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1. Introduction

The phenomena of time delay are often encountered in various practical sys-
tems, such as AIDS epidemic, aircraft stabilization, chemical engineering sys-
tems, inferred grinding model, manual control, neural networks, nuclear reac-
tors, population dynamics models, rolling mills, ship stabilization, and systems
with lossless transmission lines. Moreover, time delay is frequently a source
of instability and a source of generation of oscillation in many systems (Hale
and Verduyn Lunel, 1993; Kolmanovskii and Myshkis, 1992). Hence, stability
analysis and stabilization problems for time-delay systems received considerable
attention.

In some systems, system models can be described by functional differential
equation of neutral type, these models depending on the state delay but also on
the state derivatives. Physical examples for neutral system include distributed
networks, population ecology, processes including steam or heat exchange. Sta-
bility and stabilization in various neutral time-delay systems have been consid-
ered in recent year (Baser, 2003; He et al., 2004; Lien and Chen, 2003; Xu, Lam
and Yang, 2002; Chen, 2004).

In practical systems, the analysis of a mathematical model is usually an
important work for a control engineer, aiming to control the system. However,
mathematical model always contains some uncertain elements. Therefore, under
such imperfect knowledge of the mathematical model, design of a robust control
such that the system responses can meet desired properties is an important topic.
Hence, many robust control problems are analysed for a class of uncertain time-
delay systems (Li and de Souza, 1997; Moon et al., 2001; Nian and Feng, 2003;
Su, Su and Chu, 2003; Xu, Lam and Yang, 2002; Roh, 2002; Chen, 2004a,b).

Depending on whether the stability and stabilization criterion itself contains
the magnitude of delays, criteria for time-delay systems can be classified into
two categories, namely delay-independent criteria (Baser, 2003; Lien and Chen,
2003; Xu, Lam and Yang, 2002) and delay-dependent criteria (Gahinet et al.,
1995; Gu, 2000; He et al., 2004; Li and Souza, 1997; Lien and Chen, 2003;
Moon et al., 2001; Nian and Feng, 2003; Su, Su and Chu, 2003; Su, Lu and
Tsai, 2001; Roh, 2002;Chen, 2004a,b). Generally speaking, the latter ones are
less conservative than the former ones when the time-delay values are small.

On the other hand, the H,, control concept was proposed to reduce the effect
of the disturbance input on the regulated output to remain within a prescribed
level. Recently, many researchers have been considering the H, control problem
for time-delay systems, but their results are restricted to delay-independent
criteria for neutral systems (Baser, 2003; Xu, Lam and Yang, 2002), or delay-
dependent criteria for retarded system (Fridman and Shaked, 2003; Su, Su and
Chu, 2003; Su, Lu and Tsai, 2001). To our best knowledge, the robust Ho,
control for a class of uncertain neutral system with state and control input time-
varying delay systems has never been considered in the past. This motivated us
to the study reported in this paper.
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In this paper, the delay-dependent H, control problem will be considered for
a wider class of neutral state-control input delayed systems with nonlinear time-
varying parameter perturbations. The presented systems are more general than
the ones considered in Baser (2003), Fridman and Shaked (2003), Gu (2000), He
et al. (2004), Li and de Souza (1997), Lien and Chen (2003), Moon et al. (2001),
Nian and Feng (2003), Su, Su and Chu (2003), or Su, Lu and Tsai (2001), Xu,
Lam and Yang (2002), Roh (2002), and Chen (2004a,b), where no input-delay
term is considered in Baser (2003), He et al. (2004), Lien and Chen (2003), or
Xu, Lam and Chang (2002), no neutral-delay term is discussed in Roh (2002)
and Chen (2004a), no neutral perturbation term is developed in Chen (2004b),
and no both input and neutral delays appear in Fridman and Shaked (2003),
Gu (2000), Li and de Souza (1997), Moon et al. (2001), Nian and Feng (2003),
Su, Su and Chu (2003), or Su, Lu and Tsai (2001), respectively. The objective
is to apply the LMI optimization tool to find the H, control and minimize the
H,, norm bound. Both Lyapunov-Krasovskii theory and LMI technique are
used. A new delay-dependent stabilizability criterion is proposed to finish the
Ho control design. A numerical example is given to illustrate the use of the
proposed result.

Notation

Notation that will be used throughout the paper is as follows:

Cy := set of continuous functions from [—H, 0] to ",
R := n-dimensional real space,

R := set of all real m by n matrices,

AT := transpose of matrix A,

1| := Euclidean norm of vector z,

| Al := spectral norm of matrix A4,

1 @)l :=,/:f°||f<t>||2dt, f(t) € La[0,00),

ol = (I + 1 o e+ )1 ),

el = sup |lz(t+ )|,

—H<5<0
Ly [0,00) := space of square integrable vector functions on [0, 00),
ALB := B — A is a positive semi-definite symmetric matrix,
P>0 := P is a positive definite symmetric matrix,
P <0 := P is a negative definite symmetric matrix,
I ‘= unit matrix.

2. Problem formulation and preliminaries

In this paper, we consider the following uncertain neutral system that has state
and control input time-varying delays:
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x(t) = Aox(t) + A1z(t — h(t)) + Axz(t — 7(t)) + Bou(t) + Bru(t — n(t))
+/fo(z(t), 1) + fl( (t = h(t), 1) + f2(2(t — 7(2)),t) + fs(u(t — n(t)),1)
-I—wa(t) (1a)

z(t) = Ca(t )+DU( ) (1b)

z(t)=¢(t), te[-HO0], (1c)

where € R, u € R™, and z € R? are system input, control input, and
regulated output, respectively; x; is the state at time ¢ defined by () :=
x(t +60), V0 € [-H,0], w € R! is the disturbance input; the delays h(t), 7(¢
and 7(t) are three time-varying functions satisfying 0 < h(t) < har, 0 < 7(t) <
mar, 0 < () <, h() < hp < 1, #(t) < 7o < 1 and () < np < 1,
H = max{hM,TM,nM}. The matrices Ag, A1, Ay € R™"*" By € R™*"™ B; €
Rrxm e R D € R*™, are known, and the initial vector ¢ € Cy. The
uncertainties fo(z(t),t), fi(z(t—h(t)),1), fa(@(t—7(t)),t), and fa(u(t—n(t)),1)
are nonlinear time-varying parameter perturbations with fo(0,¢) = 0, f1(0,t) =
0, f2(0,t) = 0 and f3(0,t) = 0, respectively, satisfying the following quadratic
inequalities

fo (@(t),t) fo(w(t),t) < B3 - 2" (t)a(t), (2a)
[ (@t —h(t), ) fi(z(t — h(t),t) < BT - (t = h(®)z(t — h(t)),  (2b)
f3 (@t = 7(), 1) fa(@(t — 7(t)),8) < B3 - &7 (¢ — 7(8))ir(t — 7(1)), (2¢)
s (u(t = n(1)), ) fs(u(t = n(t)),t) < 63 ul (t=n()u(t —n(t),  (2d)

where Gy, 01, (2, and O3 are nonnegative constants.
By the Leibniz-Newton formula, it follows that

Aq / t x(s)ds = Ajx(t) — Ayz(t — h(t)), and
t—h(t)

t
B / u(s)ds = Byu(t) — Byu(t — n(t)).
t=n(t)
System (1a) with u(¢t) = Kz(t) can be rewritten as:

#(t) = (A + BE)2(t) + Asit(t — 7(1)) — Ay /t Rz (32)

B, /ti s+ Jo(w(0).0) 4 aelt = h(D).D)
+f2(@(t = 7(t)),t) + fa(ut —n(t)),t) + Buw(t), t=0,
z(t) = (C + DK)a:(t) (3b)
z(t) = ¢(t), te€[-H0], (3¢)
where A = Ay + Ay, and B=By+ By, so that the pair (/1, B) is stabilizable.
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DEFINITION 1 Consider the uncertain system (1) with (2) and the state feedback
u(t) = Kax(t). If the following conditions are satisfied:
(i) with w(t) = 0, the closed-loop system (1) with (2) and u(t) = Kuz(t) is
asymptotically stable.
(i) with zero initial condition (i.e. ¢ =0), the following condition is satisfied

7= [T - T u] <o, e sw o Elcg)
0 w#0,w(t)€ L2[0,00) ||w||2

for some v > 0. The control u(t) = Kx(t) is said to be the Hoo control of system
(1) with (2) and the disturbance attenuation v. The parameter v is called the
H.-norm bound of the control.

LeEMMA 1 (YAKUBOWICH, 1977) Let Qo(x) and Q1(x) be two arbitrary quadra-
tic forms over R™, then Qo(x) < 0 for all x € R — {0} satisfying Q1(x) <0 if
and only if there exist € > 0 such that

Qo(z) —e-N(z) <0, VreR"-{0}.

3. Robust H, control design

Now we will solve for the controller gain K of system (1) with (2) directly from
the following LMIs optimization result.

THEOREM 1 Consider systemn (1) with (2) and state feedback control u(t) =
Kx(t). Suppose that ||Az||+ B2 < 1 and if there exist non-negative constants €1,
€9, and €3, some positive-definite symmetric matrices X, Y7, Yo, Yy, Q € R,
Ys, Y5 € R™*™  and a matric W € R™*" such that the following optimization
problem is solved:

minimize p, (4a)
subject to
A1l 0 Aj3 0 By Mg A7 T I I I Ay Ar1s Aria X W A7
0 Ay O o 0o 0 o0 0 0 0 0 A1z A213 A214 O O O
ATy 0 Azz 0 o 0 o 0 0 0 0 A3z12 A313 A314 O O O
0 0 0 Agg O 0 O 0 0 0 0 Ag12 Ag13 Aq14 O OO
BT 0 0 0 Agzs 0 0 0 0 0 0 As12 As13 Agiga O O 0O
A0 0 0 o -y, 0 0 0 0 0 0 0 o 0o o0 o0
Aﬁ) 0 0 0 0 0 -Ys O 0 0 0 0 0 o 0o 0 o0
I 0 0 0 0 0 0 Agg O 0 0 I hpy-Inmpg-I O 0 0
1 0 0 0 0 0 0 0 Agg O 0 I hpImpyeloo o o | <O,
I o 0o 0o 0 0 0 o0 0 Aigig O I hpy-Impr-I O 0 0
I o 0o o0 0 0 0 o0 0 0 Ayy11 I hay-Inmpp-I O 0 0
Ai’n A%’n Agm A%’n A;_-;lz o o I I I I —Yy 0 o o 0o o0
APS A%IE‘A%BA%MA§~13 0 0 hppIThpy-Thy-Thpy-I 0 —-Yy 0O 0 0 0
Ay AL Al AT AL, 0 0 g ImppTuppInp I 0O 0 -Q 0 0 o0
X 6 0 0 0 0 0 o0 0 0 0 0 0 0 -y; 0 0
w o 0o 0o 0 0 0 o0 0 0 0 0 0 0 0 -Y3 0
LA177 0o o o o o0 o0 0 0 0 0 0 0 0 o o -1 |
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—2X+Q wWT

W v <0, (4c)

where

A=Ay +éo - 5(2) -1, Ay = AX + X AT + BW + WTBT, Az = AoYs,
Mg = —A1Yy, Az =—B1Ys, Ao = XA+ WTBL, A1z = har - Ao,
Avia = - Az, Ay = XCT + WTDT) Apo=—(1—hp)-Yi+e1- 551,
Aoz = Y1A], Agis = har - Aorz, Asia = mar - Aoia,
Ags=—(1—7p)-Ya+ea- B3 1, Agio=Y2A], Asiz=ha - Ao,

Asia =nn - Asiz, Asa=—(1—np) -Ys+es- 031, Auz=Y3B],

Ag1z = har - A2, Aqia = nar - Aiz, Ass = —p- 1,5 Asiz = By,

As13 = har - Asi2, Asia =nu - Asi2, Ass = —eo- 1,

Agg = —e1 -1, Aio1o=—e2-1, Ay111 = —¢e3- 1.

Then, the control u(t) = Kz(t) = WX 1x(t) is the Ho control of system (1)
with (2) and the disturbance attenuation v = \/p.

Proof. Define the Lyapunov functional

t

V(z) = 2T (t) Pz (t) + /th(t) 2T (s)Ryx(s)ds + /ti o &7 (s)Ryi(s)ds

t
—|—/ 2T (s) KT R3Kx(s)ds + hay - (s — (t — has))2T (s) Ry (s)ds
t ﬁ(t) t—har
t

+nnr - (s — (t —nn))aT (s) KT Rs K i(s)ds, (5)
t—nm
where P >0, R; > 0,i € {1, 2, 3, 4, 5}.
This functional V (x) is a legitimate Lyapunov functional candidate, Kol-
manovskii and Myshkis (1992). The time derivatives of V; (x;), along the tra-
jectories of system (3) satisfy

Vw) =" (¢) [P(A+ BK) + (A+ BK)"P| a(t) + 227 (t) PAsi(t - 7(1))

t t

—22T(t)PA, #(s)ds — 22T (t) P By u(s)ds

OpAy [ sty =2t wp, [ i)

+227 ()P [fo(x(t),t) + fr(e(t — h(t)),t) + fa(@(t — 7(t), ) + fa(u(t —n(t)),t)]
+227 () PByw(t) + 2" (t) Raa(t) — (1 — h(t))x" (t — h(t)) Riz(t — h(t))

+iT (t)Roi(t) — (1 — 7(2))2T (t — 7(t)))Rad:(t — 7(t))) + 2T () KT R3 K x(t)
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—(L=n()u” (t = n(t)) Rau(t —n(t)) + hi; - & () Rai(t)
—has - @7 (s) Ryd (s)ds +m3y - 27 () KT Ry Kir(t)
t—hn

—nM - u” (s)Rstu(s)ds.

t—nnm
By the following inequality, Gu (2000):

T

—has - / $)Rui(s)ds < — </:hM i:(s)ds) Ry (/tthM j;(s)ds)
< - </th(t) j;(s)ds>TR4 (/tth(t) j:(s)ds) ,

and

Define a functional by
J(xe,w () =V (z) + 27 () 2 (t) — Y?wT ) w(t).

From the time derivatives of V' (z;), we have

Q@ w (1) =V () + 27 (1) 2 (1) =7 0" (w(t) <T()dos(t),  (6a)

where

)= [0 T E-he) &) W -n0) W0
[ e [ iteas 0.0 - ho).0
- t—n(t)
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Aql 0 PAs 0 PB, —PAy—PBiPPPP]
0 —(1—-hp) R 0 0 0 0 0 0000
ATP 0 —(1—17p) - Re 0 0 0 0 0000
0 0 0 —~(1-7np)-Rs O 0 0 0000
BTP 0 0 0 2.7 0 0 0000
Po=|-ATP 0 0 0 0 —-R4 O 0000,
-BTp 0 0 0 0 0 —-R5 0000
P 0 0 0 0 0 0 0000
P 0 0 0 0 0 0 0000
P 0 0 0 0 0 0 0000
L P 0 0 0 0 0 0 0000
— . _ - T
(Ao +B0K)T (Ao +B0K)T
AT AT
AY AT
BT BT
BT BT
+ 0 (Re+h%; Ry +n3; - KTRsK) - 0 ,  (6b)
0 0
I I
1 I
1 I
L I - L I -

where A = P(A+BK)+(A+BK)"P+R,+K"RsK +(C+DK)T(C+DK).
Pre-multiplying and post-multiplying the matrix ¢ in (6b) by © and ©, where

Pt 0 0 000 0 0000
0 RYY' 0 000 0 0000
0 0 R, 000 0 0000
0 0 0 R;'0 0 0 0000
0 0 0 010 0 0000
©=] 0 0 0 0 OR;' 0 0000],
0 0 0 00 0 R;'0000
00 0 000 0 1000
00 0 000 00700
00 0 000 0 0070
L0 0 0 000 0 000/

and applying a change of variables, W = KP~', X = P! and Y; = R; ',
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i={1,2,3,4,5}, we can obtain the following result:

A1s 0 AsYs 0 Bw —A1Yy—B1YsITIT]

0 —-(1-hp)M 0 0 0 0 0 0000

Yo AT 0 —(1-7p)- Y2 0 0 0 0 0000

0 0 0 —(1-np)-Ys 0 0 0 0000

BT 0 0 0 —~2.1 0 0 0000

Y1 = | Yz AT 0 0 0 0 -Yy 0 0000

-Ys;BT 0 0 0 0 0 -Ys 0000

I 0 0 0 0 0 0 0000

I 0 0 0 0 0 0 0000

I 0 0 0 0 0 0 0000

L I 0 0 0 0 0 0 0000

[ X (Ao + BoK)T [ X (Ao + BoK)T r
YlA’{ YlA’{
YQA%F YQA%F
Y3 B Y3 BT

BT BT

(YRR Y iy KUY

~ ~ ~ ~ O o
~ ~ ~ ~ O O

where Ay = Ayy + XY ' X + WTY,'W + (CX + DW)T(CX + DW).
In view of Lemma 1 with (4c), we can obtain the following result:

—2X +Q+ Wy, 'w <o.
By taking W = KX, and the following equality:
(X -QQ X -Q)=XQ'X -2X+Q >0,
the above condition is equivalent to the following result:
K'Y, 'K < Q.
Hence we have

Q (x4, w (t) < T (E)has(t), (6d)
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where
[ A 0 AaYs 0 By —A1Yy —BYsITII]
0 —(1-=hp) Y 0 0 0 0 0 0000
Y, AT 0 —(1—7p)-Ya 0 0 0 0 0000
0 0 0 —(1=7mp)-Ys O 0 0 0000
BT 0 0 0 —~2.1 0 0 0000
Py = | -y AT 0 0 0 0 -Yy 0 0000
-Ys;BT 0 0 0 0 0 -Ys 0000
I 0 0 0 0 0 0 0000
I 0 0 0 0 0 0 0000
I 0 0 0 0 0 0 0000
L I 0 0 0 0 0 0 0000
[ X (Ao + BoK)T [ X (Ao + BoK)T T
YlA’{ YlA’{
YZA;F YzAg
Y3 BT Y3 BT
BT BT
+ [0 (Y R YT g Q7Y - o
0 0
I I
I I
I I
LI J L1 J
(6e)

By Theorem 3.1.6 of Kolmanovskii and Myshkis (1992) with (4c) and (6e),
suppose that ||Az2]] + f2 < 1 and if there exist some positive-definite symmetric
matrices X, Y7, Yo, Yy, Q € R™", Y3, Y5 € R™*™ and a matrix W € R™*",
then a sufficient condition for asymptotic stability is

T (s (t)s(t) < 0. (7)
From (7), it follows that

(e () = V (@) + 27 (02 (1) — 720" (1w (8) < <7 (Eos(t) <0,

for all ¢ (t) # 0. (8)

From (8) with w (¢) = 0, there exists a A > 0 and the following result holds:

V)|, <Al ©)

Hence, we conclude that the systems (1) and (3) with (2), under w(t) = 0,
are both asymptotically stabilizable by u (t) = WX~z (t). Integrating the
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inequality in (8) from 0 to co, we obtain
V(2e0) =V (@) + ||z (D5 =+ - w ()13 < 0.
With zero initial condition (z¢ = 0), we have
Vi(zo) =0, V(zs) 20,
and
2@y <7 [lw®lly,  w(t) € L2[0,00).

By Definition 1, the control u (t) = Kz (t) = WX 1z (t) is the H,, control of
system (1) with (2) and the disturbance attenuation v = /p.
Using Lemma 1, we further rewrite (7) and (2) as follows:

T( Jas(t) — o~ (fg (a(t),0) fol(t),) = B3 - aT (B)(t))

1 (f (@t = h(), ) fr(a(t = h(t),t) = 57 - ™ (t — h(t))a(t — h(t)))
—e2 - (f3 (@(t = 7(1), ) fa(@(t — 7(1)), 1) — B3 - &7 (t — (1)) (t — 7(t)))
—e3 (f3 (u(t = (1), 1) fa(u(t —n(t)),t) — B3 - u” (t — n(t))u(t — (1)) < 0.

(10)

By the Schur complement of Boyd et al. (1994), the linear matrix inequality
of (4b) is equivalent to the condition (10). Therefore, we conclude that the
systems (1) and (3) with (2) are both asymptotically stabilizable by u (t) =
WXtz (t) with the disturbance attenuation v = ,/p. "

REMARK 1 The condition ||Az2|| + B2 < 1 in Theorem 1 will guarantee that the
systems (1) satisfy the Lipschitz condition in the argument #(¢ — n(t)) for a
Lipschitz constant less than 1, Kolmanovskii and Myshkis (1992).

REMARK 2 Note that for the entries of (4b) and (4c) are affined with matrices
X, Y, Yo, Y3, Yy, Y5, Q, W, and constants €y €1, €2, and 3. Hence the
standard LMI optimization approach can be directly employed to solve the
optimal problem (4a) with conditions (4b) and (4c). We can utilize Matlab’s
LMI Control Toolbox to find the solutions of matrices W, X, and the H.,
control is given by u (t) = WX 'z (), Gahinet et al. (1995).

REMARK 3 It is interesting to note that the LMI conditions (4b)-(4c) are de-
pendent on hys, ny and independent of 7.

REMARK 4 If v > 0 is a known parameter, we can use the LMIs (4a)-(4b) with
p = 2 to find the feasible solutions. The H,, control problem can also be solved
with Matlab without optimization.
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4. Numerical example

To illustrate the effectiveness of the proposed method, Matlab LMI Toolbox was
used to calculate the following example.

EXAMPLE 1 Consider the system (1) with (2) the following parameters:
0.
0

-1 0 —0.02 —0.01 0
AO_{oz —0.3]’ Al_[o.m —0.02]’ A2_[0 : }

o= [V ] m=[T] m=[5] o]0 V] | |

60:52:0.1, 61:53:0.2, hMZO.l, UMZO.ZhD:TD D

2
2

0
1 3
=0.1.
(11)
Note that the results proposed in Baser (2003), Fridman and Shaked (2003), Su,
Su and Chu (2003), or Xu, Lam and Yang (2002), offer no feasible solutions to
the above neutral system. By using Matlab in Theorem 1, we obtain a solution
for the optimization problem:
1.7183 0.0911 5524.2 3328.3
p=4.9521, X = [ 0.0911 0.5045 } » 1= [ 3328.3 2438.6 ] ’

774907468 —4

3/2:[—4 1

} , Y3 =21.8556, Y= [ 42.5421  37.8495 } 7

37.8495 43.0602

3.3170 —0.1280
—0.1280 0.1346

€0 =9.1025, &1 =1538.4, &2 =48.6436, e3=213.0819.

Vs = 0.0463, Q = { } W =[ —0.0703 —0.2011 ],

The state feedback Ho control of system (1) with (2) and (11) is given by
ut)=WX 'z(t)=] —0.02 —0.395 |z (t),

with the disturbance attenuation v = ,/p = 2.2253.

5. Conclusion

In this paper, the state feedback H, control problem for a class of uncertain neu-
tral systems has been studied, containing time-varying delays on both state and
control input. Based on the unified LMI optimization, a new delay-dependent
criterion has been proposed for the existence of memoryless H., state feedback
control for such system. Furthermore, no parameters in Theorem 1 require to
be tuned. A numerical example has illustrated that the usefulness of the main
result.
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