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.ilAbstra
t: In this work we study the stru
ture of approximatesolutions of autonomous variational problems with ve
tor-valuedfun
tions. We are interested in turnpike properties of these solu-tions, whi
h are independent of the length of the interval, for allsu�
iently large intervals. We show that the turnpike propertiesare stable under small perturbations of integrands.Keywords: good fun
tion, in�nite horizon problem, integrand,turnpike property.1. Introdu
tionThe study of variational and optimal 
ontrol problems de�ned on in�nite (large)intervals has re
ently been a rapidly growing area of resear
h. See, for exam-ple, Belkina and Rotar (2006), Blot and Cartigny (2000), Blot and Cretezz(2004), Blot and Mi
hel (2003), Glizer and Shinar (1993), Leizarowitz (1985),Mordukhovi
h (1990), Mordukhovi
h and Shvartsman (2004), Pi
kenhain andLukina (2006), Zaslavski (1996, 1997, 1998, 1999, 2000) and the referen
estherein. These problems arise in engineering (see Anderson and Moore, 1971;Leizarowitz, 1986), in models of e
onomi
 growth (see Atsumi, 1965; Gale,1967; Makarov and Rubinov, 1977; M
Kenzie, 2002; Samuelson, 1965; Weiz-sa
ker, 1965; Zaslavski, 2005), in in�nite dis
rete models of solid-state physi
srelated to dislo
ations in one-dimensional 
rystals (see Aubry and Le Daeron,1983; Zaslavski, 1987) and in the theory of thermodynami
al equilibrium formaterials (see Coleman, Mar
us and Mizel, 1992; Leizarowitz and Mizel, 1989;Mar
us and Zaslavski, 1999, 2002).
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492 A.J. ZASLAVSKIIn this paper we analyze the stru
ture of extremals of the variational prob-lems
∫ T

0

f(z(t), z′(t))dt → min, z(0) = x, z(T ) = y, (P)
z : [0, T ] → Rn is an absolutely 
ontinuous (a.
.) fun
tion,where T > 0, x, y ∈ Rn and f : Rn×Rn → R1 is an integrand. We are interestedin turnpike properties of the extremals whi
h are independent of the length ofthe interval, for all su�
iently large intervals. To have this property means,roughly speaking, that the approximate solutions of the variational problemsare determined mainly by the integrand, and are essentially independent of the
hoi
e of interval and endpoint 
onditions.Turnpike properties are well known in mathemati
al e
onomi
s (see M
Ken-zie, 2002; Zaslavski, 2005). The term was �rst 
oined by Samuelson in 1948(see Samuelson, 1965) where he showed that an e�
ient expanding e
onomywould spend most of the time in the vi
inity of a balan
ed equilibrium path(also 
alled a von Neumann path). This property was further investigated foroptimal traje
tories of models of e
onomi
 dynami
s. See, for example, Makarovand Rubinov (1977), M
Kenzie (2002) and the referen
es therein. Many turn-pike results 
an be found in Zaslavski (2005).Denote by | · | the Eu
lidean norm in Rn. Let a be a positive 
onstant andlet ψ : [0,∞) → [0,∞) be an in
reasing fun
tion su
h that ψ(t) → ∞ as t→ ∞.Denote by A the set of all 
ontinuous fun
tions f : Rn×Rn → R1 whi
h satisfythe following assumptions:A(i) for ea
h x ∈ Rn the fun
tion f(x, ·) : Rn → R1 is 
onvex;A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for ea
h (x, u) ∈ Rn ×Rn;A(iii) for ea
h M, ǫ > 0 there exist Γ, δ > 0 su
h that
|f(x1, u1) − f(x2, u2)| ≤ ǫmax{f(x1, u1), f(x2, u2)}for ea
h u1, u2, x1, x2 ∈ Rn whi
h satisfy
|xi| ≤M, i = 1, 2, |ui| ≥ Γ, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ.It is easy to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to Aif f satis�es assumptions A(i), A(ii) and if there exists an in
reasing fun
tion

ψ0 : [0,∞) → [0,∞) su
h that
max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)for ea
h x, u ∈ Rn.



Turnpike properties of approximate solutions of autonomous variational problems 493For the set A we 
onsider the uniformity, whi
h is determined by the follow-ing base:
E(N, ǫ, λ) = {(f, g) ∈ A×A : |f(x, u) − g(x, u)| ≤ ǫfor all u, x ∈ Rn satisfying |x|, |u| ≤ N}

∩{(f, g) ∈ A×A : (|f(x, u)| + 1)(|g(x, u)| + 1)−1 ∈ [λ−1, λ]for all x, u ∈ Rn satisfying |x| ≤ N},where N, ǫ > 0 and λ > 1. It was shown in Zaslavski (1996) that the uniformspa
e A is metrizable and 
omplete.We 
onsider fun
tionals of the form
If (T1, T2, x) =

∫ T2

T1

f(x(t), x′(t))dt (1)where f ∈ A, −∞ < T1 < T2 < ∞ and x : [T1, T2] → Rn is an absolutely
ontinuous (a.
.) fun
tion.For f ∈ A, y, z ∈ Rn and real numbers T1, T2 satisfying T1 < T2 we set
Uf(T1, T2, y, z) = inf{If(T1, T2, x) : x : [T1, T2] → Rn (2)is an a.
. fun
tion satisfying x(T1) = y, x(T2) = z}.It is easy to see that −∞ < Uf (T1, T2, y, z) <∞ for ea
h f ∈ A, ea
h y, z ∈ Rnand all numbers T1, T2 satisfying −∞ < T1 < T2 <∞.Let f ∈ A. For any a.
. fun
tion x : [0,∞) → Rn we set
J(x) = lim inf

T→∞

T−1If (0, T, x). (3)Of spe
ial interest is the minimal long-run average 
ost growth rate
µ(f) = inf{J(x) : x : [0,∞) → Rn is an a.
. fun
tion}. (4)Clearly −∞ < µ(f) <∞. By a simple modi�
ation of the proof of Proposition4.4 in Leizarowitz and Mizel (1989) (see Zaslavski, 1996, Theorems 8.1, 8.2) weobtain the representation formula
Uf(0, T, x, y) = Tµ(f) + πf (x) − πf (y) + θf

T (x, y), (5)
x, y ∈ Rn, T ∈ (0,∞),where πf : Rn → R1 is a 
ontinuous fun
tion and (T, x, y) → θf

T (x, y) ∈ R1 is a
ontinuous nonnegative fun
tion de�ned for T > 0, x, y ∈ Rn,
πf (x) = inf{lim inf

T→∞

[If (0, T, v) − µ(f)T ] : v : [0,∞) → Rn (6)is an a.
. fun
tion satisfying v(0) = x}, x ∈ Rnand for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θf
T (x, y) = 0.



494 A.J. ZASLAVSKIAn a.
. fun
tion x : [0,∞) → Rn is 
alled (f)-good if the fun
tion T →
If (0, T, x)−µ(f)T , T ∈ (0,∞) is bounded. In Zaslavski (1996) we showed thatfor ea
h f ∈ A and ea
h z ∈ Rn there exists an (f)-good fun
tion v : [0,∞) →
Rn satisfying v(0) = z.Propositions 1.1 and 3.2 of Zaslavski (1996) imply the following result.Proposition 1 For any a.
. fun
tion x : [0,∞) → Rn either If (0, T, x) −
Tµ(f) → ∞ as T → ∞ or

sup{|If(0, T, x) − Tµ(f)| : T ∈ (0,∞)} <∞.Moreover any (f)-good fun
tion x : [0,∞) → Rn is bounded.We denote by d(x,B) = inf{|x − y| : y ∈ B} for x ∈ Rn and B ⊂ Rn andby dist(A,B) the distan
e in the Hausdor� metri
 for two sets A ⊂ Rn and
B ⊂ Rn. For every bounded a.
. fun
tion x : [0,∞) → Rn de�ne

Ω(x) = {y ∈ Rn : there exists a sequen
e {ti}
∞

i=1 ⊂ (0,∞) (7)for whi
h ti → ∞, x(ti) → y as i→ ∞}.We say that an integrand f ∈ A has an asymptoti
 turnpike property, orbrie�y (ATP), if Ω(v2) = Ω(v1) for all (f)-good fun
tions vi : [0,∞) → Rn,
i = 1, 2 (see Mar
us and Zaslavski, 1999; Zaslavski 1996).In Zaslavski (1996, Theorem 2.1) we established the following result.Theorem 1 There exists a set F ⊂ A whi
h is a 
ountable interse
tion of openeverywhere dense subsets of A su
h that ea
h integrand f ∈ F possesses (ATP).By Proposition 1 for ea
h integrand f ∈ A whi
h possesses (ATP) thereexists a 
ompa
t set H(f) ⊂ Rn su
h that Ω(v) = H(f) for ea
h (f)-goodfun
tion v : [0,∞) → Rn.Let f ∈ A. We say that f has a weak turnpike property, or brie�y (WTP),with a turnpike D ⊂ Rn, where D is a nonempty 
ompa
t subset of Rn, if forea
h M, ǫ > 0 there exist δ > 0, L > 0, l > 0 su
h that the following assertionholds:For ea
h T ≥ L+ l and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es

|v(0)| ≤M, |v(T )| ≤M, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δthere is a Lebesgue measurable set Ω ⊂ [0, T ] su
h that mes(Ω) ≤ l and for ea
h
τ ∈ [0, T − L] \ Ω the following inequality holds:dist(D, {v(t) : t ∈ [τ, τ + L]}) ≤ ǫ.We showed in Zaslavski (1996, Theorem 2.4) that if f ∈ A possesses (ATP),then f has (WTP) with the turnpike H(f). More pre
isely, we establish thefollowing result (see Zaslavski, 1996, Theorem 2.4).



Turnpike properties of approximate solutions of autonomous variational problems 495Theorem 2 Assume that f ∈ A has (ATP). Let M0,M1, ǫ > 0. Then thereexist a neighborhood U of f in A, numbers l, S > 0 and integers L,∗Q ≥ 1 su
hthat for ea
h g ∈ U , ea
h pair of numbers T1 ∈ [0,∞), T2 ∈ [T1 + L + lQ∗,∞)and ea
h a.
. fun
tion v : [T1, T2] → Rn whi
h satis�es
|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M0the following properties hold:
|v(t)| ≤ S for all t ∈ [T1, T2];there exist sequen
es of numbers {bi}Q

i=1, {ci}Q
i=1 ⊂ [T1, T2] su
h that

Q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , Q,dist(H(f), {v(t) : t ∈ [T, T + L]}) ≤ ǫfor ea
h T ∈ [T1, T2 − L] \ ∪Q
i=1[bi, ci].Corollary 1 Assume that f ∈ A has (ATP). Then f possesses (WTP) withthe turnpike H(f).The following theorem is our �rst main result.Theorem 3 Suppose that f ∈ A has (WTP) with the turnpike D ⊂ Rn. Then

f possesses (ATP) and H(f) = D.Corollary 1 and Theorem 3 mean that the properties (WTP) are (ATP)are equivalent. In view of Theorems 1 and 2, most integrands of the spa
e Apossess (WTP). It should be mentioned (see Zaslavski, 1999, 2005) that thereare integrands in the spa
e A whi
h possess a turnpike property su
h that theset Ω is a union of two intervals 
ontaining the end points 0 and T , respe
tively.More pre
isely, let f ∈ A. We say that f has the turnpike property, or brie�y(TP), with a turnpike D ⊂ Rn, where D is a nonempty 
ompa
t subset of Rn,if for ea
h K, ǫ > 0 there exist l0 > l > 0 and δ > 0 su
h that the followingassertion holds:For ea
h T ≥ 2l0 and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) = Uf(0, T, v(0), v(T ))the inequalitydist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (8)holds for ea
h τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (8) holds forea
h τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (8) holds for ea
h τ ∈ [l0, T − l].Let f ∈ A. We say that the integrand f has the strong turnpike property, orbrie�y (STP), with a turnpike D ⊂ Rn, where D is a nonempty 
ompa
t subset



496 A.J. ZASLAVSKIof Rn, if for ea
h ǫ,K > 0 there exist real numbers δ > 0 and l0 > l > 0 su
hthat the following assertion holds:For ea
h T ≥ 2l0 and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δthe inequalitydist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (9)holds for ea
h τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (9) holds for all

τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (9) holds for ea
h τ ∈ [l0, T − l].Note that the property (TP) deals only with exa
t minimizers of the vari-ational problems while the property (STP) also des
ribes the stru
ture of ap-proximate solutions.Assume that f ∈ A possesses (STP) with the turnpike D ⊂ Rn. Then fpossesses (TP) with the turnpike D, possesses (WTP) with the turnpike D andby Theorem 3, f possesses (ATP) with H(f) = D.We 
an show that if f ∈ A has (ATP) and H(f) is a singleton, then fpossesses (STP) with the turnpike H(f). These properties hold, for example, if
f ∈ A is stri
tly 
onvex (see Zaslavski, 2007). In Zaslavski (1999) we 
onsideredan important subset M ⊂ A and showed that if f ∈ M possesses (ATP), then
f possesses (STP) with the turnpike H(f).In this paper we will establish the following two results. The �rst of themshows that the property (STP) is stable under small perturbations of integrands.The se
ond result implies that the properties (TP) and (STP) are equivalent.Theorem 4 Suppose that f ∈ A has (STP) with a turnpike H(f) ⊂ Rn. Let
ǫ,K > 0. Then there exist a neighborhood U of f in A, l1 > l > 0 and δ > 0su
h that for ea
h g ∈ U , ea
h T ≥ 2l1 and ea
h a.
. fun
tion v : [0, T ] → Rnwhi
h satis�es

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δthe inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (10)holds for ea
h τ ∈ [l1, T − l1]. Moreover, if d(v(0), H(f)) ≤ δ, then (10) holdsfor ea
h τ ∈ [0, T − l1] and if d(v(T ), H(f)) ≤ δ, then (10) holds for ea
h
τ ∈ [l1, T − l].Theorem 5 Let f ∈ A have the property (TP) with the turnpike D ⊂ Rn.Then f possesses (ATP), H(f) = D and f has (STP) with the turnpike H(f).Combining Theorems 4 and 5 we obtain the following result.



Turnpike properties of approximate solutions of autonomous variational problems 497Theorem 6 Suppose that f ∈ A has the property (TP) with a turnpike D ⊂
Rn. Then f possesses (ATP), H(f) = D and for ea
h ǫ,K > 0 there exist aneighborhood U of f in A, l1 > l > 0 and δ > 0 su
h that for ea
h g ∈ U , ea
h
T ≥ 2l1 and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δthe inequality (10) holds for ea
h τ ∈ [l1, T−l1]. Moreover, if d(v(0), H(f)) ≤ δ,then (10) holds for ea
h τ ∈ [0, T − l1] and if d(v(T ), H(f)) ≤ δ, then (10) holdsfor ea
h τ ∈ [l1, T − l].Note that all our results 
an be applied for an integrand f ∈ A whi
h isstri
tly 
onvex. See for details Zaslavski (2007). They 
an also be applied formost elements (in the sense of Baire 
ategory) of 
ertain spa
es of integrandsstudied in Zaslavski (1999).2. Auxiliary resultsIn this paper we need the following results obtained in Zaslavski (1996) and inZaslavski (1998).Proposition 2 (Zaslavski, 1996, Proposition 5.1). Let g ∈ A, y : [0,∞) → Rnbe a (g)-good fun
tion and let ǫ > 0. Then there exists T0 > 0 su
h that for ea
h
T ≥ T0 and ea
h T̄ > T

Ig(T, T̄ , y) ≤ Ug(T, T̄ , y(T ), y(T̄ )) + ǫ.Proposition 3 (Zaslavski, 1996, Theorem 6.1). Let f ∈ A. Then the fun
tion
(T1, T2, x, y) → Uf(T1, T2, x, y)is 
ontinuous for T1 ∈ [0,∞), T2 ∈ (T1,∞), x, y ∈ Rn.Proposition 4 (Zaslavski, 1998, Proposition 2.4). Let M1, ǫ > 0 and let 0 <

τ0 < τ1. Then there exists a positive number δ su
h that for ea
h f ∈ A and ea
hpair of numbers T1, T2 ≥ 0 satisfying T2 − T1 ∈ [τ0, τ1] the following propertyholds:If an a.
. fun
tion x : [T1, T2] → Rn satis�es If (T1, T2, x) ≤ M1 and if
t1, t2 ∈ [T1, T2] satis�es |t1 − t2| ≤ δ, then |x(t1) − x(t2)| ≤ ǫ.Proposition 5 (Zaslavski, 1998, Theorem 1.3). Let f ∈ A and let M1,M2, c>
0. Then there exist a neighborhood U of f in A and S > 0 su
h that forea
h g ∈ U , ea
h T1 ∈ [0,∞), ea
h T2 ∈ [T1 + c,∞) and ea
h a.
. fun
tion
v : [T1, T2] → Rn satisfying

|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M2the following inequality holds:
|v(t)| ≤ S, t ∈ [T1, T2].



498 A.J. ZASLAVSKIProposition 6 (Zaslavski, 1996, Lemma 10.2). Let f ∈ A possess (ATP),
ǫ0 ∈ (0, 1), K0 > 0, M0 > 0 and let l be a positive integer su
h that for ea
h
(f)-good fun
tion x : [0,∞) → Rn the inequalitydist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ 8−1ǫ0holds for all large T (the existen
e of l follows from Theorem 5.1 of Zaslavski,1996). Then there exists an integer N ≥ 10 and a neighborhood U of f in A su
hthat for ea
h g ∈ U , ea
h S ∈ [0,∞) and ea
h a.
. fun
tion x : [S, S+Nl] → Rnsatisfying

|x(S)|, |x(S +Nl)| ≤ K0, I
g(S, S +Nl, x)

≤ Ug(S, S +Nl, x(S), x(S +Nl)) +M0there exists an integer i0 ∈ [0, N − 8] su
h thatdist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ ǫ0for all T ∈ [S + i0l, S + (i0 + 7)l].Proposition 7 (Zaslavski, 1998, Proposition 2.8). Let f ∈ A, 0 < c1 < c2 <
∞ and let D, ǫ > 0. Then there exists a neighborhood V of f in A su
h that forea
h g ∈ V , ea
h T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and ea
h a.
. fun
tion
x : [T1, T2] → Rn satisfying

min{Ig(T1, T2, x), I
f (T1, T2, x)} ≤ Dthe inequality |If (T1, T2, x) − Ig(T1, T2, x)| ≤ ǫ holds.Proposition 8 (Zaslavski, 1998, Proposition 2.9). Let f ∈ A, 0 < c1 < c2 <

∞ and let c3, ǫ > 0. Then there exists a neighborhood V of f in A su
h thatfor ea
h g ∈ V , ea
h T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and ea
h z, y ∈ Rnsatisfying |y|, |z| ≤ c3 the inequality
|Uf(T1, T2, y, z) − Ug(T1, T2, y, z)| ≤ ǫholds.Proposition 9 (Zaslavski, 1998, Theorem 1.2). For ea
h f ∈ A there existsa neighborhood U of f in A and a number M > 0 su
h that for ea
h g ∈ Uand ea
h (g)-good fun
tion x : [0,∞) → Rn the relation lim supt→∞

|x(t)| < Mholds.Proposition 10 (Zaslavski, 1998, Proposition 2.5). Assume that f ∈ A,
M1 > 0, 0 ≤ T1 < T2 and that xi : [T1, T2] → Rn, i = 1, 2, . . . is a se-quen
e of a.
. fun
tions su
h that If (T1, T2, xi) ≤ M1, i = 1, 2 . . . . Then thereexist a subsequen
e {xik

}∞k=1 and an a.
. fun
tion x : [T1, T2] → Rn su
h that
If (T1, T2, x) ≤M1,

xik
(t) → x(t) as k → ∞ uniformly on [T1, T2] and x′ik

→ x′ as k → ∞ weaklyin L1(Rn; (T1, T2)).



Turnpike properties of approximate solutions of autonomous variational problems 499Let f ∈ A. For ea
h pair of real numbers T2 > T1 and ea
h a.
. fun
tion
x : [T1, T2] → Rn set
σf (T1, T2, x) = If (T1, T2, x) − (T2 − T1)µ(f) − πf (x(T1)) + πf (x(T2)). (11)By (11), (2) and (5),

σf (T1, T2, v) ≥ 0for ea
h T1∈ R1, ea
h T2>T1 and ea
h a.
. fun
tion v : [T1, T2] → Rn. (12)3. Proof of Theorem 3Let v : [0,∞) → Rn be an (f)-good fun
tion. We show that Ω(v) = D. ByProposition 9 the fun
tion v is bounded. Thus, there is
M > sup{|v(t)| : t ∈ [0,∞)}. (13)First we show that D ⊂ Ω(v). Let
ǫ > 0, z ∈ D (14)and let L, l, δ > 0 be as guaranteed by the property (WTP). By Proposition 2there is τ0 > 0 su
h that
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + δfor ea
h pair of numbers S1, S2 satisfying S2 > S1 ≥ τ0. Let T ≥ τ0. Then bythe 
hoi
e of τ0
If (T, T + 2(L+ l), v) ≤ Uf (T, T + 2(L+ l), v(T ), v(T + 2(L+ l))) + δ.It follows from this inequality, (13), the 
hoi
e of L, l, δ and the property (WTP)that there is t ∈ [T, T + 2(l + L)] su
h that d(v(t), z) ≤ ǫ. This implies that

d(z,Ω(v)) ≤ ǫ. Sin
e ǫ is any positive number and z is an arbitrary element of
D we 
on
lude that D ⊂ Ω(v).Now we show that Ω(v) ⊂ D. Let us assume the 
ontrary. Then there is

z ∈ Ω(v) \D. (15)There is ǫ > 0 su
h that
d(z,D) ≥ 4ǫ (16)and there is a sequen
e {ti}

∞

i=1 ⊂ (0,∞) su
h that
ti+1 − ti ≥ 16, i = 1, 2, . . . , lim

i→∞

v(ti) = z. (17)



500 A.J. ZASLAVSKIWe may assume without loss of generality that
d(v(ti), D) ≥ 3ǫ, i = 1, 2, . . . (18)In view of Proposition 2 there is τ0 > 0 su
h that
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1 (19)for ea
h pair of numbers S1, S2 satisfying S2 > S1 ≥ τ0. We may assumewithout loss of generality that t1 > τ0. Relations (13), (19) and Proposition 3imply that there is a number M1 > M su
h that
If (s, s+ 2, v) ≤M1 for ea
h s ≥ τ0. (20)It follows from (20) and Proposition 4 that there is γ ∈ (0, 1/2) su
h that forea
h s ≥ τ0, ea
h t̄1, t̄2 ∈ [s, s + 1] whi
h satisfy |t̄1 − t̄2| ≤ γ the inequality

|v(t̄1)− v(t̄2)| ≤ ǫ holds. By the 
hoi
e of γ and (18), for ea
h integer i ≥ 1 andea
h t ∈ [ti, ti + γ],
d(v(t), D) ≥ 2ǫ. (21)Let L, l, δ > 0 be as guaranteed by the property (WTP). In view of Proposition 2there is τ1 > τ0 su
h that
If (s1, s2, v) ≤ Uf (s1, s2, v(s1), v(s2)) + δfor ea
h pair of numbers s1, s2 satisfying s2 > s1 ≥ τ1.Fix an integer i0 ≥ 1 su
h that ti0 > τ1. Let q ≥ 2 be a natural number. Bythe 
hoi
e of τ1,
If (ti0 , ti0+q + l+ L, v) ≤ Uf(ti0 , ti0+q + l+ L, v(ti0), v(ti0+q + l+ L)) + δ.It follows from this inequality, (13), the 
hoi
e of L, δ, l and the property(WTP) that there is a Lebesgue measurable set Ω ⊂ [ti0 , ti0+q + l+L] su
h thatmes(Ω) ≤ l and for ea
h τ ∈ [0, T − L] \ Ω we havedist(D, {v(t) : t ∈ [τ, τ + L]}) ≤ ǫ.Combined with (21) this implies that
∪i0+q−1

i=i0
[ti, ti + γ] ⊂ Ωand

l ≥ mes(Ω) ≥ mes(∪i0+q−1

i=i0
[ti, ti+1 + γ]) = γq and q ≤ lγ−1.Sin
e q is any natural number satisfying q ≥ 2 we have rea
hed a 
ontradi
tion.Therefore Ω(v) ⊂ D. Theorem 3 is proved.



Turnpike properties of approximate solutions of autonomous variational problems 5014. Proof of Theorem 4It was mentioned in Introdu
tion that f possesses (ATP).By Proposition 5 there exist a neighborhood U1 of f in A and a number
M > K su
h that for ea
h g ∈ U1, ea
h T1 ≥ 0, ea
h T2 ≥ T1 + 1 and ea
ha.
. fun
tion v : [T1, T2] → Rn whi
h satis�es

|v(Ti)| ≤ 2K + 4, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + 4 (22)the following inequality holds:
|v(t)| ≤M, t ∈ [T1, T2]. (23)Sin
e f has (STP) there exist δ ∈ (0, 1), l0 > 1, l > 0 su
h that l0 > l and thefollowing property holds:(P1) For ea
h T ≥ 2l0 and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es
|v(0)|, |v(T )| ≤M, If (0, t, v) ≤ Uf (0, T, v(0), v(T )) + 4δ (24)the inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (25)holds for ea
h τ ∈ [l0, T − l0]. Moreover, if d(v(0), H(f)) ≤ δ, then (25) holdsfor ea
h τ ∈ [0, T − l0] and if d(v(T ), H(f)) ≤ δ, then (25) holds for ea
h

τ ∈ [l0, T − l].By Proposition 6 there exist a positive number N and a neighborhood U2of f in A su
h that for ea
h g ∈ U2, ea
h s ∈ [0,∞) and ea
h a.
. fun
tion
v : [s, s+N ] → Rn satisfying

|v(s)|, |v(s+N)| ≤ 2M + 2, (26)
Ig(s, s+N, v) ≤ Ug(s, s+N, v(s), v(s+N)) + 8there is τ ∈ [s, s+N ] su
h that
d(v(τ), H(f)) ≤ δ. (27)Set
l1 = 16(l0 + 2 +N). (28)By Proposition 3 there isM0 > M su
h that for ea
h τ ∈ [1, 4l1], ea
h x, y ∈ Rnsatisfying |x|, |y| ≤ 2M + 4

|Uf(0, τ, x, y)| ≤M0. (29)



502 A.J. ZASLAVSKIBy Proposition 8 there exists a neighborhood U3 of f in A su
h that for ea
h
τ ∈ [1, 4l1], ea
h g ∈ U3 and ea
h x, y ∈ Rn satisfying |x|, |y| ≤ 2M + 4

|Uf(0, τ, x, y) − Ug(0, τ, x, y)| ≤ δ/2. (30)By Proposition 7 there exists a neighborhood U4 of f in A su
h that for ea
h
g ∈ U4, ea
h τ ∈ [1, 4l1] and ea
h a.
. fun
tion v : [0, τ ] → Rn whi
h satis�es

min{If (0, τ, v), Ig(0, τ, v)} ≤ 2M0 + 4 (31)the inequality
|If (0, τ, v) − Ig(0, τ, v)| ≤ δ/4 (32)holds. Set
U = ∩4

i=1Ui. (33)Assume that g ∈ U , T ≥ 2l1 and a.
. fun
tion v : [0, T ] → Rn satis�es
|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δ. (34)In view of (33), (34) and the de�nition of U1 (see (22), (23))
|v(t)| ≤M, t ∈ [0, T ]. (35)Assume that S1, S2 ∈ [0, T ] satisfy
2l0 ≤ S2 − S1 ≤ 4l1, d(v(Si), H(f)) ≤ δ, i = 1, 2. (36)By (35), (36) and the 
hoi
e of M0 (see (29)),
|Uf(S1, S2, v(S1), v(S2))| ≤M0. (37)It follows from (33), the 
hoi
e of U3 (see (30)), (35) and (36) that
|Uf(S1, S2, v(S1), v(S2)) − Ug(S1, S2, v(S1), v(S2))| ≤ δ/2. (38)Combined with (34) and (37) this inequality implies that
Ig(S1, S2, v) ≤ Ug(S1, S2, v(S1), v(S2)) + δ

≤ Uf (S1, S2, v(S1), v(S2)) + (3/2)δ ≤M0 + (3/2)δ ≤M0 + 2. (39)Together with (36), (33) and the 
hoi
e of U4 this inequality implies that
|Ig(S1, S2, v) − If (S1, S2, v)| ≤ δ/4. (40)
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If (S1, S2, v) ≤ Ig(S1, S2, v) + δ/4 ≤ Ug(S1, S2, v(S1), v(S2)) + (5/4)δ

≤ Uf (S1, S2, v(S1), v(S2)) + 2δ. (41)It follows from (35), (36), (41) and the 
hoi
e of δ, l0, l (see (24), (25)) that forea
h τ ∈ [S1, S2 − l] the inequality (25) holds.We showed that the following property holds:(P2) For ea
h S1, S2 ∈ [0, T ] satisfying (36) and ea
h τ ∈ [S1, S2 − l] theinequality (25) holds.Assume that
S̄1, S̄2 ∈ [0, T ],

S̄2 ≥ S̄1 + 2l0, d(v(S̄i), H(f)) ≤ δ, i = 1, 2. (42)We show that for ea
h τ ∈ [S̄1, S̄2− l] the inequality (25) holds. If S2−S1 ≤ 4l1,then our property follows from (P2). Therefore we may assume that
S̄2 − S̄1 > 4l1. (43)Let
τ ∈ [S̄1, S̄2 − l]. (44)De�ne S1, S2 ∈ [0, T ] as follows. If τ − S̄1 ≤ l1, then set
S1 = S̄1. (45)If τ − S̄1 > l1, then it follows from (33), the 
hoi
e of U2 (see (26)-(28)), (34)and (35) that there is a number S1 su
h that
S1 ∈ [τ − l1, N + τ − l1], d(v(S1), H(f)) ≤ δ. (46)If S̄2 − τ ≤ l1, then set
S2 = S̄2. (47)If S̄2 − τ > l1, then it follows from (33), the 
hoi
e of U2 (see (26), (29)), (35)and (22) that there is a number S2 su
h that
S2 ∈ [τ + l1 −N, τ + l1], d(v(S2), H(f)) ≤ δ. (48)In view of (42) and the 
hoi
e of S1, S2 (see (45)-(48)),
d(v(Si), H(f)) ≤ δ, i = 1, 2, (49)
S2 − S1 ∈ [2l0, 4l1], τ ∈ [S1, S2 − l]. (50)



504 A.J. ZASLAVSKICombined with the property (P2) these relations imply that the inequality (25)holds.Thus we showed that the following property holds:(P3) For ea
h S̄1, S̄2 ∈ [0, T ] satisfying (23) and ea
h τ ∈ [S̄1, S̄2 − l] theinequality (25) holds.Now de�ne S̄1, S̄2 ∈ [0, T ] as follows. If d(v(S1), H(f)) ≤ δ, then S̄1 = 0.Otherwise by the 
hoi
e of U2 (see (26), (27)), (33), (34) and (35) there is
S̄1 ∈ [0, N ] su
h that d(v(S̄1), H(f)) ≤ δ. If d(v(T2), H(f)) ≤ δ, then S̄2 = T .Otherwise by the 
hoi
e of U2 (see (26), (27)), (35) and (34) there is S̄2 ∈
[T −N,T ] su
h that

d(v(S̄2), H(f)) ≤ δ.By the property (P3) for ea
h τ ∈ [S̄1, S̄2 − l] the inequality (25) holds. Theo-rem 4 is proved.5. An auxiliary result for Theorem 5Proposition 11 Let f ∈ A have (TP) with the turnpike D ⊂ Rn. Then f has(ATP) and H(f) = D.Proof. Let v : [0,∞) → Rn be (f)-good fun
tion. We show that Ω(v) = D. Let
z ∈ Ω(v). There exists a sequen
e {ti}

∞

i=1 ⊂ [0,∞) su
h that
ti+1 ≥ ti + 10, i = 1, 2, . . . , lim

i→∞

v(ti) = z. (51)For ea
h integer i ≥ 1 we de�ne ui : [−ti,∞) → Rn by
ui(t) = v(t+ ti), t ∈ [−ti,∞). (52)By Proposition 9 there is M > 0 su
h that
|v(t)| ≤M for all t ∈ [0,∞). (53)By Proposition 2 there is τ0 > 0 su
h that for ea
h pair of real numbers S1, S2satisfying S2 > S1 ≥ τ0

If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1.Combined with (51)-(53) and Proposition 3 this implies that for ea
h naturalnumber q the sequen
e {If (−q, q, ui)}, where i ≥ 1 is an integer su
h that
ti ≥ q, is bounded. Together with Proposition 10 this implies that there exista subsequen
e {uik

}∞k=1 and an a.
. fun
tion u : R1 → Rn su
h that for ea
hnatural number q
uik

(t) → u(t) as k → ∞ uniformly in [−q, q], (54)
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
). (55)
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|u(t)| ≤M for all t ∈ R1. (56)Relations (51), (52) and (54) imply that
u(0) = z.It follows from (55), (52) and Proposition 3 that for ea
h integer q ≥ 1,
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
) = lim inf

k→∞

If (−q + tik
, q + tik

, v)

= lim inf
k→∞

Uf (0, 2q, v(−q + tik
), v(q + tik

))

= lim inf
k→∞

Uf (0, 2q, uik
(−q), uik

(q)) = Uf (0, 2q, u(−q), u(q)).This implies that
If (−q, q, u) = Uf (2q, u(−q), u(q))for ea
h integer q ≥ 1. Together with (56) and (TP) this implies that z ∈ {u(t) :

t ∈ R1} ⊂ D. Sin
e z is any element of Ω(v) we 
on
lude that Ω(v) ⊂ D.We show that D ⊂ Ω(v). Let us assume the 
ontrary. Then there is
z ∈ D \ Ω(v). (57)Hen
e, there exist ǫ, t0 > 0 su
h that
|v(t) − z| ≥ 3ǫ for all t ≥ t0. (58)Choose a natural number i0 > t0. For ea
h integer i ≥ i0 de�ne ui : [−i,∞) →

Rn by
ui(t) = v(i+ t), t ∈ [−i,∞). (59)By Proposition 9 there is M > 0 su
h that
|v(t)| ≤M for all t ∈ [0,∞). (60)In view of Proposition 2 there is τ0 > 0 su
h that for ea
h pair of numbers S1, S2satisfying S2 > S1 ≥ τ0 we have
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1.Combined with (59), (60) and Proposition 3 this implies that for ea
h naturalnumber q the sequen
e {If(−q, q, ui)}, where i is a natural number su
h that

i ≥ q, i0, is bounded. Together with Proposition 10 this implies that there exist



506 A.J. ZASLAVSKIa subsequen
e {uik
}∞k=1

and an a.
. fun
tion u : R1 → Rn su
h that for ea
hnatural number q the relations (54) and (55) are true.It follows from (54), (55), (59) and Propositions 2 and 3 that for ea
h naturalnumber q
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
) = lim inf

k→∞

If (−q + ik, q + ik, v)

= lim inf
k→∞

Uf (0, 2q, v(ik − q), v(ik + q))

= lim inf
k→∞

Uf (0, 2q, uik
(−q), uik

(q)) = Uf (0, 2q, u(−q), u(q)).Thus
If (−q, q, u) = Uf (0, 2q, u(−q), u(q)) for all natural numbers q. (61)By (54), (59) and (60),
|u(t)| ≤M for all t ∈ R1, (62)
|u(t) − z| ≥ 3ǫ for all t ∈ R1. (63)Relations (61), (62), (57) and (TP) imply that there is τ ∈ R1 su
h that
|z − u(τ)| ≤ ǫ.This 
ontradi
ts (63). The 
ontradi
tion we have rea
hed shows that D ⊂ Ω(v).Proposition 11 is proved.6. Proof of Theorem 5Lemma 1 Let ǫ,M, S > 0. Then there exists δ > 0 su
h that for ea
h a.
.fun
tion v : [0, S] → Rn satisfying
|v(0)|, |v(S)| ≤M, If (0, S, v) ≤ Uf (0, S, v(0), v(S)) + δthere is an a.
. fun
tion u : [0, S] → Rn su
h that
If (0, T, u) = Uf (0, S, v(0), v(S)),

|v(t) − u(t)| ≤ ǫ, t ∈ [0, S].Proof. Let us assume the 
ontrary. Then for ea
h natural numberm there existsan a.
. fun
tion um : [0, S] → Rn su
h that
|um(0)|, |um(S)| ≤M, (64)
If (0, S, um) ≤ Uf (0, S, um(0), um(S)) + 1/m (65)and
sup{|um(t) − u(t)| : t ∈ [0, S]} > ǫ (66)
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h a.
. fun
tion u : [0, S] → Rn su
h that
If (0, S, u) = Uf (0, S, u(0), u(S)). (67)By (64), (65) and Proposition 3 the sequen
e {If (0, S, um)}∞m=1 is bounded fromabove. It follows from Proposition 10 that there exists a subsequen
e {umi

}∞i=1and an a.
. fun
tion u : [0, S] → Rn su
h that
umi

(t) → u(t) as i→ ∞ uniformly in [0, S], (68)
If (0, S, u) ≤ lim inf

i→∞

If (0, S, umi
). (69)It follows from (68), (65), (69) and Proposition 3 that

If (0, S, u) ≤ lim inf
i→∞

If (0, S, umi
) = lim inf

i→∞

Uf (0, S, umi
(0), umi

(S))

= Uf (0, S, u(0), u(S)).Thus
If (0, S, u) = Uf (0, S, u(0), u(S)).By (68) there is a natural a number p su
h that
|up(t) − u(t)| ≤ ǫ/2, t ∈ [0, S],a 
ontradi
tion (see (66)). The 
ontradi
tion we have rea
hed proves Lemma 1.Proof of Theorem 5. By Proposition 11 f has (ATP) and H(f) = D. Wemay assume that
ǫ < 1, K > sup{|z| : z ∈ H(f)} + 2. (70)By Proposition 5 there exists K0 > K + 1 su
h that for ea
h T ≥ 1 and ea
ha.
. fun
tion u : [0, T ] → Rn satisfying
|u(0)|, |u(T )| ≤ K + 1, If (0, T, u) ≤ Uf (0, T, u(0), u(T )) + 4 (71)the following inequality holds:
|v(t)| ≤ K0, t ∈ [0, T ]. (72)Sin
e f has (TP) with the turnpike D = H(f), there exist real numbers l0, l, δ0su
h that
l0 > l > 0, δ0 ∈ (0, 1), δ0 < ǫ (73)and the following assertion holds:



508 A.J. ZASLAVSKI(C1) For ea
h T ≥ 2l0 and ea
h a.
. fun
tion v : [0, T ] → Rn whi
h satis�es
|v(0)|, |v(T )| ≤ K0 + 2, If (0, T, v) = Uf(0, T, v(0), v(T )) (74)the inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8 (75)holds for ea
h τ ∈ [l0, T − l0]. Moreover, if d(v(0), H(f)) ≤ δ0, then (75) holdsfor ea
h τ ∈ [0, T − l0] and if d(v(T ), H(f)) ≤ δ0, then (75) holds for ea
h

τ ∈ [l0, T − l].Sin
e f has (ATP) Proposition 6 implies that there is a number N > 0 su
hthat for ea
h a.
. fun
tion v : [0, N ] → Rn satisfying
|v(0)|, |v(N)| ≤ K0 + 1, If (0, N, v) ≤ Uf (0, N, v(0), v(N)) + 8we have
inf{d(v(t), H(f)) : t ∈ [0, N ]} ≤ δ0/32. (76)Choose a number l1 su
h that
l1 ≥ 8(l0 +N + 2). (77)By Lemma 1 there is δ1 > 0 su
h that for ea
h a.
. fun
tion v : [0, l1] → Rnsatisfying
|v(0)|, |v(l1)| ≤ K0 + 1, If (0, l1, v) ≤ Uf (0, l1, v(0), v(l1)) + δ1 (78)there is an a.
. fun
tion u : [0, l1] → Rn su
h that
If (0, l1, u) = Uf (0, l1, u(0), u(l1)), (79)
|u(t) − v(t)| ≤ δ0/32, t ∈ [0, l1] (80)Put
δ = min{δ0, δ1}/64. (81)Assume that T ≥ 2l1 and an a.
. fun
tion v : [0, T ] → Rn satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δ. (82)It follows from (82) and the 
hoi
e of K0 that (72) is true.Assume now that S1, S2 ∈ [0, T ] satisfy
S2 − S1 ∈ [2l0, l1], d(v(Si), H(f)) ≤ δ0, i = 1, 2. (83)
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h τ ∈ [S1, S2 − l]dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ. (84)Clearly, there is S̃1 ∈ [0, T ] su
h that
[S1, S2] ⊂ [S̃1, S̃1 + l1] ⊂ [0, T ]. (85)By (82),
If (S̃1, S̃1 + l1, v) ≤ Uf(S̃1, S̃1 + l1, v(S̃1), v(S̃1 + l2)) + δ.It follows from this inequality, (85), (72), (81) and the 
hoi
e of δ1 (see (78)-(80))that there is an a.
. fun
tion u : [S̃1, S̃1 + l1] → Rn su
h that
If (S̃1, S̃1 + l1, u) = Uf (S̃1, S̃1 + l1, u(S̃1), u(S̃1 + l1)), (86)
|u(t) − v(t)| ≤ δ0/32, t ∈ [S̃1, S̃1 + l1]. (87)In view of (87), (73) and (72),
|u(t)| ≤ K0 + 1, t ∈ [S̃1, S̃1 + l1]. (88)Relations (85) and (86) imply that
If (S1, S2, u) = Uf(S1, S2, u(S1), u(S2)). (89)By (89), (88), the assertion (C1) and (83) for ea
h τ ∈ [S1, S2 − l] the followinginequality is true:dist(H(f), {u(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8. (90)Let τ ∈ [S1, S2 − l]. Then (90) is true. Together with (87) and (73) theinequality (90) implies thatdist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8 + δ0/32 ≤ ǫ/4. (91)Thus we have shown that the following assertion is true:(C2) For ea
h S1, S2 ∈ [0, T ] satisfying (83) and ea
h τ ∈ [S1, S2 − l] theinequality (91) is true.Assume that S1, S2 ∈ [0, T ] satisfy
S2 − S1 ≥ 2l0, d(v(Si), H(f)) ≤ δ0, i = 1, 2. (92)We show that for ea
h τ ∈ [S1, S2 − l] (91) is true. Note that if S2 − S1 ≤ l1,then this is true in view of (C2). Therefore we may may assume that
S2 − S1 > l1. (93)



510 A.J. ZASLAVSKILet τ ∈ [S1, S2 − l]. De�ne S̃1, S̃2 ∈ [0, T ] as follows:If τ ≤ 2l0 + N + S1, then we set S̃1 = S1. Otherwise, by the 
hoi
e of N(see (76)), (72), (73) and (82) there is S̃1 ∈ [τ − 2l0 −N, τ − 2l0] su
h that
d(v(S̃1), H(f)) ≤ δ0/32. (94)If τ ≥ S2 − 2l0 −N , then we set S̃2 = S2. Otherwise, by the 
hoi
e of N (see(76)), (82) and (72) there is S̃2 ∈ [τ + 2l0, τ + 2l0 +N ] su
h that
d(v(S̃2), H(f)) ≤ δ0/32. (95)It follows from the 
hoi
e of S̃1, S̃2, (93), (77), (92), (94) and (95) that
l1 ≥ S̃2 − S̃1 ≥ 2l0,

d(v(S̃i), H(f)) ≤ δ0, i = 1, 2, τ ∈ [S̃1, S̃2 − l].It follows from these inequalities and (C2) (applied for S̃1, S̃2) that (91) is true.Thus the following property holds:(C3) For ea
h S1, S2 ∈ [0, T ] satisfying (92) and ea
h τ ∈ [S1, S2 − l] theinequality (91) is true.De�ne real numbers τ1, τ2 as follows. If d(v(0), H(f)) ≤ δ, then τ1 = 0.Otherwise by the 
hoi
e of N (see (76)), (72) and (82) there is τ1 ∈ [0, N ] su
hthat
d(v(τ1), H(f)) ≤ δ0.If d(v(T ), H(f)) ≤ δ, then set τ2 = T . Otherwise by the 
hoi
e of N (see (76)),(72) and (82) there is τ2 ∈ [T −N,T ] su
h that d(v(τ2), H(f)) ≤ δ0. It followsfrom (C3) that for ea
h τ ∈ [τ1, τ2−l] the inequality (91) is true. This 
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