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550 P. HU�EKahieved in last deades an be found in Barmish (1994) and Bhattaharyya etal. (1995). Several results have been ahieved espeially for interval systems.A very simple proof of the Kharitonov theorem was pointed out by Dasgupta(1988). The simpli�ation of the Kharitonov theorem for low order systems wasgiven in Anderson et al. (1987), while Mansour et al. (1989) and Kraus etal. (1988) have given several ounterpart results on robust Shur stability andstrong Kharitonov theorems for Shur interval systems. A unifying frequenydomain approah for robust stability analysis was presented in Dasgupta et al.(1991).A more general ase represents onsideration of an unertain polynomialwhere the oe�ients are onstrained by some lp weighted norm, p being apositive integer. Hurwitz stability margin of suh a ball of polynomials wasdetermined by Tsypkin and Polyak (1991). The graphial method developed bythem is based on a omplex plane frequeny domain plot. The main idea onsistsin transforming the oordinates of traditional frequeny plot suh that the valueset beomes independent of frequeny. This idea is stressed in Mansour (1994).Based on that the generalization of Tsypkin-Polyak lous is given, in thispaper we take into aount the ase of di�erent weights, onsidered for theoe�ient being above and below its nominal value. This onsideration is usefulif the weights re�et our level of on�dene that the true value of a oe�ient liesin some interval. The nominal value need not be neessarily equal to the enterof the interval. Suh approah is adopted e.g. by Bondia and Pió (2003a) inthe onept of fuzzy linear systems where the unertain parameters of a linearsystem are desribed by fuzzy numbers. In Bondia and Pió (2003b) fuzzynumbers are used to distinguish between the most-ases and the worst-asesbehavior of a system.2. The Zero Exlusion PrinipleIn this setion a modi�ation of the fundamental stability riterion in frequenydomain will be presented.Let A be a onneted region in the (n+1)-dimensional spae. Let us onsidera family of polynomials
p(s, A) = a0 + a1s + · · · + ansn, ai ∈ ℜ,a = [a0, . . . , an],a ∈ A. (1)Definition 1 Polynomial p(s,a) is said to be D-stable if and only if all itsroots lie in an open onneted domain D ⊂ C.Definition 2 A family of polynomials p(s, A) is said to be D-stable if and onlyif all its members are D-stable, i.e. p(s,a) is D-stable polynomial ∀a ∈ A.To derive the main result of this paper the well-known boundary rossingtheorem will be used.



On parametri Hurwitz stability margin of real polynomials 551Theorem 1 (Boundary rossing theorem) The family of polynomials
p(s, A) (1) of invariant degree is D-stable if and only ifa) there exists a D-stable polynomial p(s,a∗), a∗ ∈ A,b) s∗ /∈ roots(p(s, A)), ∀s∗ ∈ ∂Dwhere ∂D stands for boundary of D.This intuitive result simply states the fat that the �rst enounter of polyno-mial with �xed degree (i.e. oe�ient an does not inlude zero) with instabilityhas to be on the boundary of stability domain. Computationally more e�ientversion of the boundary rossing theorem is formulated by the zero exlusionpriniple.Theorem 2 (Zero exlusion priniple) The family of polynomials p(s, A)(1) is D-stable if and only ifa) there exists a D-stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p(s∗, A), ∀s∗ ∈ ∂D,) oe�ient an does not inlude 0.The set p(s∗, A), s∗ ∈ ∂D is alled the value set. In the ase of Hurwitzstability ∂D orresponds to the imaginary axis (semiaxis) of the omplex plane.Considering p1(ω) = h(ω) + jωg(ω) instead of p(jω) = h(ω) + jg(ω) where
h(s) and sg(s) are the even and odd parts of the polynomial p(s), respetively,the following theorem an be stated.Theorem 3 The family of polynomials p(s, A) (1) is Hurwitz stable if and onlyifa) there exists a Hurwitz stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p1(ω, A), ∀ω ≥ 0,) the oe�ient an does not inlude 0,d) for ω = 0 the value set p1(ω, A) does not inlude points on the imaginaryaxis.Remark 1 From the monotoni phase inrease property for Hurwitz polynomi-als follows that the frequeny plot of p(s,a∗) in the omplex plane goes through
n quadrants in the ounterlokwise diretion.Remark 2 Part d) of Theorem 3 is equivalent to the ondition that the oe�-ient a0 does not inlude 0 beause h(0) = 0 is equivalent to a0 = 0.Sine dividing of the even and odd parts of a polynomial by some positivefuntions annot a�et zero exlusion or inlusion in the value set we an replae
p1(ω) by p2(ω) = h(ω)/S(ω) + jg((ω)/S(ω)) where S(ω) and T (ω) are positivefuntions of ω ≥ 0. Moreover, if limω→∞ h(ω)/S(ω) and limω→∞ g(ω)/T (ω)are �nite, we an replae ondition ) of Theorem 3 by the ondition ) of thefollowing theorem.



552 P. HU�EKTheorem 4 The family of polynomials p(s, A) (1) is Hurwitz stable if and onlyifa) there exists a Hurwitz stable polynomial p(s,a∗), a∗ ∈ A,b) 0 /∈ p2(ω, A)∀ω ≥ 0,) for ω = ∞ the value set p2(ω, A) does not inlude points on the imaginaryaxis for n even or points on the real axis for n odd,d) for ω = 0 the value set p2(ω, A) does not inlude points on the imaginaryaxis.The equivalene of ondition ) of Theorem 4 with ondition ) of Theorem 3is based on the fat that if and only if an is zero then h(ω)/S(ω) or g(ω)/T (ω)vanishes for ω = ∞.3. The generalized Tsypkin-Polyak lousLet us onsider a family of polynomials (1) entered at a nominal point a0 =
[a0

0, a
0
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0
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k.In (2) αk > 0 and αk > 0 are given weights for oe�ients being below andabove their nominal values respetively, 1 ≤ p ≤ ∞ is a �xed integer, ρ ≥ 0 isthe radius of the ball. The family of polynomials (1) assoiated with the set (2)is loosely referred to as the asymmetri ball of polynomials. The objetive is tohek if the asymmetri lp ball of polynomials (2) with presribed ρ is robustlyHurwitz stable or not and also to determine the maximal ρ preserving robuststability of (2).Let us again deompose a member of family of polynomials (1) into its evenand odd parts. For s = jω we an write
p(jω, a) = h(ω, a) + jωg(ω, a),a ∈ A. (3)The nominal polynomial p0(s) evaluated in s = jω an then be written as
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On parametri Hurwitz stability margin of real polynomials 553Denote by ∆ak = ak − a0
k and µk = ∆ak/αk. The deviations of even andodd parts of a polynomial then an be expressed as

∆h(ω) = h(ω, a) − h0(ω) =
∑

keven(−1)k/2∆akωk

∆g(ω) = g(ω, a) − g0(ω) =
∑

kodd(−1)(k−1)/2∆akωk−1 (6)respetively.Let us disuss four di�erent ases aording to the signs of ∆h(ω) and ∆g(ω).Case 1. ∆h(ω) ≥ 0, ∆g(ω) ≥ 0:For ∆h(ω) ≥ 0 we an write
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554 P. HU�EKLet us introdue
Sp1(ω) =





∑
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. (14)Let us note that Sp1(ω) and Tp1(ω) are positive funtions of ω ≥ 0. Moreover,
limω→∞ h(ω, a)/Sp1(ω) and limω→∞ g(ω, a)/Tp1(ω) are �nite for all p(s,a),a ∈
A de�ned by (2).Substituting (13) and (14) into (9), (12) and (2) gives
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≤ ρ. (16)It means that the value set of the polynomial (1) spei�ed by (2) with
∆h(ω) ≥ 0, ∆g(ω) ≥ 0 evaluated in the oordinates (h(ω)/Sp1(ω), g(ω)/Tp1(ω))is the upper right quarter of lp-dis entered at the nominal polynomial

(h0(ω)/Sp1(ω), g0(ω)/Tp1(ω))with radius ρ for any ω ≥ 0. Sine the parameters in ∆h(ω) and ∆g(ω) areindependent, any point of the upper right quarter of lp-dis (inluding thoseon its boundary) an be reahed. By applying Theorem 4 we get the followingresult.Denote by Dp3(ρ) the quarter of lp dis with radius (ρ) in the third quadrantin the omplex plane:
Dp3(ρ) :=

{

(x, y) : x ≤ 0, y ≤ 0; [|x|p + |y|p]
1

p ≤ ρ
}

. (17)Theorem 5 The family of polynomials (1) spei�ed by (2) with ∆h(ω) ≥ 0 and
∆g(ω) ≥ 0 is Hurwitz stable if and only if the frequeny plot of the nominalpolynomial p(s,a0) in the omplex plane h(ω)/Sp1(ω) + j(g(ω)/Tp1)a) goes through n quadrants in the ounterlokwise diretion,b) does not interset the quarter of lp dis with radius ρ in the 3rd quadrant,
Dp3(ρ),) a0

n > ραn for n = 4i + 2, 4i + 3, i = 0, 1, 2, . . ..



On parametri Hurwitz stability margin of real polynomials 555Remark 3 The ondition 5) omes from 4), the ondition 4d) is always sat-is�ed.Case 2. ∆h(ω) ≤ 0, ∆g(ω) ≤ 0:For ∆h(ω) ≤ 0 we have
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556 P. HU�EKSimilarly to previous ase, Sp2(ω) and Tp2(ω) are positive funtions of ω ≥ 0and both limω→∞ h(ω, a)/Sp2(ω) and limω→∞ g(ω, a)/Tp2(ω) are �nite for all
p(s,a),a ∈ A de�ned by (2).Substituting (23) and (24) into (20), (22) and (2) gives
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≤ ρ. (26)It means that the value set of the polynomial (1) spei�ed by (2) with
∆h(ω) ≤ 0, ∆g(ω) ≤ 0 evaluated in the oordinates (h(ω)/Sp2(ω), g(ω)/Tp2(ω))is the lower left quarter of lp-dis entered at the nominal polynomial (h0(ω)/Sp2

(ω), g0(ω)/Tp2(ω)) with radius ρ for any ω ≥ 0. Using the same arguments asabove, appliation of Theorem 4 leads to the following result.Denote by Dp1(ρ) the quarter of lp dis with radius (ρ) in the �rst quadrantin the omplex plane:
Dp1(ρ) :=

{

(x, y) : x ≥ 0, y ≥ 0; [|x|p + |y|p]
1

p ≤ ρ
}

. (27)Theorem 6 The family of polynomials (1) spei�ed by (2) with ∆h(ω) ≤ 0 and
∆g(ω) ≤ 0 is Hurwitz stable if and only if the frequeny plot of the nominalpolynomial p(s,a0) in the omplex plane h(ω)/Sp2(ω) + j(g(ω)/Tp2)a) goes through n quadrants in the ounterlokwise diretion,b) does not interset the quarter of lp dis with radius ρ in the 1st quadrant,
Dp1(ρ),) a0

n > ραn for n = 4i, 4i + 1, i = 0, 1, 2, . . .,d) a0
0 > ρα0.Remark 4 Conditions 6) and 6d) are equivalent to onditions 4) and 4d),respetively.Using similar reasoning for the ases ∆h(ω) ≤ 0, ∆g(ω) ≥ 0 and ∆h(ω) ≥ 0,

∆g(ω) ≤ 0 the following theorems an be derived.Denote by Dp2(ρ) and Dp4(ρ) the quarter of lp dis with radius (ρ) in theseond and fourth quadrant in the omplex plane, respetively:
Dp2(ρ) :=

{
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On parametri Hurwitz stability margin of real polynomials 557Theorem 7 The family of polynomials (1) spei�ed by (2) with ∆h(ω) ≤ 0 and
∆g(ω) ≥ 0 is Hurwitz stable if and only if the frequeny plot of the nominalpolynomial p(s,a0) in the omplex plane h(ω)/Sp2(ω) + j(g(ω)/Tp1(ω))a) goes through n quadrants in the ounterlokwise diretion,b) does not interset the quarter of lp dis with radius ρ in the 4th quadrant,
Dp4(ρ),) a0

n > ραn for n = 4i, 4i + 1, i = 0, 1, 2, . . .,d) a0
0 > ρα0.Theorem 8 The family of polynomials (1) spei�ed by (2) with ∆h(ω) ≥ 0 and

∆g(ω) ≤ 0 is Hurwitz stable if and only if the frequeny plot of the nominalpolynomial p(s,a0) in the omplex plane h(ω)/Sp1(ω) + j(g(ω)/Tp2(ω))a) goes through n quadrants in the ounterlokwise diretion,b) does not interset the quarter of lp dis with radius ρ in the 2nd quadrant,
Dp2(ρ),) a0

n > ραn for n = 4i + 2, 4i + 3, i = 0, 1, 2, . . ..Sine the frequeny plot of any member of the asymmetri ball of polyno-mials (2) jumps between four ases, mentioned above, depending on frequeny,it is obvious that the asymmetri ball is robustly Hurwitz stable if and only ifthe onditions of Theorems 5�8 are met all at one. From those theorems it alsodiretly follows that the maximum ρ preserving stability of (2) is equal to themaximum ρ satisfying the onditions of Theorems 5�8.Theorem 9 Let us denote the partiular stability margins satisfying onditionsof Theorems 5�8 by ρp1, ρp2, ρp3 and ρp4 respetively. Then the maximumradius preserving stability of asymmetri ball of polynomials (2) is ρp max =
min{ρp1, ρp2, ρp3, ρp4}.Let us illustrate the derived result on an example.4. ExampleConsider the family of polynomials

p(s, A) = 433.5 + 667.5s + 502.6s2 + 251.7s3 + 80.3s4 + 14.2s5 + s6with
α = [43.8, 29.6, 25.1, 15.0, 5.6, 1.4, 0.1],

α = [48.2, 26.5, 29.1, 12.6, 4.3, 2.2, 0.4].Let us determine the maximum stability radius for p = 2 and p = ∞ (see (2)).For p = 2 the four plots orresponding to Theorems 5�8 are shown in Figs. 1�4, respetively. The partiular stability margins are ρ21 = 4.01, ρ22 = 2.68,
ρ23 = 2.65 and ρ24 = 3.68. The maximum radius preserving stability is ρ2max =
min{ρ21, ρ22, ρ23, ρ24} = 2.65.



558 P. HU�EKFor p = ∞ the four plots orresponding to Theorems 5�8 are shown inFigs. 5�8, respetively. The partiular stability margins are ρ∞1 = 1.23, ρ∞2 =
2.26, ρ∞3 = 1.44 and ρ∞4 = 2.17. The maximum radius preserving stability is
ρ∞max = min{ρ∞1, ρ∞2, ρ∞3, ρ∞4} = 1.44.

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

25

h(ω)/S
21

(ω)

g(
ω

)/
T

21
(ω

)

ω
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Figure 3. Frequeny plot for ∆h(ω) ≤ 0, ∆g(ω) ≥ 0
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Figure 7. Frequeny plot for ∆h(ω) ≤ 0, ∆g(ω) ≥ 0
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562 P. HU�EK5. ConlusionExtension of the Tsypkin-Polyak lous to the ase of di�erent weights onsideredfor oe�ient being above and below its nominal value was presented in thispaper. It was shown that four plots have to be drawn instead of one in order todetermine the maximum radius of the asymmetri ball of polynomials preservingHurwitz stability. The result was demonstrated on an illustrative example.AknowledgementsThis work has been supported by the projet INGO 1P2007LA297, ResearhProgramMSM6840770038 (sponsored by the Ministry of Eduation of the CzehRepubli) and the projet 1H-PK/22 (sponsored by Ministry of Industry andTrade of the Czeh Republi).ReferenesAnderson, B.D.O, Jury, E.I. and Mansour, M. (1987) On robust Hur-witz polynomials. IEEE Trans. Automat. Control 32, 909�913.Barmish, B.R. (1994) New Tools for Robustness of Linear Systems. Mamil-lan Publishing Company, New York.Bhattaharyya, S.P., Chapellat, H. and Keel, L.H. (1995) Robust Con-trol: The Parametri Approah. Prentie-Hall, In., New Jersey.Bondia, J. and Pió, J. (2003a) Analysis of linear systems with fuzzy para-metri unertainty. Fuzzy sets and systems 135, 81�121.Bondia, J. and Pió, J. (2003b) A geometri approah to robust perfor-mane of parametri unertain systems. Int. Journal of Robust and Non-linear Control 13, 1271�1283.Dasgupta, S. (1988) Kharitonov's theorem revisited. Systems and ControlLetters 11, 381�384.Dasgupta, S., Parker, P.J., Anderson, B.D.O., Kraus, F.J. and Man-sour, M. (1991) Frequeny domain onditions for the robust stability oflinear and nonlinear systems. IEEE Trans. Ciruit Systems 38, 389�397.Kharitonov, V.L. (1978) Ob asymptotiheskoi ustoihivosti polozheniya rav-novesiya semeistva sistem lineynyh di�erentsialnykh uravnenii. Di�er-entsialnyje uravneniya 14, 2086�2088.Kraus, F.J., Anderson, B.D.O. and Mansour, M. (1988) Robust Shurpolynomial stability and Kharitonov's theorem. International Journal ofControl 47, 1213�1225.Mansour, M. (1994) On robust stability of linear systems. Systems and Con-trol Letters 22, 137�143.Mansour, M., Kraus, F.J. and Anderson, B.D.O. (1989) Strong Khari-tonov theorem for disrete systems. In: M. Milanese, R. Tempo and A. Vi-ino, eds., Robustness in Identi�ation and Control. Plenum Publishing,New York.



On parametri Hurwitz stability margin of real polynomials 563Tsypkin, Y.Z., and Polyak, B.T. (1991) Frequeny domain riteria for lp-robust stability of ontinuous linear systems. IEEE Trans. Automat.Control 36, 1464�1469.




