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Abstract: In the paper nonconventional linear equations of
state filtration are derived. They are useful for some two-level hi-
erarchical control system structure with coordinator and local con-
trollers having different information. It is assumed that the system
considered is described by a linear output equation and a linear state
equation with control being a random variable for the coordinator
generated by decision rules of the local controllers. The approach to
state filtration is based on modified innovations and orthogonality
principle. A simple numerical example is presented.
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1. Introduction

The paper deals with control with a quadratic cost for a stochastic system
composed of interacting linear subsystems. Quality of control depends on the
assumed information and control structures. In a one level structure a central
decision maker determines values of control on the basis of available information
collected from all subsystems. However, in large scale systems the process of
transmission and transformation of information in a centralized manner can be
difficult to realize. This leads to decentralization of information and control
structures.

Control problems with decentralized measurement information are studied
in a team decision theory, as well as in the hierarchical control (see Aoki, 1973;
Chong and Athans, 1971; Ho, 1980). The problems may be complicated, es-
pecially in the case of the so called nonclassical information pattern, in which
controllers do not have identical information.

Control and optimization for large scale systems are usually based on a de-
composition of a global system into subsystems so as to decrease computational
requirements and decrease the amount of information to be transmitted to and
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processed by decision makers. A conflict between local controllers is softened
by the coordinator on the upper level.

Gessing (1988) formulated and solved a stochastic control problem with a
quadratic cost for a system composed of interacting linear subsystems. Con-
trol is realized in a two-level structure with a coordinator on the upper level
and local controllers on the lower level. It is assumed that the local controllers
have essential information for their subsystems, while the coordinator has aggre-
gate information on the whole system. An elastic constraint as a coordination
equation is proposed in which decisions of the coordinator are a conditional
expectation of decision rules of the local controllers.

In order to realize the controls of the decision makers, the current deter-
mination of the state estimates, performed by the coordinator, and the local
controllers is needed. A solution to this problem was proposed in Gessing and
Duda (1990).

In the present paper a new approach to the filtration problem is presented.
It is based on modified innovations and orthogonality principle.

2.  Control problem formulation and its solution

Consider a large scale dynamic system composed of M subsystems described by
the equation

M
T = A, + Buuy + ) Alal +w, =
j#i
= Aligl + Biul 4+l 4wl i=1,2,., M (1)
where 2¢, u!, wt, v’ are vectors of state, control, disturbance and interaction
of the ith subsystem; B}, and AY, 4,7 =1,2,..,M, n=0,1... are appropriate
matrices.
The model of measurements has the form

i _ i i
where 3%, and r! are the vectors of the measurements and measurement errors,
respectively.

It is assumed that the processes w,, = [wlT ..., wMT]T and r,, =[r}T, ..., PMT]T
are white noises, mutually independent. The initial state zo = [z§7,...z}!T]T

is also random, independent of the above vectors. Additionally, we assume
that Er, = 0, Fw, = 0, Exg and the covariance matrices W,, = Ewnwf ,
R, = Er,vl, Xo = E(zo — Exo)(7o — Exo)7T are finite and given.

The problem is to find the control laws u!, = a!(.),i = 1,2,....,M,n =
0,1,...N asfunctions of available information that minimize a performance index

I=EY Y [ Qe +a) (VH,a, ()] (3)

n=0 i=1
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where E denotes mean operation, Q°, and H! are symmetric , non negative and
positive-definite matrices.

The complexity and the effectiveness of a solution depends on the assumed
information and control structures.

Gessing (1988) assumed that control is realized in a two level hierarchical
structure with a coordinator on the upper level and local controllers on the lower
one.

The ith local controller receives from the appropriate subsystem the mea-
surement '’ which is aggregated to the form

my, = Dyyy, = Fyay, + Dy, (4)

and transmitted to the coordinator. Owing to the low dimension of the vector
mi, the amount of information transmitted and converted by the coordinator
may be decreased.

Notice that for D! equal to a unit matrix (D! = 1), all information is
transmitted to the coordinator. It is the case of classical control realized by a
central decision maker. For D! = 0 no information is transmitted from the i-th
subsystem to the coordinator.

At time n a posteriori measurement information of the ith local controller

and the coordinator is defined by ¢, = [y¢T, ....,y:T|T and 1, = [mLT, ..., mMT]T
mi = [mil, ...,miT)T, respectively.

As admissible control laws of the ith controller (af,

(b,) we assume

) and of the coordinator

where 27, is an estimate of the state 2¢, determined by the ith local controller, z¢,
is the estimate of the state x!, determined by the coordinator and sent to the ith
controller; p, = [pT, ..., pM7T]T is a vector of coordinating variables determined

by the coordinator.
Additionally, it is assumed that the control laws fulfill an elastic constraint

where E|5, denotes conditional mean operation given 1i,,.
Gessing (1988) showed that the optimal control law a%° for the ith controller
results from the local minimization and has the form
Uy = ay (&, 75, 03) = Py — Ly (2], — 73,) (7)

where p?, is the coordinating variable sent by the coordinator, and L, is a matrix
determined in an appropriate way.
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The coordinating variables p,, result from the global optimization and have
the form

where L,, is a matrix determined in an appropriate way and z,, = [z.7, ..., zMT]T
is an estimate of the state of the whole system determined by the coordinator.

In order to realize the controls (7) and (8) the current determination of the
state estimates performed by the coordinator and local controllers is needed.
The filtering problem was solved in Gessing and Duda (1990) under the following
assumptions:

1. The estimate of the interaction v} = Z;\il AWz determined by the ith
local controller, is equal to the estimate determined by the coordinator

2. The estimate z;,,, = E};3, , %41, determined by the coordinator, is sent
to the ith local controller and used to determine the estimate 27, ,

3. The correction

i i N S
‘In+l|n+ - ‘In+l|n - E\ﬁﬁl,il +1In+1 E|y$l‘rn+l (9)

n

determined by the ith local controller, is equal to the correction
To1 — Trgan = Tn1 — Ej, Th (10)

determined by the coordinator
4. Random variables z{), r}, and w;, are mutually independent Gaussian white
noises.

It is shown that the estimate ¢ 11, determined by the 7th local controller,
has the form

Ty = jj;,+1|n+ + Ky (Y1 — 0111+1‘/i.21+1|n+)
j:z-l—l\n—i— = 3_3:1-1-1 + G, (2, — 73,). (11)
The filtering equations of the coordinator have the form

jn-{-l = i'n+1|n + Kn-i—l (mn-i-l - Fn+1jn+l\n)
jn-l—l\n = ApZn + Bupn. (].2)

The matrices G%,, IA{};H, Foi1, Ap, By, and K, ;1 are determined in an appro-
priate way.

In the present paper a new approach to the filtration problem, based on
modified innovations, is presented. The assumptions 2, 3 and 4 are not required.
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3. New approach to the filtration problem

We restrict the estimate of the state Z,, to be a linear estimate
n
Tn = o + Z ;Y (13)
j=1

that minimizes the mean square error (MSE)

MSE = E(z, — &) (xn — &). (14)

Calculation of a recursive form of the estimate will be based on Theorem 1 and
modified innovations.

THEOREM 1. Let x and y be jointly distributed random wvectors and let & =
oo + a1y be the estimate of x given y. Then T minimizes the MSE if the error
(x — &) is orthogonal to y, i.e.,

Bz -2yt =0 (15)
and T 1s unbiased.

Proof. If & is unbiased and the error (z — &) is orthogonal to y then

E(x—ap—ayy)=0 (16)

E(z —ap — a1y)y’ = 0. (17)
Thus

a9 =FEx —anEy (18)

Py + ExEy" — agEy" — a1 (P, + EyEy") = 0. (19)
As a result we have

& = Ex + Pyy P, (y — Ey). (20)
The same result can be found directly by minimization of (14). ]

3.1. Modified innovations
Classical innovations are defined by Kamen and Su (1999):

€n = Yn = Unjn—1 (21)
where §j,,|,—1 is the LMMSE estimate of y,, given ¢,—1 = [y1 , ...,y _,]” ie.,

n—1

Qn\nfl = Z Qp—1,7Y; = an—lgn—l- (22)
j=1
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In this paper the estimate (22) is modified to the form

n—1
Qn\nfl =ap+ Z Qn—1,7Y; = Qo + an—lgn—l (23)
j=1
where o, 1 = [y—1,1, ..., — 1,n — 1].

The estimate |, should be unbiased and the error (¥, — ¥n|n—1) should
be orthogonal to ¥,—1.

The innovations e; are endowed with definite properties.
Orthogonality 1. The innovation e; is orthogonal to y;, i=1,...,5 — 1.

This results from Theorem 1. Namely
E(y; — ?Jj\j—l)gjr—1 =0 (24)
that is equivalent to
E(y; — §jj-1)yi = Eejyl =0, i=1,...,j—1. (25)
Orthogonality 2. The innovations are orthogonal to each other.
For j > ¢ > 1 we have
EeieJT = E(y; — gji‘i_l)ejr = Eyl-ejT — E(ap + ai,lgi,l)ef =0. (26)

Uncorrelatedness. The innovations are uncorrelated with each other.

This results from Orthogonality 2 and the fact that Ee; = 0 (unbiased
estimate). Therefore, innovations are white noise.

Equivalent information. The measurement y,, 11 can be obtained from linear
combination of ¢;, i=1,...,n+ 1.

Let 1|0 take a given value y, i.e. §1)o = ¥, so that e; = y1 —y and y1 = y+e1.
For e; we have

€2 =Y2 — Y21 = Y2 — Q2 — a1 y1- (27)
We can find y, via

Y2 =0 +ang+oarer +ex =a;+ex+aner. (28)

We can continue this process indefinitely for any y,+1

n
Uni1 = Oy Feni1 Y o ies. (29)
i=1
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3.2. Recursive form of =,

Let
n+1 n+1

Bnt1 =00+ Y ni1iti =Bo+ Y Buyrici (30)

i=1 i=1

be the LMMSE estimate of x;,41.
This estimate should be unbiased and orthogonal to &,11=[e],...,el
ie.,

17
Ej:n+1 = E$n+1 = 60 (31)
E(Zp41 — &np1)el =0, i=1,..,n+1. (32)

From (32), (31) and (30) we have

n+1
Exniie] =EBo+ Y Bnr1ej)el = BniriBeie] . (33)

j=1
Therefore, the matrix 8,41, is
Bni1,i = Exngae] (Bee] )™ (34)

Substituting (31) and (34) into (30) gives

n+1
Fnt1 = Bxpi1 + Z Ex, el (Beiel ) te,. (35)
i=1

By a derivation analogous to that presented above we find that the LMMSE
estimate of z,11 given ¥, has the form
n n
Tpy1n = @0 + Z Qn,iYi = Po + Zﬁmei =

i=1 i=1

=FEz,1+ Z EIn+1€?(Eeie?)7lei- (36)
i=1

Then, (35) can be written in a recursive form
- - T T -1
In41 = Eny1jn + Evnpre, g (Eentie, 1) entr. (37)

It is a classical form of the LMMSE estimate.
Let y,, be described by

where 7, is a white noise with Er,, = 0 and a covariance matrix R,,.
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Therefore
en+1 = Cnt1Znt1jn + Tnt1 (39)

where in-{-l\n = Tn+1 — jn-{-l\n'

It is assumed that Z,, 1, is the LMMSE estimate of x,, 11 given information
Un. Then &, ), is unbiased and Z,, ), is orthogonal to 7.

From (39) we have

Eepiiel | = On+1Pn+1|nC§+1 + Ry (40)

_ s =T
where P, 1), = El’n+1\nl’n+1‘n-

To find Ex,11el | we use (39) again

T ~ T ~T T
Exnpiens = Exnt1(Cop1@ngipn +mnt1)” = Exn1%y, 1), Cpqr =
_ =, I ~T T
- E(In-i-l\n + $n+1|n)‘rn+l|ncn+1 -
- ~T T - ~ T
= EIn+1\n$n+1|nCn+1 + EZpi1nZnt1inCpya- (41)

The last term in (41) is equal to zero because of orthogonality of the vectors
Zpi1n and Ty 4 q)n- Therefore

EInJrleZ.H = Pn+l|nOT+1' (42)

n

Substituting (41) and (42) into (37) we find that

Tpyr = jnJrl\n'i‘Kvn-i-l(yn-i-l —Jnt1jn) = jnJrl\n'i‘Kvn-i-l(yn-i-l_Cn-i-li'thlln) (43)
where K,,;1 is a Kalman gain defined by

Kns1 = Poi1jnCrhy 1 (Crg1 Pog1jnCiny + Rugr) ™ (44)

4. Linear Kalman filter

Now we consider the LMMSE filtration problem of the ith local controller and
the coordinator for the system described by (1) and (2) in the structure pre-
sented in the Section 2.

4.1. Filtering equations for the ith local controller

Let us consider the model of the system (1).
In eqn. (1) control uf, has the form (7) and can by written as

4 ~0

where pit = pt + Li 7l = b (1m,,).
The value of the coordinating variable p}' is determined by the coordinator

and sent to the 7th controller.
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The whole system (1) and the model of the ith measurement (2) can be
described by the equations

Tpa1 = AnTp + Bia:; + wy, (46)
= CFg, + 1l (47)
where z,, = [x,lzT,. . fyT]T, a) = [a;*llT(.), ..,aZMT(.)]T, wy, = [w,lzT, ...,w,lsz]T,

C* =10,..0,C%,0,..0] and the forms of the matrices A,,, B¢ result from (1).

g,

Yn
—N

Let &,11 be a LMMSE estimate of z,,41 given {g, min, Y41 }-
According to (43) we have

Fnt1 = Enpapn + K Yng1 — Cr1@ntagn) (48)
or
Ty = ‘i:1+l|n + K1 (U1 — C:H-lj::z-l-l\n)’ i=1,..M. (49)

The matrix K}, in (49) is an appropriate block of the matrix bR
The error Z,1), should be orthogonal to 7, i.e.

E(wp41 — i"n+1\n)?7fziT =0. (50)
Let #,), be a LMMSE estimate of z,, given T
Thus, from (46) and since x,, = Z|;, + Zp|n, We have

Tnt1 = Anfnjn + AnZpn + Blak + wy. (51)
Then, (50) becomes

E(Andnpy + Blak — 210707 + E(Apinn) 757" + Ew, i = 0. (52)

Since I, is LMMSE estimate of x, given 7 and w, is independent, of 7%,
the last two terms in (52) are equal to zero.
Therefore
E(Andppy + Blak — &) 7" = 0. (53)

From (53) we have for j =1,..., M

B(AJ&, + Z AJFak 4 Bhay) —at T =0, (54)
k#3j

For j = ¢ we obtain

5, ik ~k i *i ~7 g
Z ;7,|n + Z A:L n|n + B;La‘nl - x;+1|n)yan = (55)
k#i

2
Upy,

. A . .
- [ ﬂ“ A xn\n + Z‘A:lk Z|n + BZ *l( Yn ) - x;—i—lh)ﬂjzl,r] =0. (56)
k#i
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Eqn. (56) is satisfied when

k#i

for every realization of i*

Let us assume that the estimate 47 determined by the ith local controller

n1jn ted by the ith L
is based on eqn. (57), where xn‘n is replaced by 27, and v} by v;,- an LMMSE
estimate of the interaction v! based on m,. This estimate is determined by the
coordinator and sent to the ¢th local controller.

g

y’!l
—_—

Let us remind that & &% is the LMMSE estimate of xn+1 given {7\, 17, yh1t
while xn+1| 41 is the LMMSE estimate of @, 41 given ;" ;.

Finally, the estimate %, (used for real filtration) results from (49) with

Thi1pn = ALE, + Bhuy, + 7, (58)
The form of K} results from (44)
nfl-l = n+1\nC:7iﬂ( n+1 +1|nCM+T1 + Rn+1) (59)

where Rl | = Ern+1rn+1 and results from R, 41.
Let us assume that &, ), is the LMMSE estimate given #,. In this case we
have

and
Potijn = EZngandy )y = AnPaAL + W, (61)
Basing on (61) it is proposed to use Py’ in (59) as
A = A P AT v W, (62)

where P = E2,3L = E(z, — 2,) (2, — 2n)7.
substracting both sides o rom the identity z,.1 = z,11 we obtain
By substracting both sides of (48) f; the identity x4 + bt
~ =~ *7 7 ~17 _
Tnt+1 = Tp4lln — Kn+1(yn+1 - yn+1|n) =
- (1 Oy | n+1) n+ljn = KnJrlTnJrl' (63)
Thus the covariance matrix P’ has the form:
*1 ~ ~T _
n+l — Exn‘i‘lanrl -
_ *1 *1 *4 *1 *1 *1 *tT
- (1 - Bntl n+1) n+1|n(1 - n+1 n+1) K +1Rn+1Kn+1 -
_ pxi g *1 *7 _ C*zT *i T +
— “n+ln n+1~n+1+ nt+1jn n+1|n n+1 n+1
*1 ¢ ¢
+ n+1( n+1 +1\nc +1 + RnJrl)KnJrl (64)
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or, using (59),
Py =1-K,Cry) rtilhz' (65)

Finally, 2%, is computed from (49) and (58) with :136‘_1 = Ez} and K, - an
appropriate block matrix in K% ;. The value of control u;, is known and v;, is
sent by the coordinator.

The matrix K, is calculated as follows.

For P(;]i—l = Xy we can determine K from (59), P3* from (65), then Pl*ﬁ)
from (62), K7* from (59) and then P from (65), next Py from (62), K3* from
(59), and so on.

4.2. Filtering equations for the coordinator

Now we consider the LMMSE problem of the coordinator for the system de-
scribed by the equation (46) and (4) for i =1,..., M.
Using (45) we can write (46) in the form

Tpi1 = Apz, + B, — BILYZ, +w, (66)

where b, = [bLT (), ..., MT (m,,)]T and LY = diag{L}, ..., L2}
It is assumed that an estimate of x,, 11 at time (n + 1), determined by the
coordinator, is based on measurement information 7, 41.
Using (58) (1), (2) and (45) we can write (49) as
B = (A + By L, — K Cr  ADE, + K, C oy A, + BLbL+
+(1 - K, ,C )0, + KL Chwl, + K, i=1,, M (67)
where A% = [Al AM],

IREERE

Therefore, the estimate 11 is
Fnp1 = ALz, + A%3, 4+ B, (m,) + BP0, + T%w, + T 701 (68)
where Aiﬁ = ”ec{KfurlcriLHAZi}a Aflzz = di‘ag{Alif + B, L, — K:.erlOfiz.JrlAZ}:
B = diag{1 - K 1Criahs I = diag{K; 11Cr i1} 1—‘211 = diag{ K} for
i=1,..,M.
We can write (66) and (68) in block form as

zi = Abzl + Bib, + B0, + T w, + Ty g (69)
where 2% = [ 2117, v, = [0}T, ..., 9MT]T and the forms of the matrices A%,

By, I'h and I}, | result from (66) and (68).
The model of measurements for the coordinator results from (4) and can be

written in the form

(70)
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where m,, = [miT .. mMT

Cp = diag{C},..,CM}.

n

]T, Yn = [yvlva-~-7y7TT]Ta D,, = diag{D}l, '7D71¥[}7

state zy given information M.

The problem is to determine the LMMSE estimate zj of the augmented
From (43) we have

—u _ ~u u U
In-i—l - ‘rn+l|n + Kn+1 (anrl - Fn-l-lxn-i-l\n)'

(71)

The error !

Hiln should be orthogonal to m,, =

m¥ ... .mIT ie.
E(xl, , —x" yml =0
n+1 n+1|n m, =V

(72)
From (69) and since z¥ = Z% + ¥ we have

Tpyr = ApZy + ATy + Brbn + B 0n + T wn + T3l s (73)
Then (72) becomes

B(AYES + Bltby + Bi0, — Ty )i + BALE)ME + BT w, )it] +
FE(TY, g )i = 0.

(74)
Since zy is an LMMSE estimate of zj* given 7, , wy is independent of i,

and 7,41 is independent of 7, the last three terms in (74) are equal to zero.
Therefore

Pn
U ZU U UV ~ —Uu - T u u - o
+B By — Ty )i} = 0.

(75)
Equn. (75) is satisfied when

Tniiln = ARy + Bup) + B0, (76)
for every realization of 1i,,.
From (44) and (70) we have

u _ pu uT U u uT T —1
n+1l — n+1\nFn+l (Fn-l-l n+1|nFn+1 + D"+1Rn+1Dn+l)

(77)
where R, 41 is a covariance matrix of r,1.
Now from (69) and (76) we have
Ty = Ap@y + 15w + TR0 g (78)
Thus

u _ pau
n+lln — Ewn

i@t = AP AR + TR WL IR + T R T3 (79)
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where P = EgtzuT.
From (71) and (70) we have that

U _u —Uu _~u u _ _
Tpp1 = Tpp1 — Tnyr = Ty — Koy (Mg — Minggy) =
_ u U ~U u
- (1 - Kn+1Fn+1)xn+l|n - Kn+1D"+1r"+1' (80)

The covariance matrix P, has the form

T
#-1-1 =(1- KﬁHF#_‘_l) 77;+l|n(1 - KﬁHF#_‘_l) +
+ K Doy R Dy K —
~ T T T
-(1- KnglF#Jrl)EIZJrl\nrnJranJrlKngl_

- g+1Dn+1E7"n+1537u£1\n(1 - Kr7f+1Frvf+1)T- (81)
From (78) it results that
EjZH\nTZH =TI R (82)
Thus the covariance matrix Py, ; fulfils the equation

Proy =0 - Ky Flo)Pr .- Ky Fro) "+
+ K3 Doy Roi DY KST —
- (1 - K;f-i-lFv?—;—l)FZiannLlDZ-i-leIl_

— Ky Dot Ry D3 (1= Koy Fy )T (83)
We substitute (77) into the second term in (83). Thus

u u u u
n+1 — (1 - Kn-l—an-i-l) n+lln—
u U ur T uT
- (1 - Kn-i—l n+1)Fn+an+an+lKn+l_

— K} Dy Ry Tt (1= Ky B )™ (84)

Finally, 77, , is computed from (71) and (76) with z5_, = Ezf and K/,
defined by (77). The values of p} and o, are known.

The matrix K}/, is calculated as follows.

For Fj_, = diag{Xo, Xo} we can determine K from (77), Fy' from (84)
and Py, from (79), Ki' from (77) and next Py’ from (84), Py, from (79), K3
from (77), and so on.

According to the notation 2% = [z1, 27

2717 only Z,in Z¥ is needed for real
filtration.
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(87)

(90)

5. Example
Let us consider an autonomous, stationary system composed of two subsystems
with
[0.083 —033 —0.045 0.119 —0.016 —0.106 0.053 |
AM = 10.4500.790 —0.030 | , A} = | —0.120 —0.160 0.142 0.022
| 0.3000.922 —0.001 —0.002 0.026 —0.080—0.092 |
[—0.035 —0.0720.040 0.272 —0.230 —0.033 —0.002]
A2 _ 0.043 0.029 0.036 422 _ 0.597 0.867 —0.020 —0.001
n | 0.063 —0.0200.065| ™ — 10.359 0.952 0.993 —0.001
| —0.080 0.035 0.033 0.130 0.488 0.998 0.999 |
0 0 0 0.003
Ccl = [8 025 0'%05} , C2=10 0045 0 0.001 |,
' 0 0 0.15 0
0.05 0.015 0 0 0
0.015 0.05 0 0 0
R, = 0 0 0.019 0.002 0.002 |,
0 0 0.002 0.040 0.004
0 0 0.002 0.004 0.030
[ 0.272 0.102 0.029 0 0 0 0
0.102 0.107 0.045 0 0 0 0
0.029 0.045 0.022 0 0 0 0
W, = 0 0 0 0.800 0.356 0.112 0.027 |,
0 0 0 0.356 0.316 0.128 0.036
0 0 0 0.112 0.128 0.058 0.017
| 0 0 0 0.027 0.036 0.017 0.005 |
[ 04 0 -02 0 0 0 0 ]
0 0.6 0 0 0 0 0
—-0.2 0 0.03 0 0 0 0
Xo = 0 0 0 0.62 0 —-0.41 0
0 0 0 0 0.41 0 0.77
0 0 0 —-0.41 0 0.77 0
| 0 0 0 0 —0.77 0 2.03
Let us assume that for the system
1 11 12 1 1
_ In-i—l _ An An xn wn
o= | = [ e ][]+ ]
1 1 1 1
el )=l &l ][]
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the estimates result from a classical Kalman filter i.e.
Tpy1 = Tpgajn + K1 (Unt1 = Jngijn)- (93)

Thus, the estimates &1 and #2 are based on the information [y, ...,y1]? and
result from (93).

The estimates 21 and 22, determined from the decentralized Kalman filter,
result from (49) and depend on local measurement information.

For illustration we present the estimation errors (xl! — #11) (Fig.1 ) and
(2! — 221) (Fig.2) for the first state components of both subsystems (xil,i =
1,2) resulting from the classical Kalman filter and the decentralized one for
D=1.

classical classical

L L L L _15 L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60

t t

Figure 1. Estimation errors for classical and decentralized Kalman filters for
the first subsystem

*[ classical * decentralized

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure 2. Estimation errors for classical and decentralized Kalman filters for
the second subsystem

The results show that the assumption of replacement of interaction estimate
0y, by v!, does not significantly worsen the estimation.
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Figs. 3 and 4 show the estimation errors (z! — zil), (zi! — 2!) for i = 1,2
and for D} = [0 1], D2 =[10 0].

15

051

15 L L L L L y L L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t t

Figure 3. Estimation errors for the first subsystem and D} = [0 1], D2 = [1 0 0].

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t t

Figure 4. Estimation errors for the second subsystem and D! = [0 1], D2 =
[100].

Comparing Fig. 1 to Fig. 3 and Fig. 2 to Fig. 4 we can analyse the influence of
aggregation on filtration quality for the subsystems. For given data the proposed
decentralized filter may be accepted.

Conclusion

In this paper the linear state Kalman filter for the dynamic system controlled
in the two-level control and information structures is derived. The approach
is based on the modified innovations and leads to the decentralized filters for
the local controllers and augmented optimal filter for the coordinator, whose
implementation can be computationally intensive. Some methods reducing the
computational cost are known in the literature (see Chien and Fu, 1999) and
may be applied to the problem considered.
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