Control and Cybernetics

vol. 37 (2008) No. 4

Shape differentiability of the Neumann problem of the Laplace equation in the half-space* ${ }^{*}$

by

Chérif Amrouche ${ }^{1}$, Šárka Nečasová ${ }^{2}$ and Jan Sokolowski ${ }^{3}$
${ }^{1}$ Université de Pau et des Pays de L'Adour, Laboratoire de Mathématiques Appliquées I.P.R.A and CNRS UMR 5142, Av. de l'Université, 64000 Pau, France
${ }^{2}$ Mathematical Institute of the Academy of Sciences, Žitná 25, 11567 Prague 1, Czech Republic
${ }^{3}$ Institut Elie Cartan, Laboratoire de Mathématiques, Université Henri Poincaré Nancy I,
B.P. 239, 54506 Vandouevre les Nancy Cedex, France

Abstract

We deal with the existence of the material derivative of the Laplace equation with the Neumann boundary condition in the half space. We consider two different perturbations of domains to get the existence of weak Gateaux material derivative and the existence of Fréchet material derivatives.

Keywords: shape optimization, Neumann problem, unbounded domain, material derivative.

1. Introduction, formulation of the problem and main theorems

Shape optimization for the Neumann problem of the Laplace equation is important for application and also from the numerical point of view. Mathematical analysis of such problem in the half space is not available. In this paper we prove the shape differentiability of solutions in appropriate weighted Sobolev spaces which describe the behavior of solutions at infinity. We will consider two different perturbations of domain to get the existence of weak Gateaux material derivative and in the second case the existence of Fréchet material derivatives.

[^0]In this section we give the description of the problem and introduce the appropriate functions spaces.

Firstly, we consider the shape sensitivity analysis of the following model problems:

$$
\begin{equation*}
-\Delta u=f \text { in } \Omega, \frac{\partial u}{\partial n}=g \text { on } \Gamma, \tag{1.1}
\end{equation*}
$$

where $\Omega=\mathbb{R}_{+}^{N}$ and $\Gamma=\mathbb{R}^{N-1}$.
The same analysis can be performed in an unbounded domain Ω.
We consider the mapping $T_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ associated with the velocity field $V(t, x)$ which is compactly supported with respect to the spatial variable x. The mapping is given by the system of differential equations

$$
\begin{equation*}
\frac{d}{d t} x(t)=V(t, x(t)), x(0)=X \tag{1.2}
\end{equation*}
$$

with the solution denoted by $x(t)=x(t, X), t \in(-\delta, \delta), X \in \mathbb{R}^{N}$. The variable domain $\Omega_{t}=T_{t}(\Omega)$ is defined in the usual way,

$$
\Omega_{t}=\left\{x \in \mathbb{R}^{N} \mid x=x(t, X), X \in \Omega\right\} .
$$

Secondly, in order to define the Fréchet derivatives, we also consider transformations of the following type

$$
\begin{equation*}
\mathcal{H}_{\xi}=\mathcal{I}+\xi \theta, \tag{1.3}
\end{equation*}
$$

where θ is a smooth vector field defined on \mathbb{R}^{N} such that

$$
\begin{equation*}
\theta \in W^{k, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right) \tag{1.4}
\end{equation*}
$$

with $-\delta<\xi<\delta$. This type of parametrization of domains is studied, e.g. by Murat and Simon (1976) and Pironneau (1984).

By the first approach the Gateaux shape derivatives are obtained. The second approach leads directly to the Fréchet derivatives of shape functionals. The both approaches are equivalent, see Delfour and Zolesio (2001).

1.1. Gateaux derivatives of solutions

We use the transformations T_{t} in order to define the perturbed domains Ω_{t}. Therefore, we consider the Neumann problem in Ω_{t}, which is called (perturbed problem)

$$
\begin{equation*}
-\Delta u_{t}=f_{t} \text { in } \Omega_{t}, \frac{\partial u_{t}}{\partial n_{t}}=g_{t} \text { on } \Gamma_{t} \tag{1.5}
\end{equation*}
$$

We would like to introduce some compatibility conditions but we cannot require that f_{t}, g_{t} satisfy compatibility condition

$$
\begin{equation*}
\int_{\Omega_{t}} f_{t} d x=\int_{\partial \Omega_{t}} g_{t} d \sigma \tag{1.6}
\end{equation*}
$$

since this condition does not have meaning for arbitrary data. To avoid this difficulty we suppose that for given elements f and g there are the extensions, denoted by f and g, such that the extended functions are defined on the sets $\Omega_{t}, \Gamma_{t}, \forall t \in\left[0, \epsilon_{0}\right), \epsilon_{0}>0$, respectively. Then we define

$$
\begin{aligned}
f_{t} & :=\left.f\right|_{\Omega_{t}}-\frac{1}{\left|\Omega_{t}\right|} \int_{\Omega_{t}} f d x, \\
g_{t} & :=\left.g\right|_{\Gamma_{t}}-\frac{1}{\left|\Gamma_{t}\right|} \int_{\Gamma_{t}} g d \sigma .
\end{aligned}
$$

Remark 1.1 Let us point out that by such definitions of f_{t} and g_{t} we have the nontrivial shape derivatives $f^{\prime} \neq 0$ and $g^{\prime} \neq 0$ in general and also that by our definition

$$
\begin{aligned}
& \int_{\Omega_{t}} f_{t} d x=0 \\
& \int_{\Gamma_{t}} g_{t} d \sigma=0
\end{aligned}
$$

hence (1.6) holds for such f_{t} and g_{t}.
The transported solution to the fixed domain is denoted by $u^{t}=u_{t} \circ T_{t}$, $f^{t}=f_{t} \circ T_{t}, g^{t}=g_{t} \circ T_{t}$ and the transported solution satisfies the following equation along with the boundary conditions

$$
\begin{array}{rlrl}
-\frac{1}{\gamma} \operatorname{div}\left(A(t) \nabla u^{t}\right) & =f^{t} & \text { in } \Omega \tag{1.7}\\
\nabla u^{t} \cdot \eta^{t} & =g^{t} & & \text { on } \Gamma,
\end{array}
$$

where

$$
\begin{align*}
& A(t)=\operatorname{det}\left(D T_{t}\right)^{*} D T_{t}^{-1} D T_{t}^{-1} \tag{1.8}\\
& \eta^{t}=D T_{t}^{-1} n^{t} \\
& \gamma(t)=\operatorname{det}\left(D T_{t}\right) \\
& F^{t}=\operatorname{det}\left(D T_{t}\right)\left(f_{t} \circ T_{t}\right)
\end{align*}
$$

By * $D T_{t}^{-1}$ we denote the transpose of $D T_{t}^{-1}$.
Remark 1.2 By n_{t} we denote the external normal on Γ_{t} and $\frac{\partial u_{t}}{\partial n_{t}}=\nabla u_{t} \cdot n_{t}=$ g_{t}. The transport of the gradient is $\nabla u_{t} \circ T_{t}={ }^{*} D T_{t}^{-1} \cdot \nabla\left(u_{t} \circ T_{t}\right)={ }^{*} D T_{t}^{-1} \cdot \nabla u^{t}$,
moreover

$$
\begin{aligned}
& \left(\nabla u_{t} \cdot n_{t}\right) \circ T_{t}=g_{t} \circ T_{t}, \\
& \left(\nabla u_{t} \circ T_{t}\right) \cdot\left(n_{t} \circ T_{t}\right)=g^{t}, \\
& \left({ }^{*} D T_{t}^{-1} \cdot \nabla u^{t}\right) \cdot n_{t} \circ T_{t}=g^{t}, \\
& \left(\nabla u^{t}\right)^{T} \cdot D T_{t}^{-1} \cdot n^{t}=g^{t}
\end{aligned}
$$

Now, the derivative of the latter equality leads to the relation

$$
\nabla \dot{u} \cdot n+\nabla u \cdot(-D V) \cdot n+\nabla u \cdot I \cdot \dot{n}=\dot{g}
$$

where $\dot{u}, \dot{n}, \dot{g}$ denote material derivatives.
This implies

$$
\begin{equation*}
\frac{\partial \dot{u}}{\partial n}=\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n}+\dot{g} \tag{1.9}
\end{equation*}
$$

The material derivative \dot{u} of the solutions to (1.7) satisfies the following boundary value problem

$$
\begin{align*}
\Delta \dot{u} & =\dot{f}+\operatorname{div} V f+\operatorname{div}\left(A^{\prime}(0) \nabla u\right) \text { in } \Omega \\
\frac{\partial \dot{u}}{\partial n} & =\dot{g}-\nabla u \cdot \dot{\eta} \text { on } \Gamma . \tag{1.10}
\end{align*}
$$

Our first aim is to prove the existence of material derivative of weak type for the general transformation T_{t} :

Main Theorem 1.

If $f \in W_{1}^{0,2}\left(\mathbb{R}_{+}^{3}\right)$ and $g \in W_{1}^{1 / 2,2}\left(\mathbb{R}^{2}\right)$ then the material derivative $\dot{u} \in W_{1}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$ is given by a unique solution to problem (1.10).

1.2. Fréchet derivatives of solutions

We are also interested in Fréchet differentiability of solutions to (1.1) with respect to perturbed domain. To this end we investigate the transformation \mathcal{H}_{ξ} in order to define the perturbed domains Ω_{ξ}. We consider the problem (1.1), its variational formulation is the following:
We are looking for $u \in W_{0}^{1,2}(\Omega)$ such that :
$\forall w \in W_{0}^{1,2}(\Omega) \int_{\Omega} \nabla u \cdot \nabla w d x=\int_{\Omega} f w d x-\langle g, w\rangle_{W_{0}^{-\frac{1}{2}, 2}(\Gamma) \times W_{0}^{\frac{1}{2}, 2}(\Gamma)}$,
see Section 2 for the definition of spaces $W_{0}^{1,2}(\Omega)$.
We describe the properties of transformation \mathcal{H}_{ξ} defined by (1.3) for the vector field θ.

Let Θ_{k} be the space of vector fields from $C^{k}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and we denote by $\|\cdot\|_{k}$ the usual norm for $k \geq 1$ and $N=2,3$. We denote

$$
\mathcal{D}_{k}:=\left\{\theta \in \Theta_{k},\|\theta\|_{k}<1\right\} .
$$

For $\theta \in \mathcal{D}_{k}$, the mapping $\mathcal{I}+\theta$ is a C^{k} - diffeomorphism, where \mathcal{I} is the identity mapping.

Let $\theta \xi$ be a vector field in Θ_{k}. For simplicity we denote its norm in Θ_{k} as $|\xi \theta|=|\xi|\|\theta\|_{C^{k}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)}$. For the transformation $\mathcal{H}_{\xi}=I+\xi \theta$ we denote $\Omega_{\xi}=\mathcal{H}_{\xi}(\Omega)$. For $|\xi|$ small enough, \mathcal{H}_{ξ} is an diffeomorphism. As a consequence, there exists a solution $u_{\xi} \in W_{0}^{1,2}\left(\Omega_{\xi}\right)$ of variational equation

$$
\begin{equation*}
\forall v \in W_{0}^{1,2}\left(\Omega_{\xi}\right) \int_{\Omega_{\xi}} \nabla u_{\xi} \cdot \nabla v d x=\int_{\Omega_{\xi}} f_{\xi} v d x \tag{1.12}
\end{equation*}
$$

After the transformation to the fixed domain, where $u^{\xi}=u_{\xi} \circ \mathcal{H}_{\xi} \in W_{0}^{1,2}(\Omega)$ we get the following variational formulation satisfying
$\forall w \in W_{0}^{1,2}(\Omega), \int_{\Omega}\left(D \mathcal{H}_{\xi}^{T}\right)^{-1} \nabla u^{\xi} \cdot\left(D \mathcal{H}_{\xi}^{T}\right)^{-1} \nabla w q_{\xi} d x=\int_{\Omega} f^{\xi} w q_{\xi} d x$,
where $f^{\xi}=f_{\xi} \circ \mathcal{H}_{\xi}, F^{\xi}=D \mathcal{H}_{\xi}\left(f_{\xi} \circ \mathcal{H}_{\xi}\right), q_{\xi}$ is the Jacobian of the transformation $\mathcal{H}_{\xi}, D \mathcal{H}_{\xi}$ is the Jacobian matrix:

$$
\begin{align*}
& D \mathcal{H}_{\xi}=I+\xi D \theta \tag{1.14}\\
& q_{\xi}=\operatorname{det} \mathrm{D} \mathcal{H}_{\xi}=1+\xi \operatorname{div} \theta+\xi^{N} \operatorname{det} D \theta \tag{1.15}
\end{align*}
$$

As in Fremiot (2000) the Taylor expansion for u^{ξ} leads to

$$
\begin{equation*}
u^{\xi}=u+\xi u^{1}(\theta)+\tilde{u}(\xi \theta), \tag{1.16}
\end{equation*}
$$

where

$$
\begin{align*}
& \left\|u^{\xi}-u\right\|_{W_{0}^{1,2}(\Omega)} \leq c|\xi|\|\theta\|, \\
& \|\tilde{u}(\xi \theta)\|_{W_{0}^{1,2}(\Omega)}=\left\|u^{\xi}-u-u^{1}(\theta)\right\|_{W_{0}^{1}(\Omega)} \leq c|\xi|^{2}\|\theta\|^{2} . \tag{1.17}
\end{align*}
$$

Let J and E be the functionals associated to the equations (1.5), then we can define

$$
\begin{equation*}
J\left(\Omega_{\xi}\right)=E(\xi)=\frac{1}{2} \int_{\Omega_{\xi}}\left\|\nabla u_{\xi}\right\|^{2} d y \tag{1.18}
\end{equation*}
$$

We can prove that $E(\xi)$ has the following expansion

$$
\begin{equation*}
E(\xi)=E(0)+\xi E^{\prime}(0)(\theta)+\tilde{E}(\xi \theta) \tag{1.19}
\end{equation*}
$$

with the estimate

$$
\begin{equation*}
|\tilde{E}(\xi)| \leq c|\xi|^{2}\|\theta\|^{2} \tag{1.20}
\end{equation*}
$$

Formula (1.17) shows the Fréchet differentiability of the first order for solutions and (1.19) for the energy functional.

Main Theorem 2.

If $f \in W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right), g \in W_{1}^{1 / 2,2}\left(\mathbb{R}^{N-1}\right)$ then the material derivative $\dot{u} \in W_{1}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$ is given by a unique solution to problem (1.10), which is the same as before, but with the strong convergence in the energy space.

Remark 1.3 Comparison of notations from §1.1 and §1.2.

$$
\begin{aligned}
A(t) & =\operatorname{det}\left(D T_{t}\right)^{*} D T_{t}^{-1} \cdot D T_{t}^{-1}, \\
A(\xi) & =q_{\xi}^{-1}\left(D \mathcal{H}_{\xi}\right)^{-1}\left(D \mathcal{H}_{\xi}^{T}\right)^{-1}, \\
D \mathcal{H}_{\xi} & =I+\xi D \theta, \\
D F_{\xi}^{T} & =(I+\xi D \theta)^{T}=I+\xi D \theta^{T}, \\
q_{\xi} & =\operatorname{det}\left(D \mathcal{H}_{\xi}^{T}\right)=\operatorname{det}\left(D \mathcal{H}_{\xi}\right), \\
q_{\xi}^{-1} & =\operatorname{det}\left[\left(D \mathcal{H}_{\xi}^{T}\right)^{-1}\right] . \\
A^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{A(t)-A(0)}{t}=\operatorname{div} V(0) I-{ }^{*} D V(0)-D V(0) .
\end{aligned}
$$

We can also write

$$
\lim _{|\xi| \rightarrow 0} \frac{A(\xi)-A(0)}{|\xi|}=\operatorname{div} \theta I-{ }^{*} D \theta-D \theta
$$

So, it is clear that both approaches result in the same formula for the first order shape sensitivity analysis.

2. Notation and mathematical preliminaries

We introduce a class of weighted spaces for the Neumann boundary value problem and give some preliminary lemmas.

Let $\mathbb{R}_{+}^{N}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N} ; x_{N}>0\right\}$ be the upper half-space of $\mathbb{R}^{N}(N \geq 2)$ and denote by $\Gamma=\left\{\left(x^{\prime}, 0\right) ; x^{\prime} \in \mathbb{R}^{N-1}\right\}$ its boundary.

We denote by $L^{p}\left(\mathbb{R}_{+}^{N}\right)$ the Lebesgue space, by $W^{p, k}\left(\mathbb{R}_{+}^{N}\right)$ the Sobolev space. The Sobolev spaces with radial weight have been introduced and studied by many authors : Hanouzet (1971), Kudryavtsev (1959), Kufner (1985), Kufner and Opic (1990). The Sobolev spaces with logarithmic weights were studied by Lizorkin (1981), Leroux (1974), Giroire (1987), Girault (1992), Amrouche, Girault, Giroire (1994), Amrouche (2002), Amrouche, Nečasová (2001), Boulmezaoud $(1999,2001)$ etc.

Let Ω be an open set of \mathbb{R}^{N} and let us consider the basic weight

$$
\rho(r)=\left(\sqrt{1+r^{2}}\right), \quad \lg \rho=\ln \left(2+r^{2}\right)
$$

with $r=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{1 / 2}$ being the distance to the origin. Given an integer $m \in \mathcal{N}$ and a real number $\alpha \in \mathbb{R}$, we define the weighted space.

As usual, $\mathcal{D}\left(\mathbb{R}^{N}\right)$ denotes the space of indefinitely differentiable functions with compact supports and $\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$ denotes its dual space, called the space of distributions. For any nonnegative integers N and m, real numbers $p>1, \alpha$ and β, and setting

$$
\begin{array}{lll}
k=k(m, N, p, \alpha) & =-1 & \text { if } \frac{N}{p}+\alpha \notin\{1, \ldots, m\}, \\
k=k(m, N, p, \alpha) & =m-\frac{N}{p}-\alpha & \text { if } \frac{N}{p}+\alpha \in\{1, \ldots, m\},
\end{array}
$$

we define the following space:

$$
\begin{align*}
& W_{\alpha, \beta}^{m, p}(\Omega)=\left\{u \in \mathcal{D}^{\prime}(\Omega) ; 0 \leq|\lambda| \leq k, \rho^{\alpha-m+|\lambda|}(\lg \rho)^{\beta-1} D^{\lambda} u \in L^{p}(\Omega) ;\right. \\
& \left.k+1 \leq|\lambda| \leq m, \quad \rho^{\alpha-m+|\lambda|}(\lg \rho)^{\beta} D^{\lambda} u \in L^{p}(\Omega)\right\} . \tag{2.1}
\end{align*}
$$

In the case $\beta=0$, we simply denote the above space by $W_{\alpha}^{m, p}(\Omega)$. Note that $W_{\alpha, \beta}^{m, p}(\Omega)$ is a reflexive Banach space equipped with its natural norm:

$$
\begin{align*}
& \|u\|_{W_{\alpha, \beta}^{m, p}(\Omega)}=\left[\sum_{0 \leq|\lambda| \leq k}\left\|\rho^{\alpha-m+|\lambda|}(\lg \rho)^{\beta-1} D^{\lambda} u\right\|_{L^{p}(\Omega)}^{p}\right. \\
& \left.+\sum_{k+1 \leq|\lambda| \leq m}\left\|\rho^{\alpha-m+|\lambda|}(\lg \rho)^{\beta} D^{\lambda} u\right\|_{L^{p}(\Omega)}^{p}\right]^{1 / p} . \tag{2.2}
\end{align*}
$$

We also define the semi-norm:

$$
\begin{equation*}
|u|_{W_{\alpha, \beta}^{m, p}(\Omega)}=\left(\sum_{|\lambda|=m}\left\|\rho^{\alpha}(\lg \rho)^{\beta} D^{\lambda} u\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

and for any integer q, we denote by P_{q} the space of polynomials in N variables of the degree smaller than or equal to q, with the convention that P_{q} is reduced to $\{0\}$ for negative q. The weights in definition (2.1) are chosen so that the corresponding space satisfies two properties:

$$
\begin{equation*}
\mathcal{D}\left(\overline{\mathbb{R}_{+}^{N}}\right) \text { is dense in } W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right) \tag{2.4}
\end{equation*}
$$

and the Poincaré-type inequality holds in $W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$. For more details see Amrouche, Girault, Giroire (1994), Amrouche, Nečasová (2001).

Theorem 2.1 Let α and β be two real numbers and $m \geq 1$ an integer not satisfying simultaneously

$$
\begin{equation*}
\frac{N}{p}+\alpha \in\{1, \ldots, m\} \quad \text { and } \quad(\beta-1) p=-1 \tag{2.5}
\end{equation*}
$$

Then the semi-norm $|\cdot|_{W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)}$ defines on $W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right) / P_{q^{\prime}}$ a norm, which is equivalent to the quotient norm, with $q^{\prime}=\inf (q, m-1)$, where q is the highest degree of the polynomials contained in $W_{\alpha}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$.
Proof. See Amrouche, Girault, Giroire (1994), Amrouche, Nečasová (2001).
Now, we define the space

$$
\stackrel{\circ}{W}_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)=\overline{\mathcal{D}\left(\mathbb{R}_{+}^{N}\right)}{ }^{\|\cdot\|_{W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)}}
$$

and the dual space of $\grave{W}_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$ is denoted by $W_{-\alpha,-\beta}^{-m, p^{\prime}}\left(\mathbb{R}_{+}^{N}\right)$, where p^{\prime} is the conjugate of p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

Theorem 2.2 Under the assumptions of Theorem 1.1, the semi-norm (2.3) is a norm on $\dot{W}_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$ which is equivalent to the full norm (2.2).
Proof. See Amrouche, Girault, Giroire (1994), Amrouche, Nečasová (2001).
In the sequel, for any integer $q \geq 0$, we shall use the following polynomial spaces:
\mathcal{P}_{q} (respectively \mathcal{P}_{q}^{Δ}) is the space of polynomials (respectively harmonic polynomials) of degree $\leq q$,
\mathcal{P}_{g}^{\prime} is the subspace of the polynomials in \mathcal{P}_{q} depending only on the $N-1$ first variables $x^{\prime}=\left(x_{1}, \ldots, x_{N_{1}}\right)$,

2.1. The spaces of traces

In order to have the sense of the traces of functions of $W_{\alpha, \beta}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$, we introduce for any $\sigma \in] 0,1[$ the space:

$$
\begin{align*}
& W_{0}^{\sigma, p}\left(\mathbb{R}^{N}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right) ; w^{-\sigma} u \in L^{p}\left(\mathbb{R}^{N}\right),\right. \\
& \left.\left(\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+\sigma p}} d x d y\right)^{1 / p}<\infty\right\}, \tag{2.6}
\end{align*}
$$

where

$$
\begin{aligned}
& w=\rho \quad \text { if } \quad \frac{N}{p} \neq \sigma, \\
& w=\rho(\lg \rho)^{1 / \sigma} \quad \text { if } \quad \frac{N}{p}=\sigma,
\end{aligned}
$$

which is a reflexive Banach space equipped with its natural norm:

$$
\begin{equation*}
\|u\|_{W_{0}^{\sigma, p}\left(\mathbb{R}^{N}\right)}=\left(\left\|\frac{u}{w^{\sigma}}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p}+\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+\sigma p}} d x d y\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

If u is a function defined on \mathbb{R}_{+}^{N}, we denote its traces on $\Gamma=\mathbb{R}^{N-1}$ by:
$x^{\prime} \in \mathbb{R}^{N-1}, \gamma_{0} u\left(x^{\prime}\right)=u\left(x^{\prime}, 0\right), \ldots, \gamma_{j} u\left(x^{\prime}\right)=\frac{\partial^{j} u}{\partial x_{N}^{j}}\left(x^{\prime}, 0\right)$. In the same way as in Amrouche, Nečasová, Sokolowski (2004), we can prove the following trace lemma:

Lemma 2.1 For any integer $m \geq 1$ and real number α, the mapping

$$
\begin{aligned}
& \gamma: \mathcal{D}\left(\overline{\mathbb{R}_{+}^{N}}\right) \rightarrow \prod_{j=0}^{m-1} \mathcal{D}\left(\mathbb{R}^{N-1}\right) \\
& u \mapsto\left(\gamma_{0} u, \ldots, \gamma_{m-1} u\right)
\end{aligned}
$$

can be extended by continuity to a linear and continuous mapping, still denoted by γ, from $W_{\alpha}^{m, p}\left(\mathbb{R}_{+}^{N}\right)$ onto $\prod_{j=0}^{m-1} W_{\alpha}^{m-j-\frac{1}{p}, p}\left(\mathbb{R}^{N-1}\right)$. Moreover

$$
\operatorname{Ker} \gamma=\stackrel{\circ}{W}_{\alpha}^{m, p}\left(\mathbb{R}_{+}^{N}\right)
$$

Proof. See Amrouche, Girault, Giroire (1994), Amrouche, Nečasová (2001).

Remark 2.1

- We would like to mention that the symbol $\left.u\right|_{\partial \Omega}$ need not have sense in general and the result on traces of functions from weighted Sobolev spaces with distance as a weight can be found in the works of Nečas (1962), Kufner (1985) and Nikolskii (1977).
- A very general sense of traces meant to define the class of very weak solutions in the weighted setting can be found in the work of Schumacher (2007).

3. Neumann problem in the half space

In the section we recall the known results for the problem Neumann problem in the half space, see Amrouche (2002):

$$
\begin{equation*}
-\Delta u=f \text { in } \mathbb{R}_{+}^{N}, \frac{\partial u}{\partial x_{N}}=g \text { on } \mathbb{R}^{N-1} \tag{3.1}
\end{equation*}
$$

Theorem 3.1 Let

$$
\begin{equation*}
\frac{N}{p^{\prime}} \neq 1 \tag{3.2}
\end{equation*}
$$

let $f \in W_{1}^{0, p}\left(\mathbb{R}_{+}^{N}\right)$ satisfy the compatibility condition

$$
\int_{\Omega} f d x=0, \text { if } p^{\prime}>N
$$

then problem (3.1) with $g=0$ has a unique solution $u \in W_{1}^{2, p}\left(\mathbb{R}_{+}^{N}\right) / \mathcal{P}_{[1-N / p]}^{\Delta}$.
REMARK 3.1 Let us note that $W_{1}^{0, p}\left(\mathbb{R}_{+}^{N}\right) \subset W_{0}^{-1, p}\left(\mathbb{R}_{+}^{N}\right)$ iff $\frac{N}{p^{\prime}} \neq 1$. In the case $\frac{N}{p^{\prime}}=1$ the previous result holds, provided $f \in W_{0}^{-1, p}\left(\mathbb{R}_{+}^{N}\right) \cap W_{1}^{0, p}\left(\mathbb{R}_{+}^{N}\right)$ without compatibility conditions and problem (3.1) has a unique solution in $W_{1}^{2, p}\left(\mathbb{R}_{+}^{N}\right) / \mathcal{P}_{[1-N / p]}$.

Theorem 3.2 Let $\frac{N}{p^{\prime}} \neq 1, f \in W_{1}^{0, p}\left(\mathbb{R}_{+}^{N}\right), g \in W_{0}^{-1 / p, p}(\Gamma)$. We suppose the following condition holds:

$$
\begin{equation*}
\int_{\Omega} f=\langle g, 1\rangle_{W_{0}^{-1 / p, p}(\Gamma) \times W_{0}^{1 / p \cdot p^{\prime}}(\Gamma)} \quad \text { if } p^{\prime}>N \tag{3.3}
\end{equation*}
$$

then problem (3.1) has a unique solution $\left.v \in W_{0}^{1, p}\left(\mathbb{R}_{+}^{N}\right)\right) / \mathcal{P}_{\left[1-\frac{N}{p}\right]}$.
Moreover, if $g \in W_{0}^{1-1 / p, p}(\Gamma)$ then there exists a unique solution $v \in W_{1}^{2, p}\left(\mathbb{R}_{+}^{N}\right)$.
Remark 3.2 In case $p^{\prime}=N$ Remark 3.1 holds with $g \in W_{1}^{1-1 / p, p}(\Gamma)$.

3.1. Mapping T_{t}

We consider the general case of the construction of the transformation T_{t}. Let D be a domain in \mathbb{R}^{N} with the boundary ∂D piecewise C^{k} for a given integer $k \geq 0$. Let T_{t} be a one-to-one mapping from \bar{D} onto \bar{D} such that

$$
\begin{equation*}
T_{t} \text { and } T_{t}^{-1} \text { belong to } C^{k}\left(\bar{D} ; \mathbb{R}^{N}\right) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
t \rightarrow T_{t}(x), t \rightarrow T_{t}^{-1} \in C([0, \varepsilon)), \forall x \in \bar{D} \tag{**}
\end{equation*}
$$

thus $(t, x) \rightarrow T_{t}(x) \in C\left([0, \epsilon) ; C^{k}\left(\bar{D} ; \mathbb{R}^{N}\right)\right)=C\left(0, \varepsilon ; C^{k}\left(\bar{D} ; \mathbb{R}^{N}\right)\right)$. For any $X \in$ \bar{D} and $t>0$ the point $x(t)=T_{t}(X)$ moves along the trajectory $x($.$) with the$ velocity

$$
\begin{equation*}
\left\|\frac{d}{d t} x(t)\right\|_{\mathbb{R}^{N}}=\left\|\frac{\partial}{\partial t} T_{t}(X)\right\|_{\mathbb{R}^{N}} \tag{3.4}
\end{equation*}
$$

The vector field $V(t)$, defined as $V(t)(x)=V(t, x)$, satisfies the relation

$$
\begin{equation*}
V \in C\left(0, \varepsilon ; C^{k}\left(\bar{D} ; \mathbb{R}^{N}\right)\right) \tag{3.5}
\end{equation*}
$$

Let D be a bounded domain in \mathbb{R}^{N} with the piecewise smooth boundary ∂D, and $V \in C\left(0, \varepsilon ; C^{k}\left(\bar{D}, \mathbb{R}^{N}\right)\right)$ be a given vector field which satisfies

$$
\begin{equation*}
V(t, x) \cdot n(x)=0 \text { for a.e. } x \in \partial D \tag{3.6}
\end{equation*}
$$

and
if $n=n(x)$ is not defined as a singular point $x \in \partial D$ we set $V(t, x)=0$.

It is clear that if T_{t} maps \bar{D} onto \bar{D} and for $T_{t}\left({ }^{*}\right),\left({ }^{* *}\right)$ hold, then the vector field V defined by

$$
V(t, x)=\frac{\partial}{\partial t} T_{t} \circ T_{t}^{-1}(x)
$$

satisfies (1.2) and (3.7), (3.8).
Now, we are interested in the case of unbounded domains D.

Definition 3.1 Let D be a domain in \mathbb{R}^{N} whose boundary ∂D is piecewise C^{k}, $k \geq 1$. It is supposed that the outward unit normal field n exists a.e. on ∂D, i.e. except for singular points \bar{x} of ∂D. The following notation is used
$V^{k}(D)=\left\{V \in D^{k}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right) \mid\langle V, n\rangle_{R^{N}}=0\right.$ on ∂D except for the singular points \bar{x} of $\partial D, V(\bar{x})=0$ for all singular points $\bar{x}\}$.
$V^{k}(D)$ is equipped with the topology induced by $D^{k}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$.
So, if $V \in C\left(0, \varepsilon ; V^{k}(D)\right)$, then there exists a compact set \bar{O} in \mathbb{R}^{N} such that the support of $V(t)$ is included in \bar{O} for all $0 \leq t \leq \varepsilon$ and we define a mapping T_{t} in the form of a one-to-one mapping on \bar{O}.

If the following conditions are satisfied : $<V, n>_{R^{n}}=0$ on ∂D and $V(\bar{x})=0$ then $T_{t}(V)$ maps $\bar{O} \cap \bar{D}$ onto $\bar{O} \cap \bar{D}$ and $\left(R^{N} \backslash \bar{O}\right) \cap \bar{D}$ onto itself. Finally, the restriction of the mapping $T_{t}(V)$ to $\bar{D},\left.T_{t}(V)\right|_{\bar{D}}$ is a one-to-one transformation of \bar{D} possessing all properties required for the mapping $T_{t}(V)$.

3.2. Sobolev spaces and boundary value problems. Transported and perturbed problems.

We already introduced the Sobolev weighted spaces in fixed domain. Now, we are interested in the definition of Sobolev spaces with corresponding weights in perturbed domain. The most important property is definition of the traces and that the theorem of the traces should be satisfied. Since our mapping is C^{k} we can define the Sobolev spaces with weights on perturbed domain through the Sobolev spaces on fixed domain.
Definition 3.2 We say that $u_{t} \in W_{0}^{1,2}\left(\Omega_{t}\right)$ iff $u^{t}=u_{t} \circ T_{t} \in W_{0}^{1,2}(\Omega)$, where the corresponding seminorm is defined by

$$
\left(\int_{\Omega}\left\|\nabla u^{t}\right\|^{2} d x\right)^{1 / 2}=\left(\int_{\Omega_{t}}\left\|D T_{t} \circ T_{t}^{-1} \cdot \nabla u_{t}\right\|^{2}|\gamma(t)|^{-1} d x_{t}\right)^{1 / 2}
$$

and the corresponding norm is given by

$$
\begin{align*}
\left\|u_{t}\right\|_{W_{0}^{1,2}\left(\Omega_{t}\right)} & =\left\{\int_{\Omega_{t}}\left\|D T_{t} \circ T_{t}^{-1} \cdot \nabla u_{t}\right\|^{2}|\gamma(t)|^{-1} d x_{t}+\right. \tag{3.8}\\
& \left.+\int_{\Omega_{t}}\left\|u_{t} \circ T_{t}^{-1}\right\|^{2}\left(\rho \circ T_{t}^{-1}\right)^{-2}|\gamma(t)|^{-1} d x_{t}\right\}^{1 / 2}
\end{align*}
$$

Now, we want to introduce the traces.
Definition 3.3 We say that $g_{t} \in W_{0}^{1 / 2,2}\left(\Gamma_{t}\right)$ iff $g_{t} \circ T_{t}=g^{t} \in W_{0}^{1 / 2,2}(\Gamma)$, with the norm defined by

$$
\int_{\Gamma_{t} \times \Gamma_{t}} \frac{1}{w^{2}(t)} \frac{\mid g_{t}\left(x_{t}^{\prime}\right)-g_{t}\left(\left.y^{\prime}(t)\right|^{2}\right.}{\left|S_{t} x_{t}^{\prime}-S_{t} y_{t}^{\prime}\right|^{3}} d x_{t}^{\prime} d y_{t}^{\prime}=\int_{\Gamma \times \Gamma} \frac{\left|g^{t}\left(x^{\prime}\right)-g^{t}\left(y^{\prime}\right)\right|^{2}}{\left|x^{\prime}-y^{\prime}\right|^{3}} d x^{\prime} d y^{\prime}<\infty,
$$

where $w(t)=\left|\operatorname{det}\left(D T_{t}\right)^{*}\right|\left\|D T^{-1} \cdot n\right\|_{\mathbb{R}^{N}}, x_{t}^{\prime}=T_{t} x^{\prime}, y_{t}^{\prime}=T_{t} y^{\prime}, M\left(T_{t}\right)=$ $\operatorname{det}\left(D T_{t}\right)^{*} D T^{-1}$ is the cofactor matrix of the Jacobian matrix $D T_{t}$.

Remark 3.3

- For description of change of variables in boundary integral see Sokolowski, Zolesio (1992), page 77.
- Since we consider that the mapping T_{t} is sufficiently smooth, we can show similarly as for fixed domain the trace lemma Lemma 2.3 for Γ_{t}.

Now we define the dual spaces in the following way:
Definition 3.4 We define $W_{0}^{-1,2}\left(\Omega_{t}\right)$ and $W_{0}^{-1 / 2,2}\left(\Gamma_{t}\right)$ by the following way:

$$
W_{0}^{-1,2}\left(\Omega_{t}\right)=\left(\dot{\circ}_{0}^{1,2}\left(\Omega_{t}\right)\right)^{*}
$$

and

$$
W_{0}^{-1 / 2,2}\left(\Gamma_{t}\right)=\left(W_{0}^{1 / 2,2}\left(\Gamma_{t}\right)\right)^{*} .
$$

Very important is the property of a weak differentiability of T_{t} with respect to t. We repeat here the part of the proof from our previous work, see Amrouche, Nečasová, Sokolowski (2004).

We denote by D the following set

$$
D=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}, x_{N}>-a\right\}, \text { fixed } a>0, \text { a sufficient large. }
$$

Proposition 3.1 Let $N \geq 3, f \in W_{1}^{0,2}(D) \subset W_{0}^{-1,2}(D)$. Let $V \in C\left(0, \varepsilon, \mathcal{D}^{k}\left(\mathbb{R}_{+}^{N}\right)\right.$ be given, $k \geq 1$, then the mapping $t \rightarrow f \circ T_{t}$ is weakly differentiable in the space $W_{0}^{-1,2}(D)$.

Proof. Let $\varphi \in \stackrel{\circ}{W}_{0}^{1,2}(D) \subset W_{-1}^{0,2}(D)$ be given and we denote $S_{t}=T_{t}^{-1}$,

$$
\lambda(t)=\gamma(t)^{-1} T_{t}^{-1}=\gamma(t)^{-1} S_{t} .
$$

We have

$$
\frac{1}{t} \int_{D}\left(f \circ T_{t}-f\right) \varphi d x=\frac{1}{t} \int_{D} f\left(\lambda(t) \varphi \circ S_{t}-\varphi\right) d x .
$$

Furthermore

$$
\left.\frac{1}{t}\left(\lambda(t) \varphi \circ S_{t}-\varphi\right)=\lambda(t) \frac{1}{t}\left(\varphi \circ S_{t}-\varphi\right)+\frac{1}{t}(\lambda(t)-1) \varphi\right),
$$

the right-hand side of this equality converges to

$$
-\nabla \varphi \cdot V(0)+\lambda^{\prime}(0) \varphi
$$

strongly in $W_{-1}^{0,2}(D)$ as $t \rightarrow 0$. Moreover, it is evident that $\lambda^{\prime}(0)=-\operatorname{div} V(0)$. Since S_{t} is associated with the speed vector field $-V_{t}$, therefore
$\int_{D} \frac{1}{t}\left(f \circ T_{t}-f\right) \varphi d x \rightarrow-\int_{D} f \operatorname{div}(\varphi V(0)) d x=\langle f \cdot V(0), \varphi\rangle_{W_{0}^{-1,2}(D) \times \hat{W}_{0}^{1,2}(D)}$
as $t \rightarrow 0$; this proves the proposition.

Definition 3.5 Let $h_{t} \in W_{0}^{-1,2}\left(\Omega_{t}\right), \varphi \in \dot{W}_{0}^{1,2}(\Omega)$, then we define the following form

$$
\begin{equation*}
\left\langle\tau h_{t}, \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)}=\left\langle h_{t}, \gamma^{-1}(t) \varphi \circ T_{t}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)} \tag{3.9}
\end{equation*}
$$

where by τh_{t} we mean $h_{t} \circ T_{t}$.
REmark 3.4 Let $h_{t} \in W_{1}^{0,2}\left(\Omega_{t}\right)$, then for all $\varphi \in \dot{W}_{0}^{1,2}(\Omega), \varphi \circ T_{t}^{-1} \in \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)$ and we have

$$
\begin{aligned}
& \left\langle h_{t}, \gamma(t)^{-1} \varphi \circ T_{t}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}=\int_{\Omega_{t}} h_{t}(x) \cdot \gamma(t)^{-1} \varphi \circ T_{t}^{-1}(x) d x= \\
& \int_{\Omega} h_{t} \circ T_{t}(X) \varphi(X) d X=\left\langle h_{t} \circ T_{t}, \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)}
\end{aligned}
$$

where $\tau h_{t}=h_{t} \circ T_{t}$ and $h_{t} \in W_{1}^{0,2}\left(\Omega_{t}\right)$.
Definition 3.6 Let $g_{t} \in W_{0}^{-1 / 2,2}\left(\Gamma_{t}\right), \varphi \in W_{0}^{1 / 2,2}(\Gamma)$, then we define the following form

$$
\left\langle\tau g_{t}, \varphi\right\rangle_{W_{0}^{-1 / 2,2}(\Gamma) \times W_{0}^{1 / 2,2}(\Gamma)}=\left\langle g_{t}, w(t) \varphi \circ T_{t}\right\rangle_{W_{0}^{-1 / 2,2}\left(\Gamma_{t}\right) \times W_{0}^{1 / 2,2}\left(\Gamma_{t}\right)}
$$

Proposition 3.2 (i) Let $h_{t} \in W_{0}^{-1,2}\left(\Omega_{t}\right)$ then

$$
h_{t}=\operatorname{div} \mathbf{F}, \mathbf{F}=\left(f_{1}, \ldots, f_{N}\right)
$$

with $f_{i} \in L^{2}\left(\Omega_{t}\right), i=1, \ldots, N$.
(ii) $h^{t}=\gamma(t)^{-1} \operatorname{div}\left(D T_{t}^{-1} \mathbf{F} \circ T_{t}\right)$ and
(iii) in particular if $h \in W_{0}^{-1,2}(D)$, where $\Omega \subset D, \Omega_{t} \subset D$, then $h^{t} \in W_{0}^{-1,2}(D)$ and

$$
\frac{h-h_{t}}{t} \rightarrow \dot{h} \text { weakly in } W_{0}^{-1,2}(D)
$$

Proof. It was given in our previous work, see Amrouche, Nečasová, Sokolowski (2004).

Proposition 3.3 Let there be given a vector field $V \in C\left(0, \varepsilon ; D^{k}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)\right)$, $k \geq 1$ and an element $f \in W^{2,1}\left(\mathbb{R}^{N}\right)$. Then

$$
\frac{1}{t}\left[f \circ T_{t}-f\right] \rightarrow \nabla f \cdot f V(0) \text { strongly in } W^{1,1}\left(\mathbb{R}^{N}\right)
$$

as $t \rightarrow 0$, where $W^{2,1}\left(\mathbb{R}^{N}\right)$ and $W^{1,1}\left(\mathbb{R}^{N}\right)$ are classical Sobolev spaces.
Proof. See Proposition 2.37 in Sokolowski, Zolesio (1992), page 71.
Proposition 3.4 (Existence of strong differentiability of \mathcal{H}_{ξ}.)
Let $f \in L^{2}\left(\mathbb{R}^{N}\right), \theta \in C\left(0, \epsilon ; \mathcal{D}^{k}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)\right)$ be given, then the mapping $\xi \theta \rightarrow$ $\frac{1}{|\xi|}\left[f \circ \mathcal{H}_{\xi}-f\right]$ is strongly differentiable in the space $W^{-2,2}\left(\mathbb{R}^{N}\right)$.

Proof. Applying the Proposition 3.12 and Proposition 3.2 we obtain that

$$
\left\|q_{\xi} \phi \circ \mathcal{H}_{\xi}-\phi-\operatorname{div}(\phi \xi \theta)\right\| \leq c|\xi|^{2}\|\theta\|^{2}
$$

for all $\phi \in W^{2,2}\left(\mathbb{R}^{N}\right)$.
By an application of the transport technique to our problem (1.1), defined in Ω_{t}, we get for all $\psi \in \stackrel{\circ}{0}_{0}^{1,2}\left(\Omega_{t}\right)$

$$
\left\langle\Delta u_{t}, \psi\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}=\left\langle\operatorname{div}\left(A(t) \nabla u^{t}\right), \psi \circ T_{t}\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)} .
$$

Let $\varphi=\psi \circ T_{t} \in \circ_{0}^{1,2}(\Omega)$, then

$$
\left\langle\Delta u_{t}, \varphi \circ T_{t}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}=\left\langle\operatorname{div}\left(A(t) \nabla u^{t}\right), \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)}
$$

provided that

$$
-\Delta u_{t}=h_{t} \quad \text { in } \Omega_{t}
$$

and

$$
-\operatorname{div}\left(A(t) \nabla u^{t}\right)=\gamma(t) h^{t} \text { in } \Omega
$$

For problem (PP)

$$
-\Delta u_{t}=f_{t} \text { in } \Omega_{t}
$$

thus

$$
-\operatorname{div}\left(A(t) \nabla u^{t}\right)=\gamma(t) f^{t} \text { in } \Omega
$$

Therefore, we will get the perturbed problem

$$
-\Delta u_{t}=f_{t} \text { in } \Omega_{t}, \frac{\partial u_{t}}{\partial n_{t}}=g_{t} \text { on } \Gamma_{t}
$$

and also transported problem

$$
-\operatorname{div}\left(A(t) \nabla u^{t}\right)=\gamma(t) f^{t} \text { in } \Omega, \nabla u^{t} \cdot \eta^{t}=g^{t} \text { on } \Gamma,
$$

where $g^{t}=g_{t} \circ T_{t}$.

4. Weak material derivatives

4.1. Transported problem (TRP)

We investigate the existence of the transported problem in the fixed domain Ω satisfying the equations

$$
\begin{align*}
-\frac{1}{\gamma(t)} \operatorname{div}\left(A(t) \nabla u^{t}\right) & =f^{t} \text { in } \Omega \tag{4.1}\\
\nabla u^{t} \cdot \eta^{t} & =g^{t} \text { on } \Gamma,
\end{align*}
$$

where

$$
\begin{equation*}
A(t)=\operatorname{det}\left(D T_{t}\right)^{*} D T_{t}^{-1} D T_{t}^{-1} \tag{4.2}
\end{equation*}
$$

Theorem 4.1 Let $N \geq 3$, suppose $f^{t} \in W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)$ and $g^{t} \in W_{0}^{-1 / 2,2}(\Gamma)$, then problem (TRP) has a unique solution $u^{t} \in W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$ satisfying the following estimate

$$
\left\|u^{t}\right\|_{W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right)} \leq c\left(\left\|f^{t}\right\|_{W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)}+\left\|g^{t}\right\|_{W_{0}^{-1 / 2,2}(\Gamma)}\right)
$$

Moreover, if $g^{t} \in W_{1}^{1 / 2,2}(\Gamma)$ then $u^{t} \in W_{1}^{2,2}\left(\mathbb{R}_{+}^{N}\right)$ and the following estimate

$$
\left\|u^{t}\right\|_{W_{1}^{2,2}\left(\mathbb{R}_{+}^{N}\right)} \leq c\left(\left\|f^{t}\right\|_{W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)}+\left\|g^{t}\right\|_{W_{1}^{1 / 2,2}(\Gamma)}\right)
$$

holds.
Proof. We define the bilinear form

$$
B\left(u^{t}, v^{t}\right)=\int_{\Omega} A(t) \nabla u^{t} \nabla v^{t}
$$

Since $\gamma(0)=1$ then for sufficiently small δ we have $\gamma(t)>1 / 2$ for all $t \in(-\delta, \delta)$ and the bilinear form B is uniformly elliptic, i.e.

$$
B\left(u^{t}, u^{t}\right) \geq c\left\|\nabla u^{t}\right\|_{2}^{2}
$$

for some positive constant $c>0$, which implies the uniform ellipticity of the form B. Then, by applying Theorem 3.2 with $p=2$ we get the existence of solution.

4.2. Perturbed problem (PP)

Proposition 4.1 Let $f \in W_{1}^{0,2}\left(\Omega_{t}\right), g \in W_{1}^{1 / 2,2}(\Gamma)$ then

$$
\frac{F^{t}-f}{t} \rightarrow \operatorname{div} V f+\dot{f} \text { weakly in } W_{0}^{-1,2}\left(\Omega_{t}\right)
$$

where

$$
F^{t}=\operatorname{det}\left(D T_{t}\right)\left(f_{t} \circ T_{t}\right)
$$

Proof. We have the following equalities and the convergence

$$
\begin{aligned}
& \frac{1}{t}\left\langle F^{t}-f, \varphi\right\rangle-\langle\dot{f}-\operatorname{div} V f, \varphi\rangle= \\
& =\frac{1}{t}\left\langle\gamma(t) f^{t}-f, \varphi\right\rangle= \\
& =\frac{1}{t}\left\langle-\operatorname{div}\left(A(t) \nabla u^{t}\right)+\operatorname{div} \nabla u, \varphi\right\rangle+\langle\operatorname{div} V f, \varphi\rangle= \\
& =\frac{1}{t}\left\langle(A(t)-I) \nabla u^{t}, \nabla \varphi\right\rangle-\frac{1}{t}\left\langle\nabla\left(u^{t}-u\right), \nabla \varphi\right\rangle+\langle\operatorname{div} V f, \varphi\rangle \\
& \rightarrow\left\langle A^{\prime}(0) \nabla u, \nabla \varphi\right\rangle-\langle\nabla \dot{u}, \nabla \varphi\rangle+\langle\operatorname{div} V f, \varphi\rangle=\langle\dot{f}, \varphi\rangle+\langle\operatorname{div} V f, \varphi\rangle .
\end{aligned}
$$

For $f \in W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)$ it follows that $\dot{f} \in W_{0}^{-1,2}\left(\Omega_{t}\right)$ and also

$$
\frac{f^{t}-f}{t}-\dot{f} \rightarrow 0 \text { weakly in } W_{0}^{-1,2}\left(\Omega_{t}\right)
$$

For $g \in W_{1}^{\frac{1}{2}, 2}(\Gamma)$, with $\dot{g} \in W_{0}^{-1 / 2,2}(\Gamma)$ it follows that

$$
\frac{g^{t}-g}{t}-\dot{g} \rightarrow 0 \text { weakly in } W_{0}^{-1 / 2,2}(\Gamma)
$$

Theorem 4.2 Let $N \geq 3$, suppose $f_{t} \in W_{1}^{0,2}\left(\Omega_{t}\right)$ and $g_{t} \in W_{0}^{-1 / 2,2}\left(\Gamma_{t}\right)$, then problem (PP) has a unique solution $u_{t} \in W_{0}^{1,2}\left(\Omega_{t}\right)$, satisfying the following estimate

$$
\left\|u_{t}\right\|_{W_{0}^{1,2}\left(\Omega_{t}\right)} \leq c\left(\left\|f_{t}\right\|_{W_{1}^{0,2}\left(\Omega_{t}\right)}+\left\|g_{t}\right\|_{W^{-1 / 2,2}\left(\Gamma_{t}\right)}\right)
$$

Moreover, if $g_{t} \in W_{1}^{1 / 2,2}\left(\Gamma_{t}\right)$, then $u_{t} \in W_{1}^{2,2}\left(\Omega_{t}\right)$.
Proof. We have for $\psi \in \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)$

$$
\begin{aligned}
& \left\langle f_{t}, \psi\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}=\left\langle\gamma(t) f_{t}, \gamma^{-1}(t) \varphi \circ T_{t}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}= \\
& =\left\langle\gamma(t) \Delta u_{t}, \gamma^{-1}(t) \varphi \circ T_{t}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{t}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{t}\right)}= \\
& \left\langle\operatorname{div}\left(A(t) \nabla u^{t}\right), \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)}=\left\langle f^{t}, \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)},
\end{aligned}
$$

where $\varphi=\psi \circ T_{t}$. From application of Theorem 4.1 follows the existence of a unique solution of (1.1) on the perturbed domain.

4.3. Proof of the Main Theorem 1

The aim of this section is to show the existence of material derivative as a weak limit of

$$
\begin{equation*}
\frac{u^{t}-u}{t} \rightarrow \dot{u} \in W_{0}^{1,2}(\Omega) \tag{4.3}
\end{equation*}
$$

Denoting

$$
w^{t}=\frac{u^{t}-u}{t}-\dot{u}
$$

we obtain the following equation

$$
\begin{align*}
-\Delta w^{t} & =\operatorname{div}\left[\frac{A(t)-I}{t} \nabla u^{t}-A^{\prime}(0) \nabla u\right]+\left[\frac{f^{t}-f}{t}-\dot{f}\right] \quad \text { in } \Omega \tag{4.4}\\
\frac{\partial w^{t}}{\partial n^{t}} & =\frac{g^{t}-g}{t}-\dot{g}-\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n} \quad \text { on } \Gamma .
\end{align*}
$$

The weak formulation of (4.4) is the following

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{N}} \nabla w_{t} \cdot \nabla \phi= \\
& \int_{\mathbb{R}_{+}^{N}}\left[\frac{A(t)-I}{t} \nabla u^{t} \cdot \nabla \phi-A^{\prime}(0) \nabla u \nabla \phi\right]+\int_{\mathbb{R}_{+}^{N}}\left[\frac{f^{t}-f}{t}-\dot{f}\right] \phi d x+ \\
& +\int_{\Gamma}\left(\frac{g^{t}-g}{t}-\dot{g}-\nabla u \cdot V \cdot n-\nabla u \cdot \dot{n}\right) \phi d \sigma+ \\
& \int_{\Gamma}\left(\frac{A(t)-I}{t} g^{t}+A^{\prime}(0) g\right) \phi, \forall \phi \in W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right)
\end{align*}
$$

where $A^{\prime}(0)=-D V-{ }^{*} D V+\operatorname{div} V I$.
The goal of this section is to prove the following convergence

$$
w^{t}=\frac{u^{t}-u}{t}-\dot{u} \rightarrow 0 \text { as } t \rightarrow 0, \text { weakly in } W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right)
$$

and

$$
\frac{\partial w^{t}}{\partial n^{t}}=\frac{g^{t}-g}{t}-\dot{g} \rightarrow 0 \text { as } t \rightarrow 0, \quad \text { weakly in } W_{0}^{-1 / 2,2}\left(\mathbb{R}^{N-1}\right)
$$

To get the assertion it is sufficient to prove the weak convergence of the following terms

$$
\begin{equation*}
\frac{A(t)-I}{t} \nabla u^{t}-A^{\prime}(0) \nabla u \rightarrow 0, t \rightarrow 0, \text { weakly in } L^{2}\left(\mathbb{R}_{+}^{N}\right)^{N} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{A(t)-I}{t} g^{t}-A^{\prime}(0) g-\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n} \rightarrow 0 \\
& \quad \text { weakly in } W_{0}^{-1 / 2,2}\left(\mathbb{R}^{N-1}\right)
\end{align*}
$$

since for the right hand side we have by our assumptions

$$
\begin{equation*}
\frac{f^{t}-f}{t}-\dot{f} \rightarrow 0 \text { with } t \rightarrow 0 \text { weakly in } W_{0}^{-1,2}\left(\mathbb{R}_{+}^{N}\right) \tag{4.6}
\end{equation*}
$$

and

$$
\frac{g^{t}-g}{t}-\dot{g} \rightarrow 0 \text { with } t \rightarrow 0 \text { weakly in } W_{0}^{-1 / 2,2}\left(\mathbb{R}^{N-1}\right)
$$

Let $\varphi=u^{t}-u$ be a test function in variational formulation, hence

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{N}} A(t)\left|\nabla\left(u^{t}-u\right)\right|^{2}-(A(t)-I) \nabla u \cdot \nabla\left(u^{t}-u\right)+ \\
& +\int_{\Gamma} A(t)\left(g^{t}-g\right)\left(u^{t}-u\right)+(A(t)-I) g\left(u^{t}-u\right)= \\
& \left\langle f^{t}-f, u^{t}-u\right\rangle+\left\langle g^{t}-g, u^{t}-u\right\rangle
\end{aligned}
$$

Since the field V is compactly supported in \mathbb{R}^{N}, it follows that

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{N}} A(t)\left|\nabla\left(u^{t}-u\right)\right|^{2} & \leq \int_{\mathbb{R}_{+}^{N}}\left|(A(t)-I) \nabla u \cdot \| \nabla\left(u^{t}-u\right)\right|+ \\
& +\left\|f^{t}-f\right\|_{W_{0}^{-1,2}}\left\|u^{t}-u\right\|_{W_{0}^{1,2}}+ \\
& +\int_{\Gamma} A(t)\left(g^{t}-g\right)\left(u^{t}-u\right)+(A(t)-I) g\left(u^{t}-u\right)+ \\
& +\left\|g^{t}-g\right\|_{W_{0}^{-1 / 2,2}}\left\|u^{t}-u\right\|_{W_{0}^{1,2}} \leq \\
& \leq c(t)\|\nabla u\|_{L^{2}}\left\|\nabla\left(u^{t}-u\right)\right\|_{L^{2}}+ \\
& +\left\|f^{t}-f\right\|_{W_{0}^{-1,2}}\left\|u^{t}-u\right\|_{W_{0}^{1,2}}+ \\
& +c(t)\left\|g^{t}-g\right\|_{W_{0}^{-1 / 2,2}}\left\|u^{t}-u\right\|_{W_{0}^{1,2}}+ \\
& +c(t)\left\|u^{t}-u\right\|_{W_{0}^{1,2}}\|g\|_{W_{0}^{-1 / 2,2}} \tag{4.7}
\end{align*}
$$

where $c(t)$ we obtain from the estimation of $A(t)$:
$\frac{1}{2}\left\|u^{t}-u\right\|_{W_{0}^{1,2}} \leq c(t)\|\nabla u\|_{L^{2}}+c\left\|f^{t}-f\right\|_{W_{0}^{-1,2}}+\|g\|_{W_{0}^{-1 / 2,2}}+c\left\|g^{t}-g\right\|_{W_{0}^{-1 / 2,2}}$.
Since $f \in W_{0}^{-1,2}$ and we have shown that f^{t} is strongly continuous with respect to t i.e. $f^{t} \rightarrow f$ in $W_{0}^{-1,2}, g^{t} \rightarrow g$ in $W_{0}^{-1 / 2,2}$, which imply $u^{t} \rightarrow u$ in $W_{1}^{1,2}\left(\mathbb{R}_{+}^{3}\right)$.

Since V is compactly supported, it means that supp $V \subset B(R)$ for some R, thus the first term on the right hand side of (4.7) takes the form

$$
\begin{aligned}
\int_{\Omega}(A(t)-I) \nabla u \cdot \nabla \varphi & =\int_{B(R)}(A(t)-I) \nabla u \cdot\left(\nabla u^{t}-\nabla u\right) \leq \\
& \leq c(t)\|\nabla u\|_{L^{2}}\left\|\nabla\left(u^{t}-u\right)\right\|_{W_{0}^{-1,2}}
\end{aligned}
$$

and it follows, in view of the properties of the mapping $T_{t}(V)$, that $c(t) \rightarrow 0$, which implies that (4.5) holds, and similarly (4.5)'.

Therefore, we obtain the existence of material derivative $\dot{u} \in W_{1}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$ which is given by a unique solution to problem (1.10).

5. Fréchet material derivatives

5.1. Transported problem (TRP)

For the convenience of the reader we repeat the results in the language of perturbations of identity technique. Let us fix $\theta \in \Theta_{k}$ and let $\xi \in(-\delta, \delta)$, consider $\mathcal{H}_{\xi}=I+\xi \theta$. We investigate the existence of the transported problem in the fixed domain Ω satisfying the equations

$$
\begin{align*}
-\frac{1}{\gamma(t)} \operatorname{div}\left(A(\xi) \nabla u^{\xi}\right) & =f^{\xi} \text { in } \Omega \tag{5.1}\\
\nabla u^{\xi} \cdot \eta^{\xi} & =g^{\xi} \text { on } \Gamma
\end{align*}
$$

where

$$
\begin{align*}
& A(\xi)=q_{\xi}^{*} D \mathcal{H}_{\xi}^{-1} D \mathcal{H}_{\xi}^{-1} \tag{5.2}\\
& \eta^{\xi}=\mathcal{H}_{\xi}^{-1} \cdot n^{\xi}
\end{align*}
$$

Theorem 5.1 Let $N \geq 3$, suppose $f^{\xi} \in W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)$ and $g \in W_{1}^{1 / 2,2}(\Gamma)$, then problem (TRP) has a unique solution $u^{\xi} \in W_{1}^{2,2}\left(\mathbb{R}_{+}^{N}\right)$ and

$$
\left\|u^{\xi}\right\|_{W_{1}^{2,2}\left(\mathbb{R}_{+}^{N}\right)} \leq C\left(\left\|f^{\xi}\right\|_{W_{1}^{0,2}\left(\mathbb{R}_{+}^{N}\right)}+\left\|g^{\xi}\right\|_{W_{1}^{1 / 2,2}(\Gamma)}\right)
$$

Proof. Again we define the bilinear form

$$
B\left(u^{\xi}, v^{\xi}\right)=\int_{\Omega} A_{\xi} \nabla u^{\xi} \nabla v^{\xi}
$$

which is uniformly elliptic, then, applying Theorem 3.2, we get the existence of the solution u^{ξ}.

5.2. Perturbed problem (PP)

Proposition 5.1 Let $N \geq 3, f \in W_{1}^{0,2}\left(\Omega_{\xi}\right)$, then for $|\xi| \rightarrow 0$

$$
\frac{f^{\xi}-f}{|\xi|} \rightarrow \operatorname{div} \theta f+\dot{f} \text { strongly in } W_{0}^{-1,2}\left(\Omega_{\xi}\right)
$$

Theorem 5.2 Let $N \geq 3$, suppose $f_{\xi} \in W_{1}^{0,2}\left(\Omega_{\xi}\right)$, $g_{\xi} \in W_{1}^{1 / 2,2}\left(\Gamma_{\xi}\right)$, then problem (PP) has a unique solution $u_{\xi} \in W_{1}^{2,2}\left(\Omega_{\xi}\right)$.

Proof. We have for all $\psi \in \dot{W}_{0}^{1,2}\left(\Omega_{\xi}\right)$

$$
\begin{aligned}
& \left\langle f_{\xi}, \psi\right\rangle_{W_{0}^{-1,2}\left(\Omega_{\xi}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{\xi}\right)}=\left\langle\gamma(t) f_{\xi}, q_{\xi}^{-1} \varphi \circ \mathcal{H}_{\xi}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{\xi}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{\xi}\right)}= \\
& =\left\langle q_{\xi} \Delta u_{\xi}, q_{\xi}^{-1} \varphi \circ \mathcal{H}_{\xi}^{-1}\right\rangle_{W_{0}^{-1,2}\left(\Omega_{\xi}\right) \times \dot{W}_{0}^{1,2}\left(\Omega_{\xi}\right)}= \\
& \left\langle\operatorname{div}\left(A_{\xi} \nabla u^{\xi}\right), \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)}=\left\langle f^{\xi}, \varphi\right\rangle_{W_{0}^{-1,2}(\Omega) \times \dot{W}_{0}^{1,2}(\Omega)} .
\end{aligned}
$$

By applying Theorem 5.1 we get the existence of solution of the perturbed problem.

5.3. Proof of the Main theorem 2

The aim of this section is to prove the existence of the material derivative as a weak limit of

$$
\begin{equation*}
\frac{u^{\xi}-u}{|\xi|} \rightarrow \dot{u} \in W_{0}^{1,2}(\Omega) \tag{5.3}
\end{equation*}
$$

Denoting

$$
w^{\xi}=\frac{u^{\xi}-u}{|\xi|}-\dot{u}
$$

we obtain the following equation

$$
\begin{equation*}
\left.-\Delta w^{\xi}=\operatorname{div}\left[\frac{A(\xi)-I}{|\xi|} \nabla u^{t}-A^{\prime}(0) \nabla u\right]+\frac{f^{\xi}-f}{|\xi|}-\dot{f}\right] \quad \text { in } \Omega \tag{5.4}
\end{equation*}
$$

and

$$
\frac{\partial w^{\xi}}{\partial n^{\xi}}=\frac{g^{\xi}-g}{|\xi|}-\dot{g}-\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n} \quad \text { on } \Gamma \text {. }
$$

The weak formulation of (5.4) is the following

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{N}} \nabla w_{\xi} \cdot \nabla \phi= \\
& \int_{\mathbb{R}_{+}^{N}}\left[\frac{A(\xi)-I}{|\xi|} \nabla u^{\xi} \cdot \nabla \phi-A^{\prime}(0) \nabla u \nabla \phi\right]+\int_{\mathbb{R}_{+}^{N}}\left[\frac{f^{\xi}-f}{|\xi|}-\dot{f}\right] \phi d x+ \\
& +\int_{\Gamma}\left(\frac{g^{\xi}-g}{|\xi|}-\dot{g}-\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n}\right) \phi d \sigma+ \tag{5.5}\\
& \int_{\Gamma}\left(\frac{A(\xi)-I}{|\xi|} g^{\xi}+A^{\prime}(0) g\right) \phi, \quad \forall \phi \in W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right) .
\end{align*}
$$

The goal of this section is to prove the following convergence

$$
w^{\xi}=\frac{u^{\xi}-u}{|\xi|}-\dot{u} \rightarrow 0 \text { as }|\xi| \rightarrow 0, \text { strongly in } W_{0}^{1,2}\left(\mathbb{R}_{+}^{N}\right)
$$

and

$$
\frac{\partial w^{\xi}}{\partial n^{\xi}}=\frac{g^{\xi}-g}{|\xi|}-\dot{g} \rightarrow 0 \text { as }|\xi| \rightarrow 0, \quad \text { weakly in } W_{0}^{1 / 2,2}\left(\mathbb{R}^{N-1}\right)
$$

To get the assertion it is sufficient to prove the strong convergence of the following terms

$$
\begin{equation*}
\frac{A(\xi)-I}{|\xi|} \nabla u^{\xi}-A^{\prime}(0) \nabla u \rightarrow 0,|\xi| \rightarrow 0, \text { strongly in } W_{0}^{-1,2}\left(\mathbb{R}_{+}^{N}\right)^{N} \tag{5.6}
\end{equation*}
$$

where $A^{\prime}(0)=\operatorname{div} \theta I-{ }^{*} D \theta-D \theta$ and

$$
\frac{A(\xi)-I}{t} g^{\xi}-A^{\prime}(0) g-\nabla u \cdot D V \cdot n-\nabla u \cdot \dot{n} \rightarrow 0 \text { weakly in } W_{0}^{-1 / 2,2}\left(\mathbb{R}_{+}^{N-1}\right)
$$

We assume that

$$
\begin{equation*}
\frac{f^{\xi}-f}{|\xi|}-\dot{f} \rightarrow 0 \text { with }|\xi| \rightarrow 0 \text { strongly in } W_{0}^{-1,2}\left(\mathbb{R}_{+}^{N}\right) \tag{5.7}
\end{equation*}
$$

and

$$
\frac{g^{\xi}-f}{|\xi|}-\dot{g} \rightarrow 0 \text { with }|\xi| \rightarrow 0 \text { strongly in } W_{0}^{-1 / 2,2}\left(\mathbb{R}^{N-1}\right)
$$

Let $\varphi=u^{\xi}-u$ be a test function in the variational formulation, hence

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{N}} A(\xi)\left|\nabla\left(u^{\xi}-u\right)\right|^{2}-(A(\xi)-I) \nabla u \cdot \nabla\left(u^{\xi}-u\right) \\
& +\int_{\Gamma} A(t)\left(g^{\xi}-g\right)\left(u^{\xi}-u\right)+(A(\xi)-I) g\left(u^{\xi}-u\right)= \\
& \left\langle f^{\xi}-f, u^{\xi}-u\right\rangle+\left\langle g^{\xi}-g, u^{\xi}-u\right\rangle .
\end{aligned}
$$

From the properties of vector field θ it follows that

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{N}} A(\xi)\left|\nabla\left(u^{\xi}-u\right)\right|^{2} \leq \\
\leq & \int_{\mathbb{R}_{+}^{N}}\left|(A(\xi)-I) \nabla u\left\|\nabla\left(u^{\xi}-u\right) \mid+\right\| f^{\xi}-f\left\|_{W_{1}^{0,2}}\right\| u^{\xi}-u \|_{W_{0}^{1,2}} \leq\right. \\
\leq & \int_{\Gamma} A(\xi)\left(g^{\xi}-g\right)\left(u^{\xi}-u\right)+(A(\xi)-I) g\left(u^{\xi}-u\right)+\left\|g^{\xi}-g\right\|_{W_{1}^{1 / 2,2}}\left\|u^{\xi}-u\right\|_{W_{0}^{1,2}} \\
\leq & c(\xi)\|\nabla u\|_{W^{0,2}}\left\|\nabla\left(u^{\xi}-u\right)\right\|_{W^{0,2}}+\left\|f^{\xi}-f\right\|_{W_{1}^{0,2}}\left\|u^{\xi}-u\right\|_{W_{0}^{1,2}} \\
+ & c(\xi)\left\|g^{\xi}-g\right\|_{W_{1}^{1 / 2,2}}\left\|u^{\xi}-u\right\|_{W_{0}^{1,2}}+c(\xi)\left\|u^{\xi}-u\right\|_{W_{0}^{1,2}}\|g\|_{W_{1}^{1 / 2,2}} \tag{5.8}
\end{align*}
$$

From the properties of $A(\xi)$ we have

$$
\begin{aligned}
& \frac{1}{2}\left\|u^{\xi}-u\right\|_{W_{0}^{1,2}} \leq c(\xi)\|\nabla u\|_{L^{2}}+c\left\|f^{\xi}-f\right\|_{W_{1}^{0,2}}+ \\
& c(\xi)\|g\|_{W_{1}^{1 / 2,2}}+c\left\|g^{t}-g\right\|_{W_{1}^{1 / 2,2}}
\end{aligned}
$$

Since $f \in W_{1}^{0,2} \subset W_{0}^{-1,2}$ and we consider that f^{ξ} is strongly continuous with respect to ξ, i.e. $f^{\xi} \rightarrow f$ in $W_{0}^{-1,2}$, which implies $u^{\xi} \rightarrow u$ in $W_{0}^{1,2}\left(R_{+}^{3}\right)$ strongly. Since θ is compactly supported $\operatorname{supp} \theta \subset B(R)$ for some R, hence the first term on the right hand side of (5.8) takes the form

$$
\begin{aligned}
& \int_{\Omega}(A(\xi)-I) \nabla u \cdot \nabla \varphi=\int_{B(R)}(A(\xi)-I) \nabla u \cdot\left(\nabla u^{\xi}-\nabla u\right) \leq \\
& \leq c(\xi)\|\nabla u\|_{L^{2}}\left\|\nabla\left(u^{\xi}-u\right)\right\|_{L^{2}}
\end{aligned}
$$

and it follows, in view of the properties of the mapping $\mathcal{H}_{\xi}(\xi)$, that $c(\xi) \rightarrow 0$, which implies that (5.6) holds.

Therefore, we get the material derivative $\dot{u} \in W_{1}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$, which is given by a unique solution to problem (1.10), which is same as before, but with the strong convergence in the energy space.

Remark 5.1 It is not difficult to extend our result to L^{p} theory.

Acknowledgment

Authors would like to thank Professor P. Penel for his valuable comments.

References

Amrouche, C., Girault, V., Giroire, J. (1994) Weighted Sobolev spaces for Laplace's equation in \mathbb{R}^{N}. J. Math. Pures Appl. 73, 579-606.
Amrouche, C. (2002) The Neumann problem in the half-space. C. R. Acad. Sci. Paris, Ser. I 335, 151-156.
Amrouche, C., Nečasová, Š. and Sokolowski, J. (2004) Shape sensitivity analysis of the Dirichlet Laplacian in the Half- space. Bull. Pol. Acad. Sciences Math. 52 (4), 365-380.
Amrouche, C. and Nečasová, $\check{\text { S. }}$. (2001) Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition. Mathematica Bohemica 126 (2), 265-274.
Boulmezaoud, T.Z. (1999) Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace. C. R. Acad. Sci. Paris Ser. I, 328, 221-226.
Boulmezaoud, T.Z. (2001) On the Stokes problem and on the biharmonic equation in the half - space: an approach via weighted Sobolev spaces. Math. Methods in the Applied Sciences 25, 373-398.
Delfour, M. and Zolesio, J.P. (2001) Shapes and Geometries: Analysis, Differential Calculus, and Optimisation. SIAM series on Advances in Design and Control, Philadelphia.
Girault, V. (1992) The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of R^{3}. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 39, 279-307.
Giroire, J. (1987) Etude de quelques problémes aux Limités Exterieurs et Resolution par Equation Integrales. These de Doctorat, Univ. Pierre et Marie Curie.
Fremiot, G. (2000) Structure de la semi-dérivée eulérienne dans le cas de domaines fissurés et quelques applications. PhD Thesis of University Henri Poincaré Nancy, 1.
Hanouzet, B. (1971) Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi-espace. Rend. Sem. Univ. Padova 46, 227-272.
Kufner, A. (1985) Weighted Sobolev Spaces. Wiley, Chichester.
Kufner, A. and Opic, B. (1990) Hardy-type Inequalities, Wiley, New York.
Kudryavtsev, L.D. (1959) Direct and inverse imbedding theorems. Application to the solution of elliptic equations by variational method. Trudy Mat. Inst. Steklov 55, 1-182.
Laurin, A. (2006) Domaines singulierement perturbés en optimisation de formes. PhD Thesis of University Henri Poincaré Nancy 1.
Lizorkin, P.I. (1981) The behavior at infinity of functions in Liouville class.

On Riesz potentials of arbitrary order. Proc. of the Steklov Inst. of Math. 4, 185-209.
Leroux, M.N. (1974) Résolution numerique du Probléme du Potentiel dans le Plan par une Méthode Variationnelle d'Element Fini. These, Univ. de Rennes.
Maz'ya, V.G., Plamenevskir, B.A. and Stupyalis, L.I. (1984) The threedimensional problem of steady-state motion of a fluid with a free surface. Amer. Math. Soc. Transl. 123 (2), 171-268.
Murat, F. and Simon, J. (1976) Sur la Controle par un Domaine Geometrique. Publications du Laboratoire d'Analyse Numerique, Universite de Paris VI.
NEČAS, J. (1962) Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle. Ann. Scuola Norm. Sup. Pisa 16, 305-326.
Nikol'SkiI, S.M. (1977) Approximation of functions of several variables and embedding theorems. Nauka, Moscow, (in Russian).
Pironneau, O. (1984) Optimal Shape Design for Elliptic Systems. Springer series in Computational Physics, Springer-Verlag, New York.
Sokolowski, J. and Zolesio, J.P. (1992) Introduction to Shape Optimization. Springer - Verlag.
Schumacher, K. (2007) The Navier- Stokes equations with low - regularity data in weighted function spaces. PhD. thesis.

[^0]: *The work of Šárka Nečasová was partially supported by project n. 201050005 of GACR and also in the framework of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503. The final version was supported by the project n . 201/08/0012 of GACR.

 The work of all authors was supported by the project between the Czech Academy of Sciences and CNRS.
 †Submitted: January 2008; Accepted: October 2008.

