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vol. 37 (2008) No. 3Fuzzy modelling of temperature di�erene in 200 MWpower unit ondenser using geneti fuzzy systems∗byMihaª Paj¡kRadom University of TehnologyFaulty of Mehanial EngineeringDepartment of Thermal TehnologyKrasikiego 54, 26-600 Radom, PolandAbstrat: Energy generation is one of the most ompliatedindustrial proesses. Beause of its omplexity, there is no aurateonventional model of a power unit. Fuzzy logi onepts might bee�etively implemented in this �eld. In the paper a universal methodof reating a fuzzy logi model is presented. To hek the usefulnessof the method in the ase of real industrial issues, a fuzzy model oftemperature di�erene in a ondenser was automatially generated.The modelling experiment and the assessment of model quality arepresented in the paper.Keywords: learning, fuzzy models, geneti algorithms, fuzzystatistis and data analysis, large-sale systems, linguisti modelling.1. IntrodutionEnergy generation is a very omplex prodution tehnology. To arry it in theproper way, people who are responsible for power plant supervision need to haveaess to a great number of data from eah part of the plant (Paj¡k, 2001). Fora power unit ontaining the 13K215 turbine it is neessary to analyse about1000 piees of information in real time to drive the unit with high e�ieny(Laudyn, Pawlik, Strzelzyk, 1995). Only omputerized systems of power plantmonitoring an make it possible. Before power industry had been omputerised,the power units were operated in an approximate way. Of ourse, e�ieny wasvery poor. As an example, failure rate ould be onsidered. Failure rate isalulated aording to the formula
FAR =

n
∑

i=1

Tai

n
∑

i=1

(Tpi + Tai )
· 100% (1)
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566 M. PAJ�Kwhere: FAR � failure rate [%℄,
Tai � length of outage beause of failure for power unit no i [h/a℄,
Tpi � operation time of power unit no i [h/a℄,
n � number of analysed power units.Before the implementation of omputer monitoring the rate was about 20.1%,while now it is at the level of 2.4% (Long-term ..., 2003).Unfortunately, a lot of data are of very low quality. In a situation like thisit ould be very useful to have a model of a power unit, whih an qualify theolleted data and generate the missing information.The energy generation proess is arried out in the power plant exploitationsystem. The system is very omplex in view of high number of input data andthe ross onnetions between them. There are three di�erent levels of infor-mation. Eah level is haraterised by di�erent range, frequeny of hanges andimportane period (Kalotka, Paj¡k, 2006). Additionally, the proesses arriedout in the power unit exploitation system are highly di�erentiated (thermody-namial, eletrial, mehanial). Therefore, it is very hard to develop a on-ventional model able to simulate the operation of the whole power unit. In theliterature one an �nd studies meant to reate a mathematial model of a powerunit (Janizek, 1992; Szl�k, Wilk, 1998; Badyda, Niwi«ski, 2007; Gªodek, 2004).All these models an estimate power unit operation only in a limited range ofproesses and require wide range of measured parameters. In ase of a realindustrial plant only a limited number of operation parameters are aessibleon-line. Therefore, a problem with model implementation arises (Paj¡k, 2007).So, the problem desribed o�ers a typial ase for implementation of the fuzzylogi theory (Paj¡k. 2002).The set of the model input data ould be divided into two groups. The �rstgroup onsists of the data desribed in the form of ontinuously measured values.The seond one onsists of the data assessed digitally (Mu±lewski, Woropay,2005). To ombine both types of data in one oherent assessment system, fuzzymodelling should be implemented. Espeially, the Mamdani model makes itpossible very easily (Ruano, 2005).To obtain the aurate fuzzy model it is neessary to optimise its databaseand rule base. So, it is neessary to implement one of the optimisation teh-niques. The optimisation problems in the domain of fuzzy model strutureoptimisation are desribed by disrete (often integer) values. Suh problemsare very di�ult to optimise from the omputational point of view (Smutniki,2002). The reason is the lak of suh analytial features as di�erentiabilityor linearity. Often, multimodality and high dimensionality of solution spaeare observed. All of that, and the limitation of the response time auses theuselessness of implementation of suh algorithms as B&B (Branh-and-Bound),dynami programming or linear and non-linear programming in these ases.Therefore, a good solution in this kind of optimisation problems is to imple-ment the approximate methods. These methods enable to �nd the approximatesolution and the quality of solution inreases with alulation time.



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 567The approximate methods an be divided into two groups. The �rst group isonstituted by the onstrution and orretion ones. The onstrution methodsare fast and an be easily implemented, but generated solutions are not veryaurate. The orretion methods are slower and they need a starting point,whih is orreted during the algorithm operation, but they yield a solution ofvery good quality. Owing to the implementation of the orretion method it ispossible to reate the ompromise between response time and solution qualityin a �exible way. This kind of optimisation method is urrently being stronglydeveloped, and there is a lot of promising algorithms making it possible to gethigh quality solutions. Unfortunately, these new methods are not stable yet sothat they should be examined before implementing them in pratie.In ase of a real industrial problem the implemented optimisation methodshould be stable and well examined. All the enumerated above requirementsare ful�lled by the geneti algorithms (Goldberg, 2003).Due to the reasons mentioned above, the arti�ial intelligene tehnology inthe form of fuzzy logi and geneti algorithms was used in this �eld.The main objetive of presented study was implementation of a universalmethod of fuzzy model generation in the ase of a real industrial problem. Inthe paper, generation of a fuzzy model of temperature di�erene in a 13K215steam turbine ondenser is presented. The model is the �rst step to reation ofa fuzzy model of a power unit.2. Preliminaries: geneti fuzzy systemsGeneti fuzzy systems are a lass of fuzzy systems. The struture and form ofgeneti fuzzy systems are generated by using the geneti algorithms.The main part of a fuzzy system is a rule base. The rule base is a set ofrules having the following form:IF a set of onditions are satis�ed THEN a set of onsequents anbe inferred.The rule base overs information about the modelled objet or proess.At the beginning of fuzzy system operation, risp input data are transformedto their fuzzy form. The proess is alled fuzzi�ation and is based on databaseof a fuzzy system. A database ontains the linguisti term sets onsidered inthe linguisti rules and the membership funtions de�ning the semantis of thelinguisti labels (Herrera, 2008). Next, during the inferene proess, the fuzzyoutput is generated. The inferene proess depends on input data fuzzy valuesand rule base of the system. The latest step of fuzzy system operation is thedefuzzi�ation proess. On the basis of fuzzy system database, aording to theused defuzzi�ation operator, the fuzzy output is transformed to its risp form.Generation of the rule base and de�nition of the database are the main goalsof the fuzzy system learning proess. This ould be aomplished automatiallyusing the training data set (input and output values). For this purpose, the



568 M. PAJ�Klearning proess ould be interpreted as an optimisation or searh problem.From this point of view, the learning proess attempts to �nd the optimalstruture of the rule base and database of fuzzy system in the spae of allpossible rule base and database strutures.In the ase of geneti fuzzy systems, de�ned above, the searh problem isbeing solved using geneti algorithms.Geneti algorithms are general purpose searh algorithms, whih use thepriniples inspired by natural genetis to evolve solutions to problems. Thebasi idea is to maintain a population of hromosomes (representing andidatesolutions to the onrete problem being solved) that evolves over time througha proess of ompetition and ontrolled variation. During suessive iterations,alled generations, hromosomes in the population are rated for their adaptationas solutions, and on the basis of these evaluations, a new population of hro-mosomes is formed using a seletion mehanism and spei� geneti operatorssuh as rossover and mutation (Cordon et al., 2004).Owing to geneti fuzzy systems implementation it is possible to reate au-tomatially the fuzzy models of onsidered problems on the basis of the input-output data set.3. Charateristis of analysed proessA power unit ondenser is the plae where isobari ondensation ours (Gªodek,2004). The pressure of an isobari proess depends on ooling onditions in theondenser.For a ondenser we an write down the following temperature equation:
Tps = Tw1 + ∆Tw + δT (2)where: Tps � temperature of ondenser inoming steam [K℄

Tw1 � temperature of ondenser inoming ooling water [K℄
∆Tw � temperature rise of ooling water [K℄
δT � di�erene between saturation temperature in ondenserand outgoing ooling water [K℄.The mean value of the ooling water temperature rise is about 8 to 12 K(Miller, 1998) and is desribed by the formula:

∆Tw = Tw2 − Tw1 (3)where: Tw1 � temperature of ondenser inoming ooling water [K℄
Tw2 � temperature of ondenser outgoing ooling water [K℄.So, it is possible to establish the following formula:

Tps = Tw2 + δT. (4)



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 569The mean value of the temperature di�erene in a ondenser is about 2 to4 K (Z�baty, 1990). From (4), the temperature di�erene in a ondenser is
δT = Tps − Tw2. (5)The above enables the alulation of the temperature di�erene in a ondenser,based on measured data. So, it is possible to learn and hek the quality of thefuzzy model reated in the next stages of the projet.4. Analysis of data olleted from a real industrial objetReal objet data were olleted within the biggest hard oal �red power plantin Poland. In the analysis, the data overing �fteen months of power plantoperation were onsidered (Computerised System ..., 1999). In this data setthere were over 600,000 data vetors, eah onsisting of 34 parameters desribingthe operation state of the power unit.The analysed data were of di�erent quality. To exlude poor quality mea-surement data, a �lter system was designed. The system re�ets the orretvalue ranges of the exploitation parameters for a power unit 200MW (OP-650boiler and 13K215 turbine). The size of the �lter window was expressed as thefuntion of the ative load of the power unit. Below, the �ltering ondition forthe amount of main steam is presented as an example:
Ṁms[t/h] =

{

0 ÷ 300 for P < 110MW

f(x) ± 20 where x = P
200 for P > 110MW

(6)
f(x) =

0.943238 + 567098.904568x− 944124.470704x2

1000

+
1026960.170082x3 − 358343.972234x4

1000where: Ṁms � amount of main steam [t/h℄
P � ative load [MW℄.By applying the �ltering system, the poor quality parameters and the ve-tors with the data, whose values were not inluded in the �ltering windows,were removed. In the end, 61,168 data reords were left. Unfortunately, thetemperature di�erene in the ondenser was not a measured value. So, it wasalulated using the formula (5), where the temperature of ondenser inomingsteam was alulated as the saturation temperature for the urrent pressure ofondenser inoming steam. The obtained data vetors were divided into twoequal sets. The �rst set onsisted of the data for the earlier time and was usedfor fuzzy model learning. The seond one onsisted of the data reorded laterand was used to test the generated model.



570 M. PAJ�K5. Fuzzy analysis of measured parametersThe fuzzy modelling proess was based on the analysis of the measurementdata reorded on a real industrial objet. The main problem was to hoose onlysigni�ant inputs for the fuzzy model. This was performed aording to thefuzzy urves theory (Lin and Cunningham, 1995). Aording to this theory, forthe hosen �xed values of eah parameter a part of the surfae is alulated:
δT = f(z1, ..., zn) ∧ n = 34 (7)where: zn � n-index parameter.At the beginning, it is neessary to fuzzify the part of the �xed value. Thisshould be done to avoid problems resulting from irregularly spaed measurementpoints in the solution area. As the membership funtion the Gaussian urve isused:
µ(z∗m) = exp

(

−
(

z∗m − zm

bm

)2
)

. (8)For eah setion, the mean value is alulated aording to the following formula:
δTmv(zm) =

t
∑

k=1

µm(zmk) · δTk

t
∑

k=1

µm(zmk)

(9)where: δTmv � mean value
m � index of input
k � index of parameter.Mean values of eah part de�ne the urve. The range of the urve is the fatorof the dependene between the input and output parameters. During the studythe power unit measurement data were analysed, by hanging the parametersof alulations. To shorten the time of alulations the measurement data wereredued with the redution radius equal 1%. The redution proess separatedthe groups of measurement vetors plaed loser than the assumed distane inthe solution spae aording to the formula:

∀
mimj∈M

|mi − mj | < τ (10)where: m � set of measurements
τ � redution radius.The groups of measurement vetors were substituted by one vetor. Thisproess dereased the number of measurement vetors to 2,250. To simplify theproess of analysis, the results of the alulations were presented in the form ofgradient and spetrum diagrams. The spetrum diagram presents the range offuzzy urves for all the parameters (Fig. 2). The gradient diagram ould help



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 571in making a deision about the signi�ane of the fuzzy model inputs (Fig. 1).Fig. 3 presents the diagram of fuzzy urves for one of the most signi�ant inputs.Thanks to the experiments arried out the most signi�ant inputs were separatedaording to the following list:1. Tpwn � temperature of output steam from the low pressure turbine [K℄2. psk � pressure in ondenser [MPa℄3. Twchd � temperature of input water to the ondenser [K℄4. Twchw � temperature of output water from the ondenser [K℄5. Tkond � temperature of ondensate [K℄.
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Figure 1. Gradient diagram of input parameters
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Figure 2. Spetrum diagram of input parameters
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Figure 3. Fuzzy urve diagram for pressure in ondenser6. Fuzzy model generation algorithmFuzzy model generation was arried out on the basis of the measurement data,using a geneti algorithm (Herrera, Lozano, Verdegay, 1998). The model gener-ation algorithm onsists of three separate steps: rule base generation, rule basesimpli�ation and rule base tuning. The rule base generation is an iterative pro-ess, whih makes a de�nite number of geneti algorithm steps in eah iteration.As a result of funtioning of the geneti algorithm a fuzzy rule is obtained. Foreah sample from the learning data set the ompatibility degree is alulated onthe basis of the generated rule. Then, for eah sample from the learning dataset, the overing degree is alulated as a sum of ompatibility degrees for allfuzzy rules. The data samples having a greater or equal overing degree thanthe �xed value are removed from the data set. When the generation proessreates a fuzzy rule, for whih the ompatibility degree for eah sample is zero,the algorithm removes suh a rule and inreases the mutation probability of thegeneti algorithm aording to the following formula:
P ′

m = Pm +
(1 − Pm)

n
(11)where: Pm � mutation probability

P ′
m � modi�ed mutation probability

n � �xed number of useless steps of generation proess.



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 573When the generating proess reates the fuzzy rule, for whih the ompatibil-ity degree of any sample is not zero, then the mutation probability is dereasedto the start value and the proess is repeated. However, if in n steps there areno results, the algorithm enables us to exhange the geneti material on thebasis of the remaining samples and restarts the generation proess, keeping thealready generated rules, or generates the rules based on the remaining samplesusing the same generation method as in the initial population. The generationproess is ontinued until all the data samples are removed.The population in the geneti algorithm onsists of hromosomes represent-ing individual rules. The hromosomes are evaluated from the point of viewof the �tness funtion. To inrease the quality of the algorithm, the evolutionstrategy is applied as a tool for loal tuning of generated rules.To desribe the input data, several linguisti values are established for eahparameter. Eah linguisti value is a fuzzy set de�ned over the range of themeasured value. The �rst fuzzy set is of L type and the last one is of Γ type.All the remaining sets are of Λ type (�ahwa, 2001). All the input and outputvariables are partitioned in the same way. Thus, it is possible to fuzzify eahmeasurement vetor. For the real value of a variable the value of membershipfuntion for eah fuzzy set is alulated. The fuzzy value is onstituted by theset of obtained membership values. In the rule base generation proess the realoded geneti algorithms are used.The knowledge base onsists of fuzzy rules in the following form:If z1 is Li1(z1) . . . and zn is Lin(zn) then y is Lin+1(y) (12)where: zi � model input
Li � linguisti value of parameter
y � model output.A hromosome onsists of two parts. The �rst part represents linguistivalues of the input and output of the model and the seond one representsharateristi values for eah fuzzy set plaed in the �rst part:

C = C1C2 (13)
C1 = (Li1, . . . , Lin, Lin+1) (14)
C2 = (aLi1, bLi1, cLi1, . . . , aLin+1, bLin+1, cLin+1). (15)The initial generation onsists of three equal parts. The �rst part onsistsof the hromosomes generated on the basis of the measured data assuming thevalues of the �rst hromosome part as numbers of fuzzy sets whose membershipvalue is the highest. The seond part of the initial population onsists of hro-mosomes having the same �rst hromosome part and the randomly generatedseond one. The third part is entirely randomly generated.The �tness funtion is desribed by the following formula:
Q(Ri) = CZM (Ri) · SPZ (Ri) · WWNZ (Ri) · WIW (Ri) (16)



574 M. PAJ�Kwhere: M � measurement data set
Ri � analysed rule.The omponents of �tness funtion are desribed below:

CZM (Ri) � frequeny of fuzzy rule
CZM (Ri) =

p
∑

l=1

WZi(ml )

p
(17)where: p � number of measurement samples

ml � value of measurement vetor l ∈ (1, ..., p);
WZi(ml) � ompatibility degree between Ri and sample ml

WZi(ml ) = ◦(µLi1 (z1 (ml)), . . . , µLin(zn(ml )), µLn+1 (zn+1 (ml )) (18)where: ◦µLi � seleted t-norm;
SPZ (Ri) � average overing degree over positive examples

SPZ (Ri) =
∑

ml∈M+(Ri)

WZi(ml )

p+(Ri)
(19)where: p+(Ri) � number of positive examples;

M+(Ri) � set of positive examples
M+(Ri) = {ml ∈ M : WZi(ml ) > ω} (20)where: ω � ompatibility degree;

WWNZ (Ri) � penalty on negative examples
WWNZ (Ri) =

{

1 for p−(Ri) 6 k · p+(Ri)
1

p−(Ri) − k · p+(Ri) + exp(1)
for p−(Ri) > k · p+(Ri)(21)where: k � fator of ratio of negative to positive examples k ∈ [0, 1]

p−(Ri) � number of negative examples,
pi(Ri) = |M−(Ri)|
M−(Ri) = {ml ∈ M : WZi(ml ) = 0 ∧ INi(ml ) > 0} (22)
INi(ml ) = ◦(µLi1 (z1 (ml)), . . . , µLin(zn(ml )))

WIW (Ri) � nihe iteration rate
WIW (Ri) = 1 − max{WZi(Wh)} (23)where: Wh � an already generated rule h = 1,. . . ,H

H � number of already generated rules.



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 575The geneti algorithms maximize the value of the �tness funtion.One step of geneti algorithm onsists of three operations: rossing, mutationand evolution strategy. The rossing proess uses di�erent rossing operatorsdepending on rossed hromosomes. If we want to ross hromosomes withequal C1 parts then to ross C2 parts we use the arithmetial min-max rossingoperator. The o�spring onsist of C1 part of the parent hromosome and themodi�ed C2 part. Four hromosomes are generated:
Hk = (hk

1 , ..., hk
i , ..., hk

n) where k = 1, 2, 3, 4 (24)
h1

i = λc1
i + (1 − λ)c2

i (25)
h2

i = λc2
i + (1 − λ)c1

i λ (26)
h3

i = min{c2
i , c

1
i } (27)

h4
i = max{c2

i , c
1
i } (28)and the two best ones replae their parents. If C1 parts are di�erent, then simplerossing takes plae on C1 parts and appropriate genes of C2 are opied. Twoo�spring are generated and they replae their parents. C1 parts of the o�springare generated aording to the following formula:

H1 = (c1
1, c

1
2, ..., c

1
i , c

2
i+1, ..., c

2
n) (29)

H2 = (c2
1, c

2
2, ..., c

2
i , c

1
i+1, ..., c

1
n). (30)

C2 parts are appropriate genes of the original hromosomes.Mutation also uses two operators. If the hosen mutation point is a gene from
C2 part, then the Mihalewiz non-uniform mutation operator is used. If themutation point is in C1 part then its value is randomly inreased or dereasedby one. If this is not possible beause of the interval of performane of thegene, the opposite operation is arried out. The hanging value of the C1 partis onneted with the adequate genes from modi�ation of C2.The last operation of the geneti algorithm is evolution strategy. It is appliedto the best hromosomes in the population. The operation modi�es the valuesof the genes from the seond part of the hromosome aording to the followingformula:

c′i = ci + gi (31)where: gi � randomly generated value based on uniform distribution from in-terval [0, σi]

σi = σ · cr − cl

4
(32)where: cr,cl � extreme values of the gene;
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σ value is mutated aording to the formula:

σ′ =











σ
n
√

c
for p > 1

5

σ · n
√

c for p < 1
5

σ for p = 1
5

(33)where: p � relative frequeny of positive mutations,
n � number of mutations,
c � evolution strategy oe�ient.If the modi�ed hromosome is better from the �tness funtion point of view,it replaes the parent one. Otherwise it is removed. If the proess does notgenerate better hromosomes during more than a given number of steps, it isstopped.The result of the generation proess is a set of fuzzy rules. Beause ofits iterative harateristi, two similar or on�iting rules might exist in thegenerated set. Therefore, the next step of the fuzzy model generation is the rulebase simpli�ation.For the purpose of simpli�ation, rule bases are expressed in the form ofbinary oded hromosomes. Eah hromosome represents a omplete rule base.If a given rule exists in a desribed rule base, a orresponding gene of thehromosome has value 1, otherwise its value is 0. The initial population onsistsof randomly generated hromosomes exept for the hromosome representing therule base obtained as a result of the previous part of alulations. The binaryoded geneti algorithm runs a �xed number of generations. One step of thegeneti algorithm onsists of rossing and mutation using an elitist seletionand a uniform random sampling mehanism. The mutation operator hangesthe value of the gene to the opposite number. The two point rossing operatoris used. It divides hromosomes into three parts and hanges one of them. Thealgorithm tries to minimize the value of the �tness funtion, whih ould beexpressed in the following form:

F (Cj) =

{

E(Cj) for SZ (Cj ) > τ
1
2 ·∑ml∈M y(ml)

2 for SZ (Cj ) < τ
(34)where: τ � �xed threshold value of ompatibility degree between rule base andthe training data set;

SZ (Cj ) � ompatibility degree between the rule base and the training dataset:
SZ (Cj ) = min

{

∑h

i=1
WZi(m1 ), . . . ,

∑h

i=1
WZi(mp)

} (35)where: h � number of generated rules,
p � number of data samples;



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 577
E(Cj) � the mean square error is alulated as follows:

E(Cj) =
1

2 · p
∑

ml∈M

(y(ml) − Y (ml))
2 (36)where: Y (ml) � fuzzy model output value for measurement vetor ml.The last step of the proess is the rule base tuning. It is done using a ge-neti algorithm again, but in this step the real oded version is used. Eahhromosome desribes a omplete rule base. Charateristi parameters of lin-guisti values for eah real variable are oded in the form of hromosome genes.So, an individual hromosome an be presented in the forms mentioned earlier,i.e. (13, 14, 15). The initial population onsists of randomly generated hromo-somes, exept for one hromosome, whih represents the rule base obtained asa result of the previous part of alulations. The arithmetial min-max rossingoperator and the Mihalewiz non-uniform mutation operator are implemented.The algorithm tries to minimize the value of the �tness funtion (36).7. Generation of fuzzy model of temperature di�erene ina ondenserThe algorithm presented above was used to reate a fuzzy model of temperaturedi�erene in a ondenser. The parameters of model generation proess are givenin Table 1. As it was already mentioned (in Setion 4) the training data setonsisted of 2,250 samples. The number of training samples was the result ofthe redution proess arried out to derease the time of alulations. To hekthe in�uene of the redution proess on quality of generated model, the �rststep of model generation was arried out on the basis of the full training set(15,420 samples) and the redued one (2,250 samples). The quality measures ofgenerated models are presented in Tables 2 and 3. The di�erenes in the errorvalues are not signi�ant but the orrelation value is muh better in the aseof the redued training data set. Additionally, the redution proess dereasedthe alulation time (about ten times). So, the next steps of model generationwere arried out on the basis of the redued training set.In the ase of the redued data set the generation algorithm removed 2,246samples. Next the exhange of the geneti material was arried out. The algo-rithm removed the next three samples. On the basis of the last sample a fuzzyrule was generated. Then, the obtained rule base was simpli�ed and tunedaording to the algorithm.To make the generation proess possible, eah data vetor was fuzzi�ed usinglinguisti values, de�ned for eah variable. The range of eah variable waspartitioned into seven linguisti values. As it was already mentioned (Setion5) the �rst of the linguisti values was desribed by the L type fuzzy set, thelast one by the Γ type fuzzy set, and the other ones by Λ type fuzzy sets.In the same way the fuzzy model output value was defuzzi�ed. During the



578 M. PAJ�KTable 1. Parameters of model generation proessNo Parameter name Value1. Compatibility degree 1.02. Threshold of sample 0.053. Negative to positive samples fator k 0.14. Threshold of ompatibility degree between rule baseand samples set 0.255. T-norm used in rule base generation proess MINIMUM6. Number of geneti algorithm generations runs in oneiteration step 507. Number of useless evolution strategy modi�ationsruns to stop 258. Number of hromosomes modi�ed by evolution strategy 20% of population9. Mutation parameter  of evolution strategy 0.910. Number of generations in simpli�ation proess 50011. Number of generations in tuning proess 100012. Number of simpli�ation proess initial populationhromosomes 6113. Number of tuning proess initial populationhromosomes 6114. Parameter b of non-uniform Mihalewiz mutation 515. Crossing probability of generation proess 0.616. Crossing probability of simpli�ation proess 0.617. Crossing probability of tuning proess 0.618. Mutation probability of generation proess 0.119. Mutation probability of simpli�ation proess 0.120. Mutation probability of tuning proess 0.121. Min-max arithmetial operator oe�ient 0.3522. Aggregation operator of fuzzy model MINIMUM23. Impliation operator of fuzzy model MINIMUM24. Aumulation operator of fuzzy model MAXIMUM25. Defuzzy�ation operator of fuzzy model entre of weightTable 2. Quality measures of temperature di�erene fuzzy model after �rst stepof the generation proess (full data set)Maximum error [%℄ 73.4014Minimum error [%℄ 0.0065Correlation [%℄ 43.86Mean square error 0.4247Mean square error [%℄ 0.1330Mean absolute error [%℄ 15.1918Number of maximum error examples 1Number of rules 37



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 579Table 3. Quality measures of temperature di�erene fuzzy model after �rst stepof the generation proess (redued data set)Maximum error [%℄ 88.4636Minimum error [%℄ 0.0196Correlation [%℄ 66.0760Mean square error 0.6515Mean square error [%℄ 0.1647Mean absolute error [%℄ 19.5801Number of maximum error examples 1Number of rules 32

Figure 4. Linguisti values of temperature of water in�ow to the ondenser
00,20,40,60,81
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Figure 5. Linguisti values of temperature di�erene in the ondensertuning step of the generation proess the harateristi points of the linguistivalues were hanged to inrease the quality of the model. For illustration, thelinguisti values for temperature of water in�owing to the ondenser (Fig. 4)and temperature di�erene in ondenser (Fig. 5) are presented.As a result of the omplete generation proess the fuzzy model was obtained.The rule base of the model onsists of 21 rules. All the rules have the same



580 M. PAJ�Kform. They are built of �ve premises and one onsequent. All �ve premises areonneted with the AND operator (12). Some exemplary rules are presentedbelow
Tpwn = L1

Tpwn ∧ psk = L1
psk ∧ Twchd = L2

Twchd ∧ Twchw

= L2
Twchw ∧ Tkond = L2

Tkond ⇒ δT = L1
δT

Tpwn = L3
Tpwn ∧ psk = L3

psk ∧ Twchd = L6
Twchd ∧ Twchw

= L5
Twchw ∧ Tkond = L5

Tkond ⇒ δT = L0
δT (37)

Tpwn = L5
Tpwn ∧ psk = L5

psk ∧ Twchd = L3
Twchd ∧ Twchw

= L3
Twchw ∧ Tkond = L4

Tkond ⇒ δT = L5
δTwhere: Li

Tpwn � linguisti value no. i of temperature of steam�owing out of low pressure turbine [K℄
Li

psk � linguisti value no. i of pressure in ondenser [MPa℄
Li

Twchd � linguisti value no. i of temperature of input waterto the ondenser [K℄
Li

Twchw � linguisti value no. i of temperature of output waterfrom the ondenser [K℄
Li

Tkond � linguisti value no. i of temperature of ondensate [K℄
Li

δT � linguisti value no. i of temperature di�erenein ondenser [K℄.Aording to the Mamdani model harateristi (Piegat, 1999) the rules arenot evenly distributed in the solution spae. The regions, where the solutionspae hanges its shape fast are overed by a higher number of fuzzy rules.Thanks to this the model of the form onsidered an derease the number ofrules and keep high auray of the response.The fuzzy model developed was tested using a testing data set. The testingdata set onsisted of 15,420 samples. The testing data set was as big as possibleto guarantee ertainty of the testing results. The results of model testing arepresented in Table 4.Table 4. Quality measures of temperature di�erene fuzzy modelMaximum error [%℄ 44.1898Minimum error [%℄ 0.0030Correlation [%℄ 83.3495Mean square error 0.1366Mean square error [%℄ 0.0754Mean absolute error [%℄ 11.2652Number of maximum error examples 1Number of rules 21



Geneti fuzzy systems in fuzzy modelling of temperature di�erene 581To hek the quality of the generated model the following measures wereapplied:� the relative maximum error:
δmax = max

{

∀
ml∈M

|y(ml) − Y (ml)|
y(ml)

} (38)where: y(ml) � output of objet for ml sample [K℄
Y (ml) � output of model for ml sample [K℄;� the number of examples generated with the maximum error;� the relative minimum error:

δmin = min

{

∀
ml∈M

|y(ml) − Y (ml)|
y(ml)

}

; (39)� the number of examples generated with no error� the relative absolute error
δma =

p
∑

l=1

|y(ml)−Y (ml)|
y(ml)

p
. (40)However, the most important measures of model quality are the mean squareerror (36), the value of the orrelation funtion (41) and the relative mean squareerror (42):

ryY =

p
∑

l=1

(y(ml) − ȳ) · (Y (ml) − Ȳ )

√

p
∑

l=1

(y(ml) − ȳ)2 ·
p
∑

l=1

(Y (ml) − Ȳ )2

, (41)
δrw =

1

(ymax − ymin)

√

√

√

√

∑

ml∈M

(y(ml) − Y (ml))2

p · (p + 1)
. (42)8. ConlusionsUpon analysing the results obtained we an say that the quality of the fuzzymodel is pretty good, espeially the value of the relative mean square error,whih is very small. The experiment arried out proves the orretness of theused algorithms and methods. Looking at the results of modelling of the tem-perature di�erene in a ondenser we an say that it is possible to put intopratie the software reated and to use it to model real industrial objets.
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