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1. Introduction

The study of variational and optimal control problems defined on infinite (large)
intervals has recently been a rapidly growing area of research. See, for exam-
ple, Belkina and Rotar (2006), Blot and Cartigny (2000), Blot and Cretezz
(2004), Blot and Michel (2003), Glizer and Shinar (1993), Leizarowitz (1985),
Mordukhovich (1990), Mordukhovich and Shvartsman (2004), Pickenhain and
Lukina (2006), Zaslavski (1996, 1997, 1998, 1999, 2000) and the references
therein. These problems arise in engineering (see Anderson and Moore, 1971;
Leizarowitz, 1986), in models of economic growth (see Atsumi, 1965; Gale,
1967; Makarov and Rubinov, 1977; McKenzie, 2002; Samuelson, 1965; Weiz-
sacker, 1965; Zaslavski, 2005), in infinite discrete models of solid-state physics
related to dislocations in one-dimensional crystals (see Aubry and Le Daeron,
1983; Zaslavski, 1987) and in the theory of thermodynamical equilibrium for
materials (see Coleman, Marcus and Mizel, 1992; Leizarowitz and Mizel, 1989;
Marcus and Zaslavski, 1999, 2002).
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In this paper we analyze the structure of extremals of the variational prob-
lems

/ fz )dt — min, z(0) ==z, 2(T) =y, (P)

z: [0,T] — R" is an absolutely continuous (a.c.) function,

where T > 0, z,y € R and f : R" xR™ — R!is an integrand. We are interested
in turnpike properties of the extremals which are independent of the length of
the interval, for all sufficiently large intervals. To have this property means,
roughly speaking, that the approximate solutions of the variational problems
are determined mainly by the integrand, and are essentially independent of the
choice of interval and endpoint conditions.

Turnpike properties are well known in mathematical economics (see McKen-
zie, 2002; Zaslavski, 2005). The term was first coined by Samuelson in 1948
(see Samuelson, 1965) where he showed that an efficient expanding economy
would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path). This property was further investigated for
optimal trajectories of models of economic dynamics. See, for example, Makarov
and Rubinov (1977), McKenzie (2002) and the references therein. Many turn-
pike results can be found in Zaslavski (2005).

Denote by |- | the Euclidean norm in R™. Let a be a positive constant and
let ¢ : [0, 00) — [0, 00) be an increasing function such that ¥ (¢) — oo as t — oo.
Denote by A the set of all continuous functions f : R™ x R® — R! which satisfy
the following assumptions:

A(i) for each z € R™ the function f(z,-): R"® — R is convex;
A(il) f(z,u) > max{y(|z]), ¥ (|Ju])|u|} — a for each (z,u) € R™ x R™;
A(iii) for each M, e > 0 there exist I', 6 > 0 such that

|f(21,u1) = f (w2, u2)| < emax{f(z1,u1), f(w2,u2)}
for each w1, us,x1,x2 € R™ which satisfy
|| < M, i=1,2, |u;| > T, i=1,2, |1 —x2|, |ug —ue| <6.
It is easy to show that an integrand f = f(z,u) € C*(R*") belongs to A
if f satisfies assumptions A(i), A(ii) and if there exists an increasing function

o : [0,00) — [0,00) such that

max{|0f /dx(x, u)|, [0f [Ou(z, u)[} < o(|2[)(1 + ¢ (|u])|ul)

for each z,u € R™.
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For the set A we consider the uniformity, which is determined by the follow-
ing base:
E(N,e,\) ={(f,9) e Ax A: |f(z,u) — g(z,u)| <€
for all u,z € R" satisfying |z|, |u| < N}
N{(f.9) € Ax A (If(z,w)[ + D (lg(@,u)| +1)7 € A1
for all z,u € R™ satisfying |z| < N},
where N,e > 0 and A > 1. It was shown in Zaslavski (1996) that the uniform
space A is metrizable and complete.

We consider functionals of the form

T>
(T Tew) = [ rla. e O)at 1)

where f € A, —co < Ty < Ty < o0 and z : [T1,T3] — R™ is an absolutely
continuous (a.c.) function.
For f € A, y,z € R™ and real numbers T7,T5 satisfying 77 < Ty we set

UNTy, Ty, y, z) = inf{I/ (T, Ty, z) : x: [T},Ts] — R" (2)
is an a.c. function satistying =(T1) =y, x(Tz) = z}.
It is easy to see that —oo < U/ (T}, T3, y,z) < oo for each f € A, each y,z € R

and all numbers 77, T, satisfying —oco < T} < Ts < 0.
Let f € A. For any a.c. function x : [0,00) — R" we set

J () = lim inf T-1170,T, x). (3)

Of special interest is the minimal long-run average cost growth rate
p(f) =inf{J(z) : x:[0,00) = R" is an a.c. function}. (4)

Clearly —oo < pu(f) < co. By a simple modification of the proof of Proposition
4.4 in Leizarowitz and Mizel (1989) (see Zaslavski, 1996, Theorems 8.1, 8.2) we
obtain the representation formula

Uf(OvTa €L, y) = T:u(f) + ﬂ-f(x) - 7Tf(y) + 9’5‘(‘T7y)a (5)
x,y € R", T € (0, 00),

where 7/ : R” — R! is a continuous function and (T, z,y) — 04.(z,y) € R is a
continuous nonnegative function defined for 7' > 0, =,y € R",

ol (x) = inf{lij{riior(ljf[lf(o, T,v) —u(f)T]: v:[0,00) = R"” (6)

is an a.c. function satisfying v(0) =z}, © € R"

and for every T' > 0, every z € R™ there is y € R" satisfying 0{;(95, y) =0.
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An a.c. function x : [0,00) — R™ is called (f)-good if the function " —
(0, T,z) — u(f)T, T € (0,00) is bounded. In Zaslavski (1996) we showed that
for each f € A and each z € R" there exists an (f)-good function v : [0,00) —
R™ satisfying v(0) = z.

Propositions 1.1 and 3.2 of Zaslavski (1996) imply the following result.

PROPOSITION 1 For any a.c. function z : [0,00) — R" either I7(0,T,x) —
Tu(f) — o0 as T — oo or

sup{|1f(0, Tv .I) - T,U,(f)| :Te (07 OO)} < 00.
Moreover any (f)-good function x : [0,00) — R™ is bounded.

We denote by d(z, B) = inf{|z —y| : y € B} for x € R" and B C R" and
by dist(A, B) the distance in the Hausdorff metric for two sets A C R"™ and
B C R". For every bounded a.c. function z : [0,00) — R™ define

Q(x) ={y € R™: there exists a sequence {t;}32; C (0,0) (7)

for which t; — oo, z(t;) — y as i — oo}.

We say that an integrand f € A has an asymptotic turnpike property, or
briefly (ATP), if Q(vy) = Q(vy) for all (f)-good functions v; : [0,00) — R7,
i =1,2 (see Marcus and Zaslavski, 1999; Zaslavski 1996).

In Zaslavski (1996, Theorem 2.1) we established the following result.

THEOREM 1 There ezists a set F C A which is a countable intersection of open
everywhere dense subsets of A such that each integrand f € F possesses (ATP).

By Proposition 1 for each integrand f € A which possesses (ATP) there
exists a compact set H(f) C R™ such that Q(v) = H(f) for each (f)-good
function v : [0, 00) — R™.

Let f € A. We say that f has a weak turnpike property, or briefly (WTP),
with a turnpike D C R™, where D is a nonempty compact subset of R", if for
each M, e > 0 there exist § > 0, L > 0, [ > 0 such that the following assertion
holds:

For each T'> L + [ and each a.c. function v : [0,7] — R™ which satisfies

[v(0)] < M, |o(T)| < M, I7(0,T,v) < U (0,T,v(0),v(T)) + 6

there is a Lebesgue measurable set 2 C [0, T'] such that mes(£2) < and for each
7€ [0,T — L]\ Q the following inequality holds:

dist(D,{v(t): te[r,7+L]}) <e.

We showed in Zaslavski (1996, Theorem 2.4) that if f € A possesses (ATP),
then f has (WTP) with the turnpike H(f). More precisely, we establish the
following result (see Zaslavski, 1996, Theorem 2.4).
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THEOREM 2 Assume that f € A has (ATP). Let My, M;i,e > 0. Then there
exist a neighborhood U of f in A, numbers [,.S > 0 and integers L,. Q > 1 such
that for each g € U, each pair of numbers Ty € [0,00), To € [T1 + L + 1Q+, 0)
and each a.c. function v : [Ty, Ts] — R™ which satisfies

lW(T)| < My, i=1,2, I9(Ty,Ts,v) < U(Ty, To,v(T), v(T»)) + Mo
the following properties hold:

[v(t)] <8 for all t € [Th, T3]
there exist sequences of numbers {b;}%,, {¢;Y2, C [T, Ts) such that

QSQ*v OSCZ—b»LSl, ’i:l,...,Q,
dist(H(f),{v(t): te [T, T+ L]}) <e
for each T € [T1,To — L] \ U?Zl[bl-, ci-

COROLLARY 1 Assume that f € A has (ATP). Then f possesses (WTP) with
the turnpike H(f).

The following theorem is our first main result.

THEOREM 3 Suppose that f € A has (WTP) with the turnpike D C R™. Then
f possesses (ATP) and H(f) = D.

Corollary 1 and Theorem 3 mean that the properties (WTP) are (ATP)
are equivalent. In view of Theorems 1 and 2, most integrands of the space A
possess (WTP). It should be mentioned (see Zaslavski, 1999, 2005) that there
are integrands in the space A which possess a turnpike property such that the
set €2 is a union of two intervals containing the end points 0 and 7', respectively.

More precisely, let f € A. We say that f has the turnpike property, or briefly
(TP), with a turnpike D C R", where D is a nonempty compact subset of R",
if for each K, e > 0 there exist l[p > [ > 0 and § > 0 such that the following
assertion holds:

For each T' > 2l and each a.c. function v : [0,7] — R™ which satisfies

[0(0)], [v(T)| < K, I7(0,T,v) = U (0, T,0(0),v(T))
the inequality
dist(D, {v(t) : te[r,7+1]}) <e (8)

holds for each 7 € [ly,T" — lp]. Moreover, if d(v(0), D) < §, then (8) holds for
each 7 € [0,T —lo] and if d(v(T), D) < 4, then (8) holds for each 7 € [ly, T —].

Let f € A. We say that the integrand f has the strong turnpike property, or
briefly (STP), with a turnpike D C R", where D is a nonempty compact subset
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of R™, if for each €, K > 0 there exist real numbers 6 > 0 and Iy > [ > 0 such
that the following assertion holds:
For each T' > 2l and each a.c. function v : [0,T] — R™ which satisfies

[v(0)], |v(T)| < K, I7(0,T,v) < U (0,T,v(0),v(T)) + &
the inequality
dist(D, {v(t): te[r,7+1]}) <e 9)

holds for each 7 € [ly, T — lp]. Moreover, if d(v(0), D) <, then (9) holds for all
7 € [0,T —lp] and if d(v(T), D) < 6, then (9) holds for each 7 € [ly, T —I].

Note that the property (TP) deals only with exact minimizers of the vari-
ational problems while the property (STP) also describes the structure of ap-
proximate solutions.

Assume that f € A possesses (STP) with the turnpike D C R™. Then f
possesses (TP) with the turnpike D, possesses (WTP) with the turnpike D and
by Theorem 3, f possesses (ATP) with H(f) = D.

We can show that if f € A has (ATP) and H(f) is a singleton, then f
possesses (STP) with the turnpike H(f). These properties hold, for example, if
f € Ais strictly convex (see Zaslavski, 2007). In Zaslavski (1999) we considered
an important subset M C A and showed that if f € M possesses (ATP), then
f possesses (STP) with the turnpike H(f).

In this paper we will establish the following two results. The first of them
shows that the property (STP) is stable under small perturbations of integrands.
The second result implies that the properties (TP) and (STP) are equivalent.

THEOREM 4 Suppose that f € A has (STP) with a turnpike H(f) C R™. Let
e, K > 0. Then there ezist a neighborhood U of f in A, Iy >1 >0 and § >0
such that for each g € U, each T > 211 and each a.c. function v : [0,T] — R"
which satisfies

[v(0)], |v(T)| < K, I9(0,T,v) <UI0,T,v(0),v(T))+ ¢
the inequality
dist(H(f),{v(t): te[r,7+1]}) <e (10)

holds for each T € [l1,T — l1]. Moreover, if d(v(0), H(f)) < §, then (10) holds
for each 7 € [0,T — l1] and if d(v(T),H(f)) < &, then (10) holds for each
T E [ll,T — l]

THEOREM 5 Let f € A have the property (TP) with the turnpike D C R™.
Then f possesses (ATP), H(f) = D and [ has (STP) with the turnpike H(f).

Combining Theorems 4 and 5 we obtain the following result.
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THEOREM 6 Suppose that f € A has the property (TP) with a turnpike D C
R"™. Then f possesses (ATP), H(f) = D and for each ¢, K > 0 there exist a
neighborhood U of f in A, Iy > 1> 0 and § > 0 such that for each g € U, each
T > 21y and each a.c. function v : [0,T] — R™ which satisfies

[v(0)], |v(T)| < K, I9(0,T,v) <U90,T,v(0),v(T))+ 6

the inequality (10) holds for each T € [l1,T—11]. Moreover, if d(v(0), H(f)) < 6,
then (10) holds for each 7 € [0,T —11] and if d(v(T'), H(f)) < 0, then (10) holds
for each T € [l1,T —1].

Note that all our results can be applied for an integrand f € A which is
strictly convex. See for details Zaslavski (2007). They can also be applied for
most elements (in the sense of Baire category) of certain spaces of integrands
studied in Zaslavski (1999).

2. Auxiliary results

In this paper we need the following results obtained in Zaslavski (1996) and in
Zaslavski (1998).

PROPOSITION 2 (Zaslavski, 1996, Proposition 5.1). Let g € A, y : [0,00) — R"
be a (g)-good function and let € > 0. Then there exists To > 0 such that for each
T>1Ty and each T >T

I9(T.T,y) <UL, T,y(T),y(T)) + e

PROPOSITION 3 (Zaslavski, 1996, Theorem 6.1). Let f € A. Then the function
(Ty, Ty, z,y) — U (T1, Ta, z, y)

is continuous for Ty € [0,00), Ty € (T1,0), z,y € R™.

PROPOSITION 4 (Zaslavski, 1998, Proposition 2.4). Let My,e > 0 and let 0 <
To < T1. Then there exists a positive number § such that for each f € A and each
pair of numbers Ty, Ty > 0 satisfying To — T\ € [0, 71] the following property
holds:

If an a.c. function x : [Ty, Ty] — R™ satisfies I/ (T1, T, z) < My and if
t1,t € [T1, T3] satisfies [t1 — to| <9, then |x(t1) — z(t2)] <e.

PROPOSITION 5 (Zaslavski, 1998, Theorem 1.3). Let f € A and let My, Ma,c>
0. Then there ezist a neighborhood U of f in A and S > 0 such that for
each g € U, each Th € [0,00), each To € [T1 4 ¢,00) and each a.c. function
v: [Ty, Te] — R™ satisfying

|’U(E)| S M17 1= 15 27 Ig(T15T27v) S Ug(T15T27v(T1)7U(T2)) =+ M2
the following inequality holds:
|’U(t)| < S, te [Tl,TQ].
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PROPOSITION 6 (Zaslavski, 1996, Lemma 10.2). Let f € A possess (ATP),
e € (0,1), Ko > 0, My > 0 and let | be a positive integer such that for each
(f)-good function x : [0,00) — R™ the inequality

dist(H(f),{z(t): t € [T, T +1]}) <8 'eg
holds for all large T' (the ezistence of I follows from Theorem 5.1 of Zaslavski,
1996). Then there ezists an integer N > 10 and a neighborhood U of f in A such
that for each g € U, each S € [0,00) and each a.c. function x : [S, S+ NIl] — R™
satisfying

12(S)], [2(S + N1)| < Ko, I9(S,5 + NI, )

<UI(S,S + Nl,z(S),x(S + NI)) + My
there exists an integer ig € [0, N — 8] such that

dist(H(f),{z(t): te [T.T+1]}) <eo
for all T €[S+ iol, S + (i0 + 7)I].
PROPOSITION 7 (Zaslavski, 1998, Proposition 2.8). Let f € A, 0 < c¢1 < ¢a <
oo and let D,e > 0. Then there exists a neighborhood V' of f in A such that for
each g € V, each Ty, To > 0 satisfying To — Ty € [c1,¢2] and each a.c. function
x: [Ty, Ts] — R™ satisfying

min{I9(T, Tz, x), I/ (Ty, To,2)} < D
the inequality |17 (Ty, Ty, z) — I9(Ty, Ty, )| < € holds.
PROPOSITION 8 (Zaslavski, 1998, Proposition 2.9). Let f € A, 0 < ¢ < ca <
oo and let cs,e > 0. Then there exists a neighborhood V' of f in A such that
for each g € V', each Ty, T > 0 satisfying To — T1 € [c1,¢2] and each z,y € R"
satisfying |y|, |z] < c3 the inequality

|Uf(T17 T27 Y, Z) - Ug(T17 T27 Y, Z)' S €
holds.
PROPOSITION 9 (Zaslavski, 1998, Theorem 1.2). For each f € A there exists
a neighborhood U of [ in A and a number M > 0 such that for each g € U

and each (g)-good function x : [0,00) — R" the relation limsup,_, . |x(t)| < M
holds.

PROPOSITION 10 (Zaslavski, 1998, Proposition 2.5). Assume that f € A,
My > 0,0 < Ty < Ty and that x; : [Th,To] — R™, i = 1,2,... is a se-
quence of a.c. functions such that I5(Ty, Ty, z;) < My, i =1,2.... Then there
exist a subsequence {x; }32, and an a.c. function x : [T1,T2] — R™ such that

If(T17T27x) S M17

z,, (t) — x(t) as k — oo uniformly on [T\, T>] and x} — 2’ as k — oo weakly
mn Ll(Rn, (Tl,TQ)).
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Let f € A. For each pair of real numbers 7> > 77 and each a.c. function
T : [Tl,TQ] — R" set

o (Ty, Ty, ) = I (Th, Ty, ) — (To = Tu)p(f) — 7/ (a(T1)) + ¥ (2(T2)). (11)
By (11), (2) and (5),
U'f(Tl,TQ,’U) Z 0

for each Ty € R', each T>>T) and each a.c. function v : [Ty, Ty] — R™. (12)

3. Proof of Theorem 3

Let v : [0,00) — R™ be an (f)-good function. We show that Q(v) = D. By
Proposition 9 the function v is bounded. Thus, there is

M > sup{|v(t)|: ¢t €[0,00)}. (13)
First we show that D C Q(v). Let
€>0,2€D (14)

and let L,1,6 > 0 be as guaranteed by the property (WTP). By Proposition 2
there is 79 > 0 such that

I (S, Sa,v) <UT(S1, S2,v(81),v(S2)) + &

for each pair of numbers S1, S5 satisfying Sy > S1 > 79. Let T > 79. Then by
the choice of 1y

IN(T, T +2(L41),v) <UNT, T +2(L +1),v(T),o(T +2(L +1))) + 6.

It follows from this inequality, (13), the choice of L, 1, ¢ and the property (WTP)
that there is ¢t € [T, T + 2(I + L)] such that d(v(¢),2) < e. This implies that
d(z,0(v)) < e. Since € is any positive number and z is an arbitrary element of
D we conclude that D C Q(v).

Now we show that Q(v) C D. Let us assume the contrary. Then there is

z € Qv)\ D. (15)
There is € > 0 such that

d(z,D) > 4e (16)
and there is a sequence {t;}52; C (0,00) such that

ti+1 - ti Z 16, 1= 1, 2, ceey hm ’U(tz) = Z. (17)

11— 00
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We may assume without loss of generality that

d(v(t;),D) > 3¢, i =1,2,... (18)
In view of Proposition 2 there is 79 > 0 such that

(81, 82,v) < UY(S1, S2,0(51), v(S2)) + 1 (19)

for each pair of numbers 57,5, satisfying So > S; > 79. We may assume
without loss of generality that ¢; > 79. Relations (13), (19) and Proposition 3
imply that there is a number M; > M such that

I'(s,5 4+ 2,v) < M; for each s > 7p. (20)

It follows from (20) and Proposition 4 that there is v € (0,1/2) such that for
each s > 79, each t1,%> € [s,s + 1] which satisfy |1 — f2| < 7 the inequality
[v(t1) — v(t2)| < € holds. By the choice of v and (18), for each integer i > 1 and
each t € [t;,t; + 7],

d(v(t), D) > 2e. (21)

Let L,1,d > 0 be as guaranteed by the property (WTP). In view of Proposition 2
there is 71 > 79 such that

I (s1,82,0) < U (s1,80,0(s1),0(s2)) + 6

for each pair of numbers s1, so satisfying so > s1 > 7.
Fix an integer 7o > 1 such that ¢;, > 71. Let ¢ > 2 be a natural number. By
the choice of 7,

I (tig, tigrq + 1+ L,v) U (tiy, tigrq + 14 Lyv(tiy), v(tiyyq + 1+ L)) +6.

It follows from this inequality, (13), the choice of L,d,l and the property
(WTP) that there is a Lebesgue measurable set © C [t;,, tiy+q+ !+ L] such that
mes(Q) <! and for each 7 € [0,7 — L] \ © we have

dist(D, {v(t): te[r,7+L]}) <e.
Combined with (21) this implies that

Uttt + 4] € Q

i=ig
and

[ > mes(Q) > mes(U?mL;’*l[ti,tiH +1]) =vgand ¢ < Iyt

=1

Since ¢ is any natural number satisfying ¢ > 2 we have reached a contradiction.
Therefore Q(v) C D. Theorem 3 is proved.
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4. Proof of Theorem 4

It was mentioned in Introduction that f possesses (ATP).

By Proposition 5 there exist a neighborhood U; of f in A and a number
M > K such that for each g € Uy, each T7 > 0, each Ty > T7 + 1 and each
a.c. function v : [T1, T2] — R™ which satisfies

|’U(Tl)| <2K+4,i=1,2, Ig(Tl,Tg,’U) < Ug(Tl,Tg,’U(Tl),’U(Tg)) +4 (22)
the following inequality holds:
()| < M, t € [T1,T>]. (23)

Since f has (STP) there exist § € (0,1), lp > 1, I > 0 such that lp > [ and the
following property holds:

(P1) For each T' > 2]y and each a.c. function v : [0,7] — R™ which satisfies
[v(0)], |v(T)| < M, I7(0,t,v) < UY(0,T,v(0),v(T)) + 45 (24)

the inequality
dist(H(f),{v(t): te[r,7+1]}) <e¢ (25)

holds for each 7 € [lp,T — lp]. Moreover, if d(v(0), H(f)) < ¢, then (25) holds
for each 7 € [0,T — lp] and if d(v(T),H(f)) < J, then (25) holds for each
7€ [lo,T —1]

By Proposition 6 there exist a positive number N and a neighborhood Us
of f in A such that for each g € Us, each s € [0,00) and each a.c. function
v:[s,s+ N] — R"™ satisfying

[v(s)], Jv(s+ N)| <2M +2, (26)
I9(s,s+ N,v) <U9(s,s+ N,v(s),v(s+ N))+ 8

there is 7 € [s, s + N| such that

d(v(r), H(f)) < 0. (27)
Set

Iy = 16(lp + 2 + N). (28)

By Proposition 3 there is My > M such that for each 7 € [1, 4[], each z,y € R™
satisfying |z|, |y| < 2M +4

U0, 7,2,y)| < M. (29)
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By Proposition 8 there exists a neighborhood U3 of f in A such that for each
T € [1,4l;], each g € Us and each z,y € R" satistying |z|, |y| < 2M +4

U0, 7,2,y) — U0, 7,2,y)| < 5/2. (30)

By Proposition 7 there exists a neighborhood Uy of f in A such that for each
g € Uy, each 7 € [1,41;] and each a.c. function v : [0, 7] — R™ which satisfies

min{ I/ (0, 7,v), I9(0,7,v)} < 2My + 4 (31)

the inequality

[17(0,7,v) — I9(0,7,v)| < /4 (32)
holds. Set
U =i U;. (33)

Assume that g € U, T > 2l; and a.c. function v : [0,T] — R™ satisfies

[v(0)], |lv(T)| < K, I9(0,T,v) <U9(0,T,v(0),v(T)) + 4. (34)
In view of (33), (34) and the definition of U; (see (22), (23))

[v(®)| < M, t€]0,T). (35)
Assume that S1, 52 € [0, T satisfy

9o < So — S1 < dly, d(v(S;), H(f)) <6, i=1,2. (36)
By (35), (36) and the choice of My (see (29)),

U7 (81, 82, 0(81), v(82))| < Mo. (37)
It follows from (33), the choice of Us (see (30)), (35) and (36) that

[US(S1, S2,v(S1),0(S2)) — U9 (S1, Sz, v(S1), v(S2))| < 6/2. (38)
Combined with (34) and (37) this inequality implies that

Ig(Sl,SQ,U) S U‘q(Sl, SQ,’U(Sl),’U(Sz)) + 5
<UJ (81, 8,v(81),v(82)) + (3/2)6 < My + (3/2)6 < My + 2. (39)

Together with (36), (33) and the choice of Uy this inequality implies that

|Ig(S1,S2,’U)—Ij(Sl,SQ,U)| §5/4 (40)
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Relations (34), (38) and (40) imply that

(81, 82,v) < T9(S1, 82,v) +6/4 < UY(S1, S2,0(S1), v(S2)) + (5/4)8
< U’ (81, S2,v(81),v(Ss)) + 26. (41)

It follows from (35), (36), (41) and the choice of d,lo,1 (see (24), (25)) that for
each 7 € [S1, S2 — ] the inequality (25) holds.

We showed that the following property holds:
(P2) For each 51,52 € [0,T] satisfying (36) and each 7 € [S1,S2 — ] the
inequality (25) holds.

Assume that

51,5’2 S [O,T],
So > Sy + 21y, d(v(S;), H(f)) <6, i=1,2. (42)

We show that for each 7 € [S}, S5 — ] the inequality (25) holds. If Sy —S; < 4l4,
then our property follows from (P2). Therefore we may assume that

Sy — Sy > 4ly. (43)
Let

7 € [S1, S8 —1]. (44)
Define S, Sy € [0, 7] as follows. If 7 — S < Iy, then set

Sy = S. (45)

If 7 — Sy > Iy, then it follows from (33), the choice of Us (see (26)-(28)), (34)
and (35) that there is a number S; such that

S € [T— li,N +717— ll], d(’U(Sl),H(f)) < 4. (46)
If So — 7 <, then set
Sy =S,. (47)

If So — 7 > Iy, then it follows from (33), the choice of Uy (see (26), (29)), (35)
and (22) that there is a number S, such that

Sy € [T 4+l — N, 7+ ll], d(’l)(Sg),H(f)) <. (48)
In view of (42) and the choice of S1, 52 (see (45)-(48)),

d(v(Si), H(f)) <46, i=1,2, (49)
So — Sy € [2lp,4l1], T € [S1,52 —1]. (50)
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Combined with the property (P2) these relations imply that the inequality (25)
holds.
Thus we showed that the following property holds:

(P3) For each Si,S> € [0,T] satisfying (23) and each 7 € [S1, Sy — [] the
inequality (25) holds.

Now define Sy, S> € [0,7] as follows. If d(v(S; ) H(f)) <4, then S; = 0.
Otherwise by the choice of Us (see (26), (27)), (33), (34) and (35) there is
Sy € [0, N] such that d(v(S1), H(f)) < 6. If d(v(Ty), H(f)) < 6, then Sy = T
Otherwise by the choice of Us (see (26), (27)), (35) and (34) there is Sy €
[T — N, T] such that

d(v(S2), H(f)) < 6.

By the property (P3) for each 7 € [S1, Sa — [] the inequality (25) holds. Theo-
rem 4 is proved.

5. An auxiliary result for Theorem 5

PrROPOSITION 11 Let f € A have (TP) with the turnpike D C R"™. Then f has
(ATP) and H(f) = D.

Proof. Let v : [0,00) — R™ be (f)-good function. We show that Q(v) = D. Let
z € Q(v). There exists a sequence {¢;}52; C [0,00) such that

tiv1 >t +10,i=1,2,..., lim ’U(ti)zz. (51)

For each integer 7 > 1 we define u; : [—t;,00) — R™ by

ui(t) = v(t +t;), t € [~t;, 00). (52)
By Proposition 9 there is M > 0 such that

[v(t)| < M for all ¢ € [0, ). (53)

By Proposition 2 there is 7y > 0 such that for each pair of real numbers 57, S
satisfying So > 51 > T0

I7(Sy, S5,v) <UF(S1,82,v(51),v(82)) + 1

Combined with (51)-(53) and Proposition 3 this implies that for each natural
number ¢ the sequence {I/(—q,q,u;)}, where i > 1 is an integer such that
t; > q, is bounded. Together with Proposition 10 this implies that there exist
a subsequence {u;, }?°; and an a.c. function u : R* — R™ such that for each
natural number ¢

u;,, (t) — u(t) as k — oo uniformly in [—q, q], (54)
I(=q,q,u) < liminf I7(—q, ¢, us,). (55)
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In view of (54), (53) and (52)
lu(t)] < M for all t € R". (56)
Relations (51), (52) and (54) imply that
u(0) = z.
It follows from (55), (52) and Proposition 3 that for each integer ¢ > 1,
I (=q,q,u) < 1ikrgg.}f[f(—q,q,uik) = likniggfff(—q +ti, g+t ,v)
= liminf U/(0,2¢, v(—q + t5,), v(g + ti,)
= lim inf U/(0,2q, ui, (—9), i, (9)) = U (0,24, u(=q), u(q))-
This implies that
(=g, q,u) = U7 (2q, u(~q), u(q))

for each integer ¢ > 1. Together with (56) and (TP) this implies that z € {u(¢) :
t € R'} C D. Since z is any element of Q(v) we conclude that Q(v) C D.
We show that D C Q(v). Let us assume the contrary. Then there is

z € D\ Qv). (57)
Hence, there exist €,ty > 0 such that
|v(t) — z| > 3e for all t > ty. (58)

Choose a natural number iy > to. For each integer i > i define u; : [—i,00) —
R"™ by

ui(t) =v(i +t), t € [—1i,00). (59)
By Proposition 9 there is M > 0 such that
[v(t)| < M for all ¢ € [0, ). (60)

In view of Proposition 2 there is 7y > 0 such that for each pair of numbers 57, S
satisfying Sy > S1 > 19 we have

If(Sl,Sg,’U) < Uf(Sla S27U(Sl)7v(s2)) +1.

Combined with (59), (60) and Proposition 3 this implies that for each natural
number ¢ the sequence {I/(—q, q,u;)}, where i is a natural number such that
1> q, 10, is bounded. Together with Proposition 10 this implies that there exist
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a subsequence {u;, }?°, and an a.c. function u : R* — R™ such that for each
natural number ¢ the relations (54) and (55) are true.

It follows from (54), (55), (59) and Propositions 2 and 3 that for each natural
number ¢

I (—q,q,u) < likrgggfff(—q, q, Uiy, ) = likn_l}iorgfff(—q + ik, q + ik, v)

= lim inf U7(0,2q,v(ix — q),v(ix + q))

= liminf U (0, 2¢, s, (~9), ui, (0)) = U* (0, 2q, u(~q), u(q))-
Thus

I’ (=q,q,u) = U’(0,2¢,u(—q), u(q)) for all natural numbers q. (61)
By (54), (59) and (60),

t)] < M for all t € R, (62)
t) — z| > 3¢ for all t € R'. (63)

Ju(
Ju(
Relations (61), (62), (57) and (TP) imply that there is 7 € R* such that

|z —u(r)| <e.
This contradicts (63). The contradiction we have reached shows that D C Q(v).
Proposition 11 is proved.

6. Proof of Theorem 5

LEMMA 1 Let ¢, M,S > 0. Then there exists § > 0 such that for each a.c.
function v : [0,S] — R™ satisfying

[0(0)], [0(S)] < M, I(0,8,v) <U'(0,8,0(0),0(8)) + 6
there is an a.c. function u :[0,S] — R™ such that

17(0,T,u) = UY(0, 5,0(0),v(S)),
[u(t) —u(t)] <e t€0,9].

Proof. Let us assume the contrary. Then for each natural number m there exists
an a.c. function ., : [0, S] — R™ such that

[um (0)], |um (S)] < M, (64)
170, 8, ) < UY(0,8,1m(0), %, (S)) + 1/m (65)

and

sup{|um,(t) —u(t)] : t€[0,S]} > € (66)
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for each a.c. function w : [0, S] — R™ such that
17(0,8,u) = UY(0, S, u(0), u(S)). (67)

By (64), (65) and Proposition 3 the sequence {I7(0, S, u,,)}55_; is bounded from
above. It follows from Proposition 10 that there exists a subsequence {u,, }5°,
and an a.c. function u : [0, S] — R™ such that

U, (t) — u(t) as i — oo uniformly in [0, 5], (68)
17(0, 8,u) <liminf I7(0, S, um,). (69)

It follows from (68), (65), (69) and Proposition 3 that
17(0,5,u) < lim inf 10,8, um,) = lim inf U7(0, S, tm, (0), um, (S))
=U'(0,5,u(0),u(S)).
Thus
17(0,8,u) = U7 (0, S,u(0), u(S)).
By (68) there is a natural a number p such that
[up(t) = u(t)] < €/2, t € [0, 5],

a contradiction (see (66)). The contradiction we have reached proves Lemma, 1.

Proof of Theorem 5. By Proposition 11 f has (ATP) and H(f) = D. We
may assume that

e<1, K>sup{|z|: z€ H(f)} +2. (70)

By Proposition 5 there exists Ky > K + 1 such that for each T > 1 and each
a.c. function w : [0,7] — R™ satisfying

[u(0)], [u(T)| < K + 1, I7(0,T,u) <U’(0,T,u(0),u(T)) + 4 (71)
the following inequality holds:
lv(t)] < Ko, t €[0,T]. (72)

Since f has (TP) with the turnpike D = H(f), there exist real numbers lg, [, dg
such that

lo>1>0, 6€(0,1), §p < e (73)

and the following assertion holds:
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(C1) For each T > 2y and each a.c. function v : [0, 7] — R™ which satisfies
[0(0)], [o(T)] < Ko +2, 17(0,T,v) = U/ (0, T,v(0),v(T)) (74)
the inequality
dist(H(f),{v(t): te[r,7+1]}) <¢/8 (75)
holds for each 7 € [lp, T — lg]. Moreover, if d(v(0), H(f)) < do, then (75) holds
for each 7 € [0,T — lp] and if d(v(T),H(f)) < do, then (75) holds for each
T E [lo, T— l]
Since f has (ATP) Proposition 6 implies that there is a number N > 0 such
that for each a.c. function v : [0, N] — R™ satisfying
[w(0)], [v(N)| < Ko+ 1, I7(0, N,v) < U/(0,N,v(0),v(N)) + 8
we have
inf{d(v(t), H(f)): t € [0, N]} < dp/32. (76)
Choose a number [; such that

i >8(lo+ N +2). (77)

By Lemma 1 there is 6; > 0 such that for each a.c. function v : [0,l;] — R"
satisfying

[v(0)], [v(l1)] < Ko+ 1, I7(0,11,v) < U (0,11,v(0),v(11)) + 61 (78)

there is an a.c. function w : [0,l;] — R™ such that

I7(0,11,u) = U (0,11, u(0), u(ly)), (79)

lu(t) —v(t)| < 80/32, t € [0,14] (80)
Put

0= min{&o, 51}/64 (81)

Assume that T > 2l; and an a.c. function v : [0,T] — R"™ satisfies
[0(0)], [o(T)| < K, I7(0,T,v) < UY(0,T,0(0),0(T)) + 4. (82)

It follows from (82) and the choice of Ky that (72) is true.
Assume now that S1, 52 € [0, T satisfy

Sz = 81 € [2lo, 1], d(v(Si), H(f)) < do, i =1,2. (83)
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We show that for each 7 € [S1,S2 — ]

dist(H(f),{v(t): te[r,7+1]}) <e (84)
Clearly, there is Sy € [0, 7] such that

[S1,85] C [S1,81 4 11]  [0,T]. (85)
By (82),

I7(S1, 81 +11,v) <UY(S1, 81 + 11,0(S1),v(S1 + I2)) + 6.

It follows from this inequality, (85), (72), (81) and the choice of §; (see (78)-(80))
that there is an a.c. function u : [S1, 51 + 1] — R™ such that

If(gl,gl —+ ll,u) = Uf(gl, gl —+ ll,u(gl),u(gl + ll)), (86)
lu(t) — v(t)] < 60/32, t € [S1, 51 + 1] (87)

In view of (87), (73) and (72),

lu(t)| < Ko+ 1, t € [S1,S1 + L] (88)
Relations (85) and (86) imply that

1(8y, S2,u) = U/ (S1, S2,u(S1),u(S2)). (89)

By (89), (88), the assertion (C1) and (83) for each 7 € [S1, 52 — ] the following
inequality is true:

dist(H(f), {u(t) : t€[r,7+1]}) < ¢/8. (90)

Let 7 € [S1,S52 —{]. Then (90) is true. Together with (87) and (73) the
inequality (90) implies that

dist(H(f),{v(t): te[r,7+1]}) <e/8+4d0/32 < ¢/4. (91)

Thus we have shown that the following assertion is true:

(C2) For each 51,5 € [0,T] satisfying (83) and each 7 € [S1,S2 — ] the
inequality (91) is true.

Assume that S7,.55 € [0, T] satisfy

Sz — Sl Z 2[0, d(’U(SZ),H(f)) S 50, 1= 1, 2. (92)

We show that for each 7 € [S1, 52 — 1] (91) is true. Note that if So — S < Iy,
then this is true in view of (C2). Therefore we may may assume that

SQ — Sl > ll. (93)
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Let 7 € [S1,S2 —I]. Define 51,5, € [O,NT] as follows:
If 7 <2lg+ N+ 57, then we set S~1 = 57. Otherwise, by the choice of N
(see (76)), (72), (73) and (82) there is Sy € [ — 2lp — N, 7 — 2lp] such that

d(v(S1), H(f)) < b0/32. (94)

If 7> 5, —2lp— N, then we set 5’2 = S5. Otherwise, by the choice of N (see
(76)), (82) and (72) there is Sy € [T + 2o, T + 2y + N] such that

d(v(Ss), H(f)) < 60/32. (95)
It follows from the choice of S1, Sa, (93), (77), (92), (94) and (95) that

Iy > 8y — S > 2y,
d(v(S;), H(f)) < 6o, i = 1,2, 7 € [S1, 52 — I].

It follows from these inequalities and (C2) (applied for Sy, Ss) that (91) is true.
Thus the following property holds:

(C3) For each S1,S52 € [0,T] satisfying (92) and each 7 € [S1,S2 — ] the
inequality (91) is true.

Define real numbers 71,7 as follows. If d(v(0), H(f)) < 4, then 74 = 0.
Otherwise by the choice of N (see (76)), (72) and (82) there is 71 € [0, N] such
that

d(v(1), H(f)) < do.

If d(v(T), H(f)) < 9, then set 7o = T. Otherwise by the choice of N (see (76)),
(72) and (82) there is 7o € [T — N, T such that d(v(m2), H(f)) < do- It follows
from (C3) that for each 7 € [r1, 72 —1] the inequality (91) is true. This completes
the proof of Theorem 5.
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