1 (PMP) There exist p0 ∈ {0, 1} and a solution λ̂ : t ∈ [0, T̂ ] 7→

λ̂(t) ∈ T ∗M of the Hamiltonian system
λ̇(t) =

−→
F t ◦ λ(t)suh that πλ̂ = ξ̂ , λ̂(0) 6= 0 and

F̂t(λ̂(t)) = max{〈λ̂(t) , f0(ξ̂(t)) + uf1(ξ̂(t))〉 : |u| ≤ 1} = p0 a.e. t ∈ [0, T̂ ].We assume that PMP holds in the normal form, i.e. p0 = 1.
λ̂ : [0, T̂ ] → T ∗M is alled adjoint ovetor and we denote ℓ̂ := λ̂(τ̂).Given the struture of the referene ontrol û, as de�ned by equations (4)-(5), PMP implies

u1F1 ◦ λ̂(t) ≥ 0 ∀t ∈ [0, τ̂ ], (8)
F1 ◦ λ̂(t) = 〈λ̂(t) , f1(ξ̂(t)〉 = 0 ∀t ∈ [τ̂ , T̂ ]. (9)By di�erentiation of equation (9) we also have
F01 ◦ λ̂(t) = 〈λ̂(t) , fS1(ξ̂(t))〉 ≡ 0 t ∈ [τ̂ , T̂ ] (10)
(F001 + û(t)F101) ◦ λ̂(t) = 〈λ̂(t) , fSS1(ξ̂(t))〉 = 0 t ∈ (τ̂ , T̂ ) (11)while equations (8) and (10) give
lim
t→τ̂−

d2

dt2

(
u1F1 ◦ λ̂

)
(t) = u1 (F001 + u1F101) (ℓ̂) ≥ 0. (12)It is also known that a neessary ondition for the loal optimality of a Pon-tryagin extremal is the generalized Legendre ondition (GLC) along the singularar:

F101 ◦ λ̂(t) = 〈λ̂(t) , [f1, [fS , f1]](ξ̂(t))〉 ≥ 0 t ∈ [τ̂ , T̂ ] ,see, for example, Agrahev and Sahkov (2004), Corollary 20.18 p. 318; for alassial result see Gabasov and Kirillova (1972).2.3. Regularity onditionsThe regularity onditions we impose onsist in requiring strit inequalities whereneessary onditions yield mild inequalities.Assumption 2 (Regularity along the bang ar)
u1F1 ◦ λ̂(t) > 0 ∀t ∈ [0, τ̂).



Bang�singular extremals in the minimum time problem 475Assumption 3 (Strong generalized Legendre ondition (SGLC))
F101 ◦ λ̂(t) > 0, t ∈ [τ̂ , T̂ ]. (SGLC)Assumption 4 (Regularity at the juntion point)
u1 (F001 + u1F101) (ℓ̂) > 0.Remark 2 We point out that, if SGLC holds, then Assumption 4 is equivalentto the disontinuity of û at time τ̂ : in fat, from equation (11) and the ontinuityof λ̂, we have
u1 (F001 + û(τ̂+)F101) (ℓ̂) = u1 lim

t→τ̂+

(
F001 ◦ λ̂(t) + û(t)F101 ◦ λ̂(t)

)
= 0.Hene, thanks to Assumption 3, we have u1F001(ℓ̂) + F101(ℓ̂) > 0 if and only if

lim
t→τ̂+

û(t) 6= u1.2.4. Main resultThe remaining su�ient onditions are derived from the sub�problem obtainedby keeping the referene �nal point and the referene bang ontrol �xed and al-lowing the singular ontrol to vary, namely we study the minimum time problemsubjet to (1) for t ∈ [τ̂ , T̂ ] and
ξ(τ̂ ) = x̂ , ξ(T ) = x̂f . (13)For this problem we require the seond order onditions for singular trajetoriesstated in Stefani (2004), whih will be desribed in Setion 4.Assumption 5 (2nd order ondition on the singular ar) We assumethe oerivity of the extended seond variation J ′′

E assoiated to the singulartrajetory ξ̂|[τ̂ ,T̂ ] of the minimum time problem with �xed end-points x̂ and x̂f ,as de�ned in Setion 4, see also Stefani (2004 and 2007).Theorem 1 (Main theorem) Suppose that ξ̂ is a normal bang�singular state-extremal and that the regularity onditions (Assumptions 2�4) are satis�ed. Ifthe extended seond variation J ′′
E on the singular ar is oerive, then ξ̂ is astrit strong loal minimizer for the minimum time problem between x̂0 and theintegral urve Γf of f1 through x̂f .2.5. Geometry near the singular arIn this setion we assume SGLC and we desribe some properties of the Hamil-tonians linked to our system near the singular ar of the adjoint ovetor.



476 L. POGGIOLINI, G. STEFANIFor t ∈ [τ̂ , T̂ ], û(t) =
−F001

F101
(λ̂(t)) and λ̂|[τ̂ ,T̂ ] is alled a singular extremalof the �rst kind, see for example Zelikin and Borizov (1994).By (9) and (10), any singular extremal of the �rst kind belongs to the (2n−

2)�dimensional sympleti manifold
S = {ℓ : F1(ℓ) = F01(ℓ) = 0, F101(ℓ) > 0}whih is ontained in the hyper-surfae
Σ := {ℓ ∈ T ∗M : F1(ℓ) = 0},where the maximized Hamiltonian
Hmax : ℓ 7→ max{F0(ℓ) + uF1(ℓ) : u ∈ [−1, 1]}oinides with F0.Note that S and Σ are independent of the ontrol onstraints but, by (2),any singular extremal of our problem belongs to
S ∩

{
ℓ :
F001

F101
(ℓ) ∈ (−1, 1)

}
.By SGLC it is easy to prove the following result:Lemma 2.1 There is a neighborhood U of S in T ∗M where the following laimshold true.1. Σ is an hyper-surfae ontaining the sympleti manifold S and it separatesin U the regions de�ned by: Hmax = F0 + F1, Hmax = F0 − F1.2. −→

F 1 is tangent to Σ and transversal to S, while −→
F 01 is transversal to Σ.3. The maps (s, ℓ) 7→ exp s

−→
F 1(ℓ) and (τ, s, ℓ) 7→ exp τ

−→
F 01 ◦ exp s

−→
F 1(ℓ)are loal di�eomorphisms from R × S to Σ and from R × R × S to T ∗Mrespetively.Property (3) in Lemma 2.1 yields the possibility of de�ning the smooth funtion

υ : U → R as
υ :=

−F001

F101
on S (14)and then extending it onstant �rst on the integral lines of −→F 1 and then onthose of −→F 01. In this way we get the Hamiltonian of singular extremal of the�rst kind by de�ning

K := F0 + υ F1.In this paper we onsider the ase when the ratio F001/F101 restrited to S is afuntion υS depending only on πℓ ∈ M . Indeed, in this ase the Hamiltonian



Bang�singular extremals in the minimum time problem 477
K|S is the lift of the vetor �eld fS and we say that any singular ontrol isfeedbak.Note that this ase is generi in dimensions 2 and 3, as proved in the followinglemma.Lemma 2.2 Let ℓ ∈ S, x = πℓ and f1(x) 6= 0.

• If dimM = 2, then υ(ℓ) depends only on x.
• If dimM = 3, then υ(ℓ) depends only on x either if f1(x), f01(x) arelinearly independent or if f1(x), f101(x), f001(x) are linearly dependent.Therefore, in dimension two, f1 non-null onM implies that any singular ontrolof the �rst kind is feedbak, while, in dimension three, the existene of a feedbaksingular ontrol of the �rst kind is implied either by f1, f01 linearly independentof M or by f1, f101, f001 linearly dependent on M .Proof. f1(x) 6= 0 implies f1, f101 linearly independent at x. If dimM = 2, wehoose {ω1, ω2} as the dual base of {f1(x), f101(x)} and it is easy to see that

υ(ℓ) = −〈ω2 , f001(x)〉.Analogously, if dimM = 3 and f1, f01 are linearly independent at x, thenwe hoose {ω1, ω2, ω3} as the dual base of {f1(x), f101(x), f01(x)} and we getagain υ(ℓ) = −〈ω2 , f001(x)〉.If f1, f01 are linearly dependent at x, then we hoose {ω1, ω2, ω3} as the dualbase of a base of type {f1(x), f101(x), g} and we get ℓ ∈ S if ℓ = a2ω2 + a3ω3with a2 > 0. Therefore υ(ℓ) = −〈ω2 , f001(x)〉 −
a3

a2
〈ω3 , f001(x)〉 and the laimfollows.3. Hamiltonian approah to strong loal optimalityThe lassial Hamiltonian approah to prove su�ient onditions for strong opti-mality is based on the onstrution of a �eld of non�interseting state extremalsovering a neighborhood of the given trajetory: i.e. by projeting on the statespae the �ow of −→

Hmax starting from a suitable horizontal Lagrangian sub�manifold. Indeed, if H = Hmax is C2 and we an �nd a Horizontal Lagrangiansub�manifold Λ suh that
id×πH : [0, T ]× Λ → [0, T ]×M , (t, ℓ) 7→ (t, πHt(ℓ)) (15)is a di�eomorphism, then we an use sympleti arguments to ompare theosts by lifting admissible trajetories to the otangent bundle, independentlyof the assoiated ontrols, and �nally to prove su�ient onditions. In this ase

id×πH is a C1 map and the oerivity of the seond variation allows us to de�nea suitable manifold Λ for whih id×πH is loally one�to�one, see Agrahev etal. (1998b).The same ideas have been used in Agrahev et al. (2002) for bang�bangtrajetories. In this ase H is not C1 but suitable regularity onditions at theswithing points of the referene extremal imply that H is pieewise C∞. Again



478 L. POGGIOLINI, G. STEFANIthe oerivity of a suitable seond variation permits us to �nd Λ, for whih
id×πH is a pieewise di�eomorphism.The presene of a singular ar prevents the existene of a su�iently smooth�ow of −→Hmax; on the other hand one an observe that a omparison of the ostsan be obtained also with a Hamiltonian H whih is greater than or equal to
Hmax. For this reason we are led to introdue a time�dependent Hamiltonian
Ht and the notion of almost�extremal. We all almost�extremal a solutionof the Hamiltonian system assoiated to a Hamiltonian Ht with the followingproperties

Ht ≥ Hmax , Ht ◦ λ̂ = Ĥt ◦ λ̂ ,
˙̂
λ =

−→
H t ◦ λ̂ . (16)See Stefani (2004) for the appliation to a totally singular ar and Subsetion3.2 for further details on the bang�singular ase.The paradigm is as follows: the regularity assumptions allow us to hoosean over�maximized Hamiltonian satisfying (16) and whose �ow is C1. Theoerivity of the seond variation gives the possibility of de�ning a manifold Λsuh that map (15) is invertible.This general paradigm an be followed to prove su�ient onditions also inother situations.3.1. The Hamiltonian χWe use the strategy adopted in Stefani (2007) to overome the problems arisingfrom the existene of a singular ar, that is we add, near the singular ar ofthe adjoint ovetor, a positive Hamiltonian χ to the referene one, see Setion3.2. This possibility is given by Regularity Assumption 3 and is desribed inthe following lemma.Lemma 3.1 By possibly restriting U , it is possible to de�ne a smooth funtion

ρ : U ⊂ T ∗M → R, with the following propertiesi. The Hamiltonian χ = ρ
2 F

2
01 is suh that the Hamiltonian vetor �eld −→

F 0+
−→χis tangent to Σ.ii. For any ℓ ∈ S, ρ(ℓ) =

1

F101(ℓ)
, hene, without loss of generality, we ansuppose ρ > 0iii. ρ an be hosen so that

χ(ℓ) = F0 ◦ expϑ(ℓ)
−→
F 1(ℓ) − F0(ℓ)where ϑ(ℓ) is de�ned by

F01(expϑ(ℓ)
−→
F 1(ℓ)) = 0 and ϑ(ℓ) = 0 , ∀ℓ ∈ S,hene

(
−→
F 0 + −→χ )(ℓ) = (exp(−ϑ(ℓ))

−→
F 1)∗

−→
F 0 ◦ (expϑ(ℓ)

−→
F 1)(ℓ) , ∀ℓ ∈ Σ.



Bang�singular extremals in the minimum time problem 479Proof. The proof is given in Stefani (2007) with a reversed inequality, indeedin that paper the �rst order onditions are onsidered in the form of Lagrangemultipliers rule, whih leads to an adjoint ovetor whih is opposite to the onewe onsider.In the following lemma we ollet the main properties of the Hamiltonian χin onnetion with the Hamiltonians H1 and
HS := K + χ = F0 + υF1 + χ, (17)whih allow us to pursue our paradigm.Lemma 3.2 The following statements hold true:1. HS ≥ Hmax on Σ and −→

HS is tangent to Σ2. H1 + χ ≥ Hmax on Σ and −→
H 1 + −→χ is tangent to Σ3. ~χ is null and −→

K =
−→
F S on S hene, λ̂|[τ̂ ,T̂ ] is a trajetory of −→HS.4. −→

F 1 is invariant both with respet to the �ow of −→HS and with respet to the�ow of −→H 1 + −→χ , namely let H be either equal to HS or equal to H1 + χ,then
−→
F 1 ◦ Ht(ℓ) = Ht∗

−→
F 1(ℓ) , ℓ ∈ Σ5. 〈ℓ , π∗

−→χ (ℓ)〉 = χ(ℓ) for all ℓ ∈ Σ.Proof. Claims 1, 2, 3 follow easily from the de�nitions and Lemma 3.1.To prove laim 4, take ℓ ∈ Σ, notie that L−→
F 1
υ ≡ 0 by de�nition, andompute

∂t

(
H−1
t∗

−→
F 1 ◦ Ht

)
(ℓ) = H−1

t∗

[−→
F 0 + −→χ ,

−→
F 1

]
◦ Ht(ℓ).From laim iii. of Lemma 3.1 we obtain on Σ

[
−→
F 0 + −→χ ,

−→
F 1] =

[
exp(−ϑ

−→
F 1)∗

−→
F 0 ◦ exp(ϑ

−→
F 1) ,

−→
F 1

]
=

= exp(−ϑ
−→
F 1)∗{

−→
F 01 − L−→

F 1
ϑ
−→
F 10} ◦ exp(ϑ

−→
F 1) = 0sine L−→

F 1
ϑ ≡ −1 on Σ.The proof of laim 5 follows easily from iii. of Lemma 3.1.3.2. Almost extremalsIn this setion we prove that regularity Assumptions 2, 3 and 4 imply the exis-tene of a Hamiltonian Ht with the desired properties (16) on its �ow startingfrom Σ.The �ow of H1 bakward in time emanating from ℓ ∈ Σ at time τ̂ behavesdi�erently aording to the sign of u1F01(ℓ). Namely, if u1F01(ℓ) ≤ 0 then
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u1F1(exp(t − τ̂ )

−→
H 1)(ℓ) > 0 for t < τ̂ , hene H1 is the maximized Hamiltonianalong its own �ow. If u1F01(ℓ) > 0 then u1F1(exp(t − τ̂)

−→
H 1)(ℓ) < 0 for t < τ̂ ,hene H1 is no longer the maximized Hamiltonian. We overome this problemby substituting H1 with H1 + χ for these bad points so that the �ow is kept on

Σ until it reahes a good point, as preised in the following lemma.Lemma 3.3 Let Assumptions 3 and 4 be satis�ed. Then1. There exists a neighborhood O of ℓ̂ in Σ suh that the impliit equation
{
τ(ℓ) = τ̂ ,

F01 ◦ exp(τ(ℓ) − τ̂)(
−→
H 1 + −→χ )(ℓ) = 0de�nes a smooth funtion

τ : ℓ ∈ O 7→ τ(ℓ) ∈ R.2. 〈dτ(ℓ) , δℓ〉 =
−σ

(
δℓ,

−→
F 01(ℓ)

)

(F001 + u1F101) (ℓ)
∀ℓ ∈ O ∩ S.3. F01(ℓ) = 0 ⇐⇒ τ(ℓ) = τ̂ and sgn (u1F01(ℓ)) = sgn (τ̂ − τ(ℓ)).4. There exists ε > 0 suh that

|τ(ℓ) − τ̂ | < ε ∀ℓ ∈ O (18)and suh that, for any ℓ ∈ O and for any t, s with τ̂ − ε ≤ t ≤ s ≤ τ̂ , thefollowing inequality holds:
u1 (F001 + u1F101)◦ exp(t− s)

−→
H 1 ◦ exp(s− τ̂)

(−→
H 1 + −→χ

)
(ℓ) > 0. (19)Proof. 1. and 2. Sine the partial derivative

∂tF01 ◦ exp(t− τ̂)(
−→
H 1 + −→χ )(ℓ)

∣∣∣
(t,ℓ)=(τ̂ ,ℓ̂)

= (F001 + u1F101) (ℓ̂) (20)is not zero by Assumption 4, then the impliit funtion theorem applies.3. From equation (20) and Assumption 4 the funtion
t 7→ u1∂tF01 ◦ exp(t− τ̂)(

−→
H 1 + −→χ )(ℓ)is loally stritly inreasing, hene laim 3. follows.4. Inequalities (18)�(19) are satis�ed in a neighborhood of t = s = τ̂ , ℓ = ℓ̂, byontinuity.Now we are able to de�ne a Hamiltonian Ht, visualized in Fig. 1, whih allowsus to pursue the paradigm:

Ht(ℓ) =






H1(ℓ)
if 0 ≤ t ≤ τ̂ − ε orif τ̂ − ε < t < τ̂ , u1F01(ℓ) ≤ 0

(H1 + χ)(ℓ) if τ̂ − ε < t < τ̂ , u1F01(ℓ) > 0

HS(ℓ) if τ̂ ≤ t ≤ T̂

(21)
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H1

H1 + χ

HS

t

T ∗M
t = τ̂

t
=
τ(
ℓ)

t = τ̂ − ε

(τ̂ , ℓ̂) (T̂ , ℓ̂)

Figure 1. Constrution of the over�maximized HamiltonianNote that the above de�ned Hamiltonian Ht has the required properties onlyon its �ow starting from Σ, as shown in the following lemma.Lemma 3.4 The Hamiltonian
H : (t, ℓ) ∈ [0, T̂ ] × T ∗M 7→ Ht(ℓ) ∈ Rsatis�es the following properties:1. H is C1 with respet to ℓ, for any t.2. −→
H t(ℓ) is Lipshitz ontinuous with respet to ℓ, for any t ∈ [0, T̂ ]. Theonly disontinuities, with respet to time, of −→H t(ℓ) our at t = τ̂ , i.e. theyour at the disontinuity of the referene ontrol funtion û.3. The �ow H of −→H t is C1([0, T̂ ] ×O).4. The restrition of the Hamiltonian H to (id×H)([0, T̂ ] ×O) is ontinuous.5. Ht(ℓ̂) = λ̂(t), for any t ∈ [0, T̂ ].6. F1 ◦ Ht(ℓ) = 0 for any (t, ℓ) ∈ [min{τ(ℓ), τ̂}, T̂ ] ×O.7. Possibly restriting O,

u1F1 ◦ Ht(ℓ) > 0 ∀(t, ℓ) ∈ [0,min{τ(ℓ), τ̂}) ×O. (22)8. Ht ◦ λ̂(t) = Ĥt ◦ λ̂(t) for any t ∈ [0, T̂ ] and
Ht ◦ Ht(ℓ) ≥ Hmax ◦ Ht(ℓ) for any (t, ℓ) ∈ [0, T̂ ] ×O.Proof. 1. and 2. are easy orollaries of Lemma 3.3, taking into aount that χis C∞, by Lemma 3.1.



482 L. POGGIOLINI, G. STEFANI3. For t ∈ (τ̂ , T̂ ], the property is obvious, sine Ht = HS is C∞.For t ∈ [0, τ̂ ], the only disontinuities of the map ℓ 7→ TℓHt may our at the
(t, ℓ) suh that F01(ℓ) = 0 or suh that u1F01(ℓ) ≥ 0 and t = τ(ℓ). By de�nitionwe obtain

TℓHt =

{
Tℓ exp(t− τ̂ )

−→
H 1 if u1F01(ℓ) < 0

Tℓ exp(t− τ̂ )(
−→
H 1 + −→χ ) if u1F01(ℓ) > 0, t ∈ (τ(ℓ), τ̂ ).Moreover, if u1F01(ℓ) > 0 and t ∈ [0, τ(ℓ)) then, taking into aount that

−→χ ◦ Hτ(ℓ)(ℓ) = 0, we get
TℓHt = THτ(ℓ)(ℓ) exp(t− τ(ℓ))

−→
H 1 ◦ Tℓ exp(τ(ℓ) − τ̂ )(

−→
H 1 + −→χ ).An easy omputation ompletes the proof.4. and 5. follow easily from 1. and 2.6. is obvious, by Lemma 3.1.7. Consider the ases1. τ̂ ≤ τ(ℓ) and t < τ̂ . Ht(ℓ) = exp(t− τ̂ )

−→
H 1(ℓ) and u1F01(ℓ) ≤ 0 so that

u1F1◦Ht(ℓ) = (t−τ̂ )u1F01(ℓ)+
(t− τ̂ )2

2
u1 (F001 + u1F101) (ℓ)+o((t−τ̂ )2).2. τ(ℓ) < τ̂ , and t < τ(ℓ). Ht(ℓ) = exp(t − τ(ℓ))

−→
H 1(Hτ(ℓ)(ℓ)), u1F01(ℓ) > 0so that

u1F1 ◦Ht(ℓ) =
(t− τ(ℓ))2

2
u1 (F001 + u1F101)◦Hτ(ℓ)(ℓ)+o((t− τ(ℓ))2).Using (19), 7. follows.8. The proof is straightforward from 7., sine χ is a non�negative funtion.4. The extended seond variationIn Stefani (2004) the extended seond variation J ′′, assoiated to a totally singu-lar extremal of a minimum time problem is de�ned starting from the oordinate�free seond variation given in Agrahev et al. (1998a). Loally around x̂ de�nethe time�dependent vetor �eld

gt := Ŝ−1
t∗ f1 ◦ Ŝt : W → TM, t ∈ [τ̂ , T̂ ]and hoose a funtion β on W suh that

dβ(x̂) = −λ̂(τ̂ ). (23)Then the seond variation as de�ned in Agrahev et al. (1998a) is a quadratiform on L2([τ̂ , T̂ ],R) realized as the following intrinsi LQ problem on the vetor
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J ′′[δu]2 =

∫ T̂

τ̂

δu(t)Lδη(t) Lgt
β(x̂0) dt

δ̇η(t) = δu(t)gt(x̂), δη(τ̂ ) = δη(T̂ ) = 0.This result is independent of the hoie of the funtion β with property 23, seeAgrahev et al. (1998a), hene we an hoose β so that Lf1β ≡ 0. Applying thetehniques in Stefani (2004), developed in Stefani (2007), we obtain a quadratiform on R×L2([τ̂ , T̂ ],R) realized as an intrinsi LQ problem on the vetor spae
Tx̂M . Setting for t ∈ [τ̂ , T̂ ]

R(t) := L[ġt , gt]β(x̂) = 〈dβ(x̂) , [ġt, gt]〉 = 〈λ̂(t) , f101(ξ̂(t)〉

Q(t) := L(·) Lġt
β(x̂)

δe := (w0, w) ∈ R × L2([τ̂ , T̂ ],R)we an write the extended seond variation as
J ′′
E [δe]2 =

1

2

∫ T̂

τ̂

w(t)2R(t) + 2w(t)Q(t)ζ(t) dt,

ζ̇(t) = w(t)ġt(x̂), ζ(τ̂ ) = w0f1(x̂), ζ(T̂ ) = 0.See Stefani (2007) for further details and note that the same seond variation,written in sympleti form, is onsidered in Agrahev and Sahkov (2004). InStefani (2007) the neessary and su�ient onditions are proved for the oer-ivity of J ′′
E from di�erent points of view, in partiular a redution to a nonsingular problem is proved: denote

Γ := {exp sf1(x̂), s ∈ R}the integral urve of f1 through x̂, and let α be any funtion suh that dα(x̂) = ℓ̂and L2
f1
α(x̂) = 0. Then, J ′′

E is proved to be the standard seond variation,relative to the extremal λ̂|[τ̂ ,T̂ ] and to the referene ontrol ŵ ≡ 0, of the Mayerproblemminimize α(ξ(τ̂ )) subjet to (24)
ξ̇(t) = fS(ξ(t)) + w(t)fS1(ξ(t)) +

1

2
w(t)2f1S1(ξ(t)) (25)

ξ(τ̂ ) ∈ Γ , ξ(T ) = x̂f . (26)Note that the oerivity of J ′′
E implies that SGLC must be satis�ed and that

f1(x̂) 6= 0. Moreover, easy alulations show that SGLC is the strong Legendreondition for the above non-singular problem.



484 L. POGGIOLINI, G. STEFANISine in our ase the Hamiltonian of singular extremals FS is the lift of avetor �eld fS , we an use Lemma 6.4 in Stefani (2007) to give neessary andsu�ient onditions for the oerivity of J ′′
E in terms of the vetor �elds fS and

f1.Lemma 4.1 Neessary and su�ient ondition for the oerivity of J ′′
E.If f1, f01 are linearly dependent at x̂, then J ′′

E is oerive if and only if
f1(ξ̂(t)) 6= 0 for all t ∈ [τ̂ , T̂ ].If f1, f01 are linearly independent at x̂, then J ′′

E is oerive if and only if
f1(ξ̂(t)) and Ŝt∗f1(x̂) are linearly independent for all t ∈ (τ̂ , T̂ ].4.1. Redution to a free initial point problemIn this setion we show how the oerivity of J ′′

E allows us to add a penalty onthe initial point of problem (24)�(25)�(26) so that the seond variation remainsoerive also removing the onstraint on the initial point. This allows us tode�ne the Lagrangian sub�manifold with the property required in Setion 3.Lemma 4.2 If J ′′
E is oerive, then there is a funtion α de�ned in a neighbor-hood W of x̂, with the following propertiesi) Lf1α ≡ 0ii) dα(x̂) = ℓ̂iii) Let Λ = {dα(x) : x ∈ W} be the Lagrangian sub�manifold de�ned by α andlet H be the Hamiltonian �ow assoiated to the Hamiltonian Ht de�ned in(21), then π∗Ht∗ : T

ℓ̂
Λ → T

ξ̂(t)M is an isomorphism for t ∈ [τ̂ , T̂ ].Proof. Sine f1(x̂) 6= 0, we an hoose oordinates (x1, · · · , xn) at x̂ suh that
f1 = ∂

∂x1
, therefore ℓ̂ =

∑n
i=2 λi dxi and we an hoose β in (23) as

β = −
n∑

i=2

λixi.In these oordinates hoose the non-negative quadrati form on Tx̂M
Ω =

1

2

n∑

i=2

dxi ⊗ dxiand extend it to Tx̂M × L2([τ̂ , T̂ ],R) by Ω[δe]2 = Ω[δx]2. The quadrati formde�ned on Tx̂M × L2([τ̂ , T̂ ],R) by
(δx, w) 7→ Ω[δx]2 +

1

2

∫ T̂

τ̂

w(t)2R(t) + 2w(t)Q(t)ζ(t) dt

ζ̇(t) = w(t)ġt(x̂), ζ(τ̂ ) = δx, ζ(T̂ ) = 0,
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E on the kernel of Ω, hene we an apply Theorem 13.2 ofHestenes (1951) and onlude that there is a positive onstant s suh that

J ′′
E + sΩ is oerive on W = {δe ∈ Tx̂M × L2([τ̂ , T̂ ],R) : ζ(T̂ ) = 0}.By de�ning
α(x) =

n∑

i=2

λixi +
1

2
s

n∑

i=2

x2
i ,we get that α satis�es i), ii) and that γ′′ := D2(α+ β)(x̂) = sΩ.

J ′′
E+sΩ turns out to be the standard seond variation of the Mayer problemminimize α(ξ(τ̂ )) subjet to (25) and ξ(T ) = x̂f .Therefore the proof of iii) follows from Corollary 6.1 in Stefani (2007).5. Proof of the Main TheoremIn this setion we omplete the proof of the main result. We start by provingthe existene of a Lagrangian sub�manifold having the required properties withrespet to the Hamiltonian de�ned in (21).Lemma 5.1 Let α : W → R and Λ be the funtion and the assoiated Lagrangiansub�manifold de�ned in Lemma 4.2. Possibly restriting W, the map
id×πH : (t, ℓ) ∈ [0, T̂ ] × Λ 7→ (t, πHt(ℓ)) ∈ [0, T̂ ] ×Mis one�to�one onto a neighborhood V of the graph of ξ̂ in [0, T̂ ] ×M .Proof. Sine [0, T̂ ] is ompat, it su�es to show that πHt : ℓ 7→ πHt(ℓ) is loallyone�to�one around (t, ℓ̂) for any t ∈ [0, T̂ ]. Sine Ht is C1, it su�es to showthat π∗Ht∗ : T

ℓ̂
Λ → T

ξ̂(t)M is an isomorphism for any t ∈ [0, T̂ ]. In fat, if t ≥ τ̂ ,the laim is proved in Lemma 4.2, while if t ∈ [0, τ̂ ] an easy alulation showsthat π∗Ht∗ = exp(t− τ̂ )h1 ∗.We an now use sympleti arguments to omplete the proof of the maintheorem. First, observe that the one�form ω de�ned by
ω = H∗(s −Ht dt)is exat on [0, T̂ ] × Λ, see Arnold (1980).Let (T, ξ, u) be an admissible triplet suh that τ̂ < T ≤ T̂ and suh that thegraph of ξ : [0, T ] →M is in the neighborhood V de�ned in Lemma 5.1.By assumption ξ(T ) belongs to the integral line of f1 emanating from x̂f i.e.

∃ s ∈ R suh that ξ(T ) = exp sf1(x̂f ). De�ne
φ : r ∈ [0, 1] 7→ exp s(1 − r)f1(x̂f ) ∈M.Consider the paths in V :



486 L. POGGIOLINI, G. STEFANI1. Ξ := (id, ξ) : t ∈ [0, T ] 7→ (t, ξ(t)) ∈ R ×M ,2. Φ: r ∈ [0, 1] 7→
(
(T̂ − T )r + T, φ(r)

)
∈ R ×M ,3. Ξ̂ := (id, ξ̂) : t ∈ [0, T̂ ] 7→ (t, ξ̂(t)) ∈ R ×Mand denote ψ := (id×πH)−1. Sine the onatenation of ψ ◦ Ξ, ψ ◦ Φ, and of

ψ ◦ Ξ̂ ran bakward in time, is a losed path in [0, T̂ ] × Λ, then
0 =

∮
ω =

∫

ψ◦Ξ

ω +

∫

ψ◦Φ

ω −

∫

ψ◦Ξ̂

ω. (27)From the properties of Ht (point 8. of Lemma 3.4) we get
∫

ψ◦Ξ̂

ω = 0,

∫

ψ◦Ξ

ω ≤ 0 (28)so that
∫

ψ◦Φ

ω ≥ 0. (29)Sine H ◦ ψ ◦ Φ takes values in Σ, then
〈H ◦ ψ ◦ Φ(r) , f1(πH ◦ ψ ◦ Φ(r))〉 = F1 ◦ H ◦ ψ ◦ Φ(r) ≡ 0,so that
0 ≤

∫

ψ◦Φ

ω = −(T̂ − T )

∫ 1

0

HS(H ◦ ψ ◦ Φ(r)) dr. (30)Assume that T ≤ T̂ , then (30) is equivalent to
0 ≤−

∫ T̂

T

HS ◦ H ◦ ψ(t, exp
s(T̂ − t)

T̂ − T
f1(x̂f )) dt

=

∫ T̂

T

(
HS ◦ H

T̂
◦ ψ(T̂ , x̂f ) + O(t− T̂ )

)
dt =

∫ T̂

T

(
HS ◦ H

T̂
(ℓ̂) +O(t− T̂ )

)
dt

=

∫ T̂

T

−
(
1 +O(t− T̂ )

)
dt = T − T̂ +O

(
(T − T̂ )2

)whih implies T = T̂ , so that (ξ̂, û) is a (time, state)�loal minimizer.To prove that suh minimum is strit, let us assume, by ontradition, that
T = T̂ . Then Φ(r) =

(
T̂ , exp s(1 − r)f1(x̂f )

), and ∫

ψ◦Φ

ω = 0. From equa-tion (27) we also get
0 =

∫

ψ◦Ξ

ω =

∫ T̂

0

〈H ◦ ψ(t, ξ(t)) , ξ̇(t)〉 −Ht ◦ H ◦ ψ(t, ξ(t)) dt,
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〈H ◦ ψ(t, ξ(t)) , (f0 + u(t)f1)(ξ(t))〉 = Ht ◦ H ◦ ψ(t, ξ(t))

= Hmax ◦ H ◦ ψ(t, ξ(t)) (31)for any t ∈ [0, T̂ ]. De�ne λ(t) := H ◦ ψ(t, ξ(t)). If λ(t) ∈ Σ, then (31) implies
λ(t) ∈ S, while if λ(t) /∈ Σ, then laim 7. of Lemma 3.4 and equation (31)yield u(t) = u1. In partiular, we get u(t) = u1 for any t ∈ [0, τ̂ − ε], therefore
λ(t) = λ̂(t) for any t ∈ [0, τ̂ − ε], sine λ(0) = λ̂(0).For t ∈ (τ̂ − ε, T̂ ) we an ompute

λ̇(t) =
−→
H t ◦ λ(t) −Ht∗(πHt)

−1
∗

{
π∗

−→
H t ◦ λ(t) − (f0 + u(t)f1) ◦ ξ(t)

}
=

=






−→
H 1 ◦ λ(t) + (u(t) − u1)Ht∗(πHt)

−1
∗ f1 ◦ ξ(t) t ∈ (τ̂ − ε, τ̂)

−→
HS ◦ λ(t) + (u(t) − υS ◦ ξ(t))Ht∗(πHt)

−1
∗ f1 ◦ ξ(t) t ∈ (τ̂ , T̂ ).Sine, whenever λ(t) ∈ Σ, Ht∗(πHt)

−1
∗ f1 ◦ πλ(t) =

−→
F 1 ◦ λ(t) (by point 4 ofLemma 3.2), in any ase we get

λ̇(t) = (
−→
F 0 + u(t)

−→
F 1) ◦ λ(t) ∀t ∈ (τ̂ − ε, T̂ ),whih, together with (31), means that λ satis�es PMP on [τ̂ − ε, T̂ ]. Sine

λ(τ̂ − ε) = λ̂(τ̂ − ε), we easily get λ = λ̂ on [0, τ̂ ]. Moreover, on [τ̂ , T̂ ], λ is aPontryagin extremal and its range is in S, so that λ is a solution to the Cauhyprobleṁ
λ(t) =

(
−→
F 0 −

F001

F101

−→
F 1

)
◦ λ(t) λ(τ̂ ) = ℓ̂on the interval [τ̂ , T̂ ]. Hene λ(t) = λ̂(t) for any t ∈ [τ̂ , T̂ ]. Projeting on thestate manifold M , we �nally get ξ(t) = ξ̂(t).6. An exampleConsider the Dodgem ar problem:minimize Tsubjet to

ẋ1(t) = cos(x3) x1(0) = 0 x1(T ) = b1

ẋ2(t) = sin(x3) x2(0) = 0 x2(T ) = b2

ẋ3(t) = u x3(0) = 0 x3(T ) ∈ R

u ∈ [−1, 1]



488 L. POGGIOLINI, G. STEFANIwhere x ≡ (x1, x2, x3) ∈ R
3.We have

f0(x) =




cos(x3)
sin(x3)

0



 , f1(x) =




0
0
1



 ,hene, with a simple omputation, we also get
f01(x) =




sin(x3)

− cos(x3)
0



 , f101(x) = f0(x), f001(x) =




0
0
0



and the assoiated Hamiltonians are
F0(p, x) = F101(p, x) = p1 cos(x3) + p2 sin(x3) F1(p, x) = p3

F01(p, x) = p1 sin(x3) − p2 cos(x3) F001(p, x) = 0.Sine, along any singular ar of a normal Pontryagin extremal, the ondition
F0(λ̂(t)) = 1 must hold, then SGLC is satis�ed and the only admissible singularontrol is u(t) ≡ 0, so that any singular ar is driven by fS = f0, and our theoryapplies.Let us hek that along any singular ar the hypotheses of Lemma 4.1 aresatis�ed. In fat, sine f0(x) and f01(x) are linearly independent at any point of
R

3, we just need to show that f1(x) and exp(tf0)∗f1 ◦ exp(−tf0)(x) are linearlyindependent for any t 6= 0.A simple omputation shows that
exp(tf0)(x) =




x1 + t cos(x3)
x2 + t sin(x3)

x3





exp(tf0)∗f1 ◦ exp(−tf0)(x) =




−t sin(x3)
t cos(x3)

1



 ,whih proves our laim.Any bang�singular ar satisfying PMP in normal form is a strong loal op-timizer for the problem. It is known, see Craven (1995), Teo et al. (1991),Fleming and Rishel (1975), Dmitruk (2007), that if b21 + (b2 − 1)2 > 1, then anyminimum time extremal is bang�singular with juntion point on the ylinder
x2

1 + (x2 − 1)2 = 1.ReferenesAgrahev, A.A. and Gamkrelidze, R.V. (1997) Sympleti methods foroptimization and ontrol. B. Jaubzyk and W. Respondek, eds., Geom-etry of Feedbak and Optimal Control. Pure and Applied Mathematis,Marel Dekker, New York, 1�58.
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