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492 A.J. ZASLAVSKIIn this paper we analyze the struture of extremals of the variational prob-lems
∫ T

0

f(z(t), z′(t))dt → min, z(0) = x, z(T ) = y, (P)
z : [0, T ] → Rn is an absolutely ontinuous (a..) funtion,where T > 0, x, y ∈ Rn and f : Rn×Rn → R1 is an integrand. We are interestedin turnpike properties of the extremals whih are independent of the length ofthe interval, for all su�iently large intervals. To have this property means,roughly speaking, that the approximate solutions of the variational problemsare determined mainly by the integrand, and are essentially independent of thehoie of interval and endpoint onditions.Turnpike properties are well known in mathematial eonomis (see MKen-zie, 2002; Zaslavski, 2005). The term was �rst oined by Samuelson in 1948(see Samuelson, 1965) where he showed that an e�ient expanding eonomywould spend most of the time in the viinity of a balaned equilibrium path(also alled a von Neumann path). This property was further investigated foroptimal trajetories of models of eonomi dynamis. See, for example, Makarovand Rubinov (1977), MKenzie (2002) and the referenes therein. Many turn-pike results an be found in Zaslavski (2005).Denote by | · | the Eulidean norm in Rn. Let a be a positive onstant andlet ψ : [0,∞) → [0,∞) be an inreasing funtion suh that ψ(t) → ∞ as t→ ∞.Denote by A the set of all ontinuous funtions f : Rn×Rn → R1 whih satisfythe following assumptions:A(i) for eah x ∈ Rn the funtion f(x, ·) : Rn → R1 is onvex;A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for eah (x, u) ∈ Rn ×Rn;A(iii) for eah M, ǫ > 0 there exist Γ, δ > 0 suh that
|f(x1, u1) − f(x2, u2)| ≤ ǫmax{f(x1, u1), f(x2, u2)}for eah u1, u2, x1, x2 ∈ Rn whih satisfy
|xi| ≤M, i = 1, 2, |ui| ≥ Γ, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ.It is easy to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to Aif f satis�es assumptions A(i), A(ii) and if there exists an inreasing funtion

ψ0 : [0,∞) → [0,∞) suh that
max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)for eah x, u ∈ Rn.



Turnpike properties of approximate solutions of autonomous variational problems 493For the set A we onsider the uniformity, whih is determined by the follow-ing base:
E(N, ǫ, λ) = {(f, g) ∈ A×A : |f(x, u) − g(x, u)| ≤ ǫfor all u, x ∈ Rn satisfying |x|, |u| ≤ N}

∩{(f, g) ∈ A×A : (|f(x, u)| + 1)(|g(x, u)| + 1)−1 ∈ [λ−1, λ]for all x, u ∈ Rn satisfying |x| ≤ N},where N, ǫ > 0 and λ > 1. It was shown in Zaslavski (1996) that the uniformspae A is metrizable and omplete.We onsider funtionals of the form
If (T1, T2, x) =

∫ T2

T1

f(x(t), x′(t))dt (1)where f ∈ A, −∞ < T1 < T2 < ∞ and x : [T1, T2] → Rn is an absolutelyontinuous (a..) funtion.For f ∈ A, y, z ∈ Rn and real numbers T1, T2 satisfying T1 < T2 we set
Uf(T1, T2, y, z) = inf{If(T1, T2, x) : x : [T1, T2] → Rn (2)is an a.. funtion satisfying x(T1) = y, x(T2) = z}.It is easy to see that −∞ < Uf (T1, T2, y, z) <∞ for eah f ∈ A, eah y, z ∈ Rnand all numbers T1, T2 satisfying −∞ < T1 < T2 <∞.Let f ∈ A. For any a.. funtion x : [0,∞) → Rn we set
J(x) = lim inf

T→∞

T−1If (0, T, x). (3)Of speial interest is the minimal long-run average ost growth rate
µ(f) = inf{J(x) : x : [0,∞) → Rn is an a.. funtion}. (4)Clearly −∞ < µ(f) <∞. By a simple modi�ation of the proof of Proposition4.4 in Leizarowitz and Mizel (1989) (see Zaslavski, 1996, Theorems 8.1, 8.2) weobtain the representation formula
Uf(0, T, x, y) = Tµ(f) + πf (x) − πf (y) + θf

T (x, y), (5)
x, y ∈ Rn, T ∈ (0,∞),where πf : Rn → R1 is a ontinuous funtion and (T, x, y) → θf

T (x, y) ∈ R1 is aontinuous nonnegative funtion de�ned for T > 0, x, y ∈ Rn,
πf (x) = inf{lim inf

T→∞

[If (0, T, v) − µ(f)T ] : v : [0,∞) → Rn (6)is an a.. funtion satisfying v(0) = x}, x ∈ Rnand for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θf
T (x, y) = 0.



494 A.J. ZASLAVSKIAn a.. funtion x : [0,∞) → Rn is alled (f)-good if the funtion T →
If (0, T, x)−µ(f)T , T ∈ (0,∞) is bounded. In Zaslavski (1996) we showed thatfor eah f ∈ A and eah z ∈ Rn there exists an (f)-good funtion v : [0,∞) →
Rn satisfying v(0) = z.Propositions 1.1 and 3.2 of Zaslavski (1996) imply the following result.Proposition 1 For any a.. funtion x : [0,∞) → Rn either If (0, T, x) −
Tµ(f) → ∞ as T → ∞ or

sup{|If(0, T, x) − Tµ(f)| : T ∈ (0,∞)} <∞.Moreover any (f)-good funtion x : [0,∞) → Rn is bounded.We denote by d(x,B) = inf{|x − y| : y ∈ B} for x ∈ Rn and B ⊂ Rn andby dist(A,B) the distane in the Hausdor� metri for two sets A ⊂ Rn and
B ⊂ Rn. For every bounded a.. funtion x : [0,∞) → Rn de�ne

Ω(x) = {y ∈ Rn : there exists a sequene {ti}
∞

i=1 ⊂ (0,∞) (7)for whih ti → ∞, x(ti) → y as i→ ∞}.We say that an integrand f ∈ A has an asymptoti turnpike property, orbrie�y (ATP), if Ω(v2) = Ω(v1) for all (f)-good funtions vi : [0,∞) → Rn,
i = 1, 2 (see Marus and Zaslavski, 1999; Zaslavski 1996).In Zaslavski (1996, Theorem 2.1) we established the following result.Theorem 1 There exists a set F ⊂ A whih is a ountable intersetion of openeverywhere dense subsets of A suh that eah integrand f ∈ F possesses (ATP).By Proposition 1 for eah integrand f ∈ A whih possesses (ATP) thereexists a ompat set H(f) ⊂ Rn suh that Ω(v) = H(f) for eah (f)-goodfuntion v : [0,∞) → Rn.Let f ∈ A. We say that f has a weak turnpike property, or brie�y (WTP),with a turnpike D ⊂ Rn, where D is a nonempty ompat subset of Rn, if foreah M, ǫ > 0 there exist δ > 0, L > 0, l > 0 suh that the following assertionholds:For eah T ≥ L+ l and eah a.. funtion v : [0, T ] → Rn whih satis�es

|v(0)| ≤M, |v(T )| ≤M, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δthere is a Lebesgue measurable set Ω ⊂ [0, T ] suh that mes(Ω) ≤ l and for eah
τ ∈ [0, T − L] \ Ω the following inequality holds:dist(D, {v(t) : t ∈ [τ, τ + L]}) ≤ ǫ.We showed in Zaslavski (1996, Theorem 2.4) that if f ∈ A possesses (ATP),then f has (WTP) with the turnpike H(f). More preisely, we establish thefollowing result (see Zaslavski, 1996, Theorem 2.4).



Turnpike properties of approximate solutions of autonomous variational problems 495Theorem 2 Assume that f ∈ A has (ATP). Let M0,M1, ǫ > 0. Then thereexist a neighborhood U of f in A, numbers l, S > 0 and integers L,∗Q ≥ 1 suhthat for eah g ∈ U , eah pair of numbers T1 ∈ [0,∞), T2 ∈ [T1 + L + lQ∗,∞)and eah a.. funtion v : [T1, T2] → Rn whih satis�es
|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M0the following properties hold:
|v(t)| ≤ S for all t ∈ [T1, T2];there exist sequenes of numbers {bi}Q

i=1, {ci}Q
i=1 ⊂ [T1, T2] suh that

Q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , Q,dist(H(f), {v(t) : t ∈ [T, T + L]}) ≤ ǫfor eah T ∈ [T1, T2 − L] \ ∪Q
i=1[bi, ci].Corollary 1 Assume that f ∈ A has (ATP). Then f possesses (WTP) withthe turnpike H(f).The following theorem is our �rst main result.Theorem 3 Suppose that f ∈ A has (WTP) with the turnpike D ⊂ Rn. Then

f possesses (ATP) and H(f) = D.Corollary 1 and Theorem 3 mean that the properties (WTP) are (ATP)are equivalent. In view of Theorems 1 and 2, most integrands of the spae Apossess (WTP). It should be mentioned (see Zaslavski, 1999, 2005) that thereare integrands in the spae A whih possess a turnpike property suh that theset Ω is a union of two intervals ontaining the end points 0 and T , respetively.More preisely, let f ∈ A. We say that f has the turnpike property, or brie�y(TP), with a turnpike D ⊂ Rn, where D is a nonempty ompat subset of Rn,if for eah K, ǫ > 0 there exist l0 > l > 0 and δ > 0 suh that the followingassertion holds:For eah T ≥ 2l0 and eah a.. funtion v : [0, T ] → Rn whih satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) = Uf(0, T, v(0), v(T ))the inequalitydist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (8)holds for eah τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (8) holds foreah τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (8) holds for eah τ ∈ [l0, T − l].Let f ∈ A. We say that the integrand f has the strong turnpike property, orbrie�y (STP), with a turnpike D ⊂ Rn, where D is a nonempty ompat subset



496 A.J. ZASLAVSKIof Rn, if for eah ǫ,K > 0 there exist real numbers δ > 0 and l0 > l > 0 suhthat the following assertion holds:For eah T ≥ 2l0 and eah a.. funtion v : [0, T ] → Rn whih satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δthe inequalitydist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (9)holds for eah τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (9) holds for all

τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (9) holds for eah τ ∈ [l0, T − l].Note that the property (TP) deals only with exat minimizers of the vari-ational problems while the property (STP) also desribes the struture of ap-proximate solutions.Assume that f ∈ A possesses (STP) with the turnpike D ⊂ Rn. Then fpossesses (TP) with the turnpike D, possesses (WTP) with the turnpike D andby Theorem 3, f possesses (ATP) with H(f) = D.We an show that if f ∈ A has (ATP) and H(f) is a singleton, then fpossesses (STP) with the turnpike H(f). These properties hold, for example, if
f ∈ A is stritly onvex (see Zaslavski, 2007). In Zaslavski (1999) we onsideredan important subset M ⊂ A and showed that if f ∈ M possesses (ATP), then
f possesses (STP) with the turnpike H(f).In this paper we will establish the following two results. The �rst of themshows that the property (STP) is stable under small perturbations of integrands.The seond result implies that the properties (TP) and (STP) are equivalent.Theorem 4 Suppose that f ∈ A has (STP) with a turnpike H(f) ⊂ Rn. Let
ǫ,K > 0. Then there exist a neighborhood U of f in A, l1 > l > 0 and δ > 0suh that for eah g ∈ U , eah T ≥ 2l1 and eah a.. funtion v : [0, T ] → Rnwhih satis�es

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δthe inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (10)holds for eah τ ∈ [l1, T − l1]. Moreover, if d(v(0), H(f)) ≤ δ, then (10) holdsfor eah τ ∈ [0, T − l1] and if d(v(T ), H(f)) ≤ δ, then (10) holds for eah
τ ∈ [l1, T − l].Theorem 5 Let f ∈ A have the property (TP) with the turnpike D ⊂ Rn.Then f possesses (ATP), H(f) = D and f has (STP) with the turnpike H(f).Combining Theorems 4 and 5 we obtain the following result.



Turnpike properties of approximate solutions of autonomous variational problems 497Theorem 6 Suppose that f ∈ A has the property (TP) with a turnpike D ⊂
Rn. Then f possesses (ATP), H(f) = D and for eah ǫ,K > 0 there exist aneighborhood U of f in A, l1 > l > 0 and δ > 0 suh that for eah g ∈ U , eah
T ≥ 2l1 and eah a.. funtion v : [0, T ] → Rn whih satis�es

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δthe inequality (10) holds for eah τ ∈ [l1, T−l1]. Moreover, if d(v(0), H(f)) ≤ δ,then (10) holds for eah τ ∈ [0, T − l1] and if d(v(T ), H(f)) ≤ δ, then (10) holdsfor eah τ ∈ [l1, T − l].Note that all our results an be applied for an integrand f ∈ A whih isstritly onvex. See for details Zaslavski (2007). They an also be applied formost elements (in the sense of Baire ategory) of ertain spaes of integrandsstudied in Zaslavski (1999).2. Auxiliary resultsIn this paper we need the following results obtained in Zaslavski (1996) and inZaslavski (1998).Proposition 2 (Zaslavski, 1996, Proposition 5.1). Let g ∈ A, y : [0,∞) → Rnbe a (g)-good funtion and let ǫ > 0. Then there exists T0 > 0 suh that for eah
T ≥ T0 and eah T̄ > T

Ig(T, T̄ , y) ≤ Ug(T, T̄ , y(T ), y(T̄ )) + ǫ.Proposition 3 (Zaslavski, 1996, Theorem 6.1). Let f ∈ A. Then the funtion
(T1, T2, x, y) → Uf(T1, T2, x, y)is ontinuous for T1 ∈ [0,∞), T2 ∈ (T1,∞), x, y ∈ Rn.Proposition 4 (Zaslavski, 1998, Proposition 2.4). Let M1, ǫ > 0 and let 0 <

τ0 < τ1. Then there exists a positive number δ suh that for eah f ∈ A and eahpair of numbers T1, T2 ≥ 0 satisfying T2 − T1 ∈ [τ0, τ1] the following propertyholds:If an a.. funtion x : [T1, T2] → Rn satis�es If (T1, T2, x) ≤ M1 and if
t1, t2 ∈ [T1, T2] satis�es |t1 − t2| ≤ δ, then |x(t1) − x(t2)| ≤ ǫ.Proposition 5 (Zaslavski, 1998, Theorem 1.3). Let f ∈ A and let M1,M2, c>
0. Then there exist a neighborhood U of f in A and S > 0 suh that foreah g ∈ U , eah T1 ∈ [0,∞), eah T2 ∈ [T1 + c,∞) and eah a.. funtion
v : [T1, T2] → Rn satisfying

|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M2the following inequality holds:
|v(t)| ≤ S, t ∈ [T1, T2].



498 A.J. ZASLAVSKIProposition 6 (Zaslavski, 1996, Lemma 10.2). Let f ∈ A possess (ATP),
ǫ0 ∈ (0, 1), K0 > 0, M0 > 0 and let l be a positive integer suh that for eah
(f)-good funtion x : [0,∞) → Rn the inequalitydist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ 8−1ǫ0holds for all large T (the existene of l follows from Theorem 5.1 of Zaslavski,1996). Then there exists an integer N ≥ 10 and a neighborhood U of f in A suhthat for eah g ∈ U , eah S ∈ [0,∞) and eah a.. funtion x : [S, S+Nl] → Rnsatisfying

|x(S)|, |x(S +Nl)| ≤ K0, I
g(S, S +Nl, x)

≤ Ug(S, S +Nl, x(S), x(S +Nl)) +M0there exists an integer i0 ∈ [0, N − 8] suh thatdist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ ǫ0for all T ∈ [S + i0l, S + (i0 + 7)l].Proposition 7 (Zaslavski, 1998, Proposition 2.8). Let f ∈ A, 0 < c1 < c2 <
∞ and let D, ǫ > 0. Then there exists a neighborhood V of f in A suh that foreah g ∈ V , eah T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and eah a.. funtion
x : [T1, T2] → Rn satisfying

min{Ig(T1, T2, x), I
f (T1, T2, x)} ≤ Dthe inequality |If (T1, T2, x) − Ig(T1, T2, x)| ≤ ǫ holds.Proposition 8 (Zaslavski, 1998, Proposition 2.9). Let f ∈ A, 0 < c1 < c2 <

∞ and let c3, ǫ > 0. Then there exists a neighborhood V of f in A suh thatfor eah g ∈ V , eah T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and eah z, y ∈ Rnsatisfying |y|, |z| ≤ c3 the inequality
|Uf(T1, T2, y, z) − Ug(T1, T2, y, z)| ≤ ǫholds.Proposition 9 (Zaslavski, 1998, Theorem 1.2). For eah f ∈ A there existsa neighborhood U of f in A and a number M > 0 suh that for eah g ∈ Uand eah (g)-good funtion x : [0,∞) → Rn the relation lim supt→∞

|x(t)| < Mholds.Proposition 10 (Zaslavski, 1998, Proposition 2.5). Assume that f ∈ A,
M1 > 0, 0 ≤ T1 < T2 and that xi : [T1, T2] → Rn, i = 1, 2, . . . is a se-quene of a.. funtions suh that If (T1, T2, xi) ≤ M1, i = 1, 2 . . . . Then thereexist a subsequene {xik

}∞k=1 and an a.. funtion x : [T1, T2] → Rn suh that
If (T1, T2, x) ≤M1,

xik
(t) → x(t) as k → ∞ uniformly on [T1, T2] and x′ik

→ x′ as k → ∞ weaklyin L1(Rn; (T1, T2)).



Turnpike properties of approximate solutions of autonomous variational problems 499Let f ∈ A. For eah pair of real numbers T2 > T1 and eah a.. funtion
x : [T1, T2] → Rn set
σf (T1, T2, x) = If (T1, T2, x) − (T2 − T1)µ(f) − πf (x(T1)) + πf (x(T2)). (11)By (11), (2) and (5),

σf (T1, T2, v) ≥ 0for eah T1∈ R1, eah T2>T1 and eah a.. funtion v : [T1, T2] → Rn. (12)3. Proof of Theorem 3Let v : [0,∞) → Rn be an (f)-good funtion. We show that Ω(v) = D. ByProposition 9 the funtion v is bounded. Thus, there is
M > sup{|v(t)| : t ∈ [0,∞)}. (13)First we show that D ⊂ Ω(v). Let
ǫ > 0, z ∈ D (14)and let L, l, δ > 0 be as guaranteed by the property (WTP). By Proposition 2there is τ0 > 0 suh that
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + δfor eah pair of numbers S1, S2 satisfying S2 > S1 ≥ τ0. Let T ≥ τ0. Then bythe hoie of τ0
If (T, T + 2(L+ l), v) ≤ Uf (T, T + 2(L+ l), v(T ), v(T + 2(L+ l))) + δ.It follows from this inequality, (13), the hoie of L, l, δ and the property (WTP)that there is t ∈ [T, T + 2(l + L)] suh that d(v(t), z) ≤ ǫ. This implies that

d(z,Ω(v)) ≤ ǫ. Sine ǫ is any positive number and z is an arbitrary element of
D we onlude that D ⊂ Ω(v).Now we show that Ω(v) ⊂ D. Let us assume the ontrary. Then there is

z ∈ Ω(v) \D. (15)There is ǫ > 0 suh that
d(z,D) ≥ 4ǫ (16)and there is a sequene {ti}

∞

i=1 ⊂ (0,∞) suh that
ti+1 − ti ≥ 16, i = 1, 2, . . . , lim

i→∞

v(ti) = z. (17)



500 A.J. ZASLAVSKIWe may assume without loss of generality that
d(v(ti), D) ≥ 3ǫ, i = 1, 2, . . . (18)In view of Proposition 2 there is τ0 > 0 suh that
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1 (19)for eah pair of numbers S1, S2 satisfying S2 > S1 ≥ τ0. We may assumewithout loss of generality that t1 > τ0. Relations (13), (19) and Proposition 3imply that there is a number M1 > M suh that
If (s, s+ 2, v) ≤M1 for eah s ≥ τ0. (20)It follows from (20) and Proposition 4 that there is γ ∈ (0, 1/2) suh that foreah s ≥ τ0, eah t̄1, t̄2 ∈ [s, s + 1] whih satisfy |t̄1 − t̄2| ≤ γ the inequality

|v(t̄1)− v(t̄2)| ≤ ǫ holds. By the hoie of γ and (18), for eah integer i ≥ 1 andeah t ∈ [ti, ti + γ],
d(v(t), D) ≥ 2ǫ. (21)Let L, l, δ > 0 be as guaranteed by the property (WTP). In view of Proposition 2there is τ1 > τ0 suh that
If (s1, s2, v) ≤ Uf (s1, s2, v(s1), v(s2)) + δfor eah pair of numbers s1, s2 satisfying s2 > s1 ≥ τ1.Fix an integer i0 ≥ 1 suh that ti0 > τ1. Let q ≥ 2 be a natural number. Bythe hoie of τ1,
If (ti0 , ti0+q + l+ L, v) ≤ Uf(ti0 , ti0+q + l+ L, v(ti0), v(ti0+q + l+ L)) + δ.It follows from this inequality, (13), the hoie of L, δ, l and the property(WTP) that there is a Lebesgue measurable set Ω ⊂ [ti0 , ti0+q + l+L] suh thatmes(Ω) ≤ l and for eah τ ∈ [0, T − L] \ Ω we havedist(D, {v(t) : t ∈ [τ, τ + L]}) ≤ ǫ.Combined with (21) this implies that
∪i0+q−1

i=i0
[ti, ti + γ] ⊂ Ωand

l ≥ mes(Ω) ≥ mes(∪i0+q−1

i=i0
[ti, ti+1 + γ]) = γq and q ≤ lγ−1.Sine q is any natural number satisfying q ≥ 2 we have reahed a ontradition.Therefore Ω(v) ⊂ D. Theorem 3 is proved.



Turnpike properties of approximate solutions of autonomous variational problems 5014. Proof of Theorem 4It was mentioned in Introdution that f possesses (ATP).By Proposition 5 there exist a neighborhood U1 of f in A and a number
M > K suh that for eah g ∈ U1, eah T1 ≥ 0, eah T2 ≥ T1 + 1 and eaha.. funtion v : [T1, T2] → Rn whih satis�es

|v(Ti)| ≤ 2K + 4, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + 4 (22)the following inequality holds:
|v(t)| ≤M, t ∈ [T1, T2]. (23)Sine f has (STP) there exist δ ∈ (0, 1), l0 > 1, l > 0 suh that l0 > l and thefollowing property holds:(P1) For eah T ≥ 2l0 and eah a.. funtion v : [0, T ] → Rn whih satis�es
|v(0)|, |v(T )| ≤M, If (0, t, v) ≤ Uf (0, T, v(0), v(T )) + 4δ (24)the inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (25)holds for eah τ ∈ [l0, T − l0]. Moreover, if d(v(0), H(f)) ≤ δ, then (25) holdsfor eah τ ∈ [0, T − l0] and if d(v(T ), H(f)) ≤ δ, then (25) holds for eah

τ ∈ [l0, T − l].By Proposition 6 there exist a positive number N and a neighborhood U2of f in A suh that for eah g ∈ U2, eah s ∈ [0,∞) and eah a.. funtion
v : [s, s+N ] → Rn satisfying

|v(s)|, |v(s+N)| ≤ 2M + 2, (26)
Ig(s, s+N, v) ≤ Ug(s, s+N, v(s), v(s+N)) + 8there is τ ∈ [s, s+N ] suh that
d(v(τ), H(f)) ≤ δ. (27)Set
l1 = 16(l0 + 2 +N). (28)By Proposition 3 there isM0 > M suh that for eah τ ∈ [1, 4l1], eah x, y ∈ Rnsatisfying |x|, |y| ≤ 2M + 4

|Uf(0, τ, x, y)| ≤M0. (29)



502 A.J. ZASLAVSKIBy Proposition 8 there exists a neighborhood U3 of f in A suh that for eah
τ ∈ [1, 4l1], eah g ∈ U3 and eah x, y ∈ Rn satisfying |x|, |y| ≤ 2M + 4

|Uf(0, τ, x, y) − Ug(0, τ, x, y)| ≤ δ/2. (30)By Proposition 7 there exists a neighborhood U4 of f in A suh that for eah
g ∈ U4, eah τ ∈ [1, 4l1] and eah a.. funtion v : [0, τ ] → Rn whih satis�es

min{If (0, τ, v), Ig(0, τ, v)} ≤ 2M0 + 4 (31)the inequality
|If (0, τ, v) − Ig(0, τ, v)| ≤ δ/4 (32)holds. Set
U = ∩4

i=1Ui. (33)Assume that g ∈ U , T ≥ 2l1 and a.. funtion v : [0, T ] → Rn satis�es
|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δ. (34)In view of (33), (34) and the de�nition of U1 (see (22), (23))
|v(t)| ≤M, t ∈ [0, T ]. (35)Assume that S1, S2 ∈ [0, T ] satisfy
2l0 ≤ S2 − S1 ≤ 4l1, d(v(Si), H(f)) ≤ δ, i = 1, 2. (36)By (35), (36) and the hoie of M0 (see (29)),
|Uf(S1, S2, v(S1), v(S2))| ≤M0. (37)It follows from (33), the hoie of U3 (see (30)), (35) and (36) that
|Uf(S1, S2, v(S1), v(S2)) − Ug(S1, S2, v(S1), v(S2))| ≤ δ/2. (38)Combined with (34) and (37) this inequality implies that
Ig(S1, S2, v) ≤ Ug(S1, S2, v(S1), v(S2)) + δ

≤ Uf (S1, S2, v(S1), v(S2)) + (3/2)δ ≤M0 + (3/2)δ ≤M0 + 2. (39)Together with (36), (33) and the hoie of U4 this inequality implies that
|Ig(S1, S2, v) − If (S1, S2, v)| ≤ δ/4. (40)
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If (S1, S2, v) ≤ Ig(S1, S2, v) + δ/4 ≤ Ug(S1, S2, v(S1), v(S2)) + (5/4)δ

≤ Uf (S1, S2, v(S1), v(S2)) + 2δ. (41)It follows from (35), (36), (41) and the hoie of δ, l0, l (see (24), (25)) that foreah τ ∈ [S1, S2 − l] the inequality (25) holds.We showed that the following property holds:(P2) For eah S1, S2 ∈ [0, T ] satisfying (36) and eah τ ∈ [S1, S2 − l] theinequality (25) holds.Assume that
S̄1, S̄2 ∈ [0, T ],

S̄2 ≥ S̄1 + 2l0, d(v(S̄i), H(f)) ≤ δ, i = 1, 2. (42)We show that for eah τ ∈ [S̄1, S̄2− l] the inequality (25) holds. If S2−S1 ≤ 4l1,then our property follows from (P2). Therefore we may assume that
S̄2 − S̄1 > 4l1. (43)Let
τ ∈ [S̄1, S̄2 − l]. (44)De�ne S1, S2 ∈ [0, T ] as follows. If τ − S̄1 ≤ l1, then set
S1 = S̄1. (45)If τ − S̄1 > l1, then it follows from (33), the hoie of U2 (see (26)-(28)), (34)and (35) that there is a number S1 suh that
S1 ∈ [τ − l1, N + τ − l1], d(v(S1), H(f)) ≤ δ. (46)If S̄2 − τ ≤ l1, then set
S2 = S̄2. (47)If S̄2 − τ > l1, then it follows from (33), the hoie of U2 (see (26), (29)), (35)and (22) that there is a number S2 suh that
S2 ∈ [τ + l1 −N, τ + l1], d(v(S2), H(f)) ≤ δ. (48)In view of (42) and the hoie of S1, S2 (see (45)-(48)),
d(v(Si), H(f)) ≤ δ, i = 1, 2, (49)
S2 − S1 ∈ [2l0, 4l1], τ ∈ [S1, S2 − l]. (50)



504 A.J. ZASLAVSKICombined with the property (P2) these relations imply that the inequality (25)holds.Thus we showed that the following property holds:(P3) For eah S̄1, S̄2 ∈ [0, T ] satisfying (23) and eah τ ∈ [S̄1, S̄2 − l] theinequality (25) holds.Now de�ne S̄1, S̄2 ∈ [0, T ] as follows. If d(v(S1), H(f)) ≤ δ, then S̄1 = 0.Otherwise by the hoie of U2 (see (26), (27)), (33), (34) and (35) there is
S̄1 ∈ [0, N ] suh that d(v(S̄1), H(f)) ≤ δ. If d(v(T2), H(f)) ≤ δ, then S̄2 = T .Otherwise by the hoie of U2 (see (26), (27)), (35) and (34) there is S̄2 ∈
[T −N,T ] suh that

d(v(S̄2), H(f)) ≤ δ.By the property (P3) for eah τ ∈ [S̄1, S̄2 − l] the inequality (25) holds. Theo-rem 4 is proved.5. An auxiliary result for Theorem 5Proposition 11 Let f ∈ A have (TP) with the turnpike D ⊂ Rn. Then f has(ATP) and H(f) = D.Proof. Let v : [0,∞) → Rn be (f)-good funtion. We show that Ω(v) = D. Let
z ∈ Ω(v). There exists a sequene {ti}

∞

i=1 ⊂ [0,∞) suh that
ti+1 ≥ ti + 10, i = 1, 2, . . . , lim

i→∞

v(ti) = z. (51)For eah integer i ≥ 1 we de�ne ui : [−ti,∞) → Rn by
ui(t) = v(t+ ti), t ∈ [−ti,∞). (52)By Proposition 9 there is M > 0 suh that
|v(t)| ≤M for all t ∈ [0,∞). (53)By Proposition 2 there is τ0 > 0 suh that for eah pair of real numbers S1, S2satisfying S2 > S1 ≥ τ0

If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1.Combined with (51)-(53) and Proposition 3 this implies that for eah naturalnumber q the sequene {If (−q, q, ui)}, where i ≥ 1 is an integer suh that
ti ≥ q, is bounded. Together with Proposition 10 this implies that there exista subsequene {uik

}∞k=1 and an a.. funtion u : R1 → Rn suh that for eahnatural number q
uik

(t) → u(t) as k → ∞ uniformly in [−q, q], (54)
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
). (55)
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|u(t)| ≤M for all t ∈ R1. (56)Relations (51), (52) and (54) imply that
u(0) = z.It follows from (55), (52) and Proposition 3 that for eah integer q ≥ 1,
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
) = lim inf

k→∞

If (−q + tik
, q + tik

, v)

= lim inf
k→∞

Uf (0, 2q, v(−q + tik
), v(q + tik

))

= lim inf
k→∞

Uf (0, 2q, uik
(−q), uik

(q)) = Uf (0, 2q, u(−q), u(q)).This implies that
If (−q, q, u) = Uf (2q, u(−q), u(q))for eah integer q ≥ 1. Together with (56) and (TP) this implies that z ∈ {u(t) :

t ∈ R1} ⊂ D. Sine z is any element of Ω(v) we onlude that Ω(v) ⊂ D.We show that D ⊂ Ω(v). Let us assume the ontrary. Then there is
z ∈ D \ Ω(v). (57)Hene, there exist ǫ, t0 > 0 suh that
|v(t) − z| ≥ 3ǫ for all t ≥ t0. (58)Choose a natural number i0 > t0. For eah integer i ≥ i0 de�ne ui : [−i,∞) →

Rn by
ui(t) = v(i+ t), t ∈ [−i,∞). (59)By Proposition 9 there is M > 0 suh that
|v(t)| ≤M for all t ∈ [0,∞). (60)In view of Proposition 2 there is τ0 > 0 suh that for eah pair of numbers S1, S2satisfying S2 > S1 ≥ τ0 we have
If (S1, S2, v) ≤ Uf (S1, S2, v(S1), v(S2)) + 1.Combined with (59), (60) and Proposition 3 this implies that for eah naturalnumber q the sequene {If(−q, q, ui)}, where i is a natural number suh that

i ≥ q, i0, is bounded. Together with Proposition 10 this implies that there exist



506 A.J. ZASLAVSKIa subsequene {uik
}∞k=1

and an a.. funtion u : R1 → Rn suh that for eahnatural number q the relations (54) and (55) are true.It follows from (54), (55), (59) and Propositions 2 and 3 that for eah naturalnumber q
If (−q, q, u) ≤ lim inf

k→∞

If (−q, q, uik
) = lim inf

k→∞

If (−q + ik, q + ik, v)

= lim inf
k→∞

Uf (0, 2q, v(ik − q), v(ik + q))

= lim inf
k→∞

Uf (0, 2q, uik
(−q), uik

(q)) = Uf (0, 2q, u(−q), u(q)).Thus
If (−q, q, u) = Uf (0, 2q, u(−q), u(q)) for all natural numbers q. (61)By (54), (59) and (60),
|u(t)| ≤M for all t ∈ R1, (62)
|u(t) − z| ≥ 3ǫ for all t ∈ R1. (63)Relations (61), (62), (57) and (TP) imply that there is τ ∈ R1 suh that
|z − u(τ)| ≤ ǫ.This ontradits (63). The ontradition we have reahed shows that D ⊂ Ω(v).Proposition 11 is proved.6. Proof of Theorem 5Lemma 1 Let ǫ,M, S > 0. Then there exists δ > 0 suh that for eah a..funtion v : [0, S] → Rn satisfying
|v(0)|, |v(S)| ≤M, If (0, S, v) ≤ Uf (0, S, v(0), v(S)) + δthere is an a.. funtion u : [0, S] → Rn suh that
If (0, T, u) = Uf (0, S, v(0), v(S)),

|v(t) − u(t)| ≤ ǫ, t ∈ [0, S].Proof. Let us assume the ontrary. Then for eah natural numberm there existsan a.. funtion um : [0, S] → Rn suh that
|um(0)|, |um(S)| ≤M, (64)
If (0, S, um) ≤ Uf (0, S, um(0), um(S)) + 1/m (65)and
sup{|um(t) − u(t)| : t ∈ [0, S]} > ǫ (66)



Turnpike properties of approximate solutions of autonomous variational problems 507for eah a.. funtion u : [0, S] → Rn suh that
If (0, S, u) = Uf (0, S, u(0), u(S)). (67)By (64), (65) and Proposition 3 the sequene {If (0, S, um)}∞m=1 is bounded fromabove. It follows from Proposition 10 that there exists a subsequene {umi

}∞i=1and an a.. funtion u : [0, S] → Rn suh that
umi

(t) → u(t) as i→ ∞ uniformly in [0, S], (68)
If (0, S, u) ≤ lim inf

i→∞

If (0, S, umi
). (69)It follows from (68), (65), (69) and Proposition 3 that

If (0, S, u) ≤ lim inf
i→∞

If (0, S, umi
) = lim inf

i→∞

Uf (0, S, umi
(0), umi

(S))

= Uf (0, S, u(0), u(S)).Thus
If (0, S, u) = Uf (0, S, u(0), u(S)).By (68) there is a natural a number p suh that
|up(t) − u(t)| ≤ ǫ/2, t ∈ [0, S],a ontradition (see (66)). The ontradition we have reahed proves Lemma 1.Proof of Theorem 5. By Proposition 11 f has (ATP) and H(f) = D. Wemay assume that
ǫ < 1, K > sup{|z| : z ∈ H(f)} + 2. (70)By Proposition 5 there exists K0 > K + 1 suh that for eah T ≥ 1 and eaha.. funtion u : [0, T ] → Rn satisfying
|u(0)|, |u(T )| ≤ K + 1, If (0, T, u) ≤ Uf (0, T, u(0), u(T )) + 4 (71)the following inequality holds:
|v(t)| ≤ K0, t ∈ [0, T ]. (72)Sine f has (TP) with the turnpike D = H(f), there exist real numbers l0, l, δ0suh that
l0 > l > 0, δ0 ∈ (0, 1), δ0 < ǫ (73)and the following assertion holds:



508 A.J. ZASLAVSKI(C1) For eah T ≥ 2l0 and eah a.. funtion v : [0, T ] → Rn whih satis�es
|v(0)|, |v(T )| ≤ K0 + 2, If (0, T, v) = Uf(0, T, v(0), v(T )) (74)the inequalitydist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8 (75)holds for eah τ ∈ [l0, T − l0]. Moreover, if d(v(0), H(f)) ≤ δ0, then (75) holdsfor eah τ ∈ [0, T − l0] and if d(v(T ), H(f)) ≤ δ0, then (75) holds for eah

τ ∈ [l0, T − l].Sine f has (ATP) Proposition 6 implies that there is a number N > 0 suhthat for eah a.. funtion v : [0, N ] → Rn satisfying
|v(0)|, |v(N)| ≤ K0 + 1, If (0, N, v) ≤ Uf (0, N, v(0), v(N)) + 8we have
inf{d(v(t), H(f)) : t ∈ [0, N ]} ≤ δ0/32. (76)Choose a number l1 suh that
l1 ≥ 8(l0 +N + 2). (77)By Lemma 1 there is δ1 > 0 suh that for eah a.. funtion v : [0, l1] → Rnsatisfying
|v(0)|, |v(l1)| ≤ K0 + 1, If (0, l1, v) ≤ Uf (0, l1, v(0), v(l1)) + δ1 (78)there is an a.. funtion u : [0, l1] → Rn suh that
If (0, l1, u) = Uf (0, l1, u(0), u(l1)), (79)
|u(t) − v(t)| ≤ δ0/32, t ∈ [0, l1] (80)Put
δ = min{δ0, δ1}/64. (81)Assume that T ≥ 2l1 and an a.. funtion v : [0, T ] → Rn satis�es
|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δ. (82)It follows from (82) and the hoie of K0 that (72) is true.Assume now that S1, S2 ∈ [0, T ] satisfy
S2 − S1 ∈ [2l0, l1], d(v(Si), H(f)) ≤ δ0, i = 1, 2. (83)



Turnpike properties of approximate solutions of autonomous variational problems 509We show that for eah τ ∈ [S1, S2 − l]dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ. (84)Clearly, there is S̃1 ∈ [0, T ] suh that
[S1, S2] ⊂ [S̃1, S̃1 + l1] ⊂ [0, T ]. (85)By (82),
If (S̃1, S̃1 + l1, v) ≤ Uf(S̃1, S̃1 + l1, v(S̃1), v(S̃1 + l2)) + δ.It follows from this inequality, (85), (72), (81) and the hoie of δ1 (see (78)-(80))that there is an a.. funtion u : [S̃1, S̃1 + l1] → Rn suh that
If (S̃1, S̃1 + l1, u) = Uf (S̃1, S̃1 + l1, u(S̃1), u(S̃1 + l1)), (86)
|u(t) − v(t)| ≤ δ0/32, t ∈ [S̃1, S̃1 + l1]. (87)In view of (87), (73) and (72),
|u(t)| ≤ K0 + 1, t ∈ [S̃1, S̃1 + l1]. (88)Relations (85) and (86) imply that
If (S1, S2, u) = Uf(S1, S2, u(S1), u(S2)). (89)By (89), (88), the assertion (C1) and (83) for eah τ ∈ [S1, S2 − l] the followinginequality is true:dist(H(f), {u(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8. (90)Let τ ∈ [S1, S2 − l]. Then (90) is true. Together with (87) and (73) theinequality (90) implies thatdist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ/8 + δ0/32 ≤ ǫ/4. (91)Thus we have shown that the following assertion is true:(C2) For eah S1, S2 ∈ [0, T ] satisfying (83) and eah τ ∈ [S1, S2 − l] theinequality (91) is true.Assume that S1, S2 ∈ [0, T ] satisfy
S2 − S1 ≥ 2l0, d(v(Si), H(f)) ≤ δ0, i = 1, 2. (92)We show that for eah τ ∈ [S1, S2 − l] (91) is true. Note that if S2 − S1 ≤ l1,then this is true in view of (C2). Therefore we may may assume that
S2 − S1 > l1. (93)



510 A.J. ZASLAVSKILet τ ∈ [S1, S2 − l]. De�ne S̃1, S̃2 ∈ [0, T ] as follows:If τ ≤ 2l0 + N + S1, then we set S̃1 = S1. Otherwise, by the hoie of N(see (76)), (72), (73) and (82) there is S̃1 ∈ [τ − 2l0 −N, τ − 2l0] suh that
d(v(S̃1), H(f)) ≤ δ0/32. (94)If τ ≥ S2 − 2l0 −N , then we set S̃2 = S2. Otherwise, by the hoie of N (see(76)), (82) and (72) there is S̃2 ∈ [τ + 2l0, τ + 2l0 +N ] suh that
d(v(S̃2), H(f)) ≤ δ0/32. (95)It follows from the hoie of S̃1, S̃2, (93), (77), (92), (94) and (95) that
l1 ≥ S̃2 − S̃1 ≥ 2l0,

d(v(S̃i), H(f)) ≤ δ0, i = 1, 2, τ ∈ [S̃1, S̃2 − l].It follows from these inequalities and (C2) (applied for S̃1, S̃2) that (91) is true.Thus the following property holds:(C3) For eah S1, S2 ∈ [0, T ] satisfying (92) and eah τ ∈ [S1, S2 − l] theinequality (91) is true.De�ne real numbers τ1, τ2 as follows. If d(v(0), H(f)) ≤ δ, then τ1 = 0.Otherwise by the hoie of N (see (76)), (72) and (82) there is τ1 ∈ [0, N ] suhthat
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