Control and Cybernetics

vol. 37 (2008) No. 4

Some results for the reflection problems in Hilbert spaces*

by

Viorel Barbu ${ }^{1 \dagger}$ and Giuseppe Da Prato ${ }^{2 \ddagger}$
${ }^{1}$ University Al. I. Cuza and Institute of Mathematics Octav Mayer 700506 Iasi, Romania
${ }^{2}$ Scuola Normale Superiore 56126 Pisa, Italy

Abstract

This work is concerned with existence and uniqueness of a solution of a stochastic variational inequality on closed convex bounded subsets with nonempty interior and smooth boundary of a Hilbert space H (the reflection problem).

Keywords: stochastic variational inequality, Wiener processes in Hilbert spaces, convex sets, strong solutions.

1. Introduction

Let H be a separable Hilbert space (with scalar product (\cdot, \cdot) and norm denoted by $|\cdot|)$. We are given a closed convex subset K of H with non empty interior $\stackrel{\circ}{K}$. We denote by I_{K} the indicator function of K,

$$
I_{K}(x)=\left\{\begin{array}{c}
0 \quad \text { if } x \in K \\
+\infty \quad \text { if } x \notin K .
\end{array}\right.
$$

and by ∂I_{K} the sub-differential of I_{K} (see, e.g., Barbu, 1993),

$$
\partial I_{K}(x)=\{z \in H:(z, x-y) \geq 0, \quad \forall y \in K\}, \quad x \in H .
$$

We have

$$
\partial I_{K}(x)\left\{\begin{array}{l}
=\{0\} \quad \text { if } x \in \stackrel{\circ}{K}, \\
=N_{K}(x) \quad \text { if } x \in \partial K, \\
=\varnothing \quad \text { if } x \notin K
\end{array}\right.
$$

[^0]where $N_{K}(x)$ is the normal cone of K at x. We are concerned here with the stochastic variational inequality
\[

\left\{$$
\begin{array}{l}
d X(t)+\left(A X(t)+F(X(t))+\partial I_{K}(X(t))\right) d t \ni \sqrt{Q} d W(t) \tag{1}\\
X(0)=x \in K
\end{array}
$$\right.
\]

Formally, equation (1) can be represented as

$$
\left\{\begin{array}{l}
d X(t)+\left(A X(t)+F(X(t)) d t=\sqrt{Q} d W(t) \text { in }\left\{t \in[0, T]: X(t) \in \circ_{K}\right\}\right. \tag{2}\\
d X(t)+(A X(t)+F(X(t))+\zeta(t)) d t=\sqrt{Q} d W(t) \\
\quad \text { in }\{t \in[0, T]: X(t) \in \partial K\} \\
X(0)=x \in K,
\end{array}\right.
$$

where $\zeta(t) \in N_{K}(X(t))$ for all $t \in[0, T]$. For a precise definition of solution see Definition 1 below.

Hypothesis 1 (i) $A: D(A) \subset H \rightarrow H$ is a linear self-adjoint operator on H such that A^{-1} is compact and $(A x, x) \geq \delta|x|^{2}, \forall x \in D(A)$ for some $\delta>0$.
(ii) $Q: H \rightarrow H$ is a linear, bounded, positive and self-adjoint operator on H such that $Q e^{t A}=e^{t A} Q$ for all $t \geq 0$.
(iii) $Q(H) \subset D(A)$ and $\operatorname{Tr}[A Q]<\infty$.
(iv) $F: H \rightarrow H$ is a Lipschitzian mapping such that for some $\gamma>0$ we have

$$
(F(x), x) \geq-\gamma, \quad \forall x \in H .
$$

(v) W is a cylindrical Wiener process on H of the form

$$
W(t)=\sum_{k=1}^{\infty} \mu_{k} \beta_{k}(t) e_{k}, \quad t \geq 0
$$

where $\left\{\beta_{k}\right\}$ is a sequence of mutually independent real Brownian motions on a filtered probability spaces $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ (see Da Prato, 2004) and $\left\{e_{k}\right\}$ is an orthonormal basis in H, which will be taken as a system of eigen-functions for A for simplicity, i.e.

$$
A e_{k}=\alpha_{k} e_{k}, \quad \forall k \in \mathbb{N} .
$$

(vi) $0 \in \stackrel{\circ}{K}$.

In most specific examples $H=L^{2}(\mathcal{O}), A$ is an elliptic operator on \mathcal{O} with appropriate boundary conditions, F is a Nemitski operator on $L^{2}(\mathcal{O})$ (see Section 5 below).

Under Hypothesis 1 the stochastic convolution $W_{A}(t)$,

$$
W_{A}(t)=\int_{0}^{t} e^{-A(t-s)} \sqrt{Q} d W(s), \quad \forall t \geq 0
$$

is a well defined mean square continuous process in $V=D\left(A^{1 / 2}\right)$ and (see Da Prato, 2004),

$$
\begin{equation*}
\mathbb{E} \sup _{t \in[0, T]}\left\|W_{A}(t)\right\|^{2}<+\infty \tag{3}
\end{equation*}
$$

Assumption (iii) is, of course, quite restrictive but it is essential for our approach since it implies continuity of $W_{A}:[0,+\infty) \rightarrow D\left(A^{1 / 2}\right)$.

The existence and uniqueness of a strong solution X to equation (1) was an open problem except for the finite-dimensional case (Barbu and Da Prato, 2008; Cépa, 1994, 1998) and few special cases, for instance $H=L^{2}(0,1), A=-\Delta$, $K=\{x \in H: x \geq-\sigma$ a.e. on $(0,1)\}$ where $\sigma \geq 0$ (see Haussmann and Pardoux, 1989; Nualart and Pardoux, 1992; Zambotti, 2001; as well as Barbu and Rascanu, 1997, Rascanu, 1996, and Zhang, 1997).

In this paper we prove the existence and uniqueness of a solution of 1 under Hypothesis 1.

Then we consider the transition semigroup $P_{t}: C_{b}(H) \rightarrow C_{b}(H)$

$$
\begin{equation*}
P_{t} \varphi(x)=\mathbb{E}[\varphi(X(t, x))], \quad x \in K \tag{4}
\end{equation*}
$$

where $X=X(t, x)$ is the solution of (1) and $C_{b}(H)$ denotes the space of all mappings from H into \mathbb{R} which are uniformly continuous and bounded. We prove existence and, in some cases, uniqueness of an invariant measure ν of P_{t}.

Finally we consider the infinitesimal generator N of P_{t} in $L^{2}(H, \nu)$, i.e.

$$
D(N)=\left\{\varphi \in L^{2}(H, \nu): \exists \lim _{t \rightarrow 0} \frac{1}{t}\left(P_{t} \varphi-\varphi\right) \quad \text { in } L^{2}(H, \nu)\right\}
$$

and

$$
N \varphi=\lim _{t \rightarrow 0} \frac{1}{t}\left(P_{t} \varphi-\varphi\right) \text { in } L^{2}(H, \nu), \quad \forall \varphi \in D(N)
$$

It is an interesting problem to see the relationship between the abstract operator N and the differential operator

$$
\begin{equation*}
N_{0} \varphi=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi\right]-(x, A D \varphi)-(F(x), D \varphi), \quad \forall \varphi \in D\left(N_{0}\right) \tag{5}
\end{equation*}
$$

with the domain
$D\left(N_{0}\right)=\left\{\varphi \in D(N) \cap C_{b}^{2}(H): A D \varphi \in C_{b}^{1}(H),\left(D_{\varphi}(x), N_{K}(x)\right)=0, \forall x \in \partial K\right\}$, where $N_{K}(x)$ is the normal cone of K at x.

In Section 4 we prove that N_{0} is a section of N (Theorem 2). It would be interesting to show that $D\left(N_{0}\right)$ is a core for N. This is indeed the case if H is finite-dimensional (see Barbu and Da Prato, 2008). The problem is open when H is infinite-dimensional as in the present case.

Notations

We shall denote by $C([0, T] ; H)$ the space of all continuous functions from $[0, T]$ to H and by $B V([0, T] ; H)$ the space of all functions with bounded variation from $[0, T]$ to H.

We set $V=D\left(A^{1 / 2}\right)$ with norm $\|\cdot\|$ and denote by V^{\prime} the dual of V in the pairing induced by the scalar product (\cdot, \cdot) of H. We have $V \subset H \subset V^{\prime}$ algebraically and topologically.

By $C_{W}([0, T] ; H), L_{W}^{2}([0, T] ; V), L_{W}^{2}\left([0, T] ; V^{\prime}\right)$ we shall denote standard spaces of adapted processes on $[0, T]$ (see Da Prato, 2004, 2006; Da Prato and Zabczyk, 1996). Π_{K} is the projection on K.

By $D \varphi$ and $D^{2} \varphi$ we shall denote the Gâteaux derivatives of a function φ : $H \rightarrow \mathbb{R}$ of first and second order.

2. Existence and uniqueness for equation (1)

We shall assume here that Hypothesis 1 holds.
Definition 1 The adapted process $X \in C_{W}([0, T] ; H) \cap L_{W}^{2}(0, T ; V)$ is said to be a strong solution to (1) if there are functions $Y \in C_{W}([0, T] ; H) \cap L_{W}^{2}(0, T ; V)$ and $\eta \in B V([0, T] ; H)$ such that,
(i) We have

$$
\begin{equation*}
X(t)=Y(t)+W_{A}(t), \quad \text { a.e. in } \Omega \times[0, T] \times H, \quad \mathbb{P} \text {-a.s. . } \tag{6}
\end{equation*}
$$

(ii) $X(t) \in K$ for all $t \in[0, T]$.
(iii) We have

$$
\begin{equation*}
Y(t)+\int_{0}^{t}(A Y(s)+F(X(s))) d s+\eta(t)=x, \quad \forall t \in[0, T], \mathbb{P} \text {-a.e.. } \tag{7}
\end{equation*}
$$

(iv) For all $t \in[0, T]$ and $Z \in C([0, T] ; K)$

$$
\begin{equation*}
\int_{0}^{t}(d \eta(s), X(s)-Z(s)) d s \geq 0, \mathbb{P} \text {-a.e.. } \tag{8}
\end{equation*}
$$

In (8) $\int_{0}^{t}(d \eta(s), X(s)-Z(s)) d s$ is the Stieltjes integral with respect to η. Note that by Hypothesis 1 it follows that V is compactly embedded in H.

Theorem 1 Under Hypothesis 1 there is a unique strong solution to equation (1).

Proof. Existence. We start with the approximating equation

$$
\left\{\begin{array}{l}
d X_{\epsilon}+\left(A X_{\epsilon}+F\left(X_{\epsilon}\right)+\beta_{\epsilon}\left(X_{\epsilon}\right)\right) d t=\sqrt{Q} d W \tag{9}\\
X_{\epsilon}(0)=x
\end{array}\right.
$$

where β_{ϵ} is the Yosida approximation of ∂I_{K},

$$
\beta_{\epsilon}(x)=\frac{1}{\epsilon}\left(x-\Pi_{K}(x)\right), \quad \forall x \in H, \epsilon>0 .
$$

Equation (9) has a unique strong solution $X_{\epsilon} \in C_{W}([0, T] ; H)$ such that $Y_{\epsilon}:=$ $X_{\epsilon}-W_{A}$ belongs to $L_{W}^{2}(0, T ; H)$. We can rewrite (9) as

$$
\left\{\begin{array}{l}
\frac{d Y_{\epsilon}}{d t}+A Y_{\epsilon}+F\left(X_{\epsilon}\right)+\beta_{\epsilon}\left(X_{\epsilon}\right)=0 \tag{10}\\
Y_{\epsilon}(0)=x
\end{array}\right.
$$

which is considered for a fixed $\omega \in \Omega$. Since by Hypotheses 1 (vi), $0 \in \stackrel{\circ}{K}$ there is $\rho>0$ such that

$$
\left(\beta_{\epsilon}(x), x-\rho \theta\right) \geq 0, \quad \forall \theta \in H,|\theta|=1
$$

This yields

$$
\begin{equation*}
\rho\left|\beta_{\epsilon}(x)\right| \leq\left(\beta_{\epsilon}(x), x\right), \quad \forall x \in H \tag{11}
\end{equation*}
$$

Step 1. There exists $C=C(\omega)>0$ such that

$$
\begin{equation*}
\left|Y_{\epsilon}(t)\right|^{2}+\int_{0}^{t}\left\|Y_{\epsilon}(s)\right\|^{2} d s+\int_{0}^{t}\left|\beta_{\epsilon}\left(X_{\epsilon}(s)\right)\right| d s \leq C \tag{12}
\end{equation*}
$$

Indeed, multiplying (10) by $Y_{\epsilon}(s)$, integrating over $(0, t)$ and taking into account (11), yields

$$
\begin{align*}
& \frac{1}{2}\left|Y_{\epsilon}(t)\right|^{2}+\int_{0}^{t}\left\|Y_{\epsilon}(s)\right\|^{2} d s+\rho \int_{0}^{t}\left|\beta_{\epsilon}\left(X_{\epsilon}(s)\right)\right| d s \\
& \leq \frac{1}{2}|x|^{2}+\gamma \int_{0}^{t}\left|X_{\epsilon}(s)\right|^{2} d s+\int_{0}^{t}\left(F\left(X_{\epsilon}(s)\right)+\beta_{\epsilon}\left(X_{\epsilon}(s)\right), W_{A}(s)\right) d s \tag{13}
\end{align*}
$$

In order to estimate the last term in (13), we recall (3) and choose a decomposition $0<t_{1}<\cdots<t_{N}=t$ of $[0, t]$ such that for $t, s \in\left[t_{i-1}, t_{i}\right]$ we have

$$
\left|W_{A}(t)-W_{A}(s)\right| \leq \frac{\rho}{2}
$$

Then we write

$$
\begin{aligned}
\int_{0}^{t}\left(\beta_{\epsilon}\left(X_{\epsilon}(s)\right), W_{A}(s)\right) d s= & \sum_{i=1}^{N} \int_{t_{i-1}}^{t_{i}}\left(\beta_{\epsilon}\left(X_{\epsilon}(s)\right), W_{A}(s)-W_{A}\left(t_{i}\right)\right) d s \\
& +\sum_{i=1}^{N}\left(W_{A}\left(t_{i}\right), \int_{t_{i-1}}^{t_{i}} \beta_{\epsilon}\left(X_{\epsilon}(s)\right) d s\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \int_{0}^{t}\left(\beta_{\epsilon}\left(X_{\epsilon}(s)\right), W_{A}(s)\right) d s \leq \frac{\rho}{2} \int_{0}^{t}\left|\beta_{\epsilon}\left(X_{\epsilon}(s)\right)\right| d s \\
& +\left|\sum_{i=1}^{N}\left(W_{A}\left(t_{i}\right), \int_{t_{i-1}}^{t_{i}}\left(A Y_{\epsilon}(s)+F\left(X_{\epsilon}(s)\right)\right) d s+Y_{\epsilon}\left(t_{i}\right)-Y_{\epsilon}\left(t_{i-1}\right)\right)\right|
\end{aligned}
$$

Now, using the estimate

$$
\left(W_{A}\left(t_{i}\right), \int_{t_{i-1}}^{t_{i}} A Y_{\epsilon}(s) d s\right) \leq C \int_{t_{i-1}}^{t_{i}}\left\|Y_{\epsilon}(s)\right\|^{2} d s
$$

which follows from (1.3), we get after some computations the estimate (12).

Step 2. We prove existence of the limits of $Y_{\epsilon}(t)$ and $\eta_{\epsilon}(t)$ as $\epsilon \rightarrow 0$.
We first prove that the sequence $\left\{Y_{\epsilon}\right\}$ is equi-continuous in $C([0, T] ; H)$. Let $h>0$, then

$$
\begin{aligned}
& \frac{d}{d t}\left(Y_{\epsilon}(t+h)-Y_{\epsilon}(t)\right)+A\left(Y_{\epsilon}(t+h)-Y_{\epsilon}(t)\right) \\
& +F\left(X_{\epsilon}(t+h)\right)-F\left(X_{\epsilon}(t)\right)+\beta_{\epsilon}\left(X_{\epsilon}(t+h)\right)-\beta_{\epsilon}\left(X_{\epsilon}(t)\right)=0 .
\end{aligned}
$$

Taking into account that W_{A} is \mathbb{P}-a.s. continuous in H (by (3)), we may assume that

$$
\sup _{t \in[0, T]}\left|W_{A}(t+h)-W_{A}(t)\right| \leq \delta(h) \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

We deduce by the monotonicity of β_{ϵ} and because F is Lipschitz that

$$
\begin{equation*}
\left|Y_{\epsilon}(t+h)-Y_{\epsilon}(t)\right| \leq C \delta(h), \quad \forall t \in[0, T], h>0, \epsilon>0 \tag{14}
\end{equation*}
$$

So $\left\{Y_{\epsilon}\right\}$ is equi-continuous. To apply the Ascoli-Arzelà Theorem we have to prove that for each $t \in[0, T]$ the set $\left\{Y_{\epsilon}(t)\right\}_{\epsilon>0}$ is pre-compact in H. To prove this, choose for any $\epsilon>0$ a sequence $\left\{f_{n}^{\epsilon}\right\} \subset L^{2}(0, T ; V)$ such that

$$
\left|f_{n}^{\epsilon}-\beta_{\epsilon}\left(Y_{\epsilon}+W_{A}\right)\right|_{L^{1}(0, T ; H)} \leq \frac{1}{n}, \quad n \in \mathbb{N} .
$$

On the other hand, for each $n \in \mathbb{N}$ the set

$$
M_{n}:=\left\{\int_{0}^{t} e^{-A(t-s)} f_{n}^{\epsilon} d s+e^{-A t} x: \epsilon>0\right\}
$$

is compact in H because $\left\{f_{n}^{\epsilon}\right\}$ is bounded in $L^{2}(0, T ; H)$ for each $n \in \mathbb{N}$. This implies that for any $\delta>0$ there are $N(n) \in \mathbb{N}$ and $\left\{u_{i}^{n}\right\}_{i=1, \ldots, N(n)} \subset H$ such that

$$
\bigcup_{i=1}^{N(n)} B\left(u_{i}^{n}, \delta\right) \supset M_{n} .
$$

$\left(B\left(u_{i}^{n}, \delta\right)\right.$ is the ball with center u_{i}^{n} and radius δ.) Therefore

$$
\left\{Y_{\epsilon}(t):=\int_{0}^{t} e^{-A(t-s)} f_{n}^{\epsilon} d s+e^{-A t} x: \epsilon>0\right\} \subset \bigcup_{i=1}^{N(n)} B\left(u_{i}^{n}, \delta+n^{-1}\right)
$$

Since n is arbitrary we infer that for each $\delta>0$, the set $\left\{Y_{\epsilon}(t)\right\}_{\epsilon>0}$ can be covered by a finite number of balls of radius δ and therefore it is precompact in H as claimed. Then by (14) and the Ascoli-Arzelà Theorem we infer that on a subsequence, $Y_{\epsilon} \rightarrow Y$ strongly in $C([0, T] ; H)$ and weakly in $L^{2}(0, T ; V)$. Moreover, thanks to Helly's Theorem we have that there is $\eta \in B V([0, T] ; H)$ such that for $\epsilon \rightarrow 0$

$$
\begin{equation*}
\int_{0}^{t} \beta_{\epsilon}\left(X_{\epsilon}(s)\right) d s \rightarrow \eta(t) \text { weakly in } H, \forall t \in[0, T] \tag{15}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int_{0}^{t}\left(\beta_{\epsilon}\left(X_{\epsilon}(s)\right), Z(s)\right) d s \rightarrow \int_{0}^{t}(d \eta(s), Z(s)), \quad \forall Z \in C([0, T] ; K) \tag{16}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0$ into the identity

$$
Y_{\epsilon}(t)+\int_{0}^{t}\left(A Y_{\epsilon}\left(s+F\left(Y_{\epsilon}(s)\right)\right) d s+\int_{0}^{t} \beta_{\epsilon}\left(Y_{\epsilon}(s)+W_{A}(s)\right)\right) d s=x
$$

we see that (Y, η) satisfy (7). Finally, by (16) and the monotonicity of β_{ϵ} we have (recall that $\left.\beta_{\epsilon}(Z(s))=0\right)$,

$$
\left(\beta_{\epsilon}\left(Y_{\epsilon}(s)+W_{A}(s)\right), Y_{\epsilon}(s)+W_{A}(s)-Z(s)\right) \geq 0, \quad \forall Z \in C([0, T ; K)
$$

we see that (8) holds for $X=Y+W_{A}$, i.e.,

$$
\begin{equation*}
\int_{0}^{t}\left(d \eta(s), Y(s)+W_{A}(s)-Z(s)\right) \geq 0, \quad \forall Z \in C([0, T] ; K) \tag{17}
\end{equation*}
$$

On the other hand, by Itô's formula in (9) we get

$$
\mathbb{E}\left|X_{\epsilon}(t)\right|^{2}+\int_{0}^{t} \mathbb{E}\left\|X_{\epsilon}(s)\right\|^{2} d s \leq C, \forall \epsilon>0
$$

which clearly implies that $X \in C_{W}([0, T] ; H) \cap L_{W}^{2}(0, T, V)$. This completes the proof of existence.

Uniqueness. Assume that $\left(Y_{1}, \eta_{1}\right),\left(Y_{2}, \eta_{2}\right)$ are two strong solutions of (1). Then by condition (iv) in Definition 1 we have

$$
\int_{0}^{t}\left(d\left(\eta_{1}(s)-\eta_{2}(s)\right), Y_{1}(s)-Y_{2}(s)\right) d s \geq 0 \quad \forall t \in[0, T]
$$

This yields

$$
\begin{aligned}
& \int_{0}^{t} d\left(Y_{1}(s)-Y_{2}(s)\right. \\
& \quad \int_{0}^{s}\left(A\left(Y_{1}(\tau)-Y_{2}(\tau)\right)+F\left(X_{1}(\tau)-F\left(X_{2}(\tau)\right) d \tau, Y_{1}(s)-Y_{2}(s)\right) \leq 0\right.
\end{aligned}
$$

and by integration we obtain that (see Lemma 1 below)

$$
\frac{1}{2}\left|Y_{1}(t)-Y_{2}(t)\right|^{2}+\int_{0}^{t}\left(A\left(Y_{1}-Y_{2}\right)+F\left(X_{1}\right)-F\left(X_{2}\right), Y_{1}-Y_{2}\right) d s \leq 0
$$

$\forall t \in[0, T]$, which implies via Gronwall's lemma that $Y_{1}=Y_{2}$.
In particular, the latter implies that the sequence $\{\epsilon\}$ founded before is independent of ω and so there is indeed a unique pair satisfying Definition 1.

Lemma 1 Let $y \in C([0, T] ; H) \cap L^{2}(0, T ; V)$ be such that

$$
y(t)+\int_{0}^{t} A y(s) d s \in B V([0, T] ; H)
$$

Then

$$
\begin{align*}
\int_{0}^{t}(d(y(s) & \left.+\int_{0}^{s} A(y(\tau) d \tau), y(s)\right) \\
& =\frac{1}{2}|y(t)|^{2}-\frac{1}{2}|x|^{2}+\int_{0}^{t}(A y(s), y(s)) d s, \quad \forall t \in[0, T] \tag{18}
\end{align*}
$$

Proof. Of course (18) is true if $y \in C([0, T] ; V)$ which is not, however, the case here. Approximating y by a sequence $\left\{y_{n}\right\} \in C([0, T] ; V)$ which is strongly convergent in $C([0, T] ; H)$ and such that the functions

$$
t \rightarrow y_{n}(t)+\int_{0}^{t} A y_{n}(s) d s
$$

have uniform bounded variation from $[0, T]$ to H, we may get (18) by passing to limit in the corresponding equality for y_{n}.

Remark 1 It is not clear whether Theorem 1 remains valid in absence of Hypothesis 1(iii) or for if $Q=I$. (This happens, however, for the obstacle problem, see Nualart and Pardoux, 1992; Zambotti, 2001).

3. Invariant measures

Let $X=X(t, x)$ be the solution of (1) obtained above. We denote by P_{t} : $C_{b}(H) \rightarrow C_{b}(H)$ the corresponding transition semigroup,

$$
\begin{equation*}
P_{t} \varphi(x)=\mathbb{E}[\varphi(X(t, x))], \quad x \in K \tag{19}
\end{equation*}
$$

Proposition 1 Assume that Hypothesis 1 holds. Then there is at least one invariant measure ν for P_{t} with support included in $K \cap V$. If in addition there exists $\gamma_{1}>0$ such that

$$
\begin{equation*}
(A(u-v)+F(u)-F(v), u-v) \geq \gamma_{1}|u-v|^{2}, \quad \forall u, v \in D(A) \tag{20}
\end{equation*}
$$

the invariant measure ν is unique.
Proof. We come back to the approximating equation (9) and denote by P_{t}^{ϵ} the corresponding transition semigroup, i.e.,

$$
\begin{equation*}
P_{t}^{\epsilon} \varphi(x)=\mathbb{E}\left[\varphi\left(X_{\epsilon}(t, x)\right)\right], \quad x \in H, \tag{21}
\end{equation*}
$$

and by N_{ϵ} the corresponding Kolmogorov operator,

$$
\left(N_{\epsilon} \varphi\right)(x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi\right]-\left(A x+F(x)+\beta_{\epsilon}(x), D \varphi(x)\right) .
$$

It is known that under our conditions there is at least one invariant measure ν_{ϵ} for P_{t}^{ϵ}. We claim that $\left\{\nu_{\epsilon}\right\}_{\epsilon>0}$ is tight. Indeed, by the invariance of ν_{ϵ} it follows that $\int_{H}\left(N_{\epsilon} \varphi\right)(x) \nu_{\epsilon}(d x)=0$, so that

$$
\begin{equation*}
\int_{H}\left(\|x\|^{2}+\left(F_{\epsilon}(x)+\beta_{\epsilon}(x), x\right) \nu_{\epsilon}(d x) \leq \operatorname{Tr} Q\right. \tag{22}
\end{equation*}
$$

Since V is compactly embedded in H, we infer that $\left\{\nu_{\epsilon}\right\}_{\epsilon>0}$ is tight. Let ν be a weak limit point of $\left\{\nu_{\epsilon}\right\}_{\epsilon>0}$; then one can easily check that ν is an invariant measure for P_{t} and

$$
\begin{equation*}
\int_{H}\left(\|x\|^{2}+(F(x), x)\right) \nu(d x) \leq \operatorname{Tr} Q \tag{23}
\end{equation*}
$$

which implies supp $\nu \subset V$.
On the other hand, we have

$$
\begin{aligned}
& \left(\beta_{\epsilon}(x), x\right)=\left(\beta_{\epsilon}(x), x-\Pi_{K}(x)\right)+\left(\beta_{\epsilon}(x), \Pi_{K}(x)\right) \\
& \geq\left(\beta_{\epsilon}(x), x-\Pi_{K}(x)\right)=\frac{1}{\epsilon}\left|x-\Pi_{K}(x)\right|^{2}
\end{aligned}
$$

and, taking into account (22), this implies

$$
\int_{K^{c}}\left|x-\Pi_{K}(x)\right|^{2} \nu(d x)=0
$$

and therefore supp $\nu \subset K$ as claimed. Finally, if (20) holds the invariant measure is unique by a standard argument (see Da Prato and Zabczyk, 1996).

4. The infinitesimal generator

This section is devoted to study the relationship between the infinitesimal generator N of P_{t} and the differential operator N_{0} defined by (5).

To this end we shall also assume that K has a special form precised in Hypothesis 2 below

Hypothesis 2 There exists $T \in L(H)$ self-adjoint, positive and $r>0$ such that

$$
K=\left\{x \in H: \quad(T x, x) \leq r^{2}, \quad \forall x \in H\right\} .
$$

Then the boundary of K is given by

$$
\partial K=\left\{x \in H:(T x, x)=r^{2}, \quad \forall x \in H\right\},
$$

while $N_{K}(x)=\{\lambda T x\}_{\lambda>0}$ is the normal cone to K.
Theorem 2 Assume that Hypotheses 1 and 2 are fulfilled. Let $\varphi \in C_{b}^{2}(H) \cap$ $D(N)$ be such that $A \varphi \in C_{b}^{1}(H)$ and

$$
(D \varphi(x), T x)=0, \quad \text { on } \partial K
$$

Then $\varphi \in D(N)$ and

$$
\begin{equation*}
N \varphi=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi\right]-(x, A D \varphi)-(F(x), D \varphi) . \tag{24}
\end{equation*}
$$

Proof. Let $\varphi \in C_{b}^{2}(H) \cap D(N)$. By (9), applying Itô's formula, we have

$$
\begin{align*}
& \varphi\left(X_{\epsilon}(t)\right)-\varphi(x)+\int_{0}^{t}\left(A X_{\epsilon}(s)+F\left(X_{\epsilon}(s)\right), D \varphi\left(X_{\epsilon}(s)\right)\right) d s \\
& +\int_{0}^{t}\left(\beta_{\epsilon}\left(X_{\epsilon}(s)\right), D \varphi\left(X_{\epsilon}(s)\right)\right) d s=\frac{1}{2} \int_{0}^{t} \operatorname{Tr}\left[Q D^{2} \varphi\left(X_{\epsilon}(s)\right)\right] d s \tag{25}\\
& +\int_{0}^{t}\left(D \varphi\left(X_{\epsilon}(s)\right), \sqrt{Q} d W(s)\right) d s
\end{align*}
$$

Invoking (15) and (16) we have for $\epsilon \rightarrow 0$

$$
\begin{align*}
& \varphi\left(X_{\epsilon}(t)\right) \rightarrow \varphi(X(t)), \quad \text { uniformly in } t, \mathbb{P} \text {-a.s., } \tag{26}\\
& \quad\left(A X_{\epsilon}(t)+F\left(X_{\epsilon}(t)\right), D \varphi\left(X_{\epsilon}(t)\right)\right. \\
& \quad \rightarrow(X(t), A D \varphi(X(t)))+(F(X(t)), D \varphi(X(t))), \quad \mathbb{P} \text {-a.s.. } \tag{27}\\
& \operatorname{Tr}\left[Q D^{2} \varphi\left(X_{\epsilon}(t)\right)\right] \rightarrow \operatorname{Tr}\left[Q D^{2} \varphi(X(t))\right], \quad \mathbb{P} \text {-a.s.. } \tag{28}\\
& \int_{0}^{t}\left(\beta_{\epsilon}(s), D \varphi\left(X_{\epsilon}(s)\right) \rightarrow \int_{0}^{t}(d \eta(s), D \varphi(X(s)), \quad \mathbb{P} \text {-a.s.. }\right. \tag{29}
\end{align*}
$$

Then, letting $\epsilon \rightarrow 0$ in (25) we obtain by (27)-(29),

$$
\begin{align*}
& \varphi(X(t))-\varphi(x)+\int_{0}^{t}(A X(s)+F(X(s)), D \varphi(X(s))) d s \\
& +\int_{0}^{t}(d \eta(s), D \varphi(X(s))) d s=\frac{1}{2} \int_{0}^{t} \operatorname{Tr}\left[Q D^{2} \varphi(X(s))\right] d s \tag{30}\\
& +\int_{0}^{t}(D \varphi(X(s)), \sqrt{Q} d W(s)) d s, \quad \mathbb{P} \text {-a.s.. }
\end{align*}
$$

We claim that

$$
\begin{equation*}
\int_{0}^{t}(d \eta(s), D \varphi(X(s))) d s=0, \quad \forall t \in[0, T], \mathbb{P} \text {-a.s.. } \tag{31}
\end{equation*}
$$

Let $I=\{s \in(0, t): X(s) \in \stackrel{\circ}{K}\}$ and $I^{c}=(0, t) \backslash I=\{s \in(0, t): X(s) \in \partial K\}$. Then by (8) we see that

$$
\begin{equation*}
\int_{0}^{t}\left(d \eta(s), X(s)-\Pi_{K}(X(s) \pm \lambda D \varphi(X(s))) d s \geq 0, \quad \forall \lambda>0\right. \tag{32}
\end{equation*}
$$

which implies, for λ sufficiently small,

$$
\begin{equation*}
\mp \int_{I}(d \eta(s), D \varphi(X(s)))+\frac{1}{\lambda} \int_{I^{c}}\left(d \eta(s), X(s)-\Pi_{K}(X(s) \pm \lambda D \varphi(X(s))) \geq 0 .\right. \tag{33}
\end{equation*}
$$

Now we want let $\lambda \rightarrow 0$ in the second term. For this we note that

$$
\Pi_{K}(x)=\frac{r x}{\left|T^{1 / 2} x\right|}, \quad \forall x \in H \backslash K
$$

and

$$
D \Pi_{K}(x)=\frac{r}{\left|T^{1 / 2} x\right|}-r \frac{x \otimes T x}{\left|T^{1 / 2} x\right|^{3}}, \quad \forall x \in H \backslash K
$$

So, if $s \in I^{c}$ we have

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(X(s)-\Pi_{K}(X(s) \pm \lambda D \varphi(X(s)))=\mp D \Pi_{K}(x) \cdot D \varphi(X(s))\right. \\
& =\mp D \varphi(X(s)) \pm r^{-2}\left(T X(s), D \varphi(X(s)) T^{1 / 2} X(s)=\mp D \varphi(X(s))\right.
\end{aligned}
$$

because $X(s) \in \partial K$ and $(D \varphi(X(s)), T x)=0$ on ∂K.
Now, letting $\lambda \rightarrow 0$ in (33) yields

$$
\int_{0}^{t}(d \eta(s), D \varphi(X(s))) d s=0
$$

and (25) follows.

Finally, (30) becomes

$$
\begin{aligned}
& \varphi(X(t))-\varphi(x)+\int_{0}^{t}(A X(s)+F(X(s)), D \varphi(X(s))) d s \\
& =\frac{1}{2} \int_{0}^{t} \operatorname{Tr}\left[Q D^{2} \varphi(X(s))\right] d s+\int_{0}^{t}(D \varphi(X(s)), \sqrt{Q} d W(s)) d s, \quad \mathbb{P} \text {-a.s. }
\end{aligned}
$$

and since $A D \varphi(X(s)) \in C([0, T] H)$ the latter yields

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{1}{t}(\mathbb{E}[\varphi(X(t, x))]-\varphi(x)) \\
& =-(x, A D \varphi(x))-(F(x), D \varphi(x))+\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)=N_{0} \varphi(x),\right.
\end{aligned}
$$

as claimed.

5. An example

Consider equation (1) in $H=L^{2}(\mathcal{O})$

$$
\left\{\begin{array}{l}
d X-\Delta X d t+f(X) d t+\partial I_{K}(X) d t \ni \sqrt{Q} d W(t) \tag{34}\\
X(0)=x \quad \text { in } \mathcal{O}, \quad X=0 \quad \text { on } \partial \mathcal{O}
\end{array}\right.
$$

where \mathcal{O} is an open bounded domain of \mathbb{R}^{d},

$$
K=\left\{x \in L^{2}(\mathcal{O}):|x|_{L^{2}(\mathcal{O})} \leq 1\right\},
$$

$f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function such that $f(r) r \geq-\gamma, \gamma>0$, for all $r \in \mathbb{R}$ and $Q=-A^{-l}, l>0, A=-\Delta, D(A)=H^{2}(\mathcal{O}) \cap H_{0}^{1}(\mathcal{O})$.

Here W is a Wiener process in $L^{2}(\mathcal{O})$,

$$
W(t)=\sum_{j=1}^{\infty} \beta_{j}(t) e_{j}
$$

where $\left(e_{j}\right)$ is an orthonormal basis of eigenfunctions for $A, A e_{j}=\lambda_{j} e_{j}$ and $\left(\beta_{j}\right)$ is a system of independent Brownian motions in a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$.

In order to satisfy Hypothesis 1(iii) we shall assume also that

$$
\sum_{j=1}^{\infty} \lambda_{j}^{1-l}<\infty
$$

For $d=1$ the latter holds if $l>1 / 2$.
Then Theorem 1 applies and (34) has a unique solution $X(t, x)$ in the sense of Definition 1. So, we can consider the transition semigroup $P_{t} \varphi(x)=$
$\mathbb{E}[\varphi(X(t, x))]$. By Theorem 2 if $\varphi \in D\left(N_{0}\right)$, that is if it is sufficiently regular and satisfy a Neumann condition on the boundary of K, then the infinitesimal generator N associated with semigroup P_{t} has the explicit form

$$
\begin{align*}
(N \varphi)(x)=\frac{1}{2} \sum_{j=1}^{\infty} \lambda_{j}^{-l}\left(D^{2} \varphi(x)\right. & \left.e_{j}, e_{j}\right) \\
& -\sum_{j=1}^{\infty} \lambda_{j}\left(D \varphi(x), e_{j}\right)-(f(x), D \varphi(x)) \tag{35}
\end{align*}
$$

(Here (\cdot, \cdot) is the scalar product in $H=L^{2}(\mathcal{O})$.)

References

Barbu, V. (1993) Analysis and Control of Infinite Dimensional Systems. Academic Press, San Diego, Boston.
Barbu, V. and Rascanu, A. (1997) Parabolic variational inequalities with singular inputs. Differential Integral Equations 10 (1), 67-83.
Barbu, V. and Da Prato, G. (2005) The Neumann problem on unbounded domains of \mathbb{R}^{d} and stochastic variational inequalities. Comm. Partial Diff. Equations 11, 1217-1248.
Barbu, V. and Da Prato, G. (2008) The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. Partial Diff. Equations 22 (7), 1318-1338.
Bensoussan, A. and Rascanu, A. (1997) Stochastic variational inequalities in infinite-dimensional spaces. Numer. Funct. Anal. Optim. 18 (1-2), 19-54.
Cépa, E. (1994) Multivalued stochastic differential equations. C.R. Acad. Sci. Paris, Ser 1, Math. 319, 1075-1078.
CÉPA, E. (1998) Problème de Skorohod multivoque. Ann. Probab. 26 (2), 500-532.
Da Prato, G. (2004) Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel, Boston, Berlin.
Da Prato, G. (2006) An introduction to infinite-dimensional analysis. Sprin-ger-Verlag, Berlin.
Da Prato, G. and Lunardi, A. (2004) Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differential Equations 198, 35-52.
Da Prato, G. and Zabczyk, J. (1996) Ergodicity for infinite dimensional systems. London Mathematical Society Lecture Notes 229, Cambridge University Press.
Haussmann, U.G. and Pardoux, E. (1989) Stochastic variational inequalities of parabolic type. Appl. Math. Optim. 20 (2), 163-192.

Kolmogorov, A.N. and Fomin, S.V. (1970) Introductory Real Analysis. Dover, New York.
Nualart, D. and Pardoux, E. (1992) White noise driven quasilinear SPDEs with reflection. Prob. Theory and Rel. Fields 93, 77-89.
Rascanu, A. (1996) Deterministic and stochastic differential equations in Hilbert spaces involving multivalued maximal monotone operators. Panamer. Math. J. 6 (3), 83-119.
Zambotti, L. (2001) A reflected stochastic heat equation as symmetric dynamics with respect to $3-d$ Bessel bridge. J. Functional Anal. 180, 195209.

Zhang, X. (2007) Skorohod problem and multivalued evolution equations in Banach spaces. Bull. Sci. Math. 131, 175-217.

[^0]: *Submitted: May 2008; Accepted: August 2008.
 \dagger Supported by 2-CEEX=06-D11-97/2006 grant of the Romanian Ministry of Education and Research.
 ${ }^{\ddagger}$ Partially supported by the Italian National Project MURST "Equazioni di Kolmogorov."

