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Abstract:

In various branches of science, e.g. medicine, economics, soci-
ology, it is necessary to identify or detect outlying subsets of data.
Suppose that the set of data is partitioned into many relatively small
subsets and we have some reason to suspect that one or several of
these subsets may be atypical or aberrant. We propose applying a
new measure of separability, based on the ideas borrowed from the
discriminant analysis. In our paper we define two versions of this
measure, both using a jacknife, leave-one-out, estimator of classifica-
tion error. If a suspected subset is significantly well separated from
the main bulk of data, then we regard it as outlying. The usefulness
of our algorithm is illustrated on a set of medical data collected in a
large survey “Epidemiology of Allergic Diseases in Poland” (ECAP).
We also tested our method on artificial data sets and on the clas-
sical IRIS data set. For a comparison, we report the results of a
homogeneity test of Bartoszynski, Pearl and Lawrence, applied to
the same data sets.

Keywords: multidimensional homogeneity test, misclassifica-
tion error, discriminant analysis, medical data.

1. Introduction

Let us consider data of the form of an array X = [z; ;]i=1,... n;j=1,... With n

rows and d columns. The data describe n objects. Every row x;f = [Ti1, s Tid]
consists of values of d features (or attributes) for a single object.
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Suppose that the set of objects is partitioned into many relatively small sub-
sets and we have some reason to suspect that one or several of these subsets may
be atypical or aberrant. Our motivating example is a set of questionnaires par-
titioned into subsets corresponding to pollsters. Similar situations occur very
frequently if data concerning, e.g., patients, are partitioned into subsets corre-
sponding to different hospitals (with some of the hospitals possibly atypical), or
students, partitioned into subsets corresponding to schools, etc. The problem
is particularly important if we have very large sets of data. Although there is
extensive literature on identifying individual outliers among data points (Bar-
nett and Toby, 1994; Hampel et al., 1986; Renze, no date), detecting atypical
subsets has not received enough attention yet. This problem is closely related
to discriminant analysis (Morrison, 1967; Koronacki, 2005; Lachenbruch, 1975;
Ripley, 1996), discordancy tests, homogeneity tests, goodness-of-fit tests (Mar-
dia, Kent and Bibby, 1979; Venables and Ripley, 2002) and block procedures
for multiple outliers (Barnett and Toby, 1994).

For simplicity let us focus on just one subset, marked out. We are to decide
if this subset is abnormal, unrepresentative, e.g. includes some errors or differs
from the rest of data with respect to the mean or covariance structure. In order
to verify or falsify our supposition we perform a test of discordancy. We will
construct a suitable new measure J, which quantifies separability between our
suspected subset and the rest of data. Small value of J indicates good separation
and thus supports our supposition. The measure J is normalized so that it
takes values in the interval [0,1], with O corresponding to perfect separability.
Therefore if the value of J is significantly small, this is an evidence of atypicality
of the subset under consideration. In fact, we will define two versions of measure
J, denoted Jd and Jw. Precise definitions are given in Section 3. In view of
our applications, both these measures are related to quadratic discrimination
and estimation of classification error (Koronacki, 2005; Lachenbruch, 1967, 1975;
Lachenbruch and Mickey, 1968). In principle our idea of quantifying separability
can be applied more generally, with other methods of discrimination used instead
of quadratic discrimination.

Formally, the problem, which we consider in this paper, can be regarded as
a special case of testing homogeneity between two samples. However, we should
point out some differences. We have in mind situations where a relatively small
subset may stand out from the homogeneous main bulk of data. Moreover, in
most applications we should perform simultaneous tests of multiple hypotheses,
corresponding to several suspected subsets. Let us also emphasize that we as-
sume an a priori given and known partition of data into subsets; we are only
to detect which of them are outlying. In this respect our procedure differs from
detection of multiple outliers (Barnett and Toby, 1994).

2. The general scheme of the algorithm

Our algorithm consists of the following two steps:
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Step 1. We perform the principal component analysis (Mardia, Kent and Bibby,
1979; Morrison, 1967) in order to reduce the dimensionality of data. We retain
only a limited number of pricipal components. It is necessary if the number of
objects is not too large. Let us note that the quadratic discrimination requires
estimation of covariance matrices from two samples. To ensure reasonable pre-
cision of estimation, the ratio of the sample size to the dimension cannot be too
small.

Step 2. We fix a threshold C. For the considered subset of objects, we compute
the measure J, which indicates how well this subset is separated from the rest
of data. If J < C, then we decide that the subset is atypical. Otherwise we
do not have enough evidence to suspect its atypicality. Let us remark that our
approach fits in the classical framework of statistical tests of significance.

3. Description of the algorithm and simulations
3.1. Definition of the measures Jd and Jw

Recall that we have an n x d matrix X = [z; j]i=1,. n;j=1,...4 With a specified
subset of n1 rows. We try to separate this subset from the remaining ny = n—ny
rows, using the quadratic discriminant function (QDF). Let us first recall the
basic formulas and the background of classical discriminant analysis. Suppose
that we have two populations (classes) described by multivariate normal distri-
butions N (g, Vi) for k = 1,2. We consider functions given by

1 1
Dy(z) = In(mppr(x)) = —5(:10 — )TV (@ — ) — 3 In |Vi| + In 7, + const
for k = 1,2 where pi () is the density of the probability distribution in the kth
class and 7y is the prior probability of the kth class. The QDF is defined as
D(z) = Da(x) — D1(z). The posterior probability of the two classes is given by

mp1(x) 1
1 = =
p(fz) mip1(z) + mope(x) 14 eP@)’
p(2z) = map2 () _ 1

mip1(x) + mopa(x) 1+ e D@’

The Bayes classification rule assigns (the object described by) vector z to class 1
or 2 according to p(1|z) > p(2|z) or p(1|x) < p(2|z), respectively. This decision
rule is also called MAP (maximum a posteriori) estimate of the class:

[ 1 4if D(z)<0;
MAP(I)_{ 2 if D(z)>0.

The MAP decision rule is known to be optimal, i.e. it minimizes the probability
of misclassification. Since the parameters of the classes are usually unknown, in



696 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLINSKI

practice QDF with estimated parameters is used. It is obtained in the following
way. We regard data as a set of row vectors X = {z;}, ¢ = 1,...,n partitioned
into two classes, Cy, Cs. Here z; denotes the d-dimensional vector of attributes
of the ith object. We will write ¢ € CY, if ith object belongs to kth class. Symbol
ﬁ(x|X ) will denote empirical QDF, given by a formula analogous to that for
D(x) with the population parameters puj and X replaced by their estimates:

o 1 . 1 B o
uk:xk:n_k_z i, Vk:nk—l_z (xi—;vk)(xi—xk) .
i€Cly, i€Cy

Of course, it would be possible to replace also the prior probabilities by their
estimates, but for our purposes we decided to use fixed priors m; = my = %

Finally, we are in a position to precisely define the measures Jd and Jw. They
are based on the leave-one-out estimators of the class assignments MAP (x;) and
the posteriors p(k|z;) for all data points z;, i = 1,...,n. Let Doy(z;| X — x;)
stand for the QDF estimated from the data with removed vector x;, evaluated
at z;. Explicitly, we define for Kk =1,2 and ¢ =1,...,n,

Dy ov(zi|X —a;) = In(mppr, cvi—i (i)

1 .
=5 = i, ovi—i)”

ijé*vH] (zi — i, cvi—q) — %hl ’Vk,CV[—i]
+Inm cvi_q + const,
and
Dov(mi|X — ;) = Dy ov(@i| X — ;) — Dy ov(@i| X — i),

where subscript ¢v or ¢v[—i] indicates the leave-one-out cross validation esti-
mates, i.e.
1

nk—l

Z x, ifi e Cy and
TECk,r;éi

b, cvi—i) =

fik,cvi—i] = fu = Ty otherwise,
1

> (@ — @) (@ — )" if i € Oy and
reCr,r#i

Vi,ovi—g = 2

Vk,cv[ﬂ'] =V otherwise,

Quantities pcov(k|zi; X — ;) and MA\PCV(km; X —x;) are defined in an obvious
way in terms of Doy(z;| X — x;):
1

1+ exp[Deov(ai| X — z;)]
- 1
1+ exp[—ﬁov(xi|X — xl)] '
1 ’Lf Dcv(I”X — {EZ) < 0;
2 ’Lf Dcv(Ii|X - sz) 2 0.

pov(l|e; X —a;) =

pov(2|zi X — ;)

mcv(xi;X — {Ei) = {
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Finally, writing 1;(k) := pov(k|x;; X — ;) and m; := mcv(lﬂxi;X — ;) for
brevity, we define:

2 " -
1(1 1

Jw=-|— 112 + — lzl .
MRSt

Note that Jd is the usual leave-one-out estimator of the probability of misclas-
sification (Koronacki, 2005; Lachenbruch, 1967, 1975; Lachenbruch and Mickey,
1968). The measure Jw can be regarded as a weighted or fuzzy version of Jd. If
we replaced /;(1) by 1 or 0 according to {;(1) > 1;(2) or I;(1) < 1;(2) — and [;(2)
analogously — then we would obtain exactly the formula for Jd.

Let us sum up the above considerations. We estimate the probability of
incorrect classification by the cross validation leave-one-out method. In this way
we construct the measure Jd. An alternative measure Jw is defined analogously,
but we use estimated posterior probabilities of the two classes instead of the
class indicators. It is interesting to note that in our simulation experiments
described in the next section, the measure Jw turned out to be better (more
sensitive) than Jd.

We should emphasize that computation of Jd and Jw makes sense even if
the probability distributions in both classes are not normal. In fact, Jd is an
unbiased estimator for the probability of misclassification of QDF based on the
learning sample of size n-1 (Lachenbruch, 1967; Lachenbruch and Mickey, 1968).
Moreover, in the definition of our separability measure we can use virtually
any algorithm of classification instead of QDF. In this way the whole family of
separability measures can be introduced, based on the same general idea. In this
paper we have chosen to work with QDF, because we think it is most suitable
for application to our survey data.

3.2. Choosing the value of C

We select the threshold C' according to the classical theory of testing statistical
hypotheses (Koronacki, 2005; Venables and Ripley, 2002; Watata, 2002). The
null hypothesis is that the given subset is not different from the rest of data (i.e.
objects belonging to the subset under consideration do not differ systematically
from the remaining objects). The test rejects the null hypothesis if the test
statistic falls below the critical value (Jd < C or Jw < C). We should choose
C so that the test has the given level of significance . Of course, analytical
computation of C' is impossible. In the era of easily available powerful computers
and flexible statistical software, this difficulty can be overcome by simulation
methods. In our work we use R software environment for statistical computing
(Becker, Chambers and Wilks, 1988; Venables and Ripley, 2002).
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We repeatedly select marked out subsets at random, each subset consisting
of n1 rows, from the whole set of data. For each random selection, we perform
computations described in Subsection 3.1, i.e. we compute the measure of sep-
arability Jd or Jw. The histogram of these values is an empirical approximation
to the probability distribution of the random variable (Jd or Jw, respectively)
under the null hypothesis. Clearly, the quantile of order « of this distribution
is the sought critical threshold C'.

The empirical probability distribution under the null hypothesis is shown
in the upper part of Fig. 1 (histogram J represents the distribution of Jd) and
Fig. 2 (histogram of Jw). The computations are performed on an artificial set of
data, generated from a multivariate normal distribution, for n = 1000, n; = 20,
d = 10. The quantile of Jd of order a = 0.01 is equal to C'=0.3928571 and for
a = 0.05 we have C' = 0.4250000.

Histogram of J

[#4]
= [{s]
z -
(k]
O ™
]
I T T T T 1
0o 0.2 0.4 0.6 0.8 1.0
J
Histogram of Josz
[
Z o
2 =
[
I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Josz

Figure 1. Measure Jd: empirical probability distribution under the null hypoth-
esis (histogram J) and under an alternative hypothesis (histogram Josz), for
n=1000, n1=20, d=10.



A new method for identifying outlying subsets of data 699
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Figure 2. Measure Jw: the empirical probability distribution under the null
hypothesis (histogram Jw) and under an alternative (histogram Joszw), for
n=1000, n1=20, d=10.

3.3. Computation of the power of the test for alternative hypotheses

Let us now examine the distribution of our separability measures when there is
some systematic difference between objects in the marked out subset and the rest
of data. Namely, we distort all the objects in the marked out subset according
to the formula 2'; ; = x; ;/2 + 1/2 (if row ¢ belongs to the subset, 2/, ; = z;
otherwise). The computations are quite analogous to the previously considered
ones. The results for Jd are shown in the lower part of Fig. 1 (histogram Josz).
In this way we compute the power of the test. For the special form of alternative
described above, the power is very close to 100% (for the tests at standard levels
of significance a=0.05 and even o = 0.01).

Analogous computations are conducted also for the second version of our
measure, Jw. The results are shown in Fig. 2 (histogram Joszw). By comparing
Fig. 1 with Fig. 2 we can see that the properties of Jd and Jw are similar. Both
of our measures can be used to quantify separability of data subsets in much
the same way. However, Jw is more sensitive and thus tests based on Jw are
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more powerful than those based on Jd. Therefore, in our further analyses we
concentrate on Juw.

4. Analysis of real-life data
4.1. Description of the ECAP data set and preliminary analysis

In our work we use data collected in a preliminary part of Polish Allergic Sur-
_____ 4 of dimensions n=2240 (re-
spondents) and d= 17 (features or attributes) is partitioned into 21 subsets of
different size. These subsets correspond to different pollsters. The cardinality
of the subsets is given in Fig. 3. The problem is to identify which subsets are
atypical.

100 150 200
| | |

Mumber of respondents

50

Mumber of pollster

Figure 3. Numbers of respondents belonging to the 21 subsets. Vertical bars
give the number of respondents questioned by each of the 21 pollsters.

Before applying our main algorithm, we conducted the principal component
analysis. The goal was to reduce dimensionality. The standard deviations cor-
responding to the principal components are:

30.96199029 26.56101213 8.36990581 6.26343886 1.58521482
0.92421190  0.48679767 0.45873532 0.27564555 0.24208383
0.16604877  0.13678143 0.11012109 0.08888029 0.07883676

These values are shown in Fig. 4.
On the basis of the above results we decided to use only the first four principal
components in further analysis. Therefore, the dimension d of our data was
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10 15

standard deviation

05
|

component

Figure 4. Standard deviations for subsequent principal components

reduced from 17 to 4 and discriminant analysis was conducted in 4-dimensional
space. The first two principal components of our set of data are presented in
Fig. 5 and the other two (components no. 3 and 4) - in Fig. 6. The points
belonging to subset no. 13 are shown as bigger circles in both figures. The
reason why subset no. 13 is singled out is explained later in this section.

In Fig. 5 points are clearly placed on several parallel straight lines. This
phenomenon simply reflects the discrete structure of data. Many of the features
are either binary or take only a small number of possible values.

4.2. Results of application of our method

We exclude subsets no. 7, 17 and 19 from further considerations, because they
contain too few respondents (less than 10). For each of the remaining 18 subsets
we conduct a statistical test of the null hypothesis described in Subsection 3.2
(that a given subset is not significantly different from the rest of data). Let
us note that the threshold C considered in Subsection 3.2 depends not only on
the given significance level « but also on n and ny (the size of the data set
and the subset) and on the overall structure of data. Therefore, we had to
repeat computations described in 3.2 on our data set separately for each value
of ny (i.e. 18 times). In all these computations we used the array X containing
real data set described in Section 4.1. We obtained 18 distinct (but similar in
shape) probability distributions of Jw under the null hypothesis. Nine of these
distributions are sketched in Fig. 7 and one of them is shown in detail in Fig. 8.

The obtained values of the separability index Jd and Jw for all 18 subsets
under consideration are shown in Table 1.
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Figure 5. Data set in the space of the first and second principal components.
Points belonging to subset no. 13 are marked with bigger circles
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Figure 6. Data set in the space of the third and fourth principal components.
Points belonging to subset no. 13 are marked with bigger circles
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Figure 7. Examples of probability distributions of index Jw under the null
hypothesis for the real data set X for nine chosen values of n;.
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Histogram of Jw
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The computed value of index
Jw = 0.455584 for subset no. 13

Figure 8. Empirical probability distribution of index Jw under the null hy-
pothesis for the real data set X with n=2240, n1=82, d=4. The actual value
of Jw for the subset no. 13 is indicated by the arrow (this subset contains 82
respondents).

Let us now explain the meaning of the obtained results, focusing on subset
no. 13 (marked by two stars and boldface in Table 1). We have chosen this subset
because of the smallest p-value. The value of Jd is equal 0.3995287 and the value
of Jwis equal 0.4555840. Among 1000 subsets of 82 elements selected at random
from all 2240 respondents there is no subset with the value Jd below 0.3995287.
Analogously, only one of 1000 subsets has the value Jw below 0.4555840. Thus
the p-values of the two tests (Monte Carlo approximations) are p=0.000 and
p=0.001, respectively. Fig. 4 shows the probability distribution of Jw. In this
figure we also placed the actual value of the test statistic Jw for subset no. 13.
The results mean that subset no. 13 is significantly atypical (marked with **).
In Table 1 we can also see a few other subsets (marked with *) which seem to
be atypical, but not as much as no. 13.

Summing up, the analysis leads to the conclusion that at least subset no. 13
and to a lesser extent also a few other subsets are significantly different from
the main bulk of data. On the basis of available information it is difficult
to identify the source of these differences. Maybe some of the pollsters were
assigned to atypical districts or regions. There is also a possibility that some
of the pollsters did not question the respondents in an honest way. Further
investigation confirmed that some of the pollsters were not adequately trained.
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Table 1. Results of the test for 18 marked out subsets of data. Subsequent
columns of the table indicate: ordinal number of the subset, number of respon-
dents in this subset, indices Jd and Jw, p-values of the tests based on Jd and
Jw, respectively.

NP n Jd Jw p-value (Jd) | p-value (Jw)
1 127 0.4892 0.4968 0.147 0.273
2 141 0.4837 0.4953 0.332 0.083
3 125 0.5067 0.4978 0.843 0.659
4 115 0.4782 0.5038 0.728 0.713
5 156 0.4379 0.4889 0.006 (*) | 0.014 (¥
6 155 0.4446 0.4838 0.005 (*) | 0.008 (*)
8 100 0.4706 0.4882 0.365 0.049 ()
9 95 0.4194 0.4792 0.020 (*) | 0.028 (*)
10 70 0.4465 0.4611 0.018 (*) | 0.001 (*)
11 133 0.4399 0.4862 0.009 (*) | 0.060
12 161 0.4517 0.4891 0.001 (*) | 0.042 (%)
13 82 0.3995 0.4556 0.001 (*) | 0.000 (*¥*)
14 64 0.4099 0.4781 0.129 0.485
15 106 0.4081 0.4767 0.003 (*) | 0.009 (*)
16 200 0.4914 0.4917 0.373 0.177
18 85 0.4604 0.4947 0.038 0.119
20 175 0.4425 0.4918 0.219 0.032
21 118 0.4202 0.4691 0.005 (*) | 0.001 (%

4.3. Application of the test of Bartoszyniski et al. to ECAP data

We compared our method with another multivariate test of homogeneity, and se-
lected for this purpose the test due to Bartoszyriski, Pearl and Lawrence (1997),
BPL further on, mainly because of its conceptual simplicity and beauty. In prin-
ciple, it was designed as a goodness—of-fit test, but a minor modification allows
us to use it as a test of homogeneity. Below we describe the basic idea of
the version of the BPL test which we applied. As before, we assume that the
data consist of n points in d-dimensional space, with n; points belonging to the
marked out subset. We consider all triangles with two vertices in this subset (the
side joining these points we call the base) and the third vertex belonging to the
set of the remaining no = n—n; points. Altogether we have N = nany(ny—1)/2
such triangles. We count the triangles of three types: those in which the base is
the shortest of the three sides, of intermediate length, and the longest. Under
the null hypothesis there is approximately N/3 triangles of every type. The
chi-square statistic, based on the counts of triangles has an asymptotic expo-
nential distribution. Unfortunately, in general, the scale parameter depends on
the underlying distribution of data. We estimate this parameter empirically,
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using Monte Carlo bootstrap-like experiments in much the same way as we did
for our method, see the previous section. The results of the analysis are given
in Table 2.

Table 2. Results of the BPL test applied to the ECAP data. Three columns
indicate the number of the pollster, the value of test statistic and the p-value

NP chi2 p-value
1 33879.44 0.2419
2 597.90 0.9779
3 13423.02 0.5644
4 1110.76 0.9495
5 17461.74 0.5557
6 177375.27 0.0025 (*)
8 854.09 0.9547
9 1069.36 0.9405
10 31445.05 0.0790
11 34975.81 0.2480
12 56285.84 0.1601
13 18582.02 0.2851
14 16096.25 0.2369
15 71278.53 0.0265 (*)
16 | 139123.65 0.0272 (*)
18 19344.23 0.2850
20 19982.50 0.5512
21 52728.29 0.0916

We can see that the BPL test detects three atypical subsets at the level of
significance 0.05, namely subsets numbered 6, 15 and 16. The results seem to
be less decisive than those of our test. However, subsets number 6 and 15 are
selected by both methods.

Let us mention that the computational complexity of the BPL test is high.
Counting triangles is very time consuming. Our test, based on QDF turned out
to be much faster.

4.4, Additional analysis of Iris data

To enable evaluation of our method, we applied our test as well as the BPL test
also to the classical IRIS data set available in R. We chose this well-known set
of data despite the fact that it is suitable rather for using discriminant analysis
than for detecting outlying subsets. However, we can use these data to examine
our methodology of testing homogeneity and computing p-values using Monte
Carlo bootstrap-like experiments. We show the results in Table 3 and Fig. 9
in the analogous way as in Table 1 and Fig. 8. The histograms present the
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Table 3. Results of our test for IRIS data. Three columns of the table indicate
the name the of subset and the indices Jw and Jd. The p-values are practically
Zero.

Species Jw Jd

Iris setosa 0.000028 | 0.000
Iris versicolor | 0.100752 | 0.055
Iris virginica | 0.055071 | 0.035

Density
0 5 10 20
(I T (I
b
_
=
=

T - T 1
u.kxo\z 04 08 08 10
setoss versicolor  statistic Jw

virginica

n1= 50

b

T T T 1
00 \ 04 06 08 1.0
versicolor
se0sa™ virginica  Statistic J

Figure 9. Empirical probability distributions of indices Jw and Jd under the
null hypothesis for IRIS data set with n=150, n1=>50, d=4. The actual values
of Jw and Jd for subsets corresponding to the three species are indicated by
arrows.

Density
0 2 4 8

empirical distributions of our measures Jw and Jd for a subset (of 50 objects)
randomly chosen from the IRIS set (of 150 objects). The arrows indicate the
values for the three species. All p-values are practically zero, as one should
expect.

For comparison, we applied also the BPL test to the Iris data. Values of
the chi-square statistic are shown in Table 4. All three species are perfectly
separated. For this data set the results of our method and of the BPL test
are very similar. This is hardly surprising, since the IRIS set is a well-known
example of easily separated data.

Table 4. Results of the BPL test for IRIS data. Two columns of the table
indicate the name of subset and chi2 statistic. The p-values are practically
Zero.

Species chi2

Iris setosa 244964.0
Iris versicolor | 144664.4
Iris virginica | 128913.4
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5. Concluding remarks

1. The method presented in this paper can be used to identify atypical sub-
sets of data in various medical and other applications. It is particularly
useful when we deal with large data sets. Our test is much faster than
that of Bartoszynski, Pearl and Lawrence and seems to be more sensitive.

2. Apart from simulation studies, which confirmed the usefulness of the pro-
posed algorithm, our method was successfully applied to real medical data
collected in a big epidemiological programme. In some cases the p-values
are very small, what indicates high significance of the results. Further
investigation revealed the fact consistent with the results of our analysis:
some of the pollsters had not been enough competent.

3. The general idea of the separability measure, defined in this paper, can
be easily adapted to discrimination methods other than QDF. In this way
we can obtain a flexible tool for evaluating atypicality of subsets of data.
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