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onventional problem of a state �ltration∗byZdzisªaw DudaInstitute of Automati
 ControlSilesian Te
hni
al Universityul. Akademi
ka 16, 44-101 Gliwi
e, PolandAbstra
t: In the paper non
onventional linear equations ofstate �ltration are derived. They are useful for some two-level hi-erar
hi
al 
ontrol system stru
ture with 
oordinator and lo
al 
on-trollers having di�erent information. It is assumed that the system
onsidered is des
ribed by a linear output equation and a linear stateequation with 
ontrol being a random variable for the 
oordinatorgenerated by de
ision rules of the lo
al 
ontrollers. The approa
h tostate �ltration is based on modi�ed innovations and orthogonalityprin
iple. A simple numeri
al example is presented.Keywords: hierar
hi
al 
ontrol stru
ture, non
onventionalstate �ltration, modi�ed innovations, orthogonality prin
iple.1. Introdu
tionThe paper deals with 
ontrol with a quadrati
 
ost for a sto
hasti
 system
omposed of intera
ting linear subsystems. Quality of 
ontrol depends on theassumed information and 
ontrol stru
tures. In a one level stru
ture a 
entralde
ision maker determines values of 
ontrol on the basis of available information
olle
ted from all subsystems. However, in large s
ale systems the pro
ess oftransmission and transformation of information in a 
entralized manner 
an bedi�
ult to realize. This leads to de
entralization of information and 
ontrolstru
tures.Control problems with de
entralized measurement information are studiedin a team de
ision theory, as well as in the hierar
hi
al 
ontrol (see Aoki, 1973;Chong and Athans, 1971; Ho, 1980). The problems may be 
ompli
ated, es-pe
ially in the 
ase of the so 
alled non
lassi
al information pattern, in whi
h
ontrollers do not have identi
al information.Control and optimization for large s
ale systems are usually based on a de-
omposition of a global system into subsystems so as to de
rease 
omputationalrequirements and de
rease the amount of information to be transmitted to and
∗Submitted: July 2006; A
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532 Z. DUDApro
essed by de
ision makers. A 
on�i
t between lo
al 
ontrollers is softenedby the 
oordinator on the upper level.Gessing (1988) formulated and solved a sto
hasti
 
ontrol problem with aquadrati
 
ost for a system 
omposed of intera
ting linear subsystems. Con-trol is realized in a two-level stru
ture with a 
oordinator on the upper leveland lo
al 
ontrollers on the lower level. It is assumed that the lo
al 
ontrollershave essential information for their subsystems, while the 
oordinator has aggre-gate information on the whole system. An elasti
 
onstraint as a 
oordinationequation is proposed in whi
h de
isions of the 
oordinator are a 
onditionalexpe
tation of de
ision rules of the lo
al 
ontrollers.In order to realize the 
ontrols of the de
ision makers, the 
urrent deter-mination of the state estimates, performed by the 
oordinator, and the lo
al
ontrollers is needed. A solution to this problem was proposed in Gessing andDuda (1990).In the present paper a new approa
h to the �ltration problem is presented.It is based on modi�ed innovations and orthogonality prin
iple.2. Control problem formulation and its solutionConsider a large s
ale dynami
 system 
omposed of M subsystems des
ribed bythe equation
xi

n+1 = Aii
nxi

n + Bi
nui

n +

M∑

j 6=i

Aij
n xj

n + wi
n =

= Aii
nxi

n + Bi
nui

n + vi
n + wi

n, i = 1, 2, .., M (1)where xi
n, ui

n, wi
n, vi

n are ve
tors of state, 
ontrol, disturban
e and intera
tionof the ith subsystem; Bi
n and Aij

n , i, j = 1, 2, ..., M, n = 0, 1... are appropriatematri
es.The model of measurements has the form
yi

n = Ci
nxi

n + ri
n (2)where yi

n and ri
n are the ve
tors of the measurements and measurement errors,respe
tively.It is assumed that the pro
esseswn =[w1T

n , ..., wMT
n ]T and rn =[r1T

n , ..., rMT
n ]Tare white noises, mutually independent. The initial state x0 = [x1T

0 , ...xMT
0 ]Tis also random, independent of the above ve
tors. Additionally, we assumethat Ern = 0, Ewn = 0, Ex0 and the 
ovarian
e matri
es Wn = EwnwT

n ,
Rn = ErnrT

n , X0 = E(x0 − Ex0)(x0 − Ex0)
T are �nite and given.The problem is to �nd the 
ontrol laws ui

n = ai
n(.), i = 1, 2, ..., M, n =

0, 1, ...N as fun
tions of available information that minimize a performan
e index
I = E

N∑

n=0

M∑

i=1

[xiT
n Qi

nxi
n + aiT

n (.)Hi
nai

n(.)] (3)
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onventional problem of a state �ltration 533where E denotes mean operation, Qi
n and Hi

n are symmetri
 , non negative andpositive-de�nite matri
es.The 
omplexity and the e�e
tiveness of a solution depends on the assumedinformation and 
ontrol stru
tures.Gessing (1988) assumed that 
ontrol is realized in a two level hierar
hi
alstru
ture with a 
oordinator on the upper level and lo
al 
ontrollers on the lowerone.The ith lo
al 
ontroller re
eives from the appropriate subsystem the mea-surement yi
n, whi
h is aggregated to the form

mi
n = Di

nyi
n = F i

nxi
n + Di

nri
n (4)and transmitted to the 
oordinator. Owing to the low dimension of the ve
tor

mi
n, the amount of information transmitted and 
onverted by the 
oordinatormay be de
reased.Noti
e that for Di

n equal to a unit matrix (Di
n = 1), all information istransmitted to the 
oordinator. It is the 
ase of 
lassi
al 
ontrol realized by a
entral de
ision maker. For Di

n = 0 no information is transmitted from the i-thsubsystem to the 
oordinator.At time n a posteriori measurement information of the ith lo
al 
ontrollerand the 
oordinator is de�ned by ~yi
n = [yiT

0 , ...., yiT
n ]T and ~mn = [~m1T

n , ..., ~mMT
n ]T ,

~mi
n = [miT

0 , ..., miT
n ]T , respe
tively.As admissible 
ontrol laws of the ith 
ontroller (ai

n) and of the 
oordinator(bn) we assume
ui

n = ai
n(x̂i

n, x̄i
n, pi

n)

pn = bn(~mn) (5)where x̂i
n is an estimate of the state xi

n determined by the ith lo
al 
ontroller, x̄i
nis the estimate of the state xi

n determined by the 
oordinator and sent to the ith
ontroller; pn = [p1T
n , ..., pMT

n ]T is a ve
tor of 
oordinating variables determinedby the 
oordinator.Additionally, it is assumed that the 
ontrol laws ful�ll an elasti
 
onstraint
E|~mn

ai
n(x̂i

n, x̄i
n, pi

n) = pi
n (6)where E|~mn

denotes 
onditional mean operation given ~mn.Gessing (1988) showed that the optimal 
ontrol law aio
n for the ith 
ontrollerresults from the lo
al minimization and has the form

uio
n = aio

n (x̂i
n, x̄i

n, pi
n) = pi

n − Li
n(x̂i

n − x̄i
n) (7)where pi

n is the 
oordinating variable sent by the 
oordinator, and Li
n is a matrixdetermined in an appropriate way.



534 Z. DUDAThe 
oordinating variables pn result from the global optimization and havethe form
pn = Lnx̄n (8)where Ln is a matrix determined in an appropriate way and x̄n = [x̄1T

n , ..., x̄MT
n ]Tis an estimate of the state of the whole system determined by the 
oordinator.In order to realize the 
ontrols (7) and (8) the 
urrent determination of thestate estimates performed by the 
oordinator and lo
al 
ontrollers is needed.The �ltering problem was solved in Gessing and Duda (1990) under the followingassumptions:1. The estimate of the intera
tion vi

n =
∑M

j 6=i Aij
n xj

n, determined by the ithlo
al 
ontroller, is equal to the estimate determined by the 
oordinator2. The estimate x̄i
n+1 = E|~mn+1

xi
n+1, determined by the 
oordinator, is sentto the ith lo
al 
ontroller and used to determine the estimate x̂i

n+13. The 
orre
tion
x̂i

n+1|n+ − x̂i
n+1|n = E|~yi

n
,x̄i

n+1
xi

n+1 − E|~yi
n
xi

n+1 (9)determined by the ith lo
al 
ontroller, is equal to the 
orre
tion
x̄i

n+1 − x̄i
n+1|n = x̄i

n+1 − E|~mn
xi

n+1 (10)determined by the 
oordinator4. Random variables xi
0, r

i
n and wi

n are mutually independent Gaussian whitenoises.It is shown that the estimate x̂i
n+1, determined by the ith lo
al 
ontroller,has the form

x̂i
n+1 = x̂i

n+1|n+ + K̂i
n+1(y

i
n+1 − Ci

n+1x̂
i
n+1|n+)

x̂i
n+1|n+ = x̄i

n+1 + Gi
n(x̂i

n − x̄i
n). (11)The �ltering equations of the 
oordinator have the form

x̄n+1 = x̄n+1|n + K̄n+1(mn+1 − Fn+1x̄n+1|n)

x̄n+1|n = Anx̄n + Bnpn. (12)The matri
es Gi
n, K̂i

n+1, Fn+1, An, Bn, and K̄n+1 are determined in an appro-priate way.In the present paper a new approa
h to the �ltration problem, based onmodi�ed innovations, is presented. The assumptions 2, 3 and 4 are not required.



On some non
onventional problem of a state �ltration 5353. New approa
h to the �ltration problemWe restri
t the estimate of the state x̂n to be a linear estimate
x̂n = α0 +

n∑

j=1

αjyj (13)that minimizes the mean square error (MSE)
MSE = E(xn − x̂n)T (xn − x̂n). (14)Cal
ulation of a re
ursive form of the estimate will be based on Theorem 1 andmodi�ed innovations.Theorem 1. Let x and y be jointly distributed random ve
tors and let x̂ =

α0 + α1y be the estimate of x given y. Then x̂ minimizes the MSE if the error(x − x̂) is orthogonal to y, i.e.,
E(x − x̂)yT = 0 (15)and x̂ is unbiased.Proof. If x̂ is unbiased and the error (x − x̂) is orthogonal to y then
E(x − α0 − α1y) = 0 (16)
E(x − α0 − α1y)yT = 0. (17)Thus
α0 = Ex − α1Ey (18)
Pxy + ExEyT − α0EyT − α1(Pyy + EyEyT ) = 0. (19)As a result we have
x̂ = Ex + PxyP−1

yy (y − Ey). (20)The same result 
an be found dire
tly by minimization of (14).3.1. Modi�ed innovationsClassi
al innovations are de�ned by Kamen and Su (1999):
en = yn − ŷn|n−1 (21)where ŷn|n−1 is the LMMSE estimate of yn given ~yn−1 = [yT

1 , ..., yT
n−1]

T i.e.,
ŷn|n−1 =

n−1∑

j=1

αn−1,jyj = αn−1~yn−1. (22)



536 Z. DUDAIn this paper the estimate (22) is modi�ed to the form
ŷn|n−1 = α0 +

n−1∑

j=1

αn−1,jyj = α0 + αn−1~yn−1 (23)where αn−1 = [αn−1,1, ...., α[n − 1, n− 1].The estimate ŷn|n−1 should be unbiased and the error (yn − ŷn|n−1) shouldbe orthogonal to ~yn−1.The innovations ej are endowed with de�nite properties.Orthogonality 1. The innovation ej is orthogonal to yi, i = 1, ..., j − 1.This results from Theorem 1. Namely
E(yj − ŷj|j−1)~y

T
j−1 = 0 (24)that is equivalent to

E(yj − ŷj|j−1)y
T
i = Eejy

T
i = 0, i = 1, ..., j − 1. (25)Orthogonality 2. The innovations are orthogonal to ea
h other.For j > i ≥ 1 we have

Eeie
T
j = E(yi − ŷi|i−1)e

T
j = Eyie

T
j − E(α0 + αi−1~yi−1)e

T
j = 0. (26)Un
orrelatedness. The innovations are un
orrelated with ea
h other.This results from Orthogonality 2 and the fa
t that Eej = 0 (unbiasedestimate). Therefore, innovations are white noise.Equivalent information. The measurement yn+1 
an be obtained from linear
ombination of ei, i = 1, ..., n + 1.Let ŷ1|0 take a given value ȳ, i.e. ŷ1|0 = ȳ, so that e1 = y1−ȳ and y1 = ȳ+e1.For e2 we have

e2 = y2 − ŷ2|1 = y2 − α2 − α11y1. (27)We 
an �nd y2 via
y2 = α2 + α11ȳ + α11e1 + e2 = α∗

2 + e2 + α11e1. (28)We 
an 
ontinue this pro
ess inde�nitely for any yn+1

yn+1 = α∗
n+1 + en+1 +

n∑

i=1

αn,iei. (29)



On some non
onventional problem of a state �ltration 5373.2. Re
ursive form of xn+1Let
x̂n+1 = α0 +

n+1∑

i=1

αn+1,iyi = β0 +

n+1∑

i=1

βn+1,iei (30)be the LMMSE estimate of xn+1.This estimate should be unbiased and orthogonal to ~en+1 = [eT
1 , ..., eT

n+1]
T ,i.e.,

Ex̂n+1 = Exn+1 = β0 (31)
E(xn+1 − x̂n+1)e

T
i = 0, i = 1, ..., n + 1. (32)From (32), (31) and (30) we have

Exn+1e
T
i = E(β0 +

n+1∑

j=1

βn+1,jej)e
T
i = βn+1,iEeie

T
i . (33)Therefore, the matrix βn+1,i is

βn+1,i = Exn+1e
T
i (Eeie

T
i )−1. (34)Substituting (31) and (34) into (30) gives

x̂n+1 = Exn+1 +

n+1∑

i=1

Exn+1e
T
i (Eeie

T
i )−1ei. (35)By a derivation analogous to that presented above we �nd that the LMMSEestimate of xn+1 given ~yn has the form

x̂n+1|n = α0 +

n∑

i=1

αn,iyi = β0 +

n∑

i=1

βn,iei =

= Exn+1 +

n∑

i=1

Exn+1e
T
i (Eeie

T
i )−1ei. (36)Then, (35) 
an be written in a re
ursive form

x̂n+1 = x̂n+1|n + Exn+1e
T
n+1(Een+1e

T
n+1)

−1en+1. (37)It is a 
lassi
al form of the LMMSE estimate.Let yn be des
ribed by
yn = Cnxn + rn (38)where rn is a white noise with Ern = 0 and a 
ovarian
e matrix Rn.



538 Z. DUDATherefore
en+1 = Cn+1x̃n+1|n + rn+1 (39)where x̃n+1|n = xn+1 − x̂n+1|n.It is assumed that x̂n+1|n is the LMMSE estimate of xn+1 given information

~yn. Then x̂n+1|n is unbiased and x̃n+1|n is orthogonal to ~yn.From (39) we have
Een+1e

T
n+1 = Cn+1Pn+1|nCT

n+1 + Rn+1 (40)where Pn+1|n = Ex̃n+1|nx̃T
n+1|n.To �nd Exn+1e

T
n+1 we use (39) again

Exn+1e
T
n+1 = Exn+1(Cn+1x̃n+1|n + rn+1)

T = Exn+1x̃
T
n+1|nCT

n+1 =

= E(x̃n+1|n + x̂n+1|n)x̃T
n+1|nCT

n+1 =

= Ex̃n+1|nx̃T
n+1|nCT

n+1 + Ex̂n+1|nx̃n+1|nCT
n+1. (41)The last term in (41) is equal to zero be
ause of orthogonality of the ve
tors

x̂n+1|n and x̃n+1|n. Therefore
Exn+1e

T
n+1 = Pn+1|nCT

n+1. (42)Substituting (41) and (42) into (37) we �nd that
x̂n+1 = x̂n+1|n+Kn+1(yn+1−ŷn+1|n) = x̂n+1|n+Kn+1(yn+1−Cn+1x̂n+1|n) (43)where Kn+1 is a Kalman gain de�ned by

Kn+1 = Pn+1|nCT
n+1(Cn+1Pn+1|nCT

n+1 + Rn+1)
−1. (44)4. Linear Kalman �lterNow we 
onsider the LMMSE �ltration problem of the ith lo
al 
ontroller andthe 
oordinator for the system des
ribed by (1) and (2) in the stru
ture pre-sented in the Se
tion 2.4.1. Filtering equations for the ith lo
al 
ontrollerLet us 
onsider the model of the system (1).In eqn. (1) 
ontrol ui

n has the form (7) and 
an by written as
ui

n = p∗i
n − Li

nx̂i
n = a∗i

n (~yi
n, ~mn) (45)where p∗i

n = pi
n + Li

nx̄i
n = bi

n(~mn).The value of the 
oordinating variable p∗i
n is determined by the 
oordinatorand sent to the ith 
ontroller.



On some non
onventional problem of a state �ltration 539The whole system (1) and the model of the ith measurement (2) 
an bedes
ribed by the equations
xn+1 = Anxn + Bd

na∗
n + wn (46)

yi
n = C∗i

n xn + ri
n (47)where xn = [x1T

n , ..., xMT
n ]T , a∗

n = [a∗1T
n (.), .., a∗MT

n (.)]T , wn = [w1T
n , ..., wMT

n ]T ,
C∗i

n = [0, ..0, Ci
n, 0, ..0] and the forms of the matri
es An, Bd

n result from (1).Let x̂n+1 be a LMMSE estimate of xn+1 given {

~y∗i

n

︷ ︸︸ ︷

~yi
n, ~mn, yi

n+1}.A

ording to (43) we have
x̂n+1 = x̂n+1|n + K∗i

n+1(y
i
n+1 − C∗i

n+1x̂n+1|n) (48)or
x̂i

n+1 = x̂i
n+1|n + Ki

n+1(y
i
n+1 − Ci

n+1x̂
i
n+1|n), i = 1, ...M. (49)The matrix Ki

n+1 in (49) is an appropriate blo
k of the matrix K∗i
n+1.The error x̃n+1|n should be orthogonal to ~y∗i

n , i.e.
E(xn+1 − x̂n+1|n)~y∗iT

n = 0. (50)Let x̂n|n be a LMMSE estimate of xn given ~y∗i
n .Thus, from (46) and sin
e xn = x̂n|n + x̃n|n, we have

xn+1 = Anx̂n|n + Anx̃n|n + Bd
na∗

n + wn. (51)Then, (50) be
omes
E(Anx̂n|n + Bd

na∗
n − x̂n+1|n)~y∗iT

n + E(Anx̃n|n)~y∗iT
n + Ewn~y∗iT

n = 0. (52)Sin
e x̂n|n is LMMSE estimate of xn given ~y∗i
n and wn is independent of ~y∗i

n ,the last two terms in (52) are equal to zero.Therefore
E(Anx̂n|n + Bd

na∗
n − x̂n+1|n)~y∗iT

n = 0. (53)From (53) we have for j = 1, ..., M

E(Ajj
n x̂

j

n|n +

M∑

k 6=j

Ajk
n x̂k

n|n + Bj
na∗j

n − x̂
j

n+1|n)~y∗iT
n = 0. (54)For j = i we obtain

E(Aii
n x̂i

n|n +

M∑

k 6=i

Aik
n x̂k

n|n + Bi
na∗i

n − x̂i
n+1|n)~y∗iT

n = (55)
= E[E|~y∗i

n
(Aii

n x̂i
n|n +

M∑

k 6=i

Aik
n x̂k

n|n + Bi
n

ui

n

︷ ︸︸ ︷

a∗i
n (~y∗i

n ) − x̂i
n+1|n)~y∗iT

n ] = 0. (56)



540 Z. DUDAEqn. (56) is satis�ed when
x̂i

n+1|n = Aii
n x̂i

n|n +

M∑

k 6=i

Aik
n x̂k

n|n + Bi
nui

n = Aii
n x̂i

n|n + v̂i
n + Bi

nui
n (57)for every realization of ~y∗i

n .Let us assume that the estimate x̂i
n+1|n determined by the ith lo
al 
ontrolleris based on eqn. (57), where x̂i

n|n is repla
ed by x̂i
n and v̂i

n by v̄i
n- an LMMSEestimate of the intera
tion vi

n based on ~mn. This estimate is determined by the
oordinator and sent to the ith lo
al 
ontroller.Let us remind that x̂i
n+1 is the LMMSE estimate of xn+1 given {

~y∗i

n

︷ ︸︸ ︷

~yi
n, ~mn, yi

n+1},while x̂i
n+1|n+1 is the LMMSE estimate of xn+1 given ~y∗i

n+1.Finally, the estimate x̂i
n+1 (used for real �ltration) results from (49) with

x̂i
n+1|n = Aii

n x̂i
n + Bi

nui
n + v̄i

n. (58)The form of K∗i
n+1 results from (44)

K∗i
n+1 = P ∗i

n+1|nC∗iT
n+1(C

∗i
n+1P

∗i
n+1|nC∗iT

n+1 + Ri
n+1)

−1 (59)where Ri
n+1 = Eri

n+1r
iT
n+1 and results from Rn+1.Let us assume that x̂n+1|n is the LMMSE estimate given ~yn. In this 
ase wehave

x̃n+1|n = Anx̃n + wn (60)and
Pn+1|n = Ex̃n+1|nx̃T

n+1|n = AnPnAT
n + Wn. (61)Basing on (61) it is proposed to use P ∗i

n+1|n in (59) as
P ∗i

n+1|n = AnP ∗i
n AT

n + Wn (62)where P ∗i
n = Ex̃nx̃T

n = E(xn − x̂n)(xn − x̂n)T .By substra
ting both sides of (48) from the identity xn+1 = xn+1 we obtain
x̃n+1 = x̃n+1|n − K∗i

n+1(y
i
n+1 − ŷi

n+1|n) =

= (1− K∗i
n+1C

∗i
n+1)x̃n+1|n − K∗i

n+1r
i
n+1. (63)Thus the 
ovarian
e matrix P ∗i

n+1 has the form:
P ∗i

n+1 = Ex̃n+1x̃
T
n+1 =

= (1− K∗i
n+1C

∗i
n+1)P

∗i
n+1|n(1 − K∗i

n+1C
∗i
n+1)

T + K∗i
n+1R

i
n+1K

∗iT
n+1 =

= P ∗i
n+1|n − K∗i

n+1C
∗i
n+1P

∗i
n+1|n − P ∗i

n+1|nC∗iT
n+1K

∗iT
n+1+

+ K∗i
n+1(C

∗i
n+1P

∗i
n+1|nC∗iT

n+1 + Ri
n+1)K

∗iT
n+1 (64)
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onventional problem of a state �ltration 541or, using (59),
P ∗i

n+1 = (1− K∗i
n+1C

∗i
n+1)P

∗i
n+1|n. (65)Finally, x̂i

n+1 is 
omputed from (49) and (58) with x̂i
0|−1 = Exi

0 and Ki
n+1 - anappropriate blo
k matrix in K∗i

n+1. The value of 
ontrol ui
n is known and v̄i

n issent by the 
oordinator.The matrix K∗i
n+1 is 
al
ulated as follows.For P ∗i

0|−1 = X0 we 
an determine K∗i
0 from (59), P ∗i

0 from (65), then P ∗i
1|0from (62), K∗i

1 from (59) and then P ∗i
1 from (65), next P ∗i

2|1 from (62), K∗i
2 from(59), and so on.4.2. Filtering equations for the 
oordinatorNow we 
onsider the LMMSE problem of the 
oordinator for the system de-s
ribed by the equation (46) and (4) for i = 1, ..., M .Using (45) we 
an write (46) in the form

xn+1 = Anxn + Bd
nbn − Bd

nLd
nx̂n + wn (66)where bn = [b1T

n (~mn), ..., bMT
n (~mn)]T and Ld

n = diag{L1
n, ..., LM

n }.It is assumed that an estimate of xn+1 at time (n + 1), determined by the
oordinator, is based on measurement information ~mn+1.Using (58) (1), (2) and (45) we 
an write (49) as
x̂i

n+1 = (Aii
n + Bi

nLi
n − Ki

n+1C
i
n+1A

ii
n )x̂i

n + Ki
n+1C

i
n+1A

∗i
n xn + Bi

nbi
n+

+(1− Ki
n+1C

i
n+1)v̄

i
n + Ki

n+1C
i
n+1w

i
n + Ki

n+1r
i
n+1, i = 1, ..., M (67)where A∗i

n = [Ai1
n , , , , , AiM

n ].Therefore, the estimate x̂n+1 is
x̂n+1 = Âx

nxn + Âdx̂
n x̂n + Bd

nbn(~mn) + Bdv̄
n v̄n + Γdw

n wn + Γdr
n+1rn+1 (68)where Âx

n = vec{Ki
n+1C

i
n+1A

∗i
n }, Âdx̂

n = diag{Aii
n + Bi

nLi
n − Ki

n+1C
i
n+1A

ii
n},

Bdv̄
n = diag{1−Ki

n+1C
i
n+1}, Γdw

n = diag{Ki
n+1C

i
n+1}, Γdr

n+1 = diag{Ki
n+1} for

i = 1, ..., M .We 
an write (66) and (68) in blo
k form as
xu

n+1 = Au
nxu

n + Bu
nbn + Buv̄

n v̄n + Γuw
n wn + Γur

n+1rn+1 (69)where xu
n = [xT

n , x̂T
n ]T , v̄n = [v̄1T

n , ..., v̄MT
n ]T and the forms of the matri
es Au

n,
Bu

n , Γuw
n and Γur

n+1 result from (66) and (68).The model of measurements for the 
oordinator results from (4) and 
an bewritten in the form
mn = Dnyn = DnCnxn + Dnrn = [DnCn 0]xu

n + Dnrn = Fu
n xu

n + Dnrn(70)



542 Z. DUDAwhere mn = [m1T
n , ..., mMT

n ]T , yn = [y1T
n , ..., ymT

n ]T , Dn = diag{D1
n, ..., DM

n },
Cn = diag{C1

n, .., CM
n }.The problem is to determine the LMMSE estimate x̄u

n of the augmentedstate xu
n given information ~mn.From (43) we have

x̄u
n+1 = x̄u

n+1|n + Ku
n+1(mn+1 − Fu

n+1x̄
u
n+1|n). (71)The error x̃u

n+1|n should be orthogonal to ~mn = [mT
1 , ..., mT

n ]T , i.e.
E(xu

n+1 − x̄u
n+1|n)~mT

n = 0. (72)From (69) and sin
e xu
n = x̄u

n + x̃u
n we have

xu
n+1 = Au

nx̄u
n + Au

nx̃u
n + Bu

nbn + Buv̄
n v̄n + Γuw

n wn + Γur
n+1rn+1. (73)Then (72) be
omes

E(Au
nx̄u

n + Bu
nbn + Buv̄

n v̄n − x̄u
n+1|n)~mT

n + E(Au
nx̃u

n)~mT
n + E(Γuw

n wn)~mT
n+

+E(Γur
n+1rn+1)~m

T
n = 0. (74)Sin
e x̄u

n is an LMMSE estimate of xu
n given ~mn , wn is independent of ~mnand rn+1 is independent of ~mn, the last three terms in (74) are equal to zero.Therefore

E(Au
nx̄u

n + Bu
nbn + Buv̄

n v̄n − x̄u
n+1|n)~mT

n = EE|~mn
{[Au

nx̄u
n + Bu

n

p∗
n

︷ ︸︸ ︷

bn(~mn)+

+Buv̄
n v̄n − x̄u

n+1|n]~mT
n} = 0. (75)Eqn. (75) is satis�ed when

x̄u
n+1|n = Au

nx̄u
n + Bu

np∗n + Buv̄
n v̄n (76)for every realization of ~mn.From (44) and (70) we have

Ku
n+1 = Pu

n+1|nFuT
n+1(F

u
n+1P

u
n+1|nFuT

n+1 + Dn+1Rn+1D
T
n+1)

−1 (77)where Rn+1 is a 
ovarian
e matrix of rn+1.Now from (69) and (76) we have
x̃u

n+1|n = Au
nx̃u

n + Γuw
n wn + Γur

n+1rn+1. (78)Thus
Pu

n+1|n = Ex̃u
n+1|nx̃uT

n+1|n = Au
nPu

n AuT
n + Γuw

n WnΓuwT
n + Γur

n+1Rn+1Γ
urT
n+1 (79)
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n = Ex̃u

nx̃uT
n .From (71) and (70) we have that

x̃u
n+1 = xu

n+1 − x̄u
n+1 = x̃u

n+1|n − Ku
n+1(mn+1 − m̄n+1|n) =

= (1− Ku
n+1F

u
n+1)x̃

u
n+1|n − Ku

n+1Dn+1rn+1. (80)The 
ovarian
e matrix Pu
n+1 has the form

Pu
n+1 = (1− Ku

n+1F
u
n+1)P

u
n+1|n(1 − Ku

n+1F
u
n+1)

T +

+ Ku
n+1Dn+1Rn+1D

T
n+1K

uT
n+1−

− (1− Ku
n+1F

u
n+1)Ex̃u

n+1|nrT
n+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Ern+1x̃

uT
n+1|n(1− Ku

n+1F
u
n+1)

T . (81)From (78) it results that
Ex̃u

n+1|nrT
n+1 = Γur

n+1Rn+1. (82)Thus the 
ovarian
e matrix Pu
n+1 ful�ls the equation

Pu
n+1 = (1− Ku

n+1F
u
n+1)P

u
n+1|n(1 − Ku

n+1F
u
n+1)

T +

+ Ku
n+1Dn+1Rn+1D

T
n+1K

uT
n+1−

− (1− Ku
n+1F

u
n+1)Γ

ur
n+1Rn+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Rn+1Γ

urT
n+1(1− Ku

n+1F
u
n+1)

T . (83)We substitute (77) into the se
ond term in (83). Thus
Pu

n+1 = (1− Ku
n+1F

u
n+1)P

u
n+1|n−

− (1− Ku
n+1F

u
n+1)Γ

ur
n+1Rn+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Rn+1Γ

urT
n+1(1− Ku

n+1F
u
n+1)

T . (84)Finally, x̄u
n+1 is 
omputed from (71) and (76) with x̄u

0|−1 = Exu
0 and Ku

n+1de�ned by (77). The values of p∗n and v̄n are known.The matrix Ku
n+1 is 
al
ulated as follows.For Pu

0|−1 = diag{X0, X0} we 
an determine Ku
0 from (77), Pu

0 from (84)and Pu
1|0 from (79), Ku

1 from (77) and next Pu
1 from (84), Pu

2|1 from (79), Ku
2from (77), and so on.A

ording to the notation xu

n = [xT
n , x̂T

n ]T only x̄nin x̄u
n is needed for real�ltration.



544 Z. DUDA5. ExampleLet us 
onsider an autonomous, stationary system 
omposed of two subsystemswith
A11

n =





0.083−033−0.045
0.450 0.790−0.030
0.300 0.922−0.001



 , A12
n =





0.119 −0.016−0.106 0.053
−0.120−0.160 0.142 0.022
−0.002 0.026 −0.080−0.092



 , (85)
A21

n =







−0.035−0.072 0.040
0.043 0.029 0.036
0.063 −0.020 0.065
−0.080 0.035 0.033







, A22
n =







0.272−0.230−0.033−0.002
0.597 0.867 −0.020−0.001
0.359 0.952 0.993 −0.001
0.130 0.488 0.998 0.999







, (86)
C1

n =

[
0 0 0.005
0 0.85 0

]

, C2
n =





0 0 0 0.003
0 0.045 0 0.001
0 0 0.15 0



 , (87)
Rn =









0.05 0.015 0 0 0
0.015 0.05 0 0 0

0 0 0.019 0.002 0.002
0 0 0.002 0.040 0.004
0 0 0.002 0.004 0.030









, (88)
Wn =













0.272 0.102 0.029 0 0 0 0
0.102 0.107 0.045 0 0 0 0
0.029 0.045 0.022 0 0 0 0

0 0 0 0.800 0.356 0.112 0.027
0 0 0 0.356 0.316 0.128 0.036
0 0 0 0.112 0.128 0.058 0.017
0 0 0 0.027 0.036 0.017 0.005













, (89)
X0 =













0.4 0 −0.2 0 0 0 0
0 0.6 0 0 0 0 0

−0.2 0 0.03 0 0 0 0
0 0 0 0.62 0 −0.41 0
0 0 0 0 0.41 0 0.77
0 0 0 −0.41 0 0.77 0
0 0 0 0 −0.77 0 2.03













. (90)Let us assume that for the system
xn+1 =

[
x1

n+1

x2
n+1

]

=

[
A11

n A12
n

A21
n A22

n

] [
x1

n

x2
n

]

+

[
w1

n

w2
n

] (91)
yn =

[
y1

n

y2
n

]

=

[
C1

n 01

02 C2
n

] [
x1

n

x2
n

]

+

[
r1
n

r2
n

] (92)
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onventional problem of a state �ltration 545the estimates result from a 
lassi
al Kalman �lter i.e.
x̂n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n). (93)Thus, the estimates x̂1

n and x̂2
n are based on the information [yT

0 , ..., yT
n ]T andresult from (93).The estimates x̂1

n and x̂2
n, determined from the de
entralized Kalman �lter,result from (49) and depend on lo
al measurement information.For illustration we present the estimation errors (x11

n − x̂11
n ) (Fig.1 ) and

(x21
n − x̂21

n ) (Fig.2) for the �rst state 
omponents of both subsystems (xi1
n , i =

1, 2) resulting from the 
lassi
al Kalman �lter and the de
entralized one for
D = 1.
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Figure 1. Estimation errors for 
lassi
al and de
entralized Kalman �lters forthe �rst subsystem
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Figure 2. Estimation errors for 
lassi
al and de
entralized Kalman �lters forthe se
ond subsystemThe results show that the assumption of repla
ement of intera
tion estimate
v̂i

n by v̄i
n does not signi�
antly worsen the estimation.



546 Z. DUDAFigs. 3 and 4 show the estimation errors (xi1
n − x̄i1

n ), (xi1
n − x̂i1

n ) for i = 1, 2and for D1
n = [0 1], D2

n = [ 1 0 0].
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Figure 3. Estimation errors for the �rst subsystem and D1
n = [0 1], D2

n = [1 0 0].
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Figure 4. Estimation errors for the se
ond subsystem and D1
n = [0 1], D2

n =
[1 0 0].Comparing Fig. 1 to Fig. 3 and Fig. 2 to Fig. 4 we 
an analyse the in�uen
e ofaggregation on �ltration quality for the subsystems. For given data the proposedde
entralized �lter may be a

epted.Con
lusionIn this paper the linear state Kalman �lter for the dynami
 system 
ontrolledin the two-level 
ontrol and information stru
tures is derived. The approa
his based on the modi�ed innovations and leads to the de
entralized �lters forthe lo
al 
ontrollers and augmented optimal �lter for the 
oordinator, whoseimplementation 
an be 
omputationally intensive. Some methods redu
ing the
omputational 
ost are known in the literature (see Chien and Fu, 1999) andmay be applied to the problem 
onsidered.
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