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t:In various bran
hes of s
ien
e, e.g. medi
ine, e
onomi
s, so
i-ology, it is ne
essary to identify or dete
t outlying subsets of data.Suppose that the set of data is partitioned into many relatively smallsubsets and we have some reason to suspe
t that one or several ofthese subsets may be atypi
al or aberrant. We propose applying anew measure of separability, based on the ideas borrowed from thedis
riminant analysis. In our paper we de�ne two versions of thismeasure, both using a ja
knife, leave-one-out, estimator of 
lassi�
a-tion error. If a suspe
ted subset is signi�
antly well separated fromthe main bulk of data, then we regard it as outlying. The usefulnessof our algorithm is illustrated on a set of medi
al data 
olle
ted in alarge survey �Epidemiology of Allergi
 Diseases in Poland� (ECAP).We also tested our method on arti�
ial data sets and on the 
las-si
al IRIS data set. For a 
omparison, we report the results of ahomogeneity test of Bartoszy«ski, Pearl and Lawren
e, applied tothe same data sets.Keywords: multidimensional homogeneity test, mis
lassi�
a-tion error, dis
riminant analysis, medi
al data.1. Introdu
tionLet us 
onsider data of the form of an array X = [xi,j ]i=1,...,n;j=1,...,d with nrows and d 
olumns. The data des
ribe n obje
ts. Every row xT
i = [xi,1, ..., xi,d]
onsists of values of d features (or attributes) for a single obje
t.
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694 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKISuppose that the set of obje
ts is partitioned into many relatively small sub-sets and we have some reason to suspe
t that one or several of these subsets maybe atypi
al or aberrant. Our motivating example is a set of questionnaires par-titioned into subsets 
orresponding to pollsters. Similar situations o

ur veryfrequently if data 
on
erning, e.g., patients, are partitioned into subsets 
orre-sponding to di�erent hospitals (with some of the hospitals possibly atypi
al), orstudents, partitioned into subsets 
orresponding to s
hools, et
. The problemis parti
ularly important if we have very large sets of data. Although there isextensive literature on identifying individual outliers among data points (Bar-nett and Toby, 1994; Hampel et al., 1986; Renze, no date), dete
ting atypi
alsubsets has not re
eived enough attention yet. This problem is 
losely relatedto dis
riminant analysis (Morrison, 1967; Korona
ki, 2005; La
henbru
h, 1975;Ripley, 1996), dis
ordan
y tests, homogeneity tests, goodness-of-�t tests (Mar-dia, Kent and Bibby, 1979; Venables and Ripley, 2002) and blo
k pro
eduresfor multiple outliers (Barnett and Toby, 1994).For simpli
ity let us fo
us on just one subset, marked out. We are to de
ideif this subset is abnormal, unrepresentative, e.g. in
ludes some errors or di�ersfrom the rest of data with respe
t to the mean or 
ovarian
e stru
ture. In orderto verify or falsify our supposition we perform a test of dis
ordan
y. We will
onstru
t a suitable new measure J , whi
h quanti�es separability between oursuspe
ted subset and the rest of data. Small value of J indi
ates good separationand thus supports our supposition. The measure J is normalized so that ittakes values in the interval [0,1℄, with 0 
orresponding to perfe
t separability.Therefore if the value of J is signi�
antly small, this is an eviden
e of atypi
alityof the subset under 
onsideration. In fa
t, we will de�ne two versions of measure
J , denoted Jd and Jw. Pre
ise de�nitions are given in Se
tion 3. In view ofour appli
ations, both these measures are related to quadrati
 dis
riminationand estimation of 
lassi�
ation error (Korona
ki, 2005; La
henbru
h, 1967, 1975;La
henbru
h and Mi
key, 1968). In prin
iple our idea of quantifying separability
an be applied more generally, with other methods of dis
rimination used insteadof quadrati
 dis
rimination.Formally, the problem, whi
h we 
onsider in this paper, 
an be regarded asa spe
ial 
ase of testing homogeneity between two samples. However, we shouldpoint out some di�eren
es. We have in mind situations where a relatively smallsubset may stand out from the homogeneous main bulk of data. Moreover, inmost appli
ations we should perform simultaneous tests of multiple hypotheses,
orresponding to several suspe
ted subsets. Let us also emphasize that we as-sume an a priori given and known partition of data into subsets; we are onlyto dete
t whi
h of them are outlying. In this respe
t our pro
edure di�ers fromdete
tion of multiple outliers (Barnett and Toby, 1994).2. The general s
heme of the algorithmOur algorithm 
onsists of the following two steps:
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ipal 
omponent analysis (Mardia, Kent and Bibby,1979; Morrison, 1967) in order to redu
e the dimensionality of data. We retainonly a limited number of pri
ipal 
omponents. It is ne
essary if the number ofobje
ts is not too large. Let us note that the quadrati
 dis
rimination requiresestimation of 
ovarian
e matri
es from two samples. To ensure reasonable pre-
ision of estimation, the ratio of the sample size to the dimension 
annot be toosmall.Step 2. We �x a threshold C. For the 
onsidered subset of obje
ts, we 
omputethe measure J , whi
h indi
ates how well this subset is separated from the restof data. If J < C, then we de
ide that the subset is atypi
al. Otherwise wedo not have enough eviden
e to suspe
t its atypi
ality. Let us remark that ourapproa
h �ts in the 
lassi
al framework of statisti
al tests of signi�
an
e.3. Des
ription of the algorithm and simulations3.1. De�nition of the measures Jd and JwRe
all that we have an n × d matrix X = [xi,j ]i=1,...,n;j=1,...,d with a spe
i�edsubset of n1 rows. We try to separate this subset from the remaining n2 = n−n1rows, using the quadrati
 dis
riminant fun
tion (QDF). Let us �rst re
all thebasi
 formulas and the ba
kground of 
lassi
al dis
riminant analysis. Supposethat we have two populations (
lasses) des
ribed by multivariate normal distri-butions N(µk, Vk) for k = 1, 2. We 
onsider fun
tions given by
Dk(x) = ln(πkpk(x)) = −

1

2
(x−µk)T V −1

k (x−µk)−
1

2
ln |Vk|+ lnπk + 
onstfor k = 1, 2 where pk(x) is the density of the probability distribution in the kth
lass and πk is the prior probability of the kth 
lass. The QDF is de�ned as

D(x) = D2(x)−D1(x). The posterior probability of the two 
lasses is given by
p(1|x) =

π1p1(x)

π1p1(x) + π2p2(x)
=

1

1 + eD(x)
,

p(2|x) =
π2p2(x)

π1p1(x) + π2p2(x)
=

1

1 + e−D(x)
.The Bayes 
lassi�
ation rule assigns (the obje
t des
ribed by) ve
tor x to 
lass 1or 2 a

ording to p(1|x) > p(2|x) or p(1|x) 6 p(2|x), respe
tively. This de
isionrule is also 
alled MAP (maximum a posteriori) estimate of the 
lass:MAP(x) =

{

1 if D(x) < 0;
2 if D(x) > 0.The MAP de
ision rule is known to be optimal, i.e. it minimizes the probabilityof mis
lassi�
ation. Sin
e the parameters of the 
lasses are usually unknown, in
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ti
e QDF with estimated parameters is used. It is obtained in the followingway. We regard data as a set of row ve
tors X = {xi}, i = 1, ..., n partitionedinto two 
lasses, C1, C2. Here xi denotes the d-dimensional ve
tor of attributesof the ith obje
t. We will write i ∈ Ck if ith obje
t belongs to kth 
lass. Symbol
D̂(x|X) will denote empiri
al QDF, given by a formula analogous to that for
D(x) with the population parameters µk and Σk repla
ed by their estimates:

µ̂k = x̄k =
1

nk

∑

i∈Ck

xi, V̂k =
1

nk − 1

∑

i∈Ck

(xi − x̄k)(xi − x̄k)T .Of 
ourse, it would be possible to repla
e also the prior probabilities by theirestimates, but for our purposes we de
ided to use �xed priors π1 = π2 = 1
2 .Finally, we are in a position to pre
isely de�ne the measures Jd and Jw. Theyare based on the leave-one-out estimators of the 
lass assignments MAP(xi) andthe posteriors p(k|xi) for all data points xi, i = 1, ..., n. Let D̂CV(xi|X − xi)stand for the QDF estimated from the data with removed ve
tor xi, evaluatedat xi. Expli
itly, we de�ne for k = 1, 2 and i = 1, ..., n,

D̂k,CV(xi|X − xi) = ln(πk p̂k,CV[−i](xi))

= −
1

2
(xi − µ̂k,CV[−i])

T V̂ −1
k,CV[−i](xi − µ̂k,CV[−i]) −

1

2
ln

∣

∣

∣
V̂k,CV[−i]

∣

∣

∣

+ lnπk,CV[−i] + 
onst,and
D̂CV(xi|X − xi) = D̂2,CV(xi|X − xi) − D̂1,CV(xi|X − xi),where subs
ript CV or CV[−i] indi
ates the leave-one-out 
ross validation esti-mates, i.e.
µ̂k,CV[−i] =

1

nk − 1

∑

r∈Ck,r 6=i

xr if i ∈ Ck and
µ̂k,CV[−i] = µ̂k = x̄k otherwise,

V̂k,CV[−i] =
1

nk − 2

∑

r∈Ck,r 6=i

(xr − x̄k)(xr − x̄k)T if i ∈ Ck and
V̂k,CV[−i] = V̂k otherwise,Quantities p̂CV(k|xi; X−xi) and M̂APCV(k|xi; X−xi) are de�ned in an obviousway in terms of D̂CV(xi|X − xi):

p̂CV(1|xi; X − xi) =
1

1 + exp[D̂CV(xi|X − xi)]
,

p̂CV(2|xi; X − xi) =
1

1 + exp[−D̂CV(xi|X − xi)]
.

M̂APCV(xi; X − xi) =

{

1 if D̂CV(xi|X − xi) < 0;

2 if D̂CV(xi|X − xi) > 0.



A new method for identifying outlying subsets of data 697Finally, writing li(k) := p̂CV(k|xi; X − xi) and mi := M̂APCV(k|xi; X − xi) forbrevity, we de�ne:Jd =
1

2

[

#{i : i ∈ C1, mi = 2}

n1
+

#{i : i ∈ C2, mi = 1}

n2

]

,Jw =
1

2

[

1

n1

∑

i∈C1

li(2) +
1

n2

∑

i∈C2

li(1)

]

.Note that Jd is the usual leave-one-out estimator of the probability of mis
las-si�
ation (Korona
ki, 2005; La
henbru
h, 1967, 1975; La
henbru
h and Mi
key,1968). The measure Jw 
an be regarded as a weighted or fuzzy version of Jd. Ifwe repla
ed li(1) by 1 or 0 a

ording to li(1) > li(2) or li(1) 6 li(2) � and li(2)analogously � then we would obtain exa
tly the formula for Jd.Let us sum up the above 
onsiderations. We estimate the probability ofin
orre
t 
lassi�
ation by the 
ross validation leave-one-out method. In this waywe 
onstru
t the measure Jd. An alternative measure Jw is de�ned analogously,but we use estimated posterior probabilities of the two 
lasses instead of the
lass indi
ators. It is interesting to note that in our simulation experimentsdes
ribed in the next se
tion, the measure Jw turned out to be better (moresensitive) than Jd.We should emphasize that 
omputation of Jd and Jw makes sense even ifthe probability distributions in both 
lasses are not normal. In fa
t, Jd is anunbiased estimator for the probability of mis
lassi�
ation of QDF based on thelearning sample of size n-1 (La
henbru
h, 1967; La
henbru
h and Mi
key, 1968).Moreover, in the de�nition of our separability measure we 
an use virtuallyany algorithm of 
lassi�
ation instead of QDF. In this way the whole family ofseparability measures 
an be introdu
ed, based on the same general idea. In thispaper we have 
hosen to work with QDF, be
ause we think it is most suitablefor appli
ation to our survey data.3.2. Choosing the value of CWe sele
t the threshold C a

ording to the 
lassi
al theory of testing statisti
alhypotheses (Korona
ki, 2005; Venables and Ripley, 2002; Wataªa, 2002). Thenull hypothesis is that the given subset is not di�erent from the rest of data (i.e.obje
ts belonging to the subset under 
onsideration do not di�er systemati
allyfrom the remaining obje
ts). The test reje
ts the null hypothesis if the teststatisti
 falls below the 
riti
al value (Jd < C or Jw < C). We should 
hoose
C so that the test has the given level of signi�
an
e α. Of 
ourse, analyti
al
omputation of C is impossible. In the era of easily available powerful 
omputersand �exible statisti
al software, this di�
ulty 
an be over
ome by simulationmethods. In our work we use R software environment for statisti
al 
omputing(Be
ker, Chambers and Wilks, 1988; Venables and Ripley, 2002).
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t marked out subsets at random, ea
h subset 
onsistingof n1 rows, from the whole set of data. For ea
h random sele
tion, we perform
omputations des
ribed in Subse
tion 3.1, i.e. we 
ompute the measure of sep-arability Jd or Jw. The histogram of these values is an empiri
al approximationto the probability distribution of the random variable (Jd or Jw, respe
tively)under the null hypothesis. Clearly, the quantile of order α of this distributionis the sought 
riti
al threshold C.The empiri
al probability distribution under the null hypothesis is shownin the upper part of Fig. 1 (histogram J represents the distribution of Jd) andFig. 2 (histogram of Jw). The 
omputations are performed on an arti�
ial set ofdata, generated from a multivariate normal distribution, for n = 1000, n1 = 20,
d = 10. The quantile of Jd of order α = 0.01 is equal to C=0.3928571 and for
α = 0.05 we have C = 0.4250000.

Figure 1. Measure Jd: empiri
al probability distribution under the null hypoth-esis (histogram J) and under an alternative hypothesis (histogram Josz), for
n=1000, n1=20, d=10.
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Figure 2. Measure Jw: the empiri
al probability distribution under the nullhypothesis (histogram Jw) and under an alternative (histogram Joszw), for
n=1000, n1=20, d=10.3.3. Computation of the power of the test for alternative hypothesesLet us now examine the distribution of our separability measures when there issome systemati
 di�eren
e between obje
ts in the marked out subset and the restof data. Namely, we distort all the obje
ts in the marked out subset a

ordingto the formula x′

i,j = xi,j/2 + 1/2 (if row i belongs to the subset, x′
i,j = xi,jotherwise). The 
omputations are quite analogous to the previously 
onsideredones. The results for Jd are shown in the lower part of Fig. 1 (histogram Josz).In this way we 
ompute the power of the test. For the spe
ial form of alternativedes
ribed above, the power is very 
lose to 100% (for the tests at standard levelsof signi�
an
e α=0.05 and even α = 0.01).Analogous 
omputations are 
ondu
ted also for the se
ond version of ourmeasure, Jw. The results are shown in Fig. 2 (histogram Joszw). By 
omparingFig. 1 with Fig. 2 we 
an see that the properties of Jd and Jw are similar. Bothof our measures 
an be used to quantify separability of data subsets in mu
hthe same way. However, Jw is more sensitive and thus tests based on Jw are
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on
entrate on Jw.4. Analysis of real-life data4.1. Des
ription of the ECAP data set and preliminary analysisIn our work we use data 
olle
ted in a preliminary part of Polish Allergi
 Sur-vey, ECAP 2007. Array X = [xi,j ]i=1,...,n;j=1,...,d of dimensions n=2240 (re-spondents) and d= 17 (features or attributes) is partitioned into 21 subsets ofdi�erent size. These subsets 
orrespond to di�erent pollsters. The 
ardinalityof the subsets is given in Fig. 3. The problem is to identify whi
h subsets areatypi
al.

Figure 3. Numbers of respondents belonging to the 21 subsets. Verti
al barsgive the number of respondents questioned by ea
h of the 21 pollsters.Before applying our main algorithm, we 
ondu
ted the prin
ipal 
omponentanalysis. The goal was to redu
e dimensionality. The standard deviations 
or-responding to the prin
ipal 
omponents are:30.96199029 26.56101213 8.36990581 6.26343886 1.585214820.92421190 0.48679767 0.45873532 0.27564555 0.242083830.16604877 0.13678143 0.11012109 0.08888029 0.07883676These values are shown in Fig. 4.On the basis of the above results we de
ided to use only the �rst four prin
ipal
omponents in further analysis. Therefore, the dimension d of our data was
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Figure 4. Standard deviations for subsequent prin
ipal 
omponentsredu
ed from 17 to 4 and dis
riminant analysis was 
ondu
ted in 4-dimensionalspa
e. The �rst two prin
ipal 
omponents of our set of data are presented inFig. 5 and the other two (
omponents no. 3 and 4) - in Fig. 6. The pointsbelonging to subset no. 13 are shown as bigger 
ir
les in both �gures. Thereason why subset no. 13 is singled out is explained later in this se
tion.In Fig. 5 points are 
learly pla
ed on several parallel straight lines. Thisphenomenon simply re�e
ts the dis
rete stru
ture of data. Many of the featuresare either binary or take only a small number of possible values.4.2. Results of appli
ation of our methodWe ex
lude subsets no. 7, 17 and 19 from further 
onsiderations, be
ause they
ontain too few respondents (less than 10). For ea
h of the remaining 18 subsetswe 
ondu
t a statisti
al test of the null hypothesis des
ribed in Subse
tion 3.2(that a given subset is not signi�
antly di�erent from the rest of data). Letus note that the threshold C 
onsidered in Subse
tion 3.2 depends not only onthe given signi�
an
e level α but also on n and n1 (the size of the data setand the subset) and on the overall stru
ture of data. Therefore, we had torepeat 
omputations des
ribed in 3.2 on our data set separately for ea
h valueof n1 (i.e. 18 times). In all these 
omputations we used the array X 
ontainingreal data set des
ribed in Se
tion 4.1. We obtained 18 distin
t (but similar inshape) probability distributions of Jw under the null hypothesis. Nine of thesedistributions are sket
hed in Fig. 7 and one of them is shown in detail in Fig. 8.The obtained values of the separability index Jd and Jw for all 18 subsetsunder 
onsideration are shown in Table 1.
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Figure 5. Data set in the spa
e of the �rst and se
ond prin
ipal 
omponents.Points belonging to subset no. 13 are marked with bigger 
ir
les

Figure 6. Data set in the spa
e of the third and fourth prin
ipal 
omponents.Points belonging to subset no. 13 are marked with bigger 
ir
les
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Figure 7. Examples of probability distributions of index Jw under the nullhypothesis for the real data set X for nine 
hosen values of n1.
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The computed value of index  
Jw  =   0.455584 for subset no. 13 Figure 8. Empiri
al probability distribution of index Jw under the null hy-pothesis for the real data set X with n=2240, n1=82, d=4. The a
tual valueof Jw for the subset no. 13 is indi
ated by the arrow (this subset 
ontains 82respondents).Let us now explain the meaning of the obtained results, fo
using on subsetno. 13 (marked by two stars and boldfa
e in Table 1). We have 
hosen this subsetbe
ause of the smallest p-value. The value of Jd is equal 0.3995287 and the valueof Jw is equal 0.4555840. Among 1000 subsets of 82 elements sele
ted at randomfrom all 2240 respondents there is no subset with the value Jd below 0.3995287.Analogously, only one of 1000 subsets has the value Jw below 0.4555840. Thusthe p-values of the two tests (Monte Carlo approximations) are p=0.000 and

p=0.001, respe
tively. Fig. 4 shows the probability distribution of Jw. In this�gure we also pla
ed the a
tual value of the test statisti
 Jw for subset no. 13.The results mean that subset no. 13 is signi�
antly atypi
al (marked with **).In Table 1 we 
an also see a few other subsets (marked with *) whi
h seem tobe atypi
al, but not as mu
h as no. 13.Summing up, the analysis leads to the 
on
lusion that at least subset no. 13and to a lesser extent also a few other subsets are signi�
antly di�erent fromthe main bulk of data. On the basis of available information it is di�
ultto identify the sour
e of these di�eren
es. Maybe some of the pollsters wereassigned to atypi
al distri
ts or regions. There is also a possibility that someof the pollsters did not question the respondents in an honest way. Furtherinvestigation 
on�rmed that some of the pollsters were not adequately trained.



A new method for identifying outlying subsets of data 705Table 1. Results of the test for 18 marked out subsets of data. Subsequent
olumns of the table indi
ate: ordinal number of the subset, number of respon-dents in this subset, indi
es Jd and Jw, p-values of the tests based on Jd andJw, respe
tively.
NP n1 Jd Jw p-value (Jd) p-value (Jw)

1 127 0.4892 0.4968 0.147 0.273 

2 141 0.4837 0.4953 0.332 0.083 

3 125 0.5067 0.4978 0.843 0.659 

4 115 0.4782 0.5038 0.728 0.713 

5 156 0.4379 0.4889 0.006 (*) 0.014 (*) 

6 155 0.4446 0.4838 0.005 (*) 0.008 (*) 

8 100 0.4706 0.4882 0.365 0.049 (*) 

9 95 0.4194 0.4792 0.020 (*) 0.028 (*) 

10 70 0.4465 0.4611 0.018 (*) 0.001 (*) 

11 133 0.4399 0.4862 0.009 (*) 0.060 

12 161 0.4517 0.4891 0.001 (*) 0.042 (*) 

13 82 0.3995 0.4556 0.001 (*) 0.000 (**) 

14 64 0.4099 0.4781 0.129 0.485 

15 106 0.4081 0.4767 0.003 (*) 0.009 (*) 

16 200 0.4914 0.4917 0.373 0.177 

18 85 0.4604 0.4947 0.038 0.119 

20 175 0.4425 0.4918 0.219 0.032 

21 118 0.4202 0.4691 0.005 (*) 0.001 (*) 4.3. Appli
ation of the test of Bartoszy«ski et al. to ECAP dataWe 
ompared our method with another multivariate test of homogeneity, and se-le
ted for this purpose the test due to Bartoszy«ski, Pearl and Lawren
e (1997),BPL further on, mainly be
ause of its 
on
eptual simpli
ity and beauty. In prin-
iple, it was designed as a goodness�of��t test, but a minor modi�
ation allowsus to use it as a test of homogeneity. Below we des
ribe the basi
 idea ofthe version of the BPL test whi
h we applied. As before, we assume that thedata 
onsist of n points in d-dimensional spa
e, with n1 points belonging to themarked out subset. We 
onsider all triangles with two verti
es in this subset (theside joining these points we 
all the base) and the third vertex belonging to theset of the remaining n2 = n−n1 points. Altogether we have N = n2n1(n1−1)/2su
h triangles. We 
ount the triangles of three types: those in whi
h the base isthe shortest of the three sides, of intermediate length, and the longest. Underthe null hypothesis there is approximately N/3 triangles of every type. The
hi-square statisti
, based on the 
ounts of triangles has an asymptoti
 expo-nential distribution. Unfortunately, in general, the s
ale parameter depends onthe underlying distribution of data. We estimate this parameter empiri
ally,



706 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKIusing Monte Carlo bootstrap-like experiments in mu
h the same way as we didfor our method, see the previous se
tion. The results of the analysis are givenin Table 2.Table 2. Results of the BPL test applied to the ECAP data. Three 
olumnsindi
ate the number of the pollster, the value of test statisti
 and the p-value
NP chi2 p-value 

1 33879.44 0.2419 

2 597.90 0.9779 

3 13423.02 0.5644 

4 1110.76 0.9495 

5 17461.74 0.5557 

6 177375.27 0.0025 (*) 

8 854.09 0.9547 

9 1069.36 0.9405 

10 31445.05 0.0790 

11 34975.81 0.2480 

12 56285.84 0.1601 

13 18582.02 0.2851 

14 16096.25 0.2369 

15 71278.53 0.0265 (*) 

16 139123.65 0.0272 (*) 

18 19344.23 0.2850 

20 19982.50 0.5512 

21 52728.29 0.0916 We 
an see that the BPL test dete
ts three atypi
al subsets at the level ofsigni�
an
e 0.05, namely subsets numbered 6, 15 and 16. The results seem tobe less de
isive than those of our test. However, subsets number 6 and 15 aresele
ted by both methods.Let us mention that the 
omputational 
omplexity of the BPL test is high.Counting triangles is very time 
onsuming. Our test, based on QDF turned outto be mu
h faster.4.4. Additional analysis of Iris dataTo enable evaluation of our method, we applied our test as well as the BPL testalso to the 
lassi
al IRIS data set available in R. We 
hose this well-known setof data despite the fa
t that it is suitable rather for using dis
riminant analysisthan for dete
ting outlying subsets. However, we 
an use these data to examineour methodology of testing homogeneity and 
omputing p-values using MonteCarlo bootstrap-like experiments. We show the results in Table 3 and Fig. 9in the analogous way as in Table 1 and Fig. 8. The histograms present the
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olumns of the table indi
atethe name the of subset and the indi
es Jw and Jd. The p-values are pra
ti
allyzero. Spe
ies Jw JdIris setosa 0.000028 0.000Iris versi
olor 0.100752 0.055Iris virgini
a 0.055071 0.035

Figure 9. Empiri
al probability distributions of indi
es Jw and Jd under thenull hypothesis for IRIS data set with n=150, n1=50, d=4. The a
tual valuesof Jw and Jd for subsets 
orresponding to the three spe
ies are indi
ated byarrows.empiri
al distributions of our measures Jw and Jd for a subset (of 50 obje
ts)randomly 
hosen from the IRIS set (of 150 obje
ts). The arrows indi
ate thevalues for the three spe
ies. All p-values are pra
ti
ally zero, as one shouldexpe
t.For 
omparison, we applied also the BPL test to the Iris data. Values ofthe 
hi-square statisti
 are shown in Table 4. All three spe
ies are perfe
tlyseparated. For this data set the results of our method and of the BPL testare very similar. This is hardly surprising, sin
e the IRIS set is a well-knownexample of easily separated data.Table 4. Results of the BPL test for IRIS data. Two 
olumns of the tableindi
ate the name of subset and 
hi2 statisti
. The p-values are pra
ti
allyzero. Spe
ies 
hi2Iris setosa 244964.0Iris versi
olor 144664.4Iris virgini
a 128913.4



708 M. ZALEWSKA, A. GRZANKA, W. NIEMIRO, B. SAMOLI�SKI5. Con
luding remarks1. The method presented in this paper 
an be used to identify atypi
al sub-sets of data in various medi
al and other appli
ations. It is parti
ularlyuseful when we deal with large data sets. Our test is mu
h faster thanthat of Bartoszy«ski, Pearl and Lawren
e and seems to be more sensitive.2. Apart from simulation studies, whi
h 
on�rmed the usefulness of the pro-posed algorithm, our method was su

essfully applied to real medi
al data
olle
ted in a big epidemiologi
al programme. In some 
ases the p-valuesare very small, what indi
ates high signi�
an
e of the results. Furtherinvestigation revealed the fa
t 
onsistent with the results of our analysis:some of the pollsters had not been enough 
ompetent.3. The general idea of the separability measure, de�ned in this paper, 
anbe easily adapted to dis
rimination methods other than QDF. In this waywe 
an obtain a �exible tool for evaluating atypi
ality of subsets of data.Referen
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