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1. Introduction

Let H be a separable Hilbert space (with scalar product (·, ·) and norm denoted
by | · |). We are given a closed convex subset K of H with non empty interior
K̊. We denote by IK the indicator function of K,

IK(x) =







0 if x ∈ K.

+∞ if x /∈ K.

and by ∂IK the sub-differential of IK (see, e.g., Barbu, 1993),

∂IK(x) = {z ∈ H : (z, x − y) ≥ 0, ∀ y ∈ K}, x ∈ H.

We have

∂IK(x)







= {0} if x ∈ K̊,
= NK(x) if x ∈ ∂K,
= ∅ if x /∈ K,
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where NK(x) is the normal cone of K at x. We are concerned here with the
stochastic variational inequality

{

dX(t) + (AX(t) + F (X(t)) + ∂IK(X(t))) dt ∋ √
Q dW (t)

X(0) = x ∈ K.
(1)

Formally, equation (1) can be represented as



















dX(t) + (AX(t) + F (X(t))dt =
√

Q dW (t) in {t ∈ [0, T ] : X(t) ∈ K̊},
dX(t) + (AX(t) + F (X(t)) + ζ(t))dt =

√
Q dW (t)

in {t ∈ [0, T ] : X(t) ∈ ∂K},
X(0) = x ∈ K,

(2)

where ζ(t) ∈ NK(X(t)) for all t ∈ [0, T ]. For a precise definition of solution see
Definition 1 below.

Hypothesis 1 (i) A : D(A) ⊂ H → H is a linear self-adjoint operator on

H such that A−1 is compact and (Ax, x) ≥ δ|x|2, ∀ x ∈ D(A) for some

δ > 0.

(ii) Q : H → H is a linear, bounded, positive and self-adjoint operator on H
such that QetA = etAQ for all t ≥ 0.

(iii) Q(H) ⊂ D(A) and Tr [AQ] < ∞.

(iv) F : H → H is a Lipschitzian mapping such that for some γ > 0 we have

(F (x), x) ≥ −γ, ∀ x ∈ H.

(v) W is a cylindrical Wiener process on H of the form

W (t) =
∞
∑

k=1

µkβk(t)ek, t ≥ 0,

where {βk} is a sequence of mutually independent real Brownian motions

on a filtered probability spaces (Ω,F , {Ft}t≥0, P) (see Da Prato, 2004)
and {ek} is an orthonormal basis in H, which will be taken as a system

of eigen-functions for A for simplicity, i.e.

Aek = αkek, ∀ k ∈ N.

(vi) 0 ∈ K̊.

In most specific examples H = L2(O), A is an elliptic operator on O with appro-
priate boundary conditions, F is a Nemitski operator on L2(O) (see Section 5
below).



Some results for the reflection problems in Hilbert spaces 799

Under Hypothesis 1 the stochastic convolution WA(t),

WA(t) =

∫ t

0

e−A(t−s)
√

Q dW (s), ∀ t ≥ 0,

is a well defined mean square continuous process in V = D(A1/2) and (see Da
Prato, 2004),

E sup
t∈[0,T ]

‖WA(t)‖2 < +∞. (3)

Assumption (iii) is, of course, quite restrictive but it is essential for our approach
since it implies continuity of WA : [0, +∞) → D(A1/2).

The existence and uniqueness of a strong solution X to equation (1) was an
open problem except for the finite-dimensional case (Barbu and Da Prato, 2008;
Cépa, 1994, 1998) and few special cases, for instance H = L2(0, 1), A = −∆,
K = {x ∈ H : x ≥ −σ a.e. on (0, 1)} where σ ≥ 0 (see Haussmann and
Pardoux, 1989; Nualart and Pardoux, 1992; Zambotti, 2001; as well as Barbu
and Rascanu, 1997, Rascanu, 1996, and Zhang, 1997).

In this paper we prove the existence and uniqueness of a solution of 1 under
Hypothesis 1.

Then we consider the transition semigroup Pt : Cb(H) → Cb(H)

Ptϕ(x) = E[ϕ(X(t, x))], x ∈ K, (4)

where X = X(t, x) is the solution of (1) and Cb(H) denotes the space of all
mappings from H into R which are uniformly continuous and bounded. We
prove existence and, in some cases, uniqueness of an invariant measure ν of Pt.

Finally we consider the infinitesimal generator N of Pt in L2(H, ν), i.e.

D(N) =

{

ϕ ∈ L2(H, ν) : ∃ lim
t→0

1

t
(Ptϕ − ϕ) in L2(H, ν)

}

,

and

Nϕ = lim
t→0

1

t
(Ptϕ − ϕ) in L2(H, ν), ∀ ϕ ∈ D(N).

It is an interesting problem to see the relationship between the abstract operator
N and the differential operator

N0ϕ =
1

2
Tr [QD2ϕ] − (x, ADϕ) − (F (x), Dϕ), ∀ ϕ ∈ D(N0), (5)

with the domain

D(N0)={ϕ ∈ D(N)∩C2
b (H) : ADϕ ∈ C1

b (H), (Dϕ(x), NK(x))=0, ∀ x ∈ ∂K},

where NK(x) is the normal cone of K at x.
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In Section 4 we prove that N0 is a section of N(Theorem 2). It would be
interesting to show that D(N0) is a core for N . This is indeed the case if H is
finite-dimensional (see Barbu and Da Prato, 2008). The problem is open when
H is infinite-dimensional as in the present case.

Notations

We shall denote by C([0, T ]; H) the space of all continuous functions from
[0, T ] to H and by BV ([0, T ]; H) the space of all functions with bounded varia-
tion from [0, T ] to H .

We set V = D(A1/2) with norm ‖ · ‖ and denote by V ′ the dual of V in
the pairing induced by the scalar product (·, ·) of H. We have V ⊂ H ⊂ V ′

algebraically and topologically.
By CW ([0, T ]; H), L2

W ([0, T ]; V ), L2
W ([0, T ]; V ′) we shall denote standard

spaces of adapted processes on [0, T ] (see Da Prato, 2004, 2006; Da Prato and
Zabczyk, 1996). ΠK is the projection on K.

By Dϕ and D2ϕ we shall denote the Gâteaux derivatives of a function ϕ :
H → R of first and second order.

2. Existence and uniqueness for equation (1)

We shall assume here that Hypothesis 1 holds.

Definition 1 The adapted process X ∈ CW ([0, T ]; H)∩L2
W (0, T ; V ) is said to

be a strong solution to (1) if there are functions Y ∈ CW ([0, T ]; H)∩L2
W (0, T ; V )

and η ∈ BV ([0, T ]; H) such that,

(i) We have

X(t) = Y (t) + WA(t), a.e. in Ω × [0, T ]× H, P-a.s. . (6)

(ii) X(t) ∈ K for all t ∈ [0, T ].
(iii) We have

Y (t) +

∫ t

0

(AY (s) + F (X(s)))ds + η(t) = x, ∀ t ∈ [0, T ], P-a.e.. (7)

(iv) For all t ∈ [0, T ] and Z ∈ C([0, T ]; K)

∫ t

0

(dη(s), X(s) − Z(s))ds ≥ 0, P-a.e.. (8)

In (8)
∫ t

0 (dη(s), X(s) − Z(s))ds is the Stieltjes integral with respect to η. Note
that by Hypothesis 1 it follows that V is compactly embedded in H .

Theorem 1 Under Hypothesis 1 there is a unique strong solution to equa-

tion (1).
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Proof. Existence. We start with the approximating equation
{

dXǫ + (AXǫ + F (Xǫ) + βǫ(Xǫ))dt =
√

Q dW

Xǫ(0) = x,
(9)

where βǫ is the Yosida approximation of ∂IK ,

βǫ(x) =
1

ǫ
(x − ΠK(x)), ∀ x ∈ H, ǫ > 0.

Equation (9) has a unique strong solution Xǫ ∈ CW ([0, T ]; H) such that Yǫ :=
Xǫ − WA belongs to L2

W (0, T ; H). We can rewrite (9) as






dYǫ

dt
+ AYǫ + F (Xǫ) + βǫ(Xǫ) = 0,

Yǫ(0) = x,
(10)

which is considered for a fixed ω ∈ Ω. Since by Hypotheses 1(vi), 0 ∈ K̊ there
is ρ > 0 such that

(βǫ(x), x − ρθ) ≥ 0, ∀ θ ∈ H, |θ| = 1.

This yields

ρ|βǫ(x)| ≤ (βǫ(x), x), ∀ x ∈ H. (11)

Step 1. There exists C = C(ω) > 0 such that

|Yǫ(t)|2 +

∫ t

0

‖Yǫ(s)‖2ds +

∫ t

0

|βǫ(Xǫ(s))|ds ≤ C. (12)

Indeed, multiplying (10) by Yǫ(s), integrating over (0, t) and taking into
account (11), yields

1

2
|Yǫ(t)|2 +

∫ t

0

‖Yǫ(s)‖2ds + ρ

∫ t

0

|βǫ(Xǫ(s))|ds

≤ 1

2
|x|2 + γ

∫ t

0

|Xǫ(s)|2ds +

∫ t

0

(F (Xǫ(s)) + βǫ(Xǫ(s)), WA(s))ds.

(13)

In order to estimate the last term in (13), we recall (3) and choose a decompo-
sition 0 < t1 < · · · < tN = t of [0, t] such that for t, s ∈ [ti−1, ti] we have

|WA(t) − WA(s)| ≤ ρ

2
.

Then we write
∫ t

0

(βǫ(Xǫ(s)), WA(s))ds =
N
∑

i=1

∫ ti

ti−1

(βǫ(Xǫ(s)), WA(s) − WA(ti))ds

+

N
∑

i=1

(

WA(ti),

∫ ti

ti−1

βǫ(Xǫ(s))ds

)

.
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Consequently,

∫ t

0

(βǫ(Xǫ(s)), WA(s))ds ≤ ρ

2

∫ t

0

|βǫ(Xǫ(s))|ds

+

∣

∣

∣

∣

∣

N
∑

i=1

(

WA(ti),

∫ ti

ti−1

(AYǫ(s) + F (Xǫ(s)))ds + Yǫ(ti) − Yǫ(ti−1)

)
∣

∣

∣

∣

∣

.

Now, using the estimate

(

WA(ti),

∫ ti

ti−1

AYǫ(s)ds

)

≤ C

∫ ti

ti−1

‖Yǫ(s)‖2ds,

which follows from (1.3), we get after some computations the estimate (12).

Step 2. We prove existence of the limits of Yǫ(t) and ηǫ(t) as ǫ → 0.

We first prove that the sequence {Yǫ} is equi-continuous in C([0, T ]; H). Let
h > 0, then

d

dt
(Yǫ(t + h) − Yǫ(t)) + A(Yǫ(t + h) − Yǫ(t))

+F (Xǫ(t + h)) − F (Xǫ(t)) + βǫ(Xǫ(t + h)) − βǫ(Xǫ(t)) = 0.

Taking into account that WA is P-a.s. continuous in H (by (3)), we may assume
that

sup
t∈[0,T ]

|WA(t + h) − WA(t)| ≤ δ(h) → 0 as h → 0.

We deduce by the monotonicity of βǫ and because F is Lipschitz that

|Yǫ(t + h) − Yǫ(t)| ≤ Cδ(h), ∀ t ∈ [0, T ], h > 0, ǫ > 0. (14)

So {Yǫ} is equi-continuous. To apply the Ascoli–Arzelà Theorem we have to
prove that for each t ∈ [0, T ] the set {Yǫ(t)}ǫ>0 is pre-compact in H . To prove
this, choose for any ǫ > 0 a sequence {f ǫ

n} ⊂ L2(0, T ; V ) such that

|f ǫ
n − βǫ(Yǫ + WA)|L1(0,T ;H) ≤

1

n
, n ∈ N.

On the other hand, for each n ∈ N the set

Mn :=

{
∫ t

0

e−A(t−s)f ǫ
nds + e−Atx : ǫ > 0

}
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is compact in H because {f ǫ
n} is bounded in L2(0, T ; H) for each n ∈ N. This

implies that for any δ > 0 there are N(n) ∈ N and {un
i }i=1,...,N(n) ⊂ H such

that

N(n)
⋃

i=1

B(un
i , δ) ⊃ Mn.

(B(un
i , δ) is the ball with center un

i and radius δ.) Therefore

{

Yǫ(t) :=

∫ t

0

e−A(t−s)f ǫ
nds + e−Atx : ǫ > 0

}

⊂
N(n)
⋃

i=1

B(un
i , δ + n−1).

Since n is arbitrary we infer that for each δ > 0, the set {Yǫ(t)}ǫ>0 can be
covered by a finite number of balls of radius δ and therefore it is precompact
in H as claimed. Then by (14) and the Ascoli–Arzelà Theorem we infer that
on a subsequence, Yǫ → Y strongly in C([0, T ]; H) and weakly in L2(0, T ; V ).
Moreover, thanks to Helly’s Theorem we have that there is η ∈ BV ([0, T ]; H)
such that for ǫ → 0

∫ t

0

βǫ(Xǫ(s))ds → η(t) weakly in H, ∀ t ∈ [0, T ], (15)

which implies that

∫ t

0

(βǫ(Xǫ(s)), Z(s))ds →
∫ t

0

(dη(s), Z(s)), ∀ Z ∈ C([0, T ]; K). (16)

Letting ǫ → 0 into the identity

Yǫ(t) +

∫ t

0

(AYǫ(s + F (Yǫ(s)))ds +

∫ t

0

βǫ(Yǫ(s) + WA(s)))ds = x,

we see that (Y, η) satisfy (7). Finally, by (16) and the monotonicity of βǫ we
have (recall that βǫ(Z(s)) = 0),

(βǫ(Yǫ(s) + WA(s)), Yǫ(s) + WA(s) − Z(s)) ≥ 0, ∀ Z ∈ C([0, T ; K),

we see that (8) holds for X = Y + WA, i.e.,

∫ t

0

(dη(s), Y (s) + WA(s) − Z(s)) ≥ 0, ∀ Z ∈ C([0, T ]; K). (17)

On the other hand, by Itô’s formula in (9) we get

E|Xǫ(t)|2 +

∫ t

0

E‖Xǫ(s)‖2ds ≤ C, ∀ ǫ > 0,
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which clearly implies that X ∈ CW ([0, T ]; H)∩L2
W (0, T, V ). This completes the

proof of existence.

Uniqueness. Assume that (Y1, η1), (Y2, η2) are two strong solutions of (1).
Then by condition (iv) in Definition 1 we have

∫ t

0

(d(η1(s) − η2(s)), Y1(s) − Y2(s))ds ≥ 0 ∀ t ∈ [0, T ].

This yields

∫ t

0

d(Y1(s) − Y2(s),

∫ s

0

(A(Y1(τ) − Y2(τ)) + F (X1(τ) − F (X2(τ))dτ, Y1(s) − Y2(s)) ≤ 0

and by integration we obtain that (see Lemma 1 below)

1

2
|Y1(t) − Y2(t)|2 +

∫ t

0

(A(Y1 − Y2) + F (X1) − F (X2), Y1 − Y2)ds ≤ 0,

∀ t ∈ [0, T ], which implies via Gronwall’s lemma that Y1 = Y2.
In particular, the latter implies that the sequence {ǫ} founded before is

independent of ω and so there is indeed a unique pair satisfying Definition 1.

Lemma 1 Let y ∈ C([0, T ]; H) ∩ L2(0, T ; V ) be such that

y(t) +

∫ t

0

Ay(s)ds ∈ BV ([0, T ]; H).

Then

∫ t

0

(d(y(s) +

∫ s

0

A(y(τ)dτ), y(s))

=
1

2
|y(t)|2 − 1

2
|x|2 +

∫ t

0

(Ay(s), y(s))ds, ∀ t ∈ [0, T ]. (18)

Proof. Of course (18) is true if y ∈ C([0, T ]; V ) which is not, however, the case
here. Approximating y by a sequence {yn} ∈ C([0, T ]; V ) which is strongly
convergent in C([0, T ]; H) and such that the functions

t → yn(t) +

∫ t

0

Ayn(s)ds,

have uniform bounded variation from [0, T ] to H , we may get (18) by passing
to limit in the corresponding equality for yn.

Remark 1 It is not clear whether Theorem 1 remains valid in absence of Hy-
pothesis 1(iii) or for if Q = I. (This happens, however, for the obstacle problem,
see Nualart and Pardoux, 1992; Zambotti, 2001).
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3. Invariant measures

Let X = X(t, x) be the solution of (1) obtained above. We denote by Pt :
Cb(H) → Cb(H) the corresponding transition semigroup,

Ptϕ(x) = E[ϕ(X(t, x))], x ∈ K. (19)

Proposition 1 Assume that Hypothesis 1 holds. Then there is at least one

invariant measure ν for Pt with support included in K ∩ V . If in addition there

exists γ1 > 0 such that

(A(u − v) + F (u) − F (v), u − v) ≥ γ1|u − v|2, ∀ u, v ∈ D(A), (20)

the invariant measure ν is unique.

Proof. We come back to the approximating equation (9) and denote by P ǫ
t the

corresponding transition semigroup, i.e.,

P ǫ
t ϕ(x) = E[ϕ(Xǫ(t, x))], x ∈ H, (21)

and by Nǫ the corresponding Kolmogorov operator,

(Nǫϕ)(x) =
1

2
Tr [QD2ϕ] − (Ax + F (x) + βǫ(x), Dϕ(x)).

It is known that under our conditions there is at least one invariant measure νǫ

for P ǫ
t . We claim that {νǫ}ǫ>0 is tight. Indeed, by the invariance of νǫ it follows

that
∫

H
(Nǫϕ)(x)νǫ(dx) = 0, so that

∫

H

(‖x‖2 + (Fǫ(x) + βǫ(x), x) νǫ(dx) ≤ Tr Q. (22)

Since V is compactly embedded in H , we infer that {νǫ}ǫ>0 is tight. Let ν be
a weak limit point of {νǫ}ǫ>0; then one can easily check that ν is an invariant
measure for Pt and

∫

H

(‖x‖2 + (F (x), x)) ν(dx) ≤ Tr Q, (23)

which implies supp ν ⊂ V.
On the other hand, we have

(βǫ(x), x) = (βǫ(x), x − ΠK(x)) + (βǫ(x), ΠK(x))

≥ (βǫ(x), x − ΠK(x)) =
1

ǫ
|x − ΠK(x)|2

and, taking into account (22), this implies
∫

Kc

|x − ΠK(x)|2ν(dx) = 0

and therefore supp ν⊂K as claimed. Finally, if (20) holds the invariant measure
is unique by a standard argument (see Da Prato and Zabczyk, 1996).
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4. The infinitesimal generator

This section is devoted to study the relationship between the infinitesimal ge-
nerator N of Pt and the differential operator N0 defined by (5).

To this end we shall also assume that K has a special form precised in
Hypothesis 2 below

Hypothesis 2 There exists T ∈ L(H) self-adjoint, positive and r > 0 such that

K = {x ∈ H : (Tx, x) ≤ r2, ∀ x ∈ H}.

Then the boundary of K is given by

∂K = {x ∈ H : (Tx, x) = r2, ∀ x ∈ H},

while NK(x) = {λTx}λ>0 is the normal cone to K.

Theorem 2 Assume that Hypotheses 1 and 2 are fulfilled. Let ϕ ∈ C2
b (H) ∩

D(N) be such that Aϕ ∈ C1
b (H) and

(Dϕ(x), Tx) = 0, on ∂K.

Then ϕ ∈ D(N) and

Nϕ =
1

2
Tr [QD2ϕ] − (x, ADϕ) − (F (x), Dϕ). (24)

Proof. Let ϕ ∈ C2
b (H) ∩ D(N). By (9), applying Itô’s formula, we have

ϕ(Xǫ(t)) − ϕ(x) +

∫ t

0

(AXǫ(s) + F (Xǫ(s)), Dϕ(Xǫ(s)))ds

+

∫ t

0

(βǫ(Xǫ(s)), Dϕ(Xǫ(s)))ds =
1

2

∫ t

0

Tr [QD2ϕ(Xǫ(s))]ds

+

∫ t

0

(Dϕ(Xǫ(s)),
√

Q dW (s))ds.

(25)

Invoking (15) and (16) we have for ǫ → 0

ϕ(Xǫ(t)) → ϕ(X(t)), uniformly in t, P-a.s., (26)

(AXǫ(t) + F (Xǫ(t)), Dϕ(Xǫ(t))
→ (X(t), ADϕ(X(t))) + (F (X(t)), Dϕ(X(t))), P-a.s..

(27)

Tr [QD2ϕ(Xǫ(t))] → Tr [QD2ϕ(X(t))], P-a.s.. (28)
∫ t

0

(βǫ(s), Dϕ(Xǫ(s)) →
∫ t

0

(dη(s), Dϕ(X(s)), P-a.s.. (29)
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Then, letting ǫ → 0 in (25) we obtain by (27)–(29),

ϕ(X(t)) − ϕ(x) +

∫ t

0

(AX(s) + F (X(s)), Dϕ(X(s)))ds

+

∫ t

0

(dη(s), Dϕ(X(s)))ds =
1

2

∫ t

0

Tr [QD2ϕ(X(s))]ds

+

∫ t

0

(Dϕ(X(s)),
√

Q dW (s))ds, P-a.s..

(30)

We claim that
∫ t

0

(dη(s), Dϕ(X(s)))ds = 0, ∀ t ∈ [0, T ], P-a.s.. (31)

Let I = {s ∈ (0, t) : X(s) ∈ K̊} and Ic = (0, t) \ I = {s ∈ (0, t) : X(s) ∈ ∂K}.
Then by (8) we see that

∫ t

0

(dη(s), X(s) − ΠK(X(s) ± λDϕ(X(s)))ds ≥ 0, ∀ λ > 0, (32)

which implies, for λ sufficiently small,

∓
∫

I

(dη(s), Dϕ(X(s)))+
1

λ

∫

Ic

(dη(s), X(s)−ΠK(X(s)±λDϕ(X(s))) ≥ 0. (33)

Now we want let λ → 0 in the second term. For this we note that

ΠK(x) =
rx

|T 1/2x| , ∀ x ∈ H \ K

and

DΠK(x) =
r

|T 1/2x| − r
x ⊗ Tx

|T 1/2x|3 , ∀ x ∈ H \ K.

So, if s ∈ Ic we have

lim
λ→0

1

λ
(X(s) − ΠK(X(s) ± λDϕ(X(s))) = ∓DΠK(x) · Dϕ(X(s))

= ∓Dϕ(X(s)) ± r−2(TX(s), Dϕ(X(s))T 1/2X(s) = ∓Dϕ(X(s)),

because X(s) ∈ ∂K and (Dϕ(X(s)), Tx) = 0 on ∂K.
Now, letting λ → 0 in (33) yields

∫ t

0

(dη(s), Dϕ(X(s)))ds = 0,

and (25) follows.
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Finally, (30) becomes

ϕ(X(t)) − ϕ(x) +

∫ t

0

(AX(s) + F (X(s)), Dϕ(X(s)))ds

=
1

2

∫ t

0

Tr [QD2ϕ(X(s))]ds +

∫ t

0

(Dϕ(X(s)),
√

Q dW (s))ds, P-a.s.

and since ADϕ(X(s)) ∈ C([0, T ] H) the latter yields

lim
t→0

1

t
(E[ϕ(X(t, x))] − ϕ(x))

= −(x, ADϕ(x)) − (F (x), Dϕ(x)) +
1

2
Tr [QD2ϕ(x) = N0ϕ(x),

as claimed.

5. An example

Consider equation (1) in H = L2(O)

{

dX − ∆Xdt + f(X)dt + ∂IK(X)dt ∋ √
Q dW (t),

X(0) = x in O, X = 0 on ∂O,
(34)

where O is an open bounded domain of R
d,

K = {x ∈ L2(O) : |x|L2(O) ≤ 1},

f : R → R is a Lipschitz continuous function such that f(r)r ≥ −γ, γ > 0, for
all r ∈ R and Q = −A−l, l > 0, A = −∆, D(A) = H2(O) ∩ H1

0 (O).
Here W is a Wiener process in L2(O),

W (t) =
∞
∑

j=1

βj(t)ej ,

where (ej) is an orthonormal basis of eigenfunctions for A, Aej = λjej and (βj)
is a system of independent Brownian motions in a filtered probability space
(Ω,F , (Ft)t≥0, P).

In order to satisfy Hypothesis 1(iii) we shall assume also that

∞
∑

j=1

λ1−l
j < ∞.

For d = 1 the latter holds if l > 1/2.
Then Theorem 1 applies and (34) has a unique solution X(t, x) in the

sense of Definition 1. So, we can consider the transition semigroup Ptϕ(x) =
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E[ϕ(X(t, x))]. By Theorem 2 if ϕ ∈ D(N0), that is if it is sufficiently regular
and satisfy a Neumann condition on the boundary of K, then the infinitesimal
generator N associated with semigroup Pt has the explicit form

(Nϕ)(x) =
1

2

∞
∑

j=1

λ−l
j (D2ϕ(x)ej , ej)

−
∞
∑

j=1

λj(Dϕ(x), ej) − (f(x), Dϕ(x)), (35)

(Here (·, ·) is the scalar product in H = L2(O).)
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