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1. Introduction

Let H be a separable Hilbert space (with scalar product (-, -) and norm denoted
by [-]). We are given a closed convex subset K of H with non empty interior
K. We denote by Ik the indicator function of K,

0 ifzeK.
IK(I) =
+oo ifz ¢ K.

and by 0l the sub-differential of I (see, e.g., Barbu, 1993),

Olg(x)={z€ H: (z,z—y) >0, Vye K}, z€H.

We have
= {0} ifzek,
OIx(x){ = Nk(z) ifze€dK,
=g ifzé¢K,
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where N (x) is the normal cone of K at x. We are concerned here with the
stochastic variational inequality

{dX(t) + (AX(t) + F(X () + 0Ix (X (1)) dt > /Q dW (t) O

X(0)=z€K.

Formally, equation (1) can be represented as

dX (1) + (AX(t) + F(X(£))dt = VQ dW (t)in {t€[0,T]: X(t) € K},
dX (t) + (AX(t) + F(X (1)) + ¢(t)dt = /Q dW (t)
in {t€][0,T]: X(¢t) € 0K},
X(0)=z € K,
(2)

where ((t) € Ng(X(t)) for all t € [0,T]. For a precise definition of solution see
Definition 1 below.

HypoTHESIS 1 (i) A: D(A) C H — H s a linear self-adjoint operator on
H such that A=' is compact and (Ax,x) > 6|z|?, V o € D(A) for some
0>0.

(ii) @ : H — H 1s a linear, bounded, positive and self-adjoint operator on H
such that Qet* = e*AQ for all t > 0.

(iii) Q(H) C D(A) and Tr [AQ)] < .
(iv) F: H — H is a Lipschitzian mapping such that for some v > 0 we have
(F(fﬂ)afﬂ)Z*% VaeH.

(v) W is a cylindrical Wiener process on H of the form
(o]
W(t) = Zukﬂk(t)ek, t>0,
k=1

where {Bi} is a sequence of mutually independent real Brownian motions
on a filtered probability spaces (Q, F,{Fi}i>0,P) (see Da Prato, 2004)
and {er} is an orthonormal basis in H, which will be taken as a system
of eigen-functions for A for simplicity, i.e.

Aer = ager, VEkeN,
(vi) 0 € K.

In most specific examples H = L?(0), A is an elliptic operator on O with appro-
priate boundary conditions, F' is a Nemitski operator on L?(O) (see Section 5
below).
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Under Hypothesis 1 the stochastic convolution W (t),

t
WA(t):/ e A= /Q dW (s), Yt >0,
0

is a well defined mean square continuous process in V = D(AY/?) and (see Da
Prato, 2004),

E sup ||[Wa(t)|* < +oo. (3)
t€[0,T]

Assumption (iii) is, of course, quite restrictive but it is essential for our approach
since it implies continuity of W : [0, +00) — D(AY?).

The existence and uniqueness of a strong solution X to equation (1) was an
open problem except for the finite-dimensional case (Barbu and Da Prato, 2008;
Cépa, 1994, 1998) and few special cases, for instance H = L%(0,1), A = —A,
K={rxe H: x> —0c ae on (0,1)} where 0 > 0 (see Haussmann and
Pardoux, 1989; Nualart and Pardoux, 1992; Zambotti, 2001; as well as Barbu
and Rascanu, 1997, Rascanu, 1996, and Zhang, 1997).

In this paper we prove the existence and uniqueness of a solution of 1 under
Hypothesis 1.

Then we consider the transition semigroup P; : Cy(H) — Cy(H)

Pth(I) = E[@(X(ta I))]v r € K, (4)

where X = X (¢, ) is the solution of (1) and Cy(H) denotes the space of all

mappings from H into R which are uniformly continuous and bounded. We

prove existence and, in some cases, uniqueness of an invariant measure v of P;.
Finally we consider the infinitesimal generator N of P, in L?(H,v), i.e.

D(N) = {gp € L*(H,v): 3 }in%% (Pip — ) in L*(H, u)},
and

1
N =lim = (Pip — ) in L*(H,v), V€ D(N).

It is an interesting problem to see the relationship between the abstract operator
N and the differential operator

Now = % Tr [QD%¢] — (x, ADg) — (F(x), Dg), V¢ € D(Ny), (5)
with the domain
D(No)={p € D(N)NCZ(H) : ADy € CL(H), (Dy(x), Nk (x))=0, ¥z € dK},

where Nk (z) is the normal cone of K at x.
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In Section 4 we prove that Ny is a section of N(Theorem 2). It would be
interesting to show that D(Np) is a core for N. This is indeed the case if H is
finite-dimensional (see Barbu and Da Prato, 2008). The problem is open when
H is infinite-dimensional as in the present case.

Notations

We shall denote by C([0,T]; H) the space of all continuous functions from
[0,7] to H and by BV ([0, T]; H) the space of all functions with bounded varia-
tion from [0,7] to H.

We set V = D(AY?) with norm || - || and denote by V' the dual of V in
the pairing induced by the scalar product (-,-) of H. We have V.C H C V'
algebraically and topologically.

By Cw([0,T]; H), L?,([0,T};V), L%,([0,T];V’) we shall denote standard
spaces of adapted processes on [0,7] (see Da Prato, 2004, 2006; Da Prato and
Zabczyk, 1996). Ik is the projection on K.

By Dy and D?¢ we shall denote the Gateaux derivatives of a function ¢ :
H — R of first and second order.

2. Existence and uniqueness for equation (1)

We shall assume here that Hypothesis 1 holds.

DEFINITION 1 The adapted process X € Cw ([0,T]; H) N L2, (0,T;V) is said to
be a strong solution to (1) if there are functions Y € Cyw ([0, T); H)NL%,(0,T;V)
and n € BV ([0,T]; H) such that,

(i) We have

X(@t)=Y(t)+Wa(t), ae. in Qx[0,T]x H, P-as.. (6)
(ii) X(t) € K for allt € [0,T).
(iii) We have

Y(t) + /t(AY(s) +F(X(s))ds+n(t) =z, VYtel0,T], P-ae. (7)

(iv) For allt €10,T] and Z € C([0,T]; K)
/0 (dn(s), X(s) — Z(s))ds > 0, P-a.c.. (8)

In (8) fg(dn(s), X (s) — Z(s))ds is the Stieltjes integral with respect to 7. Note
that by Hypothesis 1 it follows that V' is compactly embedded in H.

THEOREM 1 Under Hypothesis 1 there is a unique strong solution to equa-
tion (1).
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Proof. Ezxistence. We start with the approximating equation

X.(0) ==z,

where (3, is the Yosida approximation of I,
1
Be(x) = - (x —Ig(x)), VaxeH e>0.

Equation (9) has a unique strong solution X. € Cw ([0,T]; H) such that Y. :=
X, — Wy belongs to L}, (0,T; H). We can rewrite (9) as

dY,

Xe (Xe) =0,
Ye(O) =,

which is considered for a fixed w € 2. Since by Hypotheses 1(vi), 0 € K there
is p > 0 such that

(Be(z),z —p0) >0, VOe€H, |0]=1.
This yields
plBe(x)] < (Be(x),x), Vae H. (11)
Step 1. There exists C' = C(w) > 0 such that

0P+ [ v+ [ 1. < o (12)

Indeed, multiplying (10) by Y:(s), integrating over (0,¢) and taking into
account (11), yields

W + /HY )| ds+p/ 1B.(X(s))ds

|ac|2 +7/ IX.(s)] ds+/ (F(X(5)) + B(X(5)), Wa(s))ds.

In order to estimate the last term in (13), we recall (3) and choose a decompo-
sition 0 < t; < --- <ty =t of [0,¢] such that for ¢, s € [t;—1,t;] we have

l\D|H

(13)

| /\

[Wa(t) = Wa(s)| <

NI

Then we write

ti

/0 (Be(Xe(5)), Wa(s)ds = Z (Be(Xe(5)), Wals) — Wa(t:))ds

ti—1

+Z <WA l ﬂe(Xe(S))ds> .

[
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Consequently,

t p t
| oxion waas < § [ 5.0 )as

+

N ti
3 (Wm, | AV + FOX))ds + V) - n(tin) ‘ .

i=1 ti-a
Now, using the estimate
ts ti
Watt), [ avis)ds| <c [ v,
ti—1 ti—1

which follows from (1.3), we get after some computations the estimate (12).
Step 2. We prove existence of the limits of Y, (¢) and 7n¢(t) as e — 0.

We first prove that the sequence {Y.} is equi-continuous in C([0,T]; H). Let
h > 0, then

SVt B) = Yal0) + Aot 4 b) — (1)

+F(X6(t + h)) - F(XE(t)) + ﬂe(Xe(t + h)) - ﬂe(Xe(t)) =0.

Taking into account that Wy is P-a.s. continuous in H (by (3)), we may assume
that

sup |Wa(t+h) —Wa(t)| <d(h) —0 ash — 0.
t€[0,T)

We deduce by the monotonicity of 3. and because F' is Lipschitz that
|Yo(t+h) = Y.(t)| < C8(h), Yte[0,T], h>0,e>0. (14)

So {Y.} is equi-continuous. To apply the Ascoli-Arzelda Theorem we have to
prove that for each ¢ € [0, T] the set {Y:(t)}es0 is pre-compact in H. To prove
this, choose for any € > 0 a sequence {f¢} C L?(0,T;V) such that

1
|fr = Be(Ye + Wa)|p10,m;m) < - ME N.

On the other hand, for each n € N the set

t
M, = {/ e_A(t_s)fdes +e My e> 0}
0
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is compact in H because {f<¢} is bounded in L?(0,T; H) for each n € N. This
implies that for any § > 0 there are N(n) € N and {u}'};—1,.. nm) C H such
that

N(n)
U B, 6) > M,.

i=1

(B(ul, ) is the ball with center u}' and radius 6.) Therefore

t N(n)
{Ye(t) — / e_A(t_s)ffldS Le Ay > 0} C U B(ul',d + n—l).
0 i=1

Since n is arbitrary we infer that for each 6 > 0, the set {Yc(f)}es0 can be
covered by a finite number of balls of radius § and therefore it is precompact
in H as claimed. Then by (14) and the Ascoli-Arzela Theorem we infer that
on a subsequence, Y, — Y strongly in C([0,T]; H) and weakly in L?(0,T;V).
Moreover, thanks to Helly’s Theorem we have that there is n € BV ([0,T]; H)
such that for e — 0
t
/ B.(X.(s))ds — n(t) weakly in H, ¥t € [0,T], (15)
0

which implies that
/0 (Be(Xc(5)), Z(s))ds — / (dn(s), 2(s)), ¥ ZeC(0,TLK).  (16)
Letting € — 0 into the identity
Vi(t)+ [ (AVils + PO+ [ BulYils) + Wa(s))ds =,
0 0

we see that (Y,n) satisfy (7). Finally, by (16) and the monotonicity of 3. we
have (recall that 8.(Z(s)) = 0),

(66(}/6(8) + WA(S))aY;(S) + WA(S) - Z(S)) > Oa VZe C([OaTaK)a

we see that (8) holds for X =Y + Wy, i.e.,
t
[ ). Y(s) 4 Wats) = 2(s) 2 0. ¥ Z e CO.T]K), a7)
0
On the other hand, by Itd’s formula in (9) we get

t
BX (0 + [ B ()Pds < v e,
0
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which clearly implies that X € Cw ([0,7]; H)NL%,(0,T, V). This completes the
proof of existence.

Uniqueness. Assume that (Y1,71), (Y2,72) are two strong solutions of (1).
Then by condition (iv) in Definition 1 we have

/0 (A0 (3) — m(s)). Yi(s) — Ya(s))ds >0Vt € [0,T).

This yields

[ i) - it

[ i)~ ¥t + FO0) ~ FXaln)in i) - Yalo) <0
and by integration we obtain that (see Lemma 1 below)
3 MO -va(oF + [ (A~ ¥a) 4 F(X)) — F(X2), Y — Ya)ds <0,
YVt € [0,T], which implies via Gronwall’s lemma that Y7 = Y5.

In particular, the latter implies that the sequence {e} founded before is
independent of w and so there is indeed a unique pair satisfying Definition 1. m

LEMMA 1 Lety € C([0,T); H)NL?(0,T;V) be such that
t
y(t) —|—/ Ay(s)ds € BV ([0,T); H).
0

Then
[ s+ " AW()dr), y(s)
0 0

=5 WOP =317 + [ (u(s)u(e)ds vie DT (18)

Proof. Of course (18) is true if y € C([0,T]; V) which is not, however, the case
here. Approximating y by a sequence {y,} € C([0,T]; V) which is strongly
convergent in C([0,T]; H) and such that the functions

t
t— yn(t) + / Ay, (s)ds,
0

have uniform bounded variation from [0,7] to H, we may get (18) by passing
to limit in the corresponding equality for . [

REMARK 1 It is not clear whether Theorem 1 remains valid in absence of Hy-
pothesis 1(iii) or for if @ = I. (This happens, however, for the obstacle problem,
see Nualart and Pardoux, 1992; Zambotti, 2001).
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3. Invariant measures

Let X = X(¢,x) be the solution of (1) obtained above. We denote by P; :
Cy(H) — Cy(H) the corresponding transition semigroup,

Pip(x) = E[p(X(t,z))], =€ K. (19)

PROPOSITION 1 Assume that Hypothesis 1 holds. Then there is at least one
inwvariant measure v for Py with support included in K NV If in addition there
exists y1 > 0 such that

(A(u —v) + F(u) — F(v),u —v) > y1lu—v*, Yu,ve D(A), (20)
the invariant measure v is unique.

Proof. We come back to the approximating equation (9) and denote by Pf the
corresponding transition semigroup, i.e.,

Pio(x) = Elp(Xc(t, x))], «eH, (21)
and by N, the corresponding Kolmogorov operator,
1
(Neg)(w) = 5 Tr [QD*g] — (Aw + F(x) + Be(w), Dip(x)).

It is known that under our conditions there is at least one invariant measure v,
for Pf. We claim that {v,}e>0 is tight. Indeed, by the invariance of v, it follows
that [,,(New)(x)ve(dz) = 0, so that

/H (2]l + (Ful) + Be(2), 2) ve(der) < Tr Q. (22)

Since V is compactly embedded in H, we infer that {v.}.>o is tight. Let v be
a weak limit point of {v}es0; then one can easily check that v is an invariant
measure for P; and

/H(Hx||2 + (F(z), 2)) v(dr) < Tr Q, (23)

which implies supp v C V.
On the other hand, we have

(Be(w), 2) = (Be(w), & — Tk () + (Be(2), Mk (x))
> (Ble), 2~ Mg (@) = = |o — T (2)]

and, taking into account (22), this implies
/ ) |x — HK(:c)|21/(d:c) =0

and therefore supp v C K as claimed. Finally, if (20) holds the invariant measure
is unique by a standard argument (see Da Prato and Zabczyk, 1996). [
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4. The infinitesimal generator

This section is devoted to study the relationship between the infinitesimal ge-
nerator N of P, and the differential operator Ny defined by (5).

To this end we shall also assume that K has a special form precised in
Hypothesis 2 below

HYPOTHESIS 2 There exists T € L(H) self-adjoint, positive and r > 0 such that
K={reH: (Tz,z)<r* VazecH}

Then the boundary of K is given by
OK ={x € H: (Ta,2) =7 VacH}

while Ng(z) = {A\Tz}x>0 is the normal cone to K.

THEOREM 2 Assume that Hypotheses 1 and 2 are fulfilled. Let ¢ € CZ(H) N
D(N) be such that Ap € C}(H) and

(Dy(x), Tx) =0, ondK.

Then ¢ € D(N) and
N =2 Tt [QD%] ~ (, ADg) — (F(x), Dp). (24)
Proof. Let ¢ € C’g (H)N D(N). By (9), applying Itd’s formula, we have
P(X(1)) — pla) + / (AX.(s) + F(X(5)), Dp(X.(5)))ds
t 1 t )
+ [ DX s =5 [ TQDMX (Dl (5)
+ / (D(X.(5)). /@ dW(s))ds.

Invoking (15) and (16) we have for e — 0

o(Xc(t)) — ¢(X(t)), uniformly in ¢, P-a.s., (26)
(AX, (1) + F(X.(1)). Dpl(Xe (1) o)
— (X(t), ADg(X (1)) + (F(X (1)), Dp(X (1)), P-as..

Tr [QD*¢p(X(t)] — Tr [QD*p(X ()], P-as.. (28)

/0 (Bu(s), Dp(X.(s)) — / (dn(s), Do(X(s)), P-as. (20)
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Then, letting ¢ — 0 in (25) we obtain by (27)—(29),
P(X (1) = p(x) +/0 (AX(s) + F(X(s)), Do(X(s)))ds
¢ 1t ,
+ [tants). Do ())as = 5 [ e QDo (s))as

+/O (Dp(X (s)), \/Q dW (s))ds, P-a.s..
We claim that

/o (dn(s), Dp(X(s)))ds =0, Vitel0,T], P-as.

(30)

(31)

Let I = {s e (0,t): X(s) € K} and I¢ = (0,t) \ I = {s € (0,t) : X(s) € OK}.

Then by (8) we see that
/ (dn(s), X(5) — T (X(s) £ AD@(X (5))ds > 0, ¥ A >0,

which implies, for A sufficiently small,

(32)

% [[ns). DeX ()45 [ (@n(s), X(6) - (X £ADR(X (5)) 2 0. (33)
I

c

Now we want let A — 0 in the second term. For this we note that

rT
HK(z):m, Vee H\K
and
r r® Tz
DIl (x) = |T1/2:c| 7T|T1/2£L'|37 Vee H\K.

So, if s € I¢ we have

lim $ (X(5) ~ T (X(5) £ AD@(X(5)) = FDITc (x) - Dp(X(5))
= FD(X(s)) £172(TX(s), Dp(X ())T"/*X (s) = FDp(X (s)),
because X (s) € 0K and (Dp(X(s)),Tx) =0 on K.
Now, letting A — 0 in (33) yields

/0 (dn(s), Dp(X (s)))ds = 0,

and (25) follows.
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Finally, (30) becomes

@(X(t))*w(x)JrA (AX(s) + F(X(s)), Dp(X (s)))ds

:% / Tr [QD2<p(X(s))]ds+/ (Dp(X (), /Q dW (s))ds, P-a.s.

0 0

and since ADp(X (s)) € C([0,T] H) the latter yields

= —(&, ADg(x)) — (F(2), D(a)) + 5 Tt [QD%0(2) = Now(®),

as claimed. -

5. An example

Consider equation (1) in H = L*(0)

dX — AXdt + f(X)dt + 0l (X)dt 5 /Q dW (t),
X0)=2 in O, X=0 on 00,

where O is an open bounded domain of R?,
K ={zecL*0): |z|p20) <1},

f : R — R is a Lipschitz continuous function such that f(r)r > —v, v > 0, for
allr €Rand Q= —A~!, 1 >0, A=—A, D(A) = H2(O) N HY(O).
Here W is a Wiener process in L?(0O),

Wt = 80,

where (e;) is an orthonormal basis of eigenfunctions for A, Ae; = Aje; and (5;)
is a system of independent Brownian motions in a filtered probability space
(97]:) (ft)tZOJP))-

In order to satisfy Hypothesis 1(iii) we shall assume also that

oo

Z )\}_l < 00.

Jj=1

For d = 1 the latter holds if [ > 1/2.
Then Theorem 1 applies and (34) has a unique solution X (¢,z) in the
sense of Definition 1. So, we can consider the transition semigroup Pyp(x) =
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E[o(X(t,z))]. By Theorem 2 if ¢ € D(Ny), that is if it is sufficiently regular
and satisfy a Neumann condition on the boundary of K, then the infinitesimal
generator N associated with semigroup P; has the explicit form

> A D*p(x)e;, ¢5)

j=1

|~

(Nop)(z) =

oo

= 2 Xi(De(@), e5) = (f(2), De(w)), (35)
(Here (-, ) is the scalar product in H = L?(0).)
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