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vol. 37 (2008) No. 3An e�ient geneti algorithm for the unapaitatedmultiple alloation p-hub median problem∗byZoria Stanimirovi¢Faulty of Mathematis, University of BelgradeStudentski trg 16/IV, 11 000 Belgrade, Serbiae-mail: zoriast�matf.bg.a.yu, zoriast�mi.sanu.a.yuAbstrat: In this paper the Unapaitated Multiple Alloa-tion p-hub Median Problem (the UMApHMP) is onsidered. A newheuristi method based on a geneti algorithm approah (GA) forsolving UMApHMP is proposed. The desribed GA uses binaryrepresentation of the solutions. Geneti operators whih keep thefeasibility of individuals in the population are designed and imple-mented. The mutation operator with frozen bits is used to inreasethe diversibility of the geneti material. The running time of the GAis improved by ahing tehnique. Proposed GA approah is benh-marked on the well known CAB and AP data sets and ompared withthe existing methods for solving the UMApHMP. Computational re-sults show that the GA quikly reahes all previously known optimalsolutions, and also gives results on large sale AP instanes (up to
n=200, p=20) that were not onsidered in the literature so far.Keywords: p-hub problem, geneti algorithms, disrete loa-tion and assignment1. IntrodutionHub networks are widely used in modern transport and teleommuniation sys-tems. Instead of serving eah user from its assigned faility with a diret link,hub networks route the �ow via established hub network. Hubs serve as on-solidation and onnetion points between two loations. There is eonomy ofsale inorporated by a disount fator for transportation between the hubs andno diret transportation between two non-hub nodes is allowed. By employinghub nodes as swithing points in the network, and by inreasing transportationbetween them, apaity network an be used more e�iently.The hub loation problem is onerned with loating hub failities and al-loating non-hub nodes to hubs. Depending on how the non-hub nodes arealloated to the hubs, there are two basi alloation shemes in the hub net-work: single alloation and multiple alloation sheme.
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670 Z. STANIMIROVI�1) In the single alloation sheme eah origin/destination node must be as-signed to exatly one hub. All of the �ow from/to eah non-hub node istransported only via spei�ed hub.2) Multiple alloation sheme allows eah non-hub node to ommuniate withmore than one hub.The di�erene between single and multiple alloation shemes is illustratedin Fig.1. In a network with n = 5 nodes, given by their (x, y) oordinates inthe plane, p = 2 hub nodes are to be loated in order to minimize the overalltransportation osts. The orresponding distane matrix is:
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.The unit rates for transportation origin-hub, hub-hub and hub-destinationare equal to 1, 0.75 and 1 respetively. The optimal solutions in single/multiplealloation ase are presented in the middle/on the right side of Fig.1. As anbe seen from the diagrams, the optimal solutions di�er signi�antly, not only inthe alloations but also in the hub loations.
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(5,1) (5,1)Figure 1. The optimal solution to a single and a multiple alloation p-hubproblem in a network with n = 5, p = 2, χ = δ = 1, α = 0.75In the ase of single alloation sheme, hubs are loated at nodes B and D,while non-hub nodes A and E are alloated to (exatly one) hub D and non-hubnode C is alloated to (exatly one) hubB. In the multiple alloation ase, nodesC andD are hosen to be hubs, while non-hub nodes are allowed to ommuniatevia more than one hub: non-hub nodes A, B and E may ommuniate via hub CorD, depending on the transportation ost. For example, for the transportationfrom origin node A to destination node E via hub C, transportation osts alongthe path "A-C-E" are √
2 +

√
34 = 7.25 . If we hoose to transport via hubD, the transportation osts for the path "A-D-E" are lower 3 +

√
5 = 5.23.However, for the transportation from origin-node A to destination-node B we



A geneti algorithm for the UMApHMP 671hoose the hub C, beause the ost "A-C-B" √
26+

√
2 = 6.51 is lower that theosts "A-D-B" 3 + 5 = 8 and "A-D-C-B" 3 + 0.75 ·
√

29 +
√

2 = 8.453. Theminimum overall transportation osts in the single/multiple alloation ases areequal to 62.402 and 58.566 respetively. The redution in total ost in theexample given in Fig.1 by allowing multiple alloation is around 6.15% .Hub loation models may involve apaity restritions on the hubs, �xedosts on both hub and non-hub nodes, predetermined number of hubs et. Ifthe number of hubs to be loated is �xed to p, we are dealing with p-hubloation problems. Capaitated versions of the hub loation problems are alsoonsidered, but the nature of apaities may be di�erent. The transport betweenhubs or between hub and non-hub nodes an be limited. There are also variantsof apaitated hub problems that onsider limits on the �ow into/through eahhub node.Many variants of the hub loation problems have been studied in the litera-ture, due to their important appliation in pratie. Typial appliations of hubloation problems are: teleommuniation systems, postal and other deliverynetworks, airline passenger travel, argo delivery, omputer networks, et. Re-views of hub loation problems and their lassi�ation an be found in Campbellet al. (2002), Campbell (1996).Most of hub loation researh has been devoted to hub median problems, inwhih the main goal is to design a network with hubs in order to minimize thetotal transportation ost and possibly the osts of establishing suh a network.However, the p-hub median formulation an sometimes lead to unsatisfatoryresults, for example, when the worst origin-destination distane (ost) is impor-tant. This may happen, for example, in designing fast delivery systems, wherethe upper bound on the delivery time has to be observed.Di�ulties of this kind an be avoided by using the p-hub enter formulation,whih was �rst introdued and disussed by Campbell (1994). He de�ned threetypes of p-hub enter problems aording to di�erent objetives: minimizationof the maximum ost for any origin-destination pair (important in transportingperishable or time-sensitive items), minimization of the maximum transporta-tion ost between any pair of nodes (important in hub networks with ertainlimitations on the ars), and minimization of the maximum transportation ostbetween a hub and non-hub node (important in hub networks with some speialattributes of hub-hub links and/or limitations on hub-origin/destination links).In the literature, there are more omplex and realisti hub loation modelsthat arise from pratie. Instead of having onstant disount fator for all hub-hub �ows, there are models with �ow-based disounts (Bryan, 1998, and O'Kelly,1998) whih have shown to be appropriate for air freight in order to makealloation deisions based on the ability of �ows to apture sale eonomies.O'Kelly and Bryan (1998) proposed a non-linear ost-funtion whih allowsost to inrease at a dereasing rate as �ows inrease.In Bryan and O'Kelly (1999) the authors onsidered the �ow apaities andminimum �ows on inter-hub links and �ow-dependent osts in all network links.



672 Z. STANIMIROVI�Non-linear ost-funtions are also proposed in Horner and O'Kelly (2001), Wag-ner (2004b) and Kimms (2005).There are also hub models that inlude hub ars (ars with disounted ostrates), Nikel et al. (2001), Campbell et al. (2003, 2005a, b). The objetive inthese models is to loate a �xed number of hub ars in order to minimize theoverall ost. In Podnar et al. (2002) the authors onsidered a �ow thresholdmodel where they do not loate hubs but they deide on the links with reduedunit transportation osts. In their model, the ost of �ow is redued aordingto a presribed disount fator, if the �ow through that link is larger than agiven threshold value. The variants of �ow threshold model are also onsideredin Aykin (1995), Podnar et al. (2002), Podnar and Skorin-Kapov (2003), Skorin-Kapov (2001, 2005). This model enourages the onentration of �ows and use ofa relatively small number of links, re�eting atual harateristis of the network(that is important for designing high-speed teleommuniation networks, urbanpubli transportation networks,..).Another type of hub models, alled the latest arrival hub loation problems,are introdued by Kara and Tansel (1999). They observed that the time spent athubs (for sorting, loading and unloading the �ow) may be signi�ant omparingto total transportation time. The solution was to impose a maximum traveltime onstraint and then to minimize the ost of setting up suh a network (thenumber of hubs required), resulting in various hub overing problems. Thesemodels have signi�ant appliation in designing argo delivery systems (Karaand Tansel, 1999, 2003; Wagner, 2004a; Ernst et al., 2005, and Yaman, 2005).Hub loation models with ompetition Marianov et al. (1999) are suitablefor both air passenger and argo transportation. In these models, the ustomerapture from ompetitor hubs is sought, whih happens whenever the loationof a new hub results in the redution of time or distane needed from the tra�generated by the passenger to travel from the origin to the destination node.2. Mathematial formulationIn this paper the Unapaitated Multiple Alloation p-hub Median Problem(UMApHMP) is studied. Campbell was the �rst to formulate the UMApHMPas a linear integer program in Campbell (1992). Several improvements of thisformulation arise in the literature: Skorin-Kapov et al. (1996), Ernst (1998a)and Boland et al. (2004). The mixed integer linear programming formulationproposed in Boland et al. (2004) is used in this paper.Consider a set I = 1, ..., n of n distint nodes in the network, where eahnode refers to origin/destination or potential hub loation. The distane fromnode i to node j is Cij , and the triangle inequality may be assumed (Campbellet al., 2002). The demand from an origin i to a destination j is denoted with
Wij . The number of hubs to be loated is �xed to p. Eah path from an originto destination node onsists of three omponents: transfer from an origin tothe �rst hub, transfer between the hubs and �nally distribution from the last



A geneti algorithm for the UMApHMP 673hub to a destination. Parameters χ and δ denote unit osts for olletion anddistribution, while α represents a disount fator for the transportation betweenhubs. Deision variables Hj , Zik, Ykl
i and Xlj

i are used in the formulation asfollows:
Hj = 1, if a hub is loated at node j, 0 otherwise
Zik = the amount of �ow from node i that is olleted at hub k
Ykl

i = the amount of �ow from node i that is olleted at hub k, andtransported via hub l
Xlj

i = the amount of �ow from node i to destination j that is distributedvia hub l.The UMApHMP assumes the multiple alloation sheme, whih allows eahnon-hub node to be alloated to more than one hub. The objetive is to loateexatly p hub failities, suh that the total �ow ost is minimized. Using thenotation mentioned above, the problem an be written as:
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kl, Zik ≥ 0, Hk ∈ {0, 1} for every i, j, k, l. (8)The objetive funtion (1) minimizes the sum of the origin-hub, hub-hub andhub-destination �ow osts multiplied with parameters χ, α and δ respetively.Constraint (2) limits the number of loated hubs to p, while (3)-(5) represent thedivergene equations for the network �ow problem for eah node i. Constraints(6) and (7) prevent diret ommuniation between non-hub nodes, while (8)re�ets non-negative and/or binary representation of deision variables.The UMApHMP is known to be NP-hard, with exeption of some speialases (for example when matrix of �ows Wik is sparse) that are solvable inpolynomial time. If the set of hubs is �xed, the problem an also be polynomiallysolved using the shortest-path algorithm in O(n2p) time.



674 Z. STANIMIROVI�2.1. Previous workDue to the number of important appliations in pratie, hub loation problemshave reeived a lot attention in the past deade. However, most of the work hasonentrated on the single alloation ase. A reent survey of various algorithmsthat have been applied to hub loation problems up to now an be found inAlumur and Kara (2008).Several approahes for solving the the UMApHMP have been proposed sofar. Campbell (1996) developed a greedy exhange heuristi for this problem.Aykin (1995) desribed an enumeration and greedy interhange method for theUMApHMP and its variants. Ernst and Krishnamoorthy (1998a) proposed anexat LP based Branh-and-Bound method (BnB) and two heuristi methodsfor the UMApHMP: a shortest-path based heuristi and an expliit enumera-tion heuristi. The authors �rst enumerate all possible hub loations for theUMApHMP. One the hub loations are �xed, the alloation of non-hub nodesis determined by using shortest-paths via the loated hubs. This algorithm is ex-ponential in p, polynomial in n, and onsidering the number of hubs in probleminstanes to be relatively small (p ≤ 5), this approah gives exat solutions inreasonable omputing time. For larger instanes, the shortest path method anbe ombined with a Branh-and-Bound algorithm of Ernst and Krishnamoorthy(1998b). The shortest path problems are solved to obtain lower bounds thatare used in a Branh-and-Bound sheme to obtain exat solutions. In Ernstand Krishnamoorthy (1998b) the authors presented omputational results ofthe shortest path method only for CAB (n ≤ 25, p ≤ 4) and smaller size AP(n ≤ 50, p ≤ 5) instanes. Hybridization with BnB gave results on some largerAP instanes (n = 100, p ≤ 5 and n = 200, p = 2, 3).Boland et al. (2004) developed an exat Branh-and-Bound method for solv-ing multiple alloation hub loation problems using pre-proessing and uttingalgorithms. They �rst obtain good upper bounds that are used to ut the sizeof branh and bound tree, but this approah gives results only on CAB (n ≤ 25,
p ≤ 4) and smaller size AP instanes (n ≤ 50, p ≤ 5).A speial ase of the UMApHMP, alled 1-stop multiple alloation p-hubmedian problem is onsidered by Sasaki, Suzuki and Drezner (1999). In thisproblem, eah origin-destination path is allowed to use only one hub. Theauthors proposed a mixed integer formulation of the problem and two algorithmsfor solving it: an exat BnB algorithm and a greedy-based heuristi method.The proposed methods were tested on the standard CAB data set with up to
n = 25 nodes.Many papers in the literature deal with single alloation variant of the p-hub median problem-USApHMP: Campbell (1994), Skorin-Kapov et al. (1996),Ernst and Krishnamoorthy (1996) and Ebery (2001). The USApHMP is alsoNP-hard, even if the hub loations are �xed Kara (1999). Obviously, the so-lutions to the UMApHMP represent a lower bound for the optimal solution tothe USApHMP. This fat was used in Campbell (1996) to develop two heuris-



A geneti algorithm for the UMApHMP 675ti methods, whih derive solution to the USApHMP from the solution to theUMApHMP. Various heuristi methods for solving the USApHMP have beenproposed up to now: Exhange heuristi (Klinewiz, 1991), tabu-searh heuris-ti (Klinewiz, 1992), Skorin-Kapov (1994), lower bounding method (O'Kellyet al., 1995), simulated annealing heuristi (Abadinour-Helm, 1998; Ernst andKrishnamoorthy 1996), et.Exat solution methods, as well as their hybridizations with heuristis forsolving the USApHMP and its variants are desribed in Sohn and Park (1997,2000), Ernst and Krishnamoorthy (1998b), Pirkul and Shilling (1998), Ebery(2001), Elhedhli and Hu (2005) et.3. Geneti algorithmGA is a problem-solving metaheuristi based on the onept of natural evolution.The main idea was introdued by Holland (1975), and in past three deades thedevelopment of the GA theory and its appliations are rapidly growing.The GA approah uses the analogies between the individuals in the natureand problem solutions. The main struture that GA is working with is a popu-lation of individuals. Eah individual is enoded as a string of haraters fromsome alphabet, and it orresponds to one solution in the searh spae. For eahindividual the �tness value is omputed. It arries the information about thesolution quality, and it is not neessarily equal to the objetive funtion. Fromgeneration to generation the GA tries to produe the improvement of qualityof every solution, as well as better average �tness of the whole population. Itis obtained by using geneti operators: seletion, rossover and mutation. Formore information about GA see Bäk et al. (2000a, b).The basi sheme of the GA an be represented as:Input_Data(); Population_Init(); while not Finish() dofor i:=1 to Npop dopi := Objetive_Funtion(i);endforFitness_Funtion();Seletion();Crossover();Mutation();endwhile Output_Data();/* Npop denotes the number of individuals in a population and pi isobjetive value of i-th individual */Very suessful GA appliations to some NP-hard problems are given inKratia (2000), Kratia et al. (2001), Ljubi¢ (2004) and Raidl and Ljubi¢ (2002).Geneti algorithms an also be ombined with exat Branh-and-Cut-and-Priemethod (Ljubi¢, 2004).



676 Z. STANIMIROVI�GA approahes for solving some other hub loation problems of smaller di-mensions are desribed in Abadinour-Helm (1998, 2001), Abadinour-Helm andand Venkataramanan (1998) and Topuoglu et al. (2005). Unfortunately, theyapply simple GA with roulette-wheel seletion, one-point rossover and sim-ple mutation. In the literature, GAs are also suessfully applied to di�erentlarge-saled hub loation problems: the Unapaitated Single Alloation HubLoation Problem-USAHLP in Abadinour-Helm and Venkataramanan (1998),the Unapaitated Multiple Alloation p-Hub Center Problem-UMApHCP inKratia and Stanimirovi (2006), the Unapaitated Single Alloation p-HubMedian problem in Kratia et al. (2006). Although these problems are similarby names, evolutionary based approahes proposed up to now for solving theseproblems have quite di�erent harateristis. For example, di�erent alloationshemes in the UMApHMP and the USApHMP have great impat on the prob-lem omplexity. For the �xed set of hubs, the multiple alloation sub-problemis solved in polynomial O(n2p) time, while the single alloation sub-problemremains NP-hard. Therefore, geneti algorithms proposed up to now for solvingother hub loation problems, an not be applied to the UMApHMP. Therefore,a new GA approah is designed and desribed in the next setion.4. Proposed geneti algorithm4.1. Representation and objetive funtionThe binary enoding of the individuals is used in this GA implementation. Eahsolution is represented by a binary string of length n. Gene 1 in the genetiode denotes that partiular hub is established, while gene 0 shows that it isnot. Sine users an be assigned only to opened hub failities, only array (Hj) isobtained from the geneti ode and the values of Zik, Y i
kl and X i

lj are alulatedduring the evaluation of the objetive funtion.For �xed set of hubs (Hj), the modi�ed version of the well-known Floyd-Warsall shortest path algorithm (Ahuja et al., 1993; Ernst and Krishnamoorthy,1998a), is used. After �nding shortest paths between all pair of nodes, it issimple to evaluate objetive funtion only by summing the shortest distanesorigin-hub, hub-hub and hub-destination, multiplied with �ows and orrespond-ing ost parameters χ, α and δ.4.2. Geneti operatorsSeletion The GA implementation uses the �ne-grained tournament seletion(FGTS), proposed in Filipovi¢ (1998), that is an improvement of the standardtournament seletion operator. Instead of integer parameter Ntour - the size oftournament group, the FGTS depends on real parameter Ftour - desired averagetournament size. The FGTS operator uses two types of tournaments. The �rsttype is held k1 times and its size is [Ftour℄+1. The seond type is performed
k2 times with [Ftour℄ individuals partiipating. Sine the value Ftour = 5.4 is



A geneti algorithm for the UMApHMP 677used in this FGTS implementation, the orresponding values k1 and k2 (for 50non-elitist individuals) are 20 and 30 respetively. The running time of FGTSoperator is O(n * Ftour). In pratie, Ftour is onsidered to be onstant (notdepending on n), that gives O(n) time omplexity. For detailed informationabout the FGTS operator see Filipovi¢ (1998 and 2006).Crossover After a pair of parents is seleted, a rossover operator is appliedto them, produing two o�spring. The basi rossover exhanges segments oftwo parents' geneti odes after the rossover point that is randomly hosen.A simple exhange of the two segments may produe inorret o�spring for theUMApHMP (the number of ones in the ode may beome di�erent from p),although the parents had exatly p ones in their geneti odes. To overomethis problem, the basi rossover is modi�ed. Modi�ed rossover operator issimultaneously traing geneti odes of the parents from right to left, searhingfor the position i on whih the �rst parent has 1 and seond 0. The individualsexhange genes on the found position (identi�ed as rossover point), and similarproess is performed starting from the left side of geneti ode. Operator issearhing the position j where the �rst parent has 0 and the seond 1. Genesare exhanged on the j-th position, and the number of loated hubs in bothindividuals is unhanged. Desribed proess is repeated until j ≥ i (see Fig.2).parent1: 001100110101 ---> 001100110101 --->parent2: 011110100001 011110100001->j i<-011100110001 ---> 011100110001 ---> 011101100001 offspring1001101000101 001101000101 001100010101 offspring2j i ->j i<- j iFigure 2. Modi�ed rossover operatorThe rossover is performed with the rate pcross = 0.85. It means that around85% pairs of individuals take part in produing o�spring.Mutation O�spring generated by the rossover operator are subjet to muta-tion with frozen bits. Mutation operator is performed by hanging a randomlyseleted gene in the geneti ode (0 to 1, 1 to 0), with basi mutation rate of0.4/n for non-frozen bits and 1.0/n for frozen bits. These mutation rates areonstant through GA generations. In eah individual the numbers of mutatedones and zeros are ounted and ompared. In ase these numbers are not equal,it is neessary to mutate additional genes in order to equalize them. In this waymutation operator preserves p ones in the geneti ode and keeps the mutatedindividual feasible.During the GA exeution it may happen that (almost) all individuals inthe population have the same gene on a ertain position, as it an be seen from



678 Z. STANIMIROVI�gen.ode 1: 0110010110gen.ode 2: 1100010110gen.ode 3: 0111000110gen.ode 4: 0110010101gen.ode 5: 0111000110frozen : F F FFFigure 3. Frozen genesFig.3. These genes are alled frozen (denoted with 'F' in Fig.3). If the number offrozen genes is l, the searh spae beomes 2l times smaller, and the possibilityof premature onvergene rapidly inreases. Seletion and rossover operatoran not hange bit value of any frozen gene, and the basi mutation rate isoften insu�iently small to restore the lost subregions of the searh spae. Ifthe basi mutation rate is signi�antly inreased, geneti algorithm beomes arandom searh. For this reason, the mutation rate is inreased only on frozengenes, but not more than few times. In this GA implementation, frozen genesare mutated with 2.5 times higher rate than non-frozen ones (1.0/n instead of0.4/n).4.3. Generation replaement strategyThe initial population, whih numbers 150 individuals, is randomly generated.This approah provides maximal diversity of the geneti material and bettergradient of the objetive funtion. One third of the population is replaed inevery generation, exept for the best 100 individuals that are diretly passing tothe next generation, preserving highly �tted genes. The objetive values of eliteindividuals do not need realulation, sine eah of them is evaluated in one ofthe previous generations. This approah is denoted as steady-state replaementwith elitist strategy in the literature (Kratia, 2000; Kratia et al., 2001).In order to obtain more orret individuals in the initial population, theprobability of generating ones in geneti odes is set to p/n. The individualsthat have k, k 6= p ones in their geneti ode are inorret, and they are orretedby adding/erasing |p − k| ones at/from the end of geneti ode. The appliedgeneti operators preserve the �xed number of hubs, so that inorret individualsdo not appear in the following generations.Dupliated individuals are removed in every GA generation. Their �tnessvalues are set to zero, so that seletion operator prevents them to enter thenext generation. This is a very e�etive method for saving the diversity ofgeneti material and keeping the algorithm away from premature onvergene.Individuals with the same objetive funtion but di�erent geneti odes, in someases may dominate in the population. If their odes are similar, GA an leadto loal optimum. For that reason, it is useful to limit their appearane to someonstant Nrv (it is set to 40 in this GA appliation).



A geneti algorithm for the UMApHMP 6794.4. Cahing GAThe running time of the GA is improved by ahing (Kratia, 1999, 2000).The objetive funtions evaluations are stored in a ahe-queue data struture.When the same ode is obtained again, its funtion value is taken from thehash-queue table. The least reently used (LRU) strategy is used for ahingGA. The number of ahed funtion values is limited to Ncache = 5000 in thisimplementation.5. Computational results5.1. Instanes and omputational environmentIn this setion the omputational results of the GA are presented. All testswere arried out on an AMD K7 1.33GHz with 256 MB memory. The algorithmwas oded in C programming language. Two sets of ORLIB (Beasley, 1996)instanes were used:- CAB (Civil Aeronautis Board) data set, based on airline passenger�ow between ities of United States. It ontains 60 instanes with upto 25 nodes and up to 4 hubs. Colletion and distribution osts χ and
δ are equal to one, while transferring ost α takes values from 0.2 to 1.The distanes between ities satisfy the triangle inequality, and the �owis symmetri. Detailed information about CAB instanes an be found inBeasley (1996) and Campbell (1996).- AP (Australian Post) data set is derived from the study of Australianpostal delivery system. Its largest instane inludes 200 nodes (represent-ing postode distrits), but smaller ones with 10, 20, 25, 50, 100 nodesan be obtained through the aggregation of nodes. The number of hubs(mail sorting/onsolidation entres) in tested instanes is up to 20. The�ow matrix Wij is non-symmetri and Wii 6= 0, sine the mail an be sentfrom one plae to itself. The AP data set an also be taken from Beasley(1996).5.2. Results of the GA and omparisons with other methodsThe parameters mentioned above, that proved to be robust and appropriate forthis problem, are used. The maximal number of generations is Ngen = 500 forsmaller, and Ngen = 5000 for larger problem instanes. Algorithm also stops ifthe best individual or the best objetive value remained unhanged throughNrep= 200 (Nrep = 2000) suessive generations, respetively. On all the instaneswe onsidered, this riterion allowed GA to onverge to high-quality solutions.Only minor or no improvements in the quality of �nal solutions an be expetedwhen prolonging the runs, as it an be seen from the Tables 1-3.Table 1 provides results of the GA approah for CAB instanes, while Table2 and Table 3 ontain results obtained for smaller/larger AP instanes respe-



680 Z. STANIMIROVI�tively. The GA was run 20 times on eah instane, exept for larger AP instanes(with n ≥ 100) that were run only 10 times, beause of time onsuming objetivefuntion omputation.In the �rst olumn instane dimensions (n, p and possibly α) are given.The seond olumn ontains optimal solution of the urrent instane, if it ispreviously known. If it is not, the dash (-) appears. The best value of the GAis given in the next olumn, with mark opt in ases when GA reahed optimalsolution known in advane. Average time needed to detet the best value isgiven in t[s] olumn, while ttot[s] represents the total time needed to exeuteall 500/5000 generations. The GA onept annot prove optimality and anadequate �nishing riterion that will �ne-tune solution quality does not exist.Therefore, the algorithm runs through additional ttot − t time (until �nishingriterion is satis�ed), although it already reahed its best/optimal solution. Onaverage, the best/optimal value has been reahed after gen generations.The solution quality in all 20/10 exeutions is evaluated as a perentage gapwith respet to the optimal ost OPTsol or GAbest, with standard deviation ofthe average gap σ. The last two olumns are related to ahing: eval representsthe average number of needed evaluations, while cache[%] displays savings (inperent) ahieved by using the ahing tehnique.It is evident from Tables 1 and 2 that the proposed GA method quiklyreahes all previously known optimal solutions on CAB and smaller AP in-stanes. For the CAB data set, the optimal solution was deteted in t[s] ≤ 0.048,while the total running time ttot[s] ≤ 0.161 seonds. For AP data set, the CPUtimes were t[s] ≤ 0.571 and ttot[s] ≤ 1.282 seonds. On average, instead ofmaking 25 000 alls of the objetive funtion, between 82.1% and 97.2% of thevalues from the ahe-queue table were re-used while solving CAB instanes,and between 65% and 98.5% while solving smaller AP instanes (see cache[%]olumns). Table 3 provides results of the proposed GA approah for 42 largeAP instanes with 40 ≤ n ≤ 200 nodes and 2 ≤ p ≤ 20 hubs. For only 9 largeAP instanes the optimal solution is known from the literature, and for the re-maining 33 instanes no optimal or any other solution is given in the literatureso far. As it an be seen from the Table 3, the GA reahes all optimal solutions,but also provides results on the unsolved AP instanes in a reasonable ompu-tational time. For the largest AP instane with n = 200, p = 20, the best GAsolution was found in t[s] = 1935.840 seonds, while the total running time was
ttot[s] = 2425.588. The values stored in the ahe table provided between 42.3%and 96.1% of savings, instead of 250 000 alulations of the objetive funtion.The detailed omparisons of the proposed GA with the best-known heuristiand exat methods for solving the UMApHMP are presented in Tables 4-6. Thebest GA results on the CAB and AP data sets were ompared with the resultsobtained by the Shortest-Path Based Heuristi (SPBH), Expliit Enu-meration Heuristi (EEH) and Exat Shortest Path Based Branh-and-Bound Algorithm (SPBnB), whih were proposed in Ernst and Krish-namoorthy (1998b) and tested on DEC 3000/700 (200MHz alpha hip).
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Table 1. GA results on CAB instanes

n p α OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]20 2 0.2 972.251 opt 0.006 0.046 209 0.0 0.0 296 97.220 2 0.4 1013.358 opt 0.004 0.045 210 0.0 0.0 296 97.220 2 0.6 1046.895 opt 0.006 0.046 210 0.0 0.0 296 97.220 2 0.8 1075.301 opt 0.003 0.044 201 0.0 0.0 297 97.120 2 1.0 1090.628 opt 0.004 0.045 204 0.0 0.0 296 97.120 3 0.2 712.090 opt 0.013 0.066 213 0.0 0.0 950 91.220 3 0.4 803.810 opt 0.014 0.067 213 0.0 0.0 938 91.320 3 0.6 884.636 opt 0.016 0.068 215 0.0 0.0 944 91.320 3 0.8 948.415 opt 0.009 0.064 208 0.0 0.0 949 91.020 3 1.0 975.532 opt 0.013 0.068 209 0.0 0.0 948 91.120 4 0.2 568.505 opt 0.027 0.101 226 0.0 0.0 1656 85.520 4 0.4 694.557 opt 0.018 0.099 210 0.0 0.0 1603 85.020 4 0.6 788.594 opt 0.024 0.102 215 0.0 0.0 1596 85.420 4 0.8 870.076 opt 0.022 0.102 215 0.0 0.0 1595 85.420 4 1.0 934.083 opt 0.023 0.103 216 0.0 0.0 1586 85.525 2 0.2 996.022 opt 0.003 0.053 201 0.0 0.0 410 96.025 2 0.4 1072.489 opt 0.003 0.052 201 0.0 0.0 407 96.025 2 0.6 1137.081 opt 0.002 0.054 201 0.0 0.0 409 96.025 2 0.8 1180.020 opt 0.003 0.054 201 0.0 0.0 410 96.025 2 1.0 1206.620 opt 0.003 0.053 201 0.0 0.0 410 96.025 3 0.2 752.907 opt 0.022 0.095 218 0.0 0.0 1237 88.825 3 0.4 859.636 opt 0.017 0.093 209 0.0 0.0 1236 88.425 3 0.6 949.230 opt 0.017 0.094 209 0.0 0.0 1246 88.325 3 0.8 1020.037 opt 0.017 0.095 209 0.0 0.0 1249 88.225 3 1.0 1062.144 opt 0.021 0.099 213 0.0 0.0 1250 88.425 4 0.2 618.483 opt 0.048 0.153 233 0.0 0.0 2028 82.825 4 0.4 754.489 opt 0.045 0.153 228 0.0 0.0 1982 82.925 4 0.6 866.445 opt 0.023 0.145 209 0.0 0.0 1892 82.225 4 0.8 951.755 opt 0.027 0.152 210 0.0 0.0 1910 82.125 4 1.0 1006.657 opt 0.029 0.161 210 0.0 0.0 2021 81.1
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Table 2. GA results on AP instanes

n p OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]10 2 163603.94 opt 0.001 0.037 201 0.000 0.000 156 98.510 3 131581.79 opt 0.001 0.038 201 0.000 0.000 268 97.410 4 107354.73 opt 0.004 0.040 204 0.000 0.000 351 96.610 5 86028.88 opt 0.003 0.042 201 0.000 0.000 384 96.210 6 72427.73 opt 0.002 0.042 201 0.000 0.000 341 96.610 7 63466.81 opt 0.002 0.041 202 0.000 0.000 273 97.310 8 54628.75 opt 0.002 0.041 202 0.000 0.000 196 98.120 2 168599.79 opt 0.004 0.045 201 0.000 0.000 297 97.120 3 148048.30 opt 0.012 0.065 210 0.000 0.000 883 91.720 4 131665.43 opt 0.017 0.091 213 0.000 0.000 1461 86.520 5 118934.97 opt 0.020 0.119 210 0.000 0.000 1809 83.020 6 107005.85 opt 0.045 0.161 226 0.000 0.000 2239 80.420 7 97697.75 opt 0.031 0.184 209 0.000 0.000 2301 78.420 8 91454.83 opt 0.060 0.211 227 0.000 0.000 2313 79.825 2 171298.10 opt 0.003 0.051 201 0.000 0.000 411 96.025 3 151080.66 opt 0.016 0.088 209 0.000 0.000 1130 89.325 4 135638.58 opt 0.028 0.139 212 0.000 0.000 1851 82.825 5 120581.99 opt 0.051 0.208 223 0.000 0.000 2464 78.225 6 110835.82 opt 0.094 0.277 246 0.000 0.000 2913 76.525 7 103880.23 opt 0.139 0.374 257 0.000 0.000 3461 73.225 8 97795.59 opt 0.155 0.453 252 0.000 0.000 3750 70.540 2 173415.96 opt 0.025 0.102 211 0.000 0.000 783 92.740 3 155458.61 opt 0.073 0.245 226 0.000 0.000 2062 82.040 4 140682.74 opt 0.131 0.452 234 0.000 0.000 3265 72.540 5 130384.74 opt 0.358 0.788 299 0.024 0.060 4667 68.850 2 174390.03 opt 0.061 0.173 228 0.000 0.000 1078 90.650 3 156014.72 opt 0.240 0.511 288 0.000 0.000 3069 78.650 4 141153.38 opt 0.384 0.885 285 0.000 0.000 4419 69.050 5 129412.60 opt 0.571 1.282 301 0.015 0.036 5280 65.0
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Table 3. GA results on large AP instanes

n p OPTsol GAbest t[s] ttot[s] gen gap[%] σ[%] eval cache[%]40 6 122171.26 opt 0.247 4.834 2039 0.000 0.000 23349 77.140 7 - 116036.38 0.467 6.002 2086 0.000 0.000 25307 75.840 8 - 109971.92 0.579 7.655 2085 0.000 0.000 28348 72.940 9 - 104212.42 0.884 9.010 2127 0.000 0.000 29598 72.240 10 - 99452.67 0.779 9.491 2085 0.000 0.000 27863 73.350 6 121671.76 opt 1.537 9.150 2284 0.000 0.000 31036 72.950 7 - 115911.64 4.872 15.725 2851 0.000 0.000 46503 67.450 8 - 109926.60 4.294 17.188 2591 0.000 0.000 44043 66.050 9 - 104968.27 2.869 17.252 2298 0.000 0.000 38930 66.250 10 100508.95 opt 4.333 21.136 2412 0.000 0.000 42743 64.750 11 - 96186.22 5.294 24.675 2454 0.000 0.000 44999 63.450 12 - 93171.96 3.714 23.870 2267 0.000 0.000 39458 65.250 13 - 90409.79 4.255 27.221 2281 0.000 0.000 41079 64.150 14 - 87654.61 3.972 29.098 2238 0.000 0.000 40315 64.150 15 - 85032.89 7.463 35.493 2456 0.000 0.000 45615 62.950 20 - 73490.33 2.824 39.859 2094 0.000 0.000 38133 63.6100 2 176245.38 opt 0.639 2.736 2089 0.000 0.000 4088 96.1100 3 157869.93 opt 2.195 13.227 2207 0.000 0.000 21017 81.0100 4 143004.31 opt 9.007 32.848 2652 0.000 0.000 44346 66.6100 5 133482.57 opt 20.067 54.389 3097 0.000 0.000 60475 60.9100 6 - 126107.56 58.421 99.973 4350 0.000 0.000 94424 56.6100 7 - 120165.15 45.945 100.118 3553 0.011 0.024 80659 54.6100 8 - 114295.92 77.750 125.793 3891 0.228 0.355 87852 54.8100 9 - 109448.87 54.651 126.037 3409 0.002 0.005 77693 54.6100 10 - 104794.05 63.355 146.263 3421 0.001 0.002 79849 53.4100 15 - 88882.05 150.193 270.956 4004 0.093 0.162 93755 53.1100 20 - 79191.02 195.747 377.160 3828 0.139 0.152 96737 49.5200 2 178093.99 opt 8.123 35.686 2129 0.000 0.000 10048 90.6200 3 159725.11 opt 43.393 174.900 2520 0.000 0.000 40939 67.6200 4 - 144508.20 172.663 376.815 3585 0.001 0.002 78983 56.0200 5 - 136761.83 357.326 562.245 4231 0.096 0.092 103391 51.2200 6 - 129560.60 393.868 681.338 4281 0.046 0.062 111529 47.9200 7 - 123609.44 460.543 766.016 4219 0.051 0.070 112515 46.7200 8 - 117709.98 566.177 879.377 4237 0.213 0.189 115253 45.8200 9 - 112380.66 869.886 1096.180 4809 0.066 0.146 131684 45.3200 10 - 107846.82 847.216 1157.049 4591 0.090 0.189 127817 44.4200 15 - 92669.64 1246.186 1750.105 4699 0.397 0.275 135060 42.6200 20 - 83385.94 1935.840 2425.588 4924 0.169 0.232 142223 42.3
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Table 4. Comparisons on CAB instanesGA SPBH EEH SPBnB

n p α Optsol best gap[%] ttot[s] gap[%] t[s] gap[%] t[s] nodes t[s]20 2 0.2 972.251 opt 0.0 0.046 0.0 0.04 0.0 0.05 103 0.1120 2 0.4 1013.358 opt 0.0 0.045 0.0 0.04 0.0 0.05 83 0.1120 2 0.6 1046.895 opt 0.0 0.046 0.0 0.04 0.0 0.05 76 0.1120 2 0.8 1075.301 opt 0.0 0.044 0.0 0.04 0.0 0.05 83 0.1120 2 1.0 1090.628 opt 0.0 0.045 0.0 0.04 0.0 0.05 90 0.1120 3 0.2 712.090 opt 0.0 0.066 0.0 0.09 0.0 0.43 102 0.2220 3 0.4 803.810 opt 0.0 0.067 0.0 0.09 0.0 0.43 92 0.2220 3 0.6 884.636 opt 0.0 0.068 0.0 0.09 0.0 0.43 116 0.2520 3 0.8 948.415 opt 0.0 0.064 0.0 0.10 0.0 0.43 138 0.2720 3 1.0 975.532 opt 0.0 0.068 0.0 0.09 0.0 0.43 92 0.2320 4 0.2 568.505 opt 0.0 0.101 0.0 0.20 0.0 2.43 161 0.4020 4 0.4 694.557 opt 0.0 0.099 0.0 0.19 0.0 2.41 177 0.4420 4 0.6 788.594 opt 0.0 0.102 0.0 0.19 0.0 2.43 184 0.4620 4 0.8 870.076 opt 0.0 0.102 0.0 0.18 0.0 2.40 190 0.4920 4 1.0 934.083 opt 0.0 0.103 0.0 0.18 0.0 2.46 261 0.5725 2 0.2 996.022 opt 0.0 0.053 0.0 0.08 0.0 0.12 76 0.1625 2 0.4 1072.489 opt 0.0 0.052 0.0 0.07 0.0 0.12 73 0.1825 2 0.6 1137.081 opt 0.0 0.054 0.0 0.07 0.0 0.12 77 0.2125 2 0.8 1180.020 opt 0.0 0.054 0.0 0.08 0.0 0.12 87 0.2025 2 1.0 1206.620 opt 0.0 0.053 0.0 0.08 0.0 0.12 93 0.2025 3 0.2 752.907 opt 0.0 0.095 0.0 0.18 0.0 1.28 148 0.4525 3 0.4 859.636 opt 0.0 0.093 0.0 0.19 0.0 1.30 151 0.4925 3 0.6 949.230 opt 0.0 0.094 0.0 0.19 0.0 1.32 152 0.4925 3 0.8 1020.037 opt 0.0 0.095 0.0 0.19 0.0 1.29 177 0.5525 3 1.0 1062.144 opt 0.0 0.099 0.0 0.20 0.0 1.29 176 0.5225 4 0.2 618.483 opt 0.0 0.153 0.0 0.45 0.0 9.17 257 1.0325 4 0.4 754.489 opt 0.0 0.153 0.0 0.47 0.0 9.29 304 1.1425 4 0.6 866.445 opt 0.0 0.145 0.0 0.42 0.0 9.18 386 1.1425 4 0.8 951.755 opt 0.0 0.152 0.0 0.49 0.0 9.11 399 1.4425 4 1.0 1006.657 opt 0.0 0.161 0.0 0.44 0.0 9.14 364 1.30
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Table 5. Comparisons on AP instanesGA SPBH SPBnB
n p Optsol best gap[%] ttot[s] gap[%] t[s] nodes t[s]10 2 163603.94 opt 0.000 0.037 0.00 0.00 23 0.0110 3 131581.79 opt 0.000 0.038 0.00 0.01 56 0.0210 4 107354.73 opt 0.000 0.040 0.00 0.02 92 0.0310 5 86028.88 opt 0.000 0.042 0.00 0.02 92 0.0420 2 168599.79 opt 0.000 0.045 0.00 0.04 38 0.0820 3 148048.30 opt 0.000 0.065 0.00 0.09 160 0.2520 4 131665.43 opt 0.000 0.091 0.00 0.19 456 0.7020 5 118934.97 opt 0.000 0.119 0.00 0.33 889 1.3925 2 171298.10 opt 0.000 0.051 0.00 0.08 45 0.1325 3 151080.66 opt 0.000 0.088 0.00 0.18 213 0.5125 4 135638.58 opt 0.000 0.139 0.77 0.40 708 1.6825 5 120581.99 opt 0.000 0.208 0.00 0.67 1053 3.1540 2 173415.96 opt 0.000 0.102 0.00 0.44 91 0.7640 3 155458.61 opt 0.000 0.245 0.00 1.11 521 3.5640 4 140682.74 opt 0.000 0.452 0.00 2.52 1869 13.8240 5 130384.74 opt 0.024 0.788 0.00 4.43 6310 50.7250 2 174390.03 opt 0.000 0.173 0.00 1.24 119 2.0050 3 156014.72 opt 0.000 0.511 0.00 3.37 765 8.9150 4 141153.38 opt 0.000 0.885 0.00 7.06 3183 40.1450 5 129412.60 opt 0.015 1.282 0.00 10.95 10187 143.48
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Table 6. Comparisons on large AP instanesGA SPBnB

n p Optsol best gap[%] ttot[s] nodes t[s]40 6 122171.26 opt 0.000 4.834 23 3242.1540 7 - 116036.38 0.000 6.002 - -40 8 - 109971.92 0.000 7.655 - -40 9 - 104212.42 0.000 9.010 - -40 10 - 99452.67 0.000 9.491 - -50 6 121671.76 opt 0.000 9.150 60 18472.8450 7 - 115911.64 0.000 15.725 - -50 8 - 109926.60 0.000 17.188 - -50 9 - 104968.27 0.000 17.252 - -50 10 100508.95 opt 0.000 21.136 2125737 57243.3050 11 - 96186.22 0.000 24.675 - -50 12 - 93171.96 0.000 23.870 - -50 13 - 90409.79 0.000 27.221 - -50 14 - 87654.61 0.000 29.098 - -50 15 - 85032.89 0.000 35.493 - -50 20 - 73490.33 0.000 39.859 - -100 2 176245.38 opt 0.000 2.736 400 25.54100 3 157869.93 opt 0.000 13.227 3198 162.63100 4 143004.31 opt 0.000 32.848 25780 1097.19100 5 133482.57 opt 0.000 54.389 153266 7687.75100 6 - 126107.56 0.000 99.973 - -100 7 - 120165.15 0.011 100.118 - -100 8 - 114295.92 0.228 125.793 - -100 9 - 109448.87 0.002 126.037 - -100 10 - 104794.05 0.001 146.263 - -100 15 - 88882.05 0.093 270.956 - -100 20 - 79191.02 0.139 377.160 - -200 2 178093.99 opt 0.000 35.686 1432 384.67200 3 159725.11 opt 0.000 174.900 25349 3636.64200 4 - 144508.20 0.001 376.815 - -200 5 - 136761.83 0.096 562.245 - -200 6 - 129560.60 0.046 681.338 - -200 7 - 123609.44 0.051 766.016 - -200 8 - 117709.98 0.213 879.377 - -200 9 - 112380.66 0.066 1096.180 - -200 10 - 107846.82 0.090 1157.049 - -200 15 - 92669.64 0.397 1750.105 - -200 20 - 83385.94 0.169 2425.588 - -



A geneti algorithm for the UMApHMP 687The proposed GA and SPBH, EEH and SPBnB methods were not tested onthe same platform, so exat omparisons an not be arried out. Aording tothe SPEC-fp95 SPEC-fp2000 benhmarks (www.spe.org), omputers AMD at1.33GHz and DEC 3000/700 have average (base) speedup values 29.4 and 5.71respetively. In order to provide some desriptive omparisons of CPU times,we observe t[s] and ttot[s] times of the GA multiplied by 29.4/5.71 = 5.2 fator.As it an be seen from Table 4, all three heuristi methods obtain optimalsolutions on CAB instanes. The total running times of the GA (multipliedby 5.2 fator) and the SPBH are similar, while the the exat SPBnB is slightlyslower. The EEH is several times slower in omparison with other three methods.The results of the EEH on smaller size AP instanes were not presented inErnst and Krishnamoorthy (1998b), so in Table 5 only the omparisons of theGA, SPBH and SPBnB results are given. The SPBH method did not reahoptimal solution on AP n = 25, p = 5 (the average gap is 0.77%), while the GAreahed optimal solutions in all ases. The running time of the GA (multipliedby 5.2 fator) is similar or slightly slower in omparison with SPBH. The SPBnBmethod is signi�antly slower in omparison with both GA and SPBH. Forexample, on AP instane n = 50, p = 5, the SPBnB gives optimal solution in
t[s] = 143.48 seonds, the SPBH in t[s] = 10.95 and the GA in ttot[s] ∗ 5.2 =
1.282 ∗ 5.2 ≈ 6.66 seonds.In Table 6, the omparisons of the GA and SPBnB method are presented,sine the results of the SPBH and EEH were not reported in Ernst and Krish-namoorthy (1998b). The proposed GA reahed all optimal solutions previouslyobtained by exat SPBnB method (on 9 out of 42 large AP instanes). Com-paring the values in olumn ttot[s] (multiplied by 5.2 fator) and olumn t[s],it an be seen that the GA onept reahed optimal solution in several timesshorter CPU time ompared to the SPBnB. For example, for the largest APinstane n = 200, p = 3 that was solved to optimality, the CPU times of theSPBnB and the GA are t[s] = 3636.64 and ttot[s] ∗ 5.2 = 174.9 ∗ 5.2 ≈ 909.48seonds, respetively. For the remaining 33 large AP instanes that ould notbe solved by the SPBnB or any other method up to now, the total running timeof the proposed GA is reasonably short (ttot[s] ≤ 41 min).6. ConlusionsIn this paper a geneti algorithm based on the binary enoding for the UMApHMPis proposed. The initial population is randomly generated with p/n probabilityof generating ones in the genes. Unfeasible individuals in the initial populationare orreted to be feasible. Shortest-path objetive funtion is used in thisGA approah. New geneti operators, adopted to the problem are onstruted.They keep the feasibility of individuals by preserving exatly p ones in their ge-neti odes. By applying mutation with frozen bits, and by limiting the numberof individuals with the same objetive funtion and di�erent geneti odes, thediversibility of geneti material is onsiderably inreased. Implemented ahing
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