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532 Z. DUDAproessed by deision makers. A on�it between loal ontrollers is softenedby the oordinator on the upper level.Gessing (1988) formulated and solved a stohasti ontrol problem with aquadrati ost for a system omposed of interating linear subsystems. Con-trol is realized in a two-level struture with a oordinator on the upper leveland loal ontrollers on the lower level. It is assumed that the loal ontrollershave essential information for their subsystems, while the oordinator has aggre-gate information on the whole system. An elasti onstraint as a oordinationequation is proposed in whih deisions of the oordinator are a onditionalexpetation of deision rules of the loal ontrollers.In order to realize the ontrols of the deision makers, the urrent deter-mination of the state estimates, performed by the oordinator, and the loalontrollers is needed. A solution to this problem was proposed in Gessing andDuda (1990).In the present paper a new approah to the �ltration problem is presented.It is based on modi�ed innovations and orthogonality priniple.2. Control problem formulation and its solutionConsider a large sale dynami system omposed of M subsystems desribed bythe equation
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534 Z. DUDAThe oordinating variables pn result from the global optimization and havethe form
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On some nononventional problem of a state �ltration 5353. New approah to the �ltration problemWe restrit the estimate of the state x̂n to be a linear estimate
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nxn + Âdx̂
n x̂n + Bd

nbn(~mn) + Bdv̄
n v̄n + Γdw

n wn + Γdr
n+1rn+1 (68)where Âx

n = vec{Ki
n+1C

i
n+1A

∗i
n }, Âdx̂

n = diag{Aii
n + Bi

nLi
n − Ki

n+1C
i
n+1A

ii
n},

Bdv̄
n = diag{1−Ki

n+1C
i
n+1}, Γdw

n = diag{Ki
n+1C

i
n+1}, Γdr

n+1 = diag{Ki
n+1} for

i = 1, ..., M .We an write (66) and (68) in blok form as
xu

n+1 = Au
nxu

n + Bu
nbn + Buv̄

n v̄n + Γuw
n wn + Γur

n+1rn+1 (69)where xu
n = [xT

n , x̂T
n ]T , v̄n = [v̄1T

n , ..., v̄MT
n ]T and the forms of the matries Au

n,
Bu

n , Γuw
n and Γur

n+1 result from (66) and (68).The model of measurements for the oordinator results from (4) and an bewritten in the form
mn = Dnyn = DnCnxn + Dnrn = [DnCn 0]xu

n + Dnrn = Fu
n xu

n + Dnrn(70)



542 Z. DUDAwhere mn = [m1T
n , ..., mMT

n ]T , yn = [y1T
n , ..., ymT

n ]T , Dn = diag{D1
n, ..., DM

n },
Cn = diag{C1

n, .., CM
n }.The problem is to determine the LMMSE estimate x̄u

n of the augmentedstate xu
n given information ~mn.From (43) we have

x̄u
n+1 = x̄u

n+1|n + Ku
n+1(mn+1 − Fu

n+1x̄
u
n+1|n). (71)The error x̃u

n+1|n should be orthogonal to ~mn = [mT
1 , ..., mT

n ]T , i.e.
E(xu

n+1 − x̄u
n+1|n)~mT

n = 0. (72)From (69) and sine xu
n = x̄u

n + x̃u
n we have

xu
n+1 = Au

nx̄u
n + Au

nx̃u
n + Bu

nbn + Buv̄
n v̄n + Γuw

n wn + Γur
n+1rn+1. (73)Then (72) beomes

E(Au
nx̄u

n + Bu
nbn + Buv̄

n v̄n − x̄u
n+1|n)~mT

n + E(Au
nx̃u

n)~mT
n + E(Γuw

n wn)~mT
n+

+E(Γur
n+1rn+1)~m

T
n = 0. (74)Sine x̄u

n is an LMMSE estimate of xu
n given ~mn , wn is independent of ~mnand rn+1 is independent of ~mn, the last three terms in (74) are equal to zero.Therefore

E(Au
nx̄u

n + Bu
nbn + Buv̄

n v̄n − x̄u
n+1|n)~mT

n = EE|~mn
{[Au

nx̄u
n + Bu

n

p∗
n

︷ ︸︸ ︷

bn(~mn)+

+Buv̄
n v̄n − x̄u

n+1|n]~mT
n} = 0. (75)Eqn. (75) is satis�ed when

x̄u
n+1|n = Au

nx̄u
n + Bu

np∗n + Buv̄
n v̄n (76)for every realization of ~mn.From (44) and (70) we have

Ku
n+1 = Pu

n+1|nFuT
n+1(F

u
n+1P

u
n+1|nFuT

n+1 + Dn+1Rn+1D
T
n+1)

−1 (77)where Rn+1 is a ovariane matrix of rn+1.Now from (69) and (76) we have
x̃u

n+1|n = Au
nx̃u

n + Γuw
n wn + Γur

n+1rn+1. (78)Thus
Pu

n+1|n = Ex̃u
n+1|nx̃uT

n+1|n = Au
nPu

n AuT
n + Γuw

n WnΓuwT
n + Γur

n+1Rn+1Γ
urT
n+1 (79)
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n = Ex̃u

nx̃uT
n .From (71) and (70) we have that

x̃u
n+1 = xu

n+1 − x̄u
n+1 = x̃u

n+1|n − Ku
n+1(mn+1 − m̄n+1|n) =

= (1− Ku
n+1F

u
n+1)x̃

u
n+1|n − Ku

n+1Dn+1rn+1. (80)The ovariane matrix Pu
n+1 has the form

Pu
n+1 = (1− Ku

n+1F
u
n+1)P

u
n+1|n(1 − Ku

n+1F
u
n+1)

T +

+ Ku
n+1Dn+1Rn+1D

T
n+1K

uT
n+1−

− (1− Ku
n+1F

u
n+1)Ex̃u

n+1|nrT
n+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Ern+1x̃

uT
n+1|n(1− Ku

n+1F
u
n+1)

T . (81)From (78) it results that
Ex̃u

n+1|nrT
n+1 = Γur

n+1Rn+1. (82)Thus the ovariane matrix Pu
n+1 ful�ls the equation

Pu
n+1 = (1− Ku

n+1F
u
n+1)P

u
n+1|n(1 − Ku

n+1F
u
n+1)

T +

+ Ku
n+1Dn+1Rn+1D

T
n+1K

uT
n+1−

− (1− Ku
n+1F

u
n+1)Γ

ur
n+1Rn+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Rn+1Γ

urT
n+1(1− Ku

n+1F
u
n+1)

T . (83)We substitute (77) into the seond term in (83). Thus
Pu

n+1 = (1− Ku
n+1F

u
n+1)P

u
n+1|n−

− (1− Ku
n+1F

u
n+1)Γ

ur
n+1Rn+1D

T
n+1K

uT
n+1−

− Ku
n+1Dn+1Rn+1Γ

urT
n+1(1− Ku

n+1F
u
n+1)

T . (84)Finally, x̄u
n+1 is omputed from (71) and (76) with x̄u

0|−1 = Exu
0 and Ku

n+1de�ned by (77). The values of p∗n and v̄n are known.The matrix Ku
n+1 is alulated as follows.For Pu

0|−1 = diag{X0, X0} we an determine Ku
0 from (77), Pu

0 from (84)and Pu
1|0 from (79), Ku

1 from (77) and next Pu
1 from (84), Pu

2|1 from (79), Ku
2from (77), and so on.Aording to the notation xu

n = [xT
n , x̂T

n ]T only x̄nin x̄u
n is needed for real�ltration.



544 Z. DUDA5. ExampleLet us onsider an autonomous, stationary system omposed of two subsystemswith
A11

n =





0.083−033−0.045
0.450 0.790−0.030
0.300 0.922−0.001



 , A12
n =





0.119 −0.016−0.106 0.053
−0.120−0.160 0.142 0.022
−0.002 0.026 −0.080−0.092



 , (85)
A21

n =







−0.035−0.072 0.040
0.043 0.029 0.036
0.063 −0.020 0.065
−0.080 0.035 0.033







, A22
n =







0.272−0.230−0.033−0.002
0.597 0.867 −0.020−0.001
0.359 0.952 0.993 −0.001
0.130 0.488 0.998 0.999







, (86)
C1

n =

[
0 0 0.005
0 0.85 0

]

, C2
n =





0 0 0 0.003
0 0.045 0 0.001
0 0 0.15 0



 , (87)
Rn =









0.05 0.015 0 0 0
0.015 0.05 0 0 0

0 0 0.019 0.002 0.002
0 0 0.002 0.040 0.004
0 0 0.002 0.004 0.030









, (88)
Wn =













0.272 0.102 0.029 0 0 0 0
0.102 0.107 0.045 0 0 0 0
0.029 0.045 0.022 0 0 0 0

0 0 0 0.800 0.356 0.112 0.027
0 0 0 0.356 0.316 0.128 0.036
0 0 0 0.112 0.128 0.058 0.017
0 0 0 0.027 0.036 0.017 0.005













, (89)
X0 =













0.4 0 −0.2 0 0 0 0
0 0.6 0 0 0 0 0

−0.2 0 0.03 0 0 0 0
0 0 0 0.62 0 −0.41 0
0 0 0 0 0.41 0 0.77
0 0 0 −0.41 0 0.77 0
0 0 0 0 −0.77 0 2.03













. (90)Let us assume that for the system
xn+1 =

[
x1

n+1

x2
n+1

]

=

[
A11

n A12
n

A21
n A22

n

] [
x1

n

x2
n

]

+

[
w1

n

w2
n

] (91)
yn =

[
y1

n

y2
n

]

=

[
C1

n 01

02 C2
n

] [
x1

n

x2
n

]

+

[
r1
n

r2
n

] (92)



On some nononventional problem of a state �ltration 545the estimates result from a lassial Kalman �lter i.e.
x̂n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n). (93)Thus, the estimates x̂1

n and x̂2
n are based on the information [yT

0 , ..., yT
n ]T andresult from (93).The estimates x̂1

n and x̂2
n, determined from the deentralized Kalman �lter,result from (49) and depend on loal measurement information.For illustration we present the estimation errors (x11

n − x̂11
n ) (Fig.1 ) and

(x21
n − x̂21

n ) (Fig.2) for the �rst state omponents of both subsystems (xi1
n , i =

1, 2) resulting from the lassial Kalman �lter and the deentralized one for
D = 1.
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Figure 1. Estimation errors for lassial and deentralized Kalman �lters forthe �rst subsystem
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Figure 2. Estimation errors for lassial and deentralized Kalman �lters forthe seond subsystemThe results show that the assumption of replaement of interation estimate
v̂i

n by v̄i
n does not signi�antly worsen the estimation.



546 Z. DUDAFigs. 3 and 4 show the estimation errors (xi1
n − x̄i1

n ), (xi1
n − x̂i1

n ) for i = 1, 2and for D1
n = [0 1], D2

n = [ 1 0 0].
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Figure 3. Estimation errors for the �rst subsystem and D1
n = [0 1], D2

n = [1 0 0].
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Figure 4. Estimation errors for the seond subsystem and D1
n = [0 1], D2

n =
[1 0 0].Comparing Fig. 1 to Fig. 3 and Fig. 2 to Fig. 4 we an analyse the in�uene ofaggregation on �ltration quality for the subsystems. For given data the proposeddeentralized �lter may be aepted.ConlusionIn this paper the linear state Kalman �lter for the dynami system ontrolledin the two-level ontrol and information strutures is derived. The approahis based on the modi�ed innovations and leads to the deentralized �lters forthe loal ontrollers and augmented optimal �lter for the oordinator, whoseimplementation an be omputationally intensive. Some methods reduing theomputational ost are known in the literature (see Chien and Fu, 1999) andmay be applied to the problem onsidered.
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