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Abstract: We study the generation of analytic semigroups in the
L2 topology by second order elliptic operators in divergence form,
that may degenerate at the boundary of the space domain. Our
results, that hold in two space dimensions, guarantee that the so-
lutions of the corresponding evolution problems support integration
by parts. So, this paper provides the basis for deriving Carleman
type estimates for degenerate parabolic operators.
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1. Introduction

In this work we give some wellposedness results, using the semigroup approach,
for a class of second order parabolic problems, where the characteristic form of
the related second order operator, A, can be degenerate at the boundary of the
domain. We will study equations of the form

ut = div(a(x)∇u)︸ ︷︷ ︸
Au

+ c(t, x)u+f(t, x), (t, x) ∈ Q := (0, T )×Ω, T > 0, (1.1)

where
(1) Ω is a bounded open subset of R2 with boundary Γ := ∂Ω of class C2;
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(2) a(x) :=
(
aij(x)

)2
i,j=1

are symmetric matrices such that aij ∈ C0(Ω) ∩

C1(Ω) for each i, j = 1, 2 and

a(x)ξ · ξ =

2∑

i,j=1

aij(x)ξiξj > 0 ∀x ∈ Ω, ξ ∈ R2;

(3) c ∈ L∞(Q) and f ∈ L2(Q).

The above equation is associated with the initial condition

u(0, x) = u0(x) ∈ L2(Ω), (1.2)

and, in the weakly degenerate case defined in Section 2.2, the boundary condi-
tions of Dirichlet type

u = 0 in (0, T )× Γ, (1.3)

or of Neumann type

ν · a∇u = 0 in (0, T ) × Γ. (1.4)

In the strongly degenerate case, (1.1) is associated with boundary conditions of
Neumann type (1.4) only (see also Section 2.2).

In Section 2.2, we shall impose further conditions on a(x). A model example
of such a degenerate coefficient a(x) is a matrix-valued function such that the
corresponding differential operator Au, in a suitable local coordinate system
preserving the boundary distance d(x), namely

x = (s, δ), δ = d(x),

takes the form

Au =
∂

∂s

(
β−1δκ1

∂u

∂s

)
+

∂

∂δ

(
β δκ2

∂u

∂δ

)
, (1.5)

where κ1, κ2 are non negative constants and β is a suitable strictly positive func-
tion which depends on Γ. We note that a similar class of operators— though
not exactly the same one—was considered in several papers that studied spec-
tral properties using pseudo-differential calculus, see, e.g., Egorov and Shubin
(1994).

We will use the weighted Sobolev spaces H1
a(Ω), H2

a(Ω) (see Section 3) that
are, for an operator of the form (1.5), given to






H1(S
+) :=

{
v ∈ L2(S+)

∣∣ δκ1/2 ∂v

∂s
, δκ2/2 ∂v

∂δ
∈ L2(S+)

}
,

H2(S
+) :=

{
u ∈ H1(S

+) | Au ∈ L2(S+)
}
,

S+ := (−s0, s0) × (0,+∞), s0 > 0 .
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Similar H1
a(Ω) spaces were introduced in the sixties by Fichera (1956) and

Oleinik and Radkewitch (1973) to study second order operators with nonnega-
tive characteristic. So, in some sense, the subject of this paper can be regarded
as a special case of the theory developed in Fichera (1956), Oleinik (1966),
Oleinik and Radkewitch (1973). On the other hand, due to the specific features
of the problem under investigation, the results we obtain here are much stronger
than the ones obtained for general degenerate operators.

For instance, we show that, in the above spaces, the analogues of standard
extension results for traces and normal traces hold true thanks to a suitable
Hardy type inequality (see, e.g., Alabau-Boussouira et al., 2006; Davies, 1995;
Martinez and Vancostenoble, 2006). Then, we derive a semigroup generation
result that, in turn, yields that problem {(1.1),(1.2)}, associated (1.3) or (1.4),
is well-posed. Finally, we provide maximal regularity estimates for the solution
of a such problem.

The main motivation of this work is to provide wellposedness results in spaces
that are suitable for integration by parts (see Section 4). Therefore, this paper
can also be viewed as a preliminary step to the analysis of null controllability
for degenerate parabolic operators in arbitrary space dimension. Indeed, as is
well-known for uniformly parabolic operators and for degenerate operators in
dimension 1 (see Alabau-Boussouira et al., 2006; Cannarsa et al., 2004, 2007;
Martinez and Vancostenoble, 2006), a key tool for such an analysis are Carleman
estimates, whose deduction heavily relies on integration by parts.

2. Assumptions

2.1. Assumptions on Ω

In the following, Ω is a bounded open set in R2 with boundary, Γ, of class Cr,
r ≥ 2, and d(x) represents the distance from Γ, that is,

d(x) := min
y∈Γ

|x− y| x ∈ R2 .

Moreover we name for every δ ≥ 0

Ωδ := {x ∈ Ω | d(x) < δ}, Ωδ := Ω \ Ωδ, Γδ := ∂Ωδ.

Since Γ is compact and at least of class C2, for some number δ0 ∈ (0, 1) we
have that

∀x ∈ Ωδ0 ∃!yx ∈ Γ such that d(x) = |x− yx| .

We will set yx = p
Γ
x (the projection of x onto Γ). Further, as is well-known,

∇d(x) = −ν(p
Γ
x) ∀x ∈ Ωδ0

where ν(pΓx) denotes the outward unit normal to Ω at pΓx (see Section 7.1 for
more details).
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2.2. Assumptions on a

First, we give some preliminary notations. Let O be a subset of R2 with suffi-
ciently smooth boundary we define

M2(R) :=
{
2 × 2 real matrices m = (mij)

2
i,j=1},

S2(R) :=
{
m ∈ M2(R) | mij = mji

}
,

Cr(O;M2(R)) :=
{
O ∋ x 7→ m(x) ∈ M2(R) | mij ∈ Cr(O)

}
, r ≥ 0.

We also denote by λi(x,m), Ei(x,m), (i = 1, 2) the eigenvalues and associated
eigenspaces of a matrix-valued function x 7→ m(x) ∈ S2(R) defined on O. We
recall that, if m(x) ∈ S2(R), we can choose at least two different orthonormal
eigenbases

ε1(x,m) ∈ E1(x,m), ε2(x,m) ∈ E2(x,m)

preserving the orientation of R2 1. In the following, we shall call a determination
of unit eigenvectors one choice among all these bases. Further, for simplicity
we will set

λi(x) := λi(x, a), εi(x) := εi(x, a), i = 1, 2

if a is the coefficient of the second order operator in (1.1) .

We shall assume that

(1) a ∈ C0(Ω;S2(R)) ∩ C1(Ω;S2(R));

(2) a(x)ξ · ξ > 0 ∀x ∈ Ω, ξ ∈ R2 ( i.e. a(x) > 0 ∀x ∈ Ω);

(3) for all x ∈ Ωδ0 ∪ Γ there exists a determination of unit eigenvectors
ε1(x), ε2(x) such that

ε2(x) = −ν(p
Γ
x);

(4) there exists a constant C ∈ (0, 1] such that

a(x)ξ · ξ ≥ C a(xδ)ξ · ξ ∀ξ ∈ R2 ,

where

x ∈ Ωδ0 , xδ := x+ δ ν(p
Γ
x), δ ∈ [0, d(x)] .

In this work we shall admit two types of degeneracy for a(x):

– The weakly degenerate case (WD):

∃α ∈ [0, 1), c0 > 0 such that

a(x)ξ · ξ ≥ c0 d(x)
α|ξ|2 ∀ ξ ∈ R2, x ∈ Ωδ0 ;

1Let v1, v2 ∈ R
2 a orthonormal basis of R

2 and [v1|v2] ∈ M2(R) such that the j-th column

is equal to vj . So, (v1, v2) preserves the orientation of R
2 iff det [v1|v2] = 1.
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if α > 0, ∃ 0 < ϑ ≤ α such that, for all x ∈ Ωδ0 , the function

[0, d(x)) ∋ δ 7−→ λ2(xδ)/d(xδ)
ϑ

is nondecreasing.

– The strongly degenerate case (SD):

∃C0 > 0 such that λ2(x) ≤ C0 d(x) ∀x ∈ Ωδ0 .

Notice that the (WD) case subsumes the nondegenerate case (a(x) > 0 ∀x ∈ Ω ).

Now, we give some remarks concerning the above assumptions.

(i) We recall that, if a(x) ∈ S2(R) then, choosing an orthonormal eigenbasis
ε1(x), ε2(x) of a(x) we can write2

a(x) =

2∑

i=1

λi(x) εi(x) ⊗ εi(x) .

Notice that this representation formula does not depend on the particular
eigenbasis.

Moreover, since a(x) ∈ S2(R) and it satisfies assumption (2), then there
exists a unique σ : Ω → S2(R) such that

a(x) = σ(x)σ(x) ∀x ∈ Ω, σ(x) > 0 ∀x ∈ Ω .

Indeed, as well known, we can choose

σ(x) =

2∑

i=1

√
λi(x) εi(x) ⊗ εi(x) .

One can prove (see, e.g., Bellman, 1960; Freidlin, 1985) that the element
σij(x) possess the same regularity in x ∈ Ω as do the elements of the matrix
a(x). Of course, since a ∈ C0(Ω;S2(R)) and it satisfies assumption (2),
then

√
λi(x) are continuous in Ω. So, we have that

σ ∈ C0(Ω;S2(R)) ∩ C1(Ω;S2(R)) .

(ii) Assumption (4) is needed to prove the density result of Proposition 3.1.
A class of coefficients with this property is given by all maps a satisfy-
ing properties (1),(2),(3) and such that there exist two strictly positive
functions

{b1, b2} ⊂ C0(Ωδ0 ∪ Γ),

such that for each x ∈ Ωδ0 , i ∈ {1, 2}, the functions

[0, d(x)] ∋ δ 7−→ bi(xδ)

2The tensor product of two vectors p, q of R
2 is defined as (p ⊗ q)(x) := p (q · x) ∀x ∈ R

2.
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are nonincreasing and such that

bi(xδ) ≤ λi(xδ) ≤ C−1bi(xδ).

Indeed, it follows that

λi(x) ≥ bi(x) ≥ bi(xδ) ≥ Cλi(xδ), i = 1, 2,

for all x ∈ Ωδ0 , δ ∈ [0, d(x)].

So, denoting by (ξ1(x), ξ2(x)) the coordinates of ξ ∈ R2 relative to the
orthonormal eigenbasis ε1(x), ε2(x), one has

a(x)ξ · ξ = λ1(x)|ξ1(x)|
2 + λ2(x)|ξ2(x)|

2

≥ C
(
λ1(xδ)|ξ1(xδ)|

2 + λ2(xδ)|ξ2(xδ)|
2
)

= Ca(xδ)ξ · ξ.

(iii) Another interesting class of coefficients is given by all matrices a(x) sati-
sfying properties (1),(2),(3) such that

λ1(x) = p1(x)d(x)
κ1 , λ2(x) = p2(x)d(x)

κ2 on Ωδ0 ∪ Γ,

where p1, p2 are strictly positive smooth functions and κ1, κ2 ≥ 0. Obvi-
ously, in this case property (4) is satisfied and

{
a(x) is (WD) ⇔ κ1, κ2 ∈ [0, 1),

a(x) is (SD) ⇔ κ2 ≥ 1.

2.3. Some examples

Let Ω = B(0, 1) be the unitary ball in R2 and define

λ1(x) := d(x)κ1 , λ2(x) := d(x)κ2 , κ1, κ2 ≥ 0.

Observe that, in polar coordinates (ρ, θ), we can write λi(ρ, θ) = (1 − ρ)κi .

We also define for each (ρ, θ) ∈ (0, 1] × [0, 2π) the following vector fields

ε1(ρ, θ) := (− sin θ, cos θ), ε2(ρ, θ) := −(cos θ, sin θ). (2.1)

With some computations one has

a(ρ, θ) :=

2∑

i=1

(1 − ρ)κiεi(ρ, θ) ⊗ εi(ρ, θ) =

[
(1−ρ)κ1(cos θ)2 + (1−ρ)κ2(sin θ)2 sin θ cos θ

(
(1−ρ)κ2 − (1−ρ)κ1

)

sin θ cos θ
(
(1−ρ)κ2 − (1−ρ)κ1

)
(1−ρ)κ2(cos θ)2 + (1−ρ)κ1(sin θ)2

]
.

(2.2)
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Since




ρ(x1, x2) = |x| = (x2
1 + x2

2)
1/2

cos θ(x1, x2) = x1|x|
−1

sin θ(x1, x2) = x2|x|
−1

(2.3)

we have that, if κ1 6= κ2, then the matrix in (2.2) can be degenerate on Γ =
∂B(0, 1), it is bounded in B(0, 1), the versor fields

ε1(x) = (−x2|x|
−1, x1|x|

−1), ε2(x) = −(x1|x|
−1, x2|x|

−1)

are for all x ∈ B(0, 1) \ {0} a determination of the eigenvectors of a(x), but, of
course, a it is not defined at the origin.

Instead, in the case of κ1 = κ2 = κ, using (2.2), (2.3) we can write

aκ(x) =

[
(1 − |x|)κ 0

0 (1 − |x|)κ

]
, x ∈ Ω.

This matrix-valued function has the same regularity as d(x)κ, and the basis
(ε1, ε2) is a determination of the eigenvectors of a(x) for all x ∈ B(0, 1) \ {0}.

Now, we want to give an example of a matrix-valued function on B(0, 1) satisfy-
ing assumptions (1),(2),(3),(4). For this purpose we consider a smooth function
χ : B(0, 1) → [0, 1] such that, for some 0 < δ0 < 1, 0 < δ1 < 1 − δ0,

χ(x) =





1 x ∈ B(0, δ1),

0 x ∈ B(0, 1) \ B(0, 1 − δ0).

Choosing ε1(ρ, θ), ε2(ρ, θ) as in (2.1), we define

a(ρ, θ) := χ(ρ, θ)

2∑

i=1

εi(ρ, θ) ⊗ εi(ρ, θ)

+ (1 − χ(ρ, θ))

2∑

i=1

(1 − ρ)κiεi(ρ, θ) ⊗ εi(ρ, θ)

= χ(ρ, θ)I2 + (1 − χ(ρ, θ))a(ρ, θ).

Then, χI2, (1 − χ)a ∈ C0
(
Ω;S2(R)

)
∩ C∞

(
Ω;S2(R)

)
and a is positive definite

in Ω.

We can generalize the previous example, by taking Ω as in Section 2.1 and
choosing orthogonal versor fields ε1, ε2 on R2 such that

ε2(x) = −ν(p
Γ
x) x ∈ Ωδ0 ∪ Γ
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and functions λ1, λ2 ∈ C0(Ω) ∩ C1(Ω) such that λ1, λ2 are strictly positive in
Ω and for each x ∈ Ωδ0 the functions

[0, d(x)] ∋ δ 7−→ λi(xδ)

are nonincreasing.
Let χ ∈ D(Ω; [0, 1]) be a cut-off function such that

χ(x) =





1 x ∈ Ωδ1

0 x ∈ Ωδ2 ,

where 0 < δ2 < δ1 < δ0 . Then, the matrix valued function defined by

a := χ

2∑

i=1

εi ⊗ εi + (1 − χ)

2∑

i=1

λiεi ⊗ εi = χI2 + (1 − χ)

2∑

i=1

λiεi ⊗ εi

satisfies assumptions (1),(2),(3),(4) of Section 2.2.

3. Main functional spaces

Definition 3.1 H1
a(Ω) := {v ∈ L2(Ω) | a∇v · ∇v ∈ L1(Ω)} is endowed with

the norm

‖v‖2
H1

a(Ω) := ‖v‖2
L2(Ω) + ‖a∇v · ∇v‖L1(Ω). (3.1)

Here, ∇v is the distributional gradient of v.

An equivalent definition of H1
a(Ω) is the following

v ∈ H1
a(Ω) iff v ∈ L2(Ω) and there exists h = (h1, h2) ∈ L1

loc(Ω)2 such that

∫

Ω

v
∂ϕ

∂xi
dx = −

∫

Ω

hi ϕdx ∀ϕ ∈ D(Ω), i = 1, 2

and
∫

Ω

a(x)h · h dx <∞.

Observe that H1(Ω) ⊂ H1
a(Ω) ⊂ H1

loc(Ω). Moreover, we will prove the following
result (see Section 7.2):

Proposition 3.1 H1
a(Ω) is a Hilbert space. Furthermore, C∞(Ω) is dense in

H1
a(Ω) .

Definition 3.2 H1
a,0(Ω) := D(Ω)

‖. ‖H1
a(Ω) .
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Let us mention that, in the (SD) case, one can prove that H1
a,0(Ω) = H1

a(Ω).
On the other hand, in the (WD) case the space H1

a,0(Ω) may also be explic-
itly characterized (see later on in Propositions 5.2, 5.4). Lastly we define the
following pre-Hilbert space:

Definition 3.3 H2
a(Ω) := {u ∈ H1

a(Ω) | div (a∇u) ∈ L2(Ω)} endowed with
the norm

‖u‖2
H2

a(Ω) := ‖u‖2
H1

a(Ω) + ‖div (a∇u)‖2
L2(Ω). (3.2)

An equivalent definition of H2
a(Ω) is the following

u ∈ H2
a(Ω) iff u ∈ H1

a(Ω) and there exists g ∈ L2(Ω) such that
∫

Ω

a∇u · ∇ϕdx = −

∫

Ω

g ϕ dx ∀ϕ ∈ D(Ω).

In Section 7.3 we will prove the following

Lemma 3.1 H2
a(Ω) is a Hilbert space. Moreover, H2

a(Ω) ⊂ H2
loc

(Ω).

We observe that in the (WD) case, we may have H2(Ω) * H2
a(Ω). Indeed, by

choosing, for example

λ1(x) = 1, λ2(x) = d(x)1/2, x ∈ Ωδ0 ,

and a function v ∈ C2(Ω) such that

v(x) = 1 + d(x), x ∈ Ωδ0 ,

one has that v /∈ H2
a(Ω).

4. Trace operators

In this section we recall the standard theory of trace and normal trace ope-
rators (for details see, e.g., Adams, 1975; Baiocchi and Capelo, 1983; Lions and
Magenes, 1972; Necas, 1967; Showalter, 1977; Temam, 1977), and we extend
the standard Normal Trace Theorem to more general function spaces.

4.1. Standard trace theory

Let Ω ⊂ R2 be a Lipschitz domain with boundary Γ and let ϕ ∈ C∞(Ω).
Then, since C∞(Ω) is dense in H1(Ω), the map ϕ 7→ ϕ|Γ can be extended to
a continuous map γ ∈ L(H1(Ω);L2(Γ)). Moreover, by defining the trace space
H1/2(Γ) by

H1/2(Γ) := γ(H1(Ω)), ‖φ‖H1/2(Γ) := inf {‖v‖H1(Ω) | v ∈ H1(Ω), γv = φ},

one has that H1/2(Γ) is a Banach space, the injection of H1/2(Γ) into L2(Γ)
is continuous with dense range, and, by definition, γ ∈ L(H1(Ω);H1/2(Γ)).
Furthermore, we will denote by (H1(Ω))′ the dual of H1(Ω), and by H−1/2(Γ)
the dual of H1/2(Γ).
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4.2. Standard normal trace theory

Let us consider the Hilbert space

Hdiv(Ω) := {w ∈ L2(Ω)2 | div (w) ∈ L2(Ω)},

and, for w ∈ Hdiv(Ω), the linear functional

Tw v :=

∫

Ω

div (w)v + w · ∇v dx , v ∈ H1(Ω).

By standard theory, we have :

∀w ∈ Hdiv(Ω), Tw ∈ (H1(Ω))′.

Moreover, since C∞(Ω)2 is dense in Hdiv(Ω), there exists a unique normal trace
operator γν ∈ L(Hdiv(Ω);H−1/2(Γ)) such that

{
γνw = (ν · w)|Γ if w ∈ C∞(Ω)2;

Tw v = 〈γνw, γv〉H−1/2(Γ),H1/2(Γ) for all w ∈ Hdiv(Ω), v ∈ H1(Ω).

4.3. Extension to a more general space

We introduce the pre-Hilbert space

Hdiv,a(Ω) := {w ∈ L2
a−1(Ω) | div (w) ∈ L2(Ω)},

where

L2
a−1(Ω) := {w ∈ L2(Ω)2 | a−1w · w ∈ L1(Ω)},

endowed by the norm

‖w‖2
Hdiv,a(Ω) :=

∥∥a−1w · w
∥∥

L1(Ω)
+ ‖div(w)‖2

L2(Ω) . (4.1)

Obviously, one has that Hdiv,a(Ω)⊂Hdiv(Ω). Hence, for all w ∈ Hdiv,a(Ω), Tw

is defined. We will prove (see Section 7.4) the following

Lemma 4.1 Hdiv,a(Ω) is a Hilbert space. Moreover, if w ∈ Hdiv,a(Ω), then
Tw ∈ (H1

a(Ω))′ where (H1
a(Ω))′ denotes the dual space of H1

a(Ω). Furthermore,
the following integration by parts formula holds :

∀(w, v) ∈ Hdiv,a(Ω) ×H1
a(Ω),
∫

Ω

w · ∇v dx = −

∫

Ω

div (w)v dx + Tw v.

Finally, the number Tw v is characterized by

Tw v = lim
δ→0

〈γδ
νw, γ

δv〉H−1/2(Γδ),H1/2(Γδ),
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where, for all δ ∈ (0, δ0), γ
δ and γδ

ν are, respectively, defined as follows:





γδ := γδ ◦ rδ where

rδ : H1
a(Ω) ∋ v 7→ v|Ωδ ∈ H1(Ωδ) is the restriction operator and

γδ ∈ L(H1(Ωδ);H1/2(Γδ)) is the standard trace operator,

and




γδ
ν := γν,δ ◦Rδ where

Rδ : Hdiv,a(Ω) ∋ v 7→ v|Ωδ ∈ Hdiv(Ω
δ) is the restriction operator and

γν,δ ∈ L(Hdiv(Ω
δ);H−1/2(Γδ)) is the standard normal trace operator.

Observe that using the above definition of Hdiv,a(Ω), space H2
a(Ω) may also be

characterized by

H2
a(Ω) = {u ∈ H1

a(Ω) | a∇u ∈ Hdiv,a(Ω)}.

Thus, we have :

Corollary 4.1 For all u ∈ H2
a(Ω), Ta∇u ∈ (H1

a(Ω))′ and the following inte-
gration by parts formula holds :

∀(u, v) ∈ H2
a(Ω) ×H1

a(Ω),
∫

Ω

a∇u · ∇v dx = −

∫

Ω

div (a∇u)v dx+ Ta∇u v.

We recall that, in the general case, Ta∇u v is given by

Ta∇u v = lim
δ→0

〈γδ
ν(a∇u), γδv〉H−1/2(Γδ),H1/2(Γδ).

Let us mention that in the (WD) case, Ta∇u v may also be characterized by

Ta∇u v = 〈γa
ν (a∇u), γav〉

H
−1/2
a (Γ),H

1/2
a (Γ)

,

where γa and γa
ν are the operators defined below (see the following section).

5. Trace extensions on H
1
a(Ω)

Proposition 5.1 (Trace in H1
a(Ω)) In the (WD) case, there exists a unique

trace operator γa ∈ L(H1
a(Ω);L2(Γ)) that extends the standard one γ ∈ L(H1(Ω);

L2(Γ)).

On the contrary, we observe that in the (SD) case, in general it is not possible
to define the notion of trace. Indeed, upon choosing, for example,

λ1(x) = 1, λ2(x) = d(x), x ∈ Ωδ0 ,
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any function v ∈ C1(Ω) such that

v(x) = log
(∣∣ log

(
d(x)

)∣∣
)
, x ∈ Ωδ0 ,

satisfies v ∈ H1
a(Ω) but v = ∞ on Γ.

Proposition 5.2 In the (WD) case, there exists a constant CH > 0 such that

∀v ∈ Ker {γa},

∫

Ω

v2 λ2(x)

d(x)2
dx ≤ CH

∫

Ω

a(x)∇v · ∇v dx. (5.1)

Moreover, the space H1
a,0(Ω) may be characterized by

H1
a,0(Ω) = Ker {γa} := {v ∈ H1

a(Ω) | γav = 0}.

Notice that the Hardy-type inequality (5.1) extends the Poincaré inequality to
the space H1

a(Ω). As a consequence, the Hilbert space H1
a,0(Ω) may be endowed

with the following norm

∀v ∈ H1
a,0(Ω), ‖v‖H1

a,0(Ω) := ‖a∇v · ∇v‖L1(Ω),

that is equivalent on H1
a,0(Ω) to the previous norm ‖ · ‖H1

a(Ω).

Definition 5.1 (Trace space)

H1/2
a (Γ) := γa(H1

a(Ω))

is a Banach space endowed with the norm

∀φ ∈ H1/2
a (Γ), ‖φ‖

H
1/2
a (Γ)

:= inf {‖v‖H1
a(Ω) | v ∈ H1

a(Ω), γav = φ}.

We also denote by H
−1/2
a (Γ) the dual space of H

1/2
a (Γ).

Proposition 5.3 In the (WD) case , there exists a unique normal trace oper-

ator γa
ν ∈ L(Hdiv,a(Ω);H

−1/2
a (Γ)) such that

{
γa

νw = (ν · w)|Γ if w ∈ C∞(Ω)2;

Tw v = 〈γa
νw, γ

av〉
H

−1/2
a (Γ),H

1/2
a (Γ)

for all w ∈ Hdiv,a(Ω), v ∈ H1
a(Ω).

Notice that, since Hdiv,a(Ω) ⊂ Hdiv(Ω), then

γa
νw = γνw ∀w ∈ Hdiv,a(Ω) .

Proposition 5.4 In the (SD) case one has that

(1) Hdiv,a(Ω) ⊆ Ker{γν} := {w ∈ Hdiv(Ω) | γνw = 0};

(2) ∀ (u, v) ∈ H2
a(Ω) ×H1

a(Ω),
∫

Ω

a∇u · ∇v dx = −

∫

Ω

div (a∇u)v dx ;

(3) H1
a(Ω) = H1

a,0(Ω).
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6. Well-posedness

6.1. The degenerate problem

Let us fix T > 0 and introduce the notations Q := (0, T )×Ω and Σ := (0, T )×Γ.
We are interested in the following evolution equation

ut − div (a(x)∇u) + c(t, x)u = f(t, x) in Q, (6.1)

where f is given in L2(Q) and c ∈ L∞(Q). We associate with this equation the
initial condition

u(0, x) = u0(x) ∈ L2(Ω), (6.2)

and boundary conditions of Dirichlet type

γa u = 0 in Σ, (6.3)

or of Neumann type

γν(a∇u) = 0 in Σ. (6.4)

The choice of the boundary conditions depends on the way a(x) degenerates at
the boundary. If a(x) is (WD), it is possible to consider both boundary condi-
tions. Indeed, by the results established in the previous sections we know that,
as in theory of uniformly parabolic equations, we can define trace operators γa,
γa

ν . So, by standard methods well-posedness follows. On the other hand, trace
operator γa does not make sense when a(x) is (SD). Moreover, by Proposition
5.4 we know that H1

a(Ω) = H1
a,0(Ω); so, H1

a,0(Ω) is not a suitable space to deal
with homogeneous Dirichlet boundary conditions. Hence, when a(x) is (SD),
we only consider the Neumann boundary condition (6.4). We now give the main
result of the paper:

Theorem 6.1 One has that

(1) in both (WD) and (SD) cases, the operator (A1, D(A1)) given by

A1u = div(a∇u), D(A1) = {u ∈ H2
a(Ω) | γν(a∇u) = 0},

is m-dissipative and self-adjoint. Moreover, in the (SD) case,

D(A1) = H2
a(Ω).

(2) In the (WD) case, the operator (A2, D(A2)) given by

A2u = div(a∇u), D(A2) = H2
a(Ω) ∩H1

a,0(Ω)

is m-dissipative and self-adjoint. Moreover, A2 is strictly dissipative,
that is

sup
{
< A2u, u >L2(Ω) | u ∈ D(A2), ‖u‖L2(Ω) = 1

}
< 0.
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As a consequence, both A1 andA2 are the infinitesimal generators of the strongly
continuous semigroups denoted by etA1 , etA2 respectively. We will also show (see
Section 7.9) that etA1 , etA2 are analytic. Moreover, the family of operators in
L(L2(Ω)) given by

C(t)u := c(t, .)u, t ∈ (0, T ), u ∈ L2(Ω)

can be seen as a family of bounded perturbation of A1 (resp. A2) . Thus, using
standard techniques (see, e.g., Bensoussan et al., 1993; Cazenave and Haraux,
1998; Showalter, 1977), one can prove the following well-posedness results.

Theorem 6.2 In both the (WD) and the (SD) case, for all f ∈ L2(Q) and u0 ∈
L2(Ω), there exists a unique weak solution u∈C0

(
[0, T ];L2(Ω)

)
∩L2

(
0, T ;H1

a(Ω)
)

of {(6.1), (6.2)} with homogeneous Neumann boundary conditions (6.4). More-
over, one has

sup
t∈[0,T ]

‖u(t)‖2
L2(Q)+

∫ T

0

‖u(t)‖2
H1

a(Ω)dt ≤ C

(
‖u0‖

2
L2(Ω) +

∫ T

0

‖f(t)‖2
L2(Ω)dt

)
,

for some constant C > 0.

Theorem 6.3 In the (WD) case, for all f ∈ L2(Q) and u0 ∈ L2(Ω), there
exists a unique weak solution u ∈ C0

(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

a,0(Ω)
)

of
{ (6.1), (6.2)} with homogeneous Dirichlet boundary conditions (6.3). Moreover,
one has

sup
t∈[0,T ]

‖u(t)‖2
L2(Q)+

∫ T

0

‖u(t)‖2
H1

a,0(Ω)dt ≤ C

(
‖u0‖

2
L2(Ω) +

∫ T

0

‖f(t)‖2
L2(Ω)dt

)
,

for some constant C > 0.

6.2. Space regularity of solutions

Now, we give some L2-estimates for the first and second derivatives of functions
u in D(A1) or in D(A2).

In order to estimate solutions near the boundary, we first introduce the notions
of (distributional) directional derivatives along the unit eigenvectors of a:

∂εiu(x) := εi(x) · ∇u(x), x ∈ Ωδ0 , i = 1, 2 .

For simplicity, we reduce our analysis to the particular case

λ1(x) = d(x)κ1 , λ2(x) = d(x)κ2 , x ∈ Ωδ0 ,

where κ1, κ2 ≥ 0.
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Proposition 6.1 Let Γ ∈ Cr with r ≥ 2. Then every u ∈ D(A1) satisfies

dκ1/2∂ε1u, d
κ2/2∂ε2u ∈ L2(Ωδ0/2).

Moreover, for r ≥ 3 the second order derivatives can be estimated by distingui-
shing the two following cases:

(1) if κ1 = 0 and κ2 ≥ 0, then

∂2
ε1
u, dκ2/2∂2

ε2,ε1
u, ∂ε2(d

κ2∂ε2u) ∈ L2(Ωδ0/2);

(2) if κ1 > 0 and κ2 ≥ 0, then

d(κ1+θ)/2∂2
ε1
u, d(κ2+θ)/2∂2

ε2,ε1
u, d(θ−κ1)/2∂ε2(d

κ2∂ε2u) ∈ L2(Ωδ0/2),

where

θ := max{κ1, κ1 + (2 − κ2)}.

Notice that if u ∈ D(A2), one can prove that u satisfies properties (1) or (2) of
Proposition 6.1, as arguing in Section 7.10.

7. Proofs

7.1. Notations and preliminary results

We start summarizing some properties of the oriented boundary distance, that
will be used in most proofs (for details see, e.g., Cannarsa and Sinestrari, 2004;
Delfour and Zolesio, 1994; Gilbarg and Trudinger, 1983).

Proposition 7.1 If Γ is a compact Cr- differentiable curve with r ≥ 2, then
there exists δ0 > 0 such that for all x ∈ B(Γ, δ0) := {x ∈ R2 | d(x) < δ0} there
exists a unique p

Γ
x in Γ such that

(1) d(x) = |x− p
Γ
x|,

(2) x = pΓx− ν(pΓx)dΓ(x),

where ν is the outward unit normal to Ω and dΓ is the oriented boundary distance
defined by

dΓ(x) :=

{
d(x), x ∈ Ω,

−d(x), x ∈ R2 \ Ω.

Moreover, one has that

(3) p
Γ
∈ Cr−1(B(Γ, δ0))

2,

(4) d
Γ
∈ Cr(B(Γ, δ0)),

(5) ∇dΓ(x) = −ν(pΓx) ∀x ∈ B(Γ, δ0).
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We observe that, by taking εi(x) := (εi ◦ pΓ
)(x) for i = 1, 2, where ε1(x),

ε2(x) is a determination satisfying assumption (3) on a(x), one can extend these
vector fields to B(Γ, δ0). As a consequence, one has

D2d
Γ
(x)ε1(x) = −

k(p
Γ
x)

1 − k(p
Γ
x)d

Γ
(x)

ε1(x), D2d
Γ
(x)ε2(x) = 0, ∀x ∈ B(Γ, δ0) .

Here, k(pΓx) is the curvature of Γ at pΓx. Thus, using the notion of tensor
product,

D2d
Γ
(x) = −

k(p
Γ
x)

1 − k(p
Γ
x)d

Γ
(x)

ε1(x) ⊗ ε1(x), x ∈ B(Γ, δ0) . (7.1)

Notice that the function

β(x) := 1 − k(p
Γ
x)d

Γ
(x) (7.2)

is strictly positive in B(Γ, δ0) .

Next, we introduce the following map:

X(γ
p
) : Rp −→ R2

(s, δ′) 7→ X(γ
p
)(s, δ′) := γ

p
(s) − ν(γ

p
(s))δ′,

(7.3)

where

γp : (−sp, sp) → R2, sp > 0

is a suitable Cr local parametrization of Γ such that

γ
p
(0) = p, γ′

p
(s) = ε1(γp

(s)), s ∈ (−sp, sp)

and

Rp := (−sp, sp) × (−δ0, δ0) ⊂ R2 .

Notice that, since Γ ∈ Cr, ν ∈ Cr−1(Γ)2. Thus X(γ
p
) ∈ Cr−1(Rp)

2. For
simplicity, in the following we will set Xp := X(γ

p
).

Lemma 7.1 If Γ ∈ Cr with r ≥ 2, then Xp is a Cr−1- diffeomorphism of Rp

onto Xp(Rp). Moreover, the following results hold:

(1) detDXp(s, δ
′) = β(Xp(s, δ

′));

(2) DX−1
p (x)ε2(x) = e2;

(3) DX−1
p (x)ε1(x) = β(x)−1e1;

(4) a(x) := DX−1
p (x)a(x)(DX−1

p (x))∗ = diag
{
λ1(x)β(x)−2, λ2(x)

}
.

Here, (e1, e2) is the standard basis of R2 and β is defined as in (7.2).



Analytic semi-groups in L2 for second order degenerate elliptic operators 847

Proof of Lemma 7.1. Since γp : (−sp, sp) → R2 is one to one, it follows that Xp

is invertible and its inverse is

X−1
p : Xp(Rp) ∋ x 7→ (γ−1

p (p
Γ
x), d

Γ
(x)) ∈ Rp.

Thus, by Proposition 7.1 it follows that

for all r ≥ 2, Γ ∈ Cr ⇒ Xp is a Cr−1- diffeomorphism .

Let us compute the jacobian of Xp :




∂Xp

∂s
(s, δ′) =

dγp

ds
(s) −

d

ds

(
ν
(
γp(s)

))
δ′,

∂Xp

∂δ′
(s, δ′) = −ν(γp(s)).

(7.4)

Moreover, by the chain rule one obtains

d

ds

(
ν
(
γp(s)

))
= D(ν(pΓx))|x=γp(s)ε1(x)|x=γp(s)

and by point (5) of Proposition 7.1 it follows that

D(ν(pΓx))ε1(x) = −D2dΓ(x)ε1(x).

Since

D2dΓ(x)ε1(x) = −k(x)ε1(x) ∀x ∈ Γ

(see (7.1)), by (7.4), we obtain that

DXp(s, δ
′) =

[
ε1(γp(s))β(Xp(s, δ′)) | − ν(γp(s))

]
. (7.5)

By assumption (3) on a(x) we know that ε2(x) = −ν(pΓx) . So,

det [ε1(x)| − ν(p
Γ
x)] = 1

whence

detDXp(s, δ
′) = β(Xp(s, δ

′)) det
[
ε1(γp(s)) | − ν(γp(s))

]
= β(Xp(s, δ

′)).

Now, with easy algebraic computations, by (7.5) we obtain

DX−1
p (x) =

[
ε1(x)β(x)−1 | ε2(x)

]∗
.

Proof of (2):

DX−1
p (x)ε2(x) =

[
ε1(x)β(x)−1 | ε2(x)

]∗
ε2(x)

= (β(x)−1ε1(x) · ε2(x), ε2(x) · ε2(x)) = e2.

Proof of (3):

DX−1
p (x)ε1(x) =

[
ε1(x)β(x)−1 | ε2(x)

]∗
ε1(x)

= (β(x)−1ε1(x) · ε1(x), ε2(x) · ε1(x)) = β(x)−1e1.
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Proof of (4):

a(x) = DX−1
p (x)

(
λ1(x)ε1(x) ⊗ ε1(x) + λ2(x)ε2(x) ⊗ ε2(x)

)
(DX−1

p (x))∗

= λ1(x)DX
−1
p (x)ε1(x) ⊗DX−1

p (x)ε1(x)

+ λ2(x)DX
−1
p (x)ε2(x) ⊗DX−1

p (x)ε2(x)

= λ1(x)β(x)−2 e1 ⊗ e1 + λ2(x) e2 ⊗ e2

= diag
{
λ1(x)β(x)−2 , λ2(x)

}
.

Now, we construct a system of localizations for the functions of H1
a(Ω).

Since Γ is compact, there exists a finite number of points p1, . . . , pm ∈ Γ such
that Γ ⊂ ∪m

k=1Xpk
(Rpk

); here, the sets Rpk
and the maps Xpk

satisfy the
assumptions of Lemma 7.1. For k ∈ {1, . . . ,m}, we denote

Bk := (−spk
, spk

), Rk := Rpk
, Uk := Xpk

(Rpk
)

and set U0 := Ωδ0/2, so that one has that Ω ⊂ ∪m
k=0Uk.

Furthermore, choose χk ∈ D(Uk; [0, 1]) such that
∑m

k=0 χk = 1 on a neighbor-
hood of Ω and set for simplicity

Xk := Xpk
, X0 := id.

Then, it is possible to rewrite v ∈ H1
a(Ω) as

{
v =

∑m
k=0 vk ◦X−1

k on Ω,

vk := χkv ◦Xk.
(7.6)

We will call the functions vk , k ∈ {0, . . . ,m}, the associated functions of v.

Last, we give the following

Lemma 7.2 If f ∈ C0(Ω) ∩ L1(Ω), then for all δ ∈ (0, δ0/2) one has that

∫

Ωδ

f(x)dx =

∫ δ

0

(∫

Γδ′
f dr

)
dδ′.

Proof of Lemma 7.2. Using the previous setting it is possible to rewrite f in the
following form

{
f =

∑m
k=1 fk ◦X−1

k on Ωδ,

fk := χkf ◦Xk.

Thus, because s 7→ Xk(s, δ′) is a local parametrization of Γδ′

, by definition of
line integral one has

∫

Γδ′
f dr =

∫

Γδ′

m∑

k=1

fk ◦X−1
k dr =

m∑

k=1

∫

Bk

fk(Xk(s, δ′))β(Xk(s, δ′))ds. (7.7)
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On the other hand, one has that

∫

Ωδ

f(x) dx =

m∑

k=1

∫ δ

0

∫

Bk

fk(Xk(s, δ′))β(Xk(s, δ′))dsdδ′.

7.2. Proof of Proposition 3.1

Let, for i = 1, 2, λi(x) and εi(x) be respectively, the eigenvalues and the unit
eigenvectors of the symmetric matrices a(x) = σ(x)σ(x). We observe that by
assumptions on a(x), it follows that λi(x) > 0 and σ−1(x) is defined ∀x ∈ Ω.
Moreover, for all δ ∈ (0, δ0), we can write

∫

Ω

a(x)∇v · ∇v dx =

∫

Ω

σ(x)∇v · σ(x)∇v dx

=

∫

Ωδ

σ(x)∇v · σ(x)∇v dx+

2∑

i=1

∫

Ωδ

|εi · ∇v|
2λi(x) dx.

(7.8)

First step. We want to prove that H1
a(Ω) is complete for the norm defined in

(3.1). For simplicity, we define the weighted space

L2
a(Ω) :=

{
w ∈ L1

loc(Ω)2
∣∣
∫

Ω

a(x)w · w dx <∞
}
.

Let (vn)n be a Cauchy sequence in H1
a(Ω). Then there exist v ∈ L2(Ω),

g = (g1, g2) ∈ L2(Ω)2 such that

vn −→ v in L2(Ω), σ∇vn −→ g in L2(Ω)2.

Therefore, if we show that ∇v = σ−1g , we obtain the conclusion. For this
purpose, since

vn → v in L2(Ω) ⇒ ∇vn → ∇v in D′(Ω)

and the distributional limit is unique, it is sufficient to prove that

∇vn → σ−1g in L2
a(Ω) ⇒ ∇vn → σ−1g in D′(Ω).

For all ϕ ∈ D(Ω) one has that
∣∣∣∣
∫

Ω

(∇vn − σ−1g)ϕdx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)

∫

supp{ϕ}

|∇vn − σ−1g| dx

≤ ‖ϕ‖L∞(Ω) |Ω|1/2

(∫

supp{ϕ}

(∇vn − σ−1g) · (∇vn − σ−1g) dx

)1/2

≤ ‖ϕ‖L∞(Ω) |Ω|1/2 sup
x∈ supp{ϕ}

∥∥a−1(x)
∥∥1/2 ∥∥∇vn − σ−1g

∥∥
L2

a(Ω)

n→∞
−→ 0.
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Second step. Now, we prove that H1(Ω) is dense in H1
a(Ω); we observe that,

since the injection of H1(Ω) into H1
a(Ω) is continuous, it directly follows from

this result that C∞(Ω) is dense in H1
a(Ω). Let v ∈ H1

a(Ω) be given and define
the family (vδ)δ, with δ ∈ (0, δ0/2), in the following way:

vδ(x) :=

{
v(x), x ∈ Ωδ,

v
(
p

Γ2δ
x+ ν(p

Γ
x)d(x)

)
, x ∈ Ωδ,

where p
Γ2δ
x is the projection of x onto Γ2δ. We want to show that

(i) vδ ∈ H1(Ω) for all δ ∈ (0, δ0/2);

(ii) vδ → v in H1
a(Ω) as δ → 0.

For this purpose, we first state a preliminary lemma:

Lemma 7.3 Let δ ∈ (0, δ0/2), if Γ ∈ Cr with r ≥ 2, then the map

ρ
δ

: x 7−→ ρ
δ
x := p

Γ2δ
x+ ν(p

Γ
x)d(x),

is a Cr−1- diffeomorphism of Ωδ onto Ωδ \ Ω2δ. Moreover, for all x ∈ Ωδ, one
has that

(1) ρ
δ
ρ

δ
x = x;

(2) detDρ
δ
(x) = −β(ρ

δ
x)β(x)−1;

(3) Dρ
δ
(x)ε2(x) = −ε2(x);

(4) Dρ
δ
(x)ε1(x) = β(ρ

δ
x)β(x)−1 ε1(x).

Proof of Lemma 7.3. As a direct consequence of the definition it follows that ρ
δ

is a one to one map of Ωδ onto Ωδ \ Ω2δ of class Cr−1 and satisfying (1). Using
Proposition 7.1 and (7.1) we compute the jacobian of ρ

δ
.

Dρ
δ
(x) = D

(
x− ν(pΓx)(2δ − d(x)) + ν(pΓx)d(x)

)

= I2 + 2D
(
ν(p

Γ
x)(d(x) − δ)

)

= I2 + 2ν(pΓx) ⊗∇(d(x) − δ) + 2(d(x) − δ)Dν(pΓx)

= I2 − 2ν(p
Γ
x) ⊗ ν(p

Γ
x) + 2(d(x) − δ)D2d(x)

=

2∑

i=1

εi(x) ⊗ εi(x) − 2ε2(x) ⊗ ε2(x) −
2(d(x) − δ)k(p

Γ
x)

1 − k(p
Γ
x)d(x)

ε1(x) ⊗ ε1(x)

= β(ρ
δ
x)β(x)−1ε1(x) ⊗ ε1(x) − ε2(x) ⊗ ε2(x) .

Now let us complete the proof of Proposition 3.1.

Proof of (i) : preliminarily, we observe that since H1
a(Ω) ⊂ H1

loc(Ω), then
v ◦ ρδ ∈ H1(Ωδ) and

∇(v ◦ ρ
δ
)(x) = (Dρ

δ
(x))∗∇v(ρ

δ
x), x-a.e. in Ωδ. (7.9)
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As a consequence, for all ϕ ∈ D(Ω) one has
∫

Ω

vδ∇ϕdx =

∫

Ωδ

v∇ϕdx +

∫

Ωδ

v ◦ ρ
δ
∇ϕdx

= −

∫

Ωδ

∇v ϕ dx+

∫

Γδ

γδv γδϕ (ν ◦ p
Γ
) dr

−

∫

Ωδ

∇(v ◦ ρ
δ
)ϕdx −

∫

Γδ

γδ(v ◦ ρ
δ
) γδϕ (ν ◦ p

Γ
) dr

= −

∫

Ω

∇vδ ϕdx

(7.10)

where

∇vδ =





∇v in Ωδ

∇(v ◦ ρ
δ
) in Ωδ .

Proof of (ii) : one has that

‖vδ − v‖
2
H1

a(Ω) = ‖vδ − v‖
2
H1

a(Ωδ) ≤ 2 ‖v‖
2
H1

a(Ωδ) + 2 ‖vδ‖
2
H1

a(Ωδ) ,

where ‖v‖2
H1

a(Ωδ) → 0 as δ → 0 . So, it is sufficient to estimate the term

‖vδ‖
2
H1

a(Ωδ). By assumptions (1),(2),(3) on a(x), (7.8), (7.9) and Lemma 7.3,

one has that
∫

Ωδ

v
2
δ(x) + a(x)∇vδ(x) · ∇vδ(x) dx

=

∫

Ωδ

v
2
δ (x) + |Dρδ (x)ε2(x) · ∇v(ρδx)|

2
λ2(x) + |Dρδ (x)ε1(x) · ∇v(ρδx)|

2
λ1(x) dx

=

∫

Ωδ

v
2
δ (x) + |ε2(x) · ∇v(ρδx)|

2
λ2(x) + β(ρδx)

2
β(x)−2|ε1(x) · ∇v(ρδx)|

2
λ1(x) dx

=

∫

Ωδ\Ω2δ

(
v
2(y) + |ε2(y) · ∇v(y)|

2
λ2(ρδy)

)
β(ρδy)β(y)−1

dy

+

∫

Ωδ\Ω2δ

β(ρδy)
3
β(y)−3 |ε1(y) · ∇v(y)|

2
λ1(ρδy) dy .

(7.11)

Since β is a bounded strictly positive function, by (7.11) and assumption (4)
on a(x) one has

∫

Ωδ

v2
δ (x) + a(x)∇vδ(x) · ∇vδ(x) dx ≤ C

∫

Ωδ\Ω2δ

v2(y) + a(y)∇v · ∇v dy

for some positive constant C. As we pass to the limit as δ → 0, the conclusion
follows.
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7.3. Proof of Lemma 3.1

We want to show that H2
a(Ω) is complete for the norm defined in (3.2). Let

us consider a Cauchy sequence (un)n in H2
a(Ω). Then there exist u ∈ H1

a(Ω),
h ∈ L2(Ω) such that

un −→ u in H1
a(Ω), div(a∇un) −→ h in L2(Ω).

Since the distributional limit is unique, to obtain the conclusion it suffices to
prove that

un → u in H1
a(Ω) ⇒ div(a∇un) → div(a∇u) in D′(Ω).

For all ϕ ∈ D(Ω) one has that

∣∣∣∣
∫

Ω

(
div(a∇un) − div(a∇u)

)
ϕdx

∣∣∣∣ =

∣∣∣∣−
∫

Ω

(a∇un − a∇u) · ∇ϕdx

∣∣∣∣

≤ ‖∇ϕ‖L∞(Ω)2 sup
x∈Ω

‖σ(x)‖

∫

Ω

|σ(∇un −∇u)| dx

≤ ‖∇ϕ‖L∞(Ω)2 sup
x∈Ω

‖σ(x)‖ |Ω|1/2 ‖un − u‖H1
a(Ω)

n→∞
−→ 0.

7.4. Proof of Lemma 4.1

First step. We want to prove that Hdiv,a(Ω) is complete for the norm defined
in (4.1). Let us consider a Cauchy sequence (wn)n in Hdiv,a(Ω). It follows
that σ−1wn and div(wn) are also Cauchy sequences, respectively, in L2(Ω)2

and in L2(Ω); then, σ−1wn converges to some limit u in L2(Ω)2, that is, wn

converges to w := σu in L2
a−1(Ω), and div(wn) converges to some limit g ∈

L2(Ω). Furthermore, one has that

wn → w in L2
a−1(Ω) ⇒ div(wn) → div(w) in D′(Ω) .

By the uniqueness of distributional limit, g = div(w).

Second step. We begin by proving that if w belongs to Hdiv,a(Ω), then Tw is
in (H1

a(Ω))′. Let v ∈ H1
a(Ω), then

|Twv| =

∣∣∣∣
∫

Ω

div(w)v + σσ−1w · ∇v dx

∣∣∣∣

≤ ‖div(w)‖L2(Ω) ‖v‖L2(Ω) +
∥∥σ−1w

∥∥
L2(Ω)2

‖σ∇v‖L2(Ω)2

≤
(∥∥σ−1w

∥∥
L2(Ω)2

+ ‖div(w)‖L2(Ω)

)(
‖v‖L2(Ω) + ‖σ∇v‖L2(Ω)2

)

≤ ‖w‖Hdiv,a(Ω) ‖v‖H1
a(Ω) .
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Now, since Tw ∈ (H1
a(Ω))′, by the absolute continuity of Lebesgue’s integral one

has

lim
δ→0

∫

Ωδ

div(w)v + w · ∇v dx = Twv.

On the other hand, by the standard normal trace theory, for all δ ∈ (0, δ0) we
have

∫

Ωδ

div(w)v + w · ∇v dx = 〈γδ
νw, γ

δv〉H−1/2(Γδ),H1/2(Γδ) .

7.5. Proof of Proposition 5.1

As a first step we prove the following

Lemma 7.4 If ϕ ∈ C∞(Ω), then, for k = 1, . . . ,m, the associated functions
ϕk = χkϕ ◦Xk satisfy

∫

Bk

|ϕk(s, 0)|2 ds ≤
δ 1−α
0

c0(1 − α)

∫

Bk

∫ δ0

0

a(Xk(s, δ′))∇ϕk · ∇ϕk ds dδ
′.

Proof of Lemma 7.4. One has

ϕk(s, 0) = −

∫ δ0

0

(
λ2(Xk(s, δ′))

λ2(Xk(s, δ′))

)1/2
∂ϕk

∂δ′
(s, δ′) dδ′,

thus, by Holder’s inequality it follows that

|ϕk(s, 0)|2 ≤

∫ δ0

0

dδ′

λ2(Xk(s, δ′))

∫ δ0

0

λ2(Xk(s, δ′))

∣∣∣∣
∂ϕk

∂δ′
(s, δ′)

∣∣∣∣
2

dδ′. (7.12)

Now, since a(x) is (WD), we have that λ2(x) ≥ c0 d(x)
α for all x ∈ Ω and for

some fixed α ∈ (0, 1). Thus from (7.12), we obtain

|ϕk(s, 0)|2 ≤ c−1
0

∫ δ0

0

dδ′

(δ′)α

∫ δ0

0

λ2(Xk(s, δ′))

∣∣∣∣
∂ϕk

∂δ′
(s, δ′)

∣∣∣∣
2

dδ′. (7.13)

By property (4) of Lemma 7.1, for k = 1, . . . ,m one has

a(Xk(s, δ′))∇ϕk · ∇ϕk

= β(Xk(s, δ′))−2λ1(Xk(s, δ′))

∣∣∣∣
∂ϕk

∂s

∣∣∣∣
2

+ λ2(Xk(s, δ′))

∣∣∣∣
∂ϕk

∂δ′

∣∣∣∣
2

,
(7.14)

thus, upon integrating both members of (7.13) on Bk, the conclusion follows.
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Let us now complete the proof of Proposition 5.1. For any ϕ ∈ C∞(Ω), using
Lemmas 7.1, 7.4 and (7.6), one has

∫

Γ

ϕ2 dr =

∫

Γ

∣∣
m∑

k=1

ϕk ◦X−1
k

∣∣2 dr ≤ C

m∑

k=1

∫

Γ

∣∣ϕk ◦X−1
k

∣∣2 dr

= C

m∑

k=1

∫

Bk

|ϕk(s, 0)|2 ds

≤ C

m∑

k=1

∫

Bk

∫ δ0

0

a(Xk(s, δ′))∇ϕk · ∇ϕk ds dδ
′

= C

m∑

k=1

∫

Ω∩Uk

a(x)∇(ϕk ◦X−1
k ) · ∇(ϕk ◦X−1

k )β(x)−1 dx

≤ C

∫

Ω

ϕ2 + a(x)∇ϕ · ∇ϕdx.

Here C is a suitable positive constant. Hence, the standard trace operator
is continuous from

(
C∞(Ω), ‖.‖H1

a(Ω)

)
into L2(Γ). Finally, by the density of

Proposition 3.1 we obtain the conclusion.

7.6. Proof of Proposition 5.2

As a first step, we introduce the following inequality.

Lemma 7.5 In the (WD) case , there exists C′
H > 0 such that for all δ ∈ (0, δ0]

one has∫

Ωδ

v2λ2(x)

d(x)2
dx ≤ C′

H

∫

Ωδ

a(x)∇v · ∇v dx, ∀v ∈ Ker {γa}. (7.15)

Proof of Lemma 7.5. We first prove that for all ϕ ∈ C∞(Ω), δ ∈ (0, δ0] and
k = 1, . . . ,m, there exists a positive constant C such that

∫

Bk

∫ δ

0

|ϕ̂k(s, δ′) − ϕ̂k(s, 0)|
2 λ2(Xk(s, δ′))

(δ′)2
dsdδ′

≤ C

∫

Bk

∫ δ

0

a(Xk(s, δ))∇ϕ̂k · ∇ϕ̂k dsdδ
′,

(7.16)

where ϕ̂k := ϕ ◦Xk . Fix µ ∈ (ϑ, 1), for all s ∈ Bk we have
∫ δ

0

|ϕ̂k(s, δ′) − ϕ̂k(s, 0)|
2 λ2(Xk(s, δ′))

(δ′)2
dδ′

=

∫ δ

0

∣∣∣
∫ δ′

0

tµ/2 ∂ϕ̂k

∂δ′
(s, t)t−µ/2dt

∣∣∣
2λ2(Xk(s, δ′))

(δ′)2
dδ′

≤

∫ δ

0

(∫ δ′

0

tµ
∣∣∣
∂ϕ̂k

∂δ′
(s, t)

∣∣∣
2

dt

∫ δ′

0

t−µdt

)
λ2(Xk(s, δ′))

(δ′)2
dδ′.
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Hence, we have

∫ δ

0

|ϕ̂k(s, δ′) − ϕ̂k(s, 0)|
2 λ2(Xk(s, δ′))

(δ′)2
dδ′

≤
1

1 − µ

∫ δ

0

(∫ δ′

0

tµ
∣∣∣
∂ϕ̂k

∂δ′
(s, t)

∣∣∣
2

dt

)
λ2(Xk(s, δ′))

(δ′)1+µ
dδ′.

Applying Fubini’s Theorem, we obtain

∫ δ

0

|ϕ̂k(s, δ′) − ϕ̂k(s, 0)|
2 λ2(Xk(s, δ′))

(δ′)2
dδ′

≤
1

1 − µ

∫ δ

0

tµ
∣∣∣
∂ϕ̂k

∂δ′
(s, t)

∣∣∣
2
(∫ δ

t

λ2(Xk(s, δ′))

(δ′)1+µ
dδ′

)
dt.

(7.17)

Now, because a(x) is (WD), one has that for all fixed s ∈ Bk the function
δ′ 7→ λ2(Xk(s, δ′))/(δ′)ϑ is nonincreasing on (0, δ0]. So, one has that

∫ δ

t

λ2(Xk(s, δ′))

(δ′)1+µ
dδ′ ≤

λ2(Xk(s, t))

tϑ

∫ δ

t

(δ′)ϑ−1−µ dδ′

≤
1

µ− ϑ

λ2(Xk(s, t))

tµ
.

Using this last inequality, integrating both members of (7.17) on Bk and recalling
(7.14), we deduce (7.16) with C = [(1 − µ)(µ− ϑ)]−1.

Next, let us consider v ∈ Ker{γa} and let us prove (7.15). By Proposition
3.1 there exists a sequence (ϕn)n ⊂ C∞(Ω) such that ϕn → v on H1

a(Ω);
denoting

ϕ̂n,k := ϕn ◦Xk, Ωδ,k := Ωδ ∩ Uk, k = 1, . . . ,m

and using (7.16), one has that

∫

Ωδ

|ϕn − γaϕn|
2 λ2(x)

d(x)2
dx

≤

m∑

k=1

∫

Ωδ,k

|ϕn − γaϕn|
2 λ2(x)

d(x)2
dx

=

m∑

k=1

∫

Bk

∫ δ

0

|ϕ̂n,k(s, δ′) − ϕ̂n,k(s, 0)|
2 λ2(Xk(s, δ′))

(δ′)2
β(Xk(s, δ′)) dsdδ′

≤ C′
H

m∑

k=1

∫

Bk

∫ δ

0

a(Xk(s, δ′))∇ϕ̂n,k · ∇ϕ̂n,k dsdδ
′
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= C′
H

m∑

k=1

∫

Ωδ,k

a(x)∇ϕn · ∇ϕn β(x)−1 dx

≤ C′
H

∫

Ωδ

a(x)∇ϕn · ∇ϕn dx.

Here C′
H is a suitable positive constant. So, passing to the limit as n→ ∞ the

conclusion follows.

We are now ready to prove Proposition 5.2. First, we show that the inequa-
lity (5.1) follows from (7.15) and Poincaré’s inequality by a cut-off function
argument. Picking a smooth function χ such that






0 ≤ χ(x) ≤ 1, x ∈ Ω,

χ(x) = 1, x ∈ Ωδ0 ,

χ(x) = 0, x ∈ Ωδ0/2,

using the Poincaré inequality and the Leibniz rule we obtain

∫

Ω

|χv|2 dx ≤ 2CP

(∫

Ω

χ2|∇v|2dx +

∫

Ω

|∇χ|2v2dx

)
∀v ∈ Ker {γa},

for a suitable positive constant CP . Thus, by assumptions on a(x), it follows
that there exists C = C(a, δ0, CP ) > 0 such that

∫

Ωδ0

|v|2
λ2(x)

d(x)2
dx ≤ C

(∫

Ωδ0/2

a(x)∇v · ∇v dx+

∫

Ωδ0

|v|2
λ2(x)

d(x)2
dx

)
(7.18)

for all v ∈ Ker {γa} . Finally, using (7.15), (7.18) we obtain (5.1).

Next, by Proposition 5.1 we know that the trace operator γa is continuous.
Thus, Ker {γa} is a closed subspace of H1

a(Ω). Furthermore γa(D(Ω)) = 0 and
so, by the definition of H1

a,0(Ω) one has that H1
a,0(Ω) ⊂ Ker {γa}.

Last, it remains to show that Ker {γa} ⊂ H1
a,0(Ω). Let v ∈ Ker {γa} be

given and define the family (vδ)δ, with δ ∈ (0, δ0), in the following way

{
vδ(x) := χ

δ
(x)v(x),

χ
δ
(x) := (d(x)/δ) ∧ 1.

Since the injection of H1(Ω) into H1
a(Ω) is continuous, it is sufficient to show

that

(i) vδ ∈ H1
0 (Ω) for all δ ∈ (0, δ0);

(ii) vδ → v in H1
a(Ω) as δ → 0.
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Proof of (i) : one has that

∫

Ω

v2
δ + |∇vδ|

2 dx ≤

∫

Ω

v2 dx+ 2

∫

Ω

|v∇χδ|
2 + |χδ∇v|

2 dx

=

∫

Ω

v2 dx+
2

δ2

∫

Ωδ

v2 dx+ 2

∫

Ωδ

|∇v|2 dx +
2

δ2

∫

Ωδ

|d(x)∇v|2 dx (7.19)

≤

∫

Ω

v2 dx+
2

δ2

∫

Ωδ

v2 dx+ 2

∫

Ωδ

|∇v|2 dx + c−1
0

2

δ2

∫

Ωδ

a(x)∇v · ∇v dx.

So, (vδ)δ ⊂ H1(Ω). It remains to prove that γvδ = 0 for all δ ∈ (0, δ0). Since
v ∈ Ker{γa} ⊂ H1

a(Ω), by Proposition 3.1, there exists (ϕn)n ⊂ C∞(Ω) such
that ϕn → v in H1

a(Ω), we have

Ker{γa} ∋ χδϕn → χδv = vδ in H1
a(Ω),

then, because Ker{γa} is closed, one has that vδ ∈ Ker{γa}. Thus, we have
obtained that γ(vδ) = γa(vδ) = 0 for all δ ∈ (0, δ0).

Proof of (ii) : one has that

∫

Ω

|v − vδ|
2 + |σ(x)∇(v − vδ)|

2 dx

=

∫

Ωδ

(1 − χδ)
2v2 + | − vσ(x)∇χδ + (1 − χδ)σ(x)∇v|2 dx

≤

∫

Ωδ

v2 dx+ 2

∫

Ωδ

|σ(x)∇v|2 dx+
2

δ2

∫

Ωδ

v2|σ(x)∇d(x)|2 dx.

(7.20)

Finally, we estimate the last term of (7.20). By (7.15), one has

2

δ2

∫

Ωδ

v2|σ(x)∇d(x)|2 dx =
2

δ2

∫

Ωδ

v2λ2(x) dx ≤ 2

∫

Ωδ

v2λ2(x)

d(x)2
dx

≤ 2C′
H

∫

Ωδ

|σ(x)∇v|2 dx.

(7.21)

From (7.20), (7.21) we obtain

∫

Ω

|v − vδ|
2 + |σ(x)∇(v − vδ)|

2 dx ≤

∫

Ωδ

v2 dx+ 2(C′
H + 1)

∫

Ωδ

|σ(x)∇v|2 dx.

By passing to the limit as δ → 0, the conclusion follows.

7.7. Proof of Proposition 5.3

In order to prove Proposition 5.3, we first give some regularity and density
results.
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Lemma 7.6 In the (WD) case there holds H1
a(Ω) ⊂W 1,1(Ω).

Proof of Lemma 7.6. Because H1
a(Ω) ⊂ H1

loc(Ω), it is sufficient to prove that if
u ∈ H1

a(Ω), then ∂iu ∈ L1(Ωδ) for i = 1, 2 and δ ∈ (0, δ0/2). By Lemma 7.2 one
has

∫

Ωδ

|∂iu| dx ≤

(∫

Ωδ

d(x)−α dx

∫

Ωδ

d(x)α|∂iu|
2dx

) 1
2

=

(∫ δ

0

dδ′
∫

Γδ′
d−α dr

∫

Ωδ

d(x)α|∂iu|
2dx

) 1
2

≤

(
c−1
0

∫ δ

0

(δ′)−α|Γδ′

| dδ′
∫

Ωδ

a(x)∇u · ∇u dx

) 1
2

.

Here, |Γδ′

| denotes the length of Γδ′

. So, since δ′ 7→ |Γδ′

| is a bounded continuous
function on (0, δ0/2) and α ∈ (0, 1), we obtain the conclusion.

Lemma 7.7 In the (WD) case, for v ∈ H1
a(Ω), denote by ṽ its trivial extension

on R2:

ṽ(x) :=

{
v(x) x ∈ Ω

0 x ∈ R2 \ Ω.

Then, if ṽ ∈W 1,1(R2), one has that v ∈ H1
a,0(Ω).

Proof of Lemma 7.7. Let us consider the open covering {Uk}
m
k=0 of Ω defined

in Section 7.1. We observe that, since Γ ∈ Cr with r ≥ 2, it is possible to find
{Uk}

m
k=0 such that, for k = 1, . . . ,m, the sets Ωk := Ω∩Uk are star-shaped (see,

e.g., Temam, 1977) with respect to one of their points. Moreover, let us consider
the partition of unity (χk)m

k=0 subordinated to this covering and v ∈ H1
a(Ω); we

may write

v(x) =
m∑

k=0

χk(x)v(x) on Ω.

Since the function χ0v has compact support in Ω, it belongs to H1
a,0(Ω). Thus

it remains to prove that all function vk := χkv, where k ≥ 1, belongs to the
same space. After a translation in R2 we can suppose that Ωk is star-shaped
with respect to 0 ∈ Ωk. Let us consider the family

vk,λ(x) := ṽk(λx), λ ≥ 1, x ∈ Ω,

where ṽk is the trivial extension of vk in R2. Since

H1
a(Ωk) ∩W 1,1

0 (Ωk) = H1
a,0(Ωk)

and vk ∈ H1
a(Ωk), to obtain the conclusion it is sufficient to prove that
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(i) vk,λ ∈W 1,1
0 (Ωk);

(ii) vk,λ → vk in W 1,1(Ωk) as λ→ 1.

We have that supp{vk,λ} ⊂ λΩk := {x ∈ Ωk | λx ∈ Ωk}, thus in order to prove
(i), it is sufficient to show that vk,λ ∈W 1,1(Ωk). Preliminarily, we observe that
if ṽk ∈ W 1,1(R2) then

(1) (∇ṽk)(x) = (∇vk)(x), x-a.e. in Ωk;

(2) (∇vk,λ)(x) = λ(∇ṽk)(λx), x-a.e. in R2.

Here, ∇ is the distributional gradient. One has that

‖vk,λ‖W 1,1(Ωk) =

∫

Ωk

|vk,λ(x)|dx +

∫

Ωk

|∇xvk,λ(x)|dx

(2)
=

∫

λΩk

|vk(λx)|dx +

∫

λΩk

λ|∇xṽk(λx)|dx

=

∫

Ωk

λ−1|vk(y)|dy +

∫

Ωk

|∇y ṽk(y)|dy

(1)
=

∫

Ωk

λ−1|vk(y)|dy +

∫

Ωk

|∇yvk(y)|dy.

(7.22)

So, by Lemma 7.6, (i) holds. Now we prove point (ii). By the definition of vk,λ,

{
vk,λ(x) → vk(x) x-a.e. in Ωk as λ→ 1,

‖vk,λ‖L1(Ωk) → ‖vk‖L1(Ωk) as λ→ 1,

thus it follows that

vk,λ → vk in L1(Ωk) as λ→ 1.

By the same argument we want to prove that

∫

Ωk

|∇(vk,λ − vk)| dx→ 0 as λ→ 1.

We know that

∇vk,λ(x)
(2)
= λ∇ṽk(λx)

(1)
= λ∇vk(λx) x-a.e. in Ωk .

Then
{

∇vk,λ(x) → ∇vk(x) x-a.e. in Ωk as λ→ 1,

‖∇vk,λ‖L1(Ωk)2 = ‖∇vk‖L1(Ωk)2 ∀ λ ≥ 1.

Lemma 7.8 In the (WD) case C∞(Ω)2 is dense in Hdiv,a(Ω).
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Proof of Lemma 7.8 . Let f ∈ (Hdiv,a(Ω))′, by the Riesz Theorem there exists
a unique g = (g1, g2) ∈ Hdiv,a(Ω) such that

< f,w > =

∫

Ω

a−1g · w dx+

∫

Ω

div(g)div(w) dx, ∀w ∈ Hdiv,a(Ω).

Set h := div(g), if f = 0 on C∞(Ω)2 we have that

∫

Ω

a−1g · ϕdx = −

∫

Ω

hdiv(ϕ) dx ∀ϕ ∈ C∞(Ω)2. (7.23)

In particular, (7.23) holds for all ϕ ∈ D(Ω)2, then ∇h = a−1g in the sense of
distributions, and thus h ∈ H1

a(Ω).

Set

ã−1g :=

{
a−1g in Ω

0 in R2 \ Ω
, h̃ :=

{
h in Ω

0 in R2 \ Ω
,

by (7.23) one has that

∫

R2

ã−1g · ψ dx = −

∫

R2

h̃div(ψ) dx ∀ψ ∈ D(R2)2. (7.24)

Observe that by Lemma 7.6, h ∈W 1,1(Ω). Then ∇h = a−1g ∈ L1(Ω)2 and thus

ã−1g ∈ L1(R2)2. Moreover, it follows from (7.24) that ∇h̃ = ã−1g in the sense

of distributions; so, we have obtained that h̃ ∈ W 1,1(R2). Finally, by Lemma
7.7 one has that h ∈ H1

a,0(Ω).

In sum, we have shown that, if f ∈ (Hdiv,a(Ω))
′

is such that < f, ϕ >= 0
∀ϕ ∈ C∞(Ω)2, then there exists a unique h ∈ H1

a,0(Ω) such that

< f,w > =

∫

Ω

∇h · w + h div(w) dx ∀w ∈ Hdiv,a(Ω).

The last step to obtain the conclusion is to prove that h = 0. For this purpose
we consider the sequence of functionals (fn)n defined as

< fn, w >:=

∫

Ω

∇hn · w + hn div(w) dx, w ∈ Hdiv,a(Ω),

where (hn)n ⊂ D(Ω) is such that hn → h in H1
a(Ω). For showing that h = 0 it

is sufficient to prove that

(i) < fn, w >→ < f,w > ∀w ∈ Hdiv,a(Ω);

(ii) < fn, w >= 0 ∀n ∈ N, ∀w ∈ Hdiv,a(Ω).
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Proof of (i) :

| < fn − f, w > | ≤

∫

Ω

|σσ−1∇(hn − h) · w| + |hn − h||div(w)| dx

≤

(∫

Ω

a∇(hn − h) · ∇(hn − h) dx

) 1
2
(∫

Ω

a−1w · w dx

) 1
2

+

(∫

Ω

|hn − h|2 dx

) 1
2
(∫

Ω

|div(w)|2 dx

) 1
2

n→∞
−→ 0.

Proof of (ii) : by the standard normal trace theory one has that
∫

Ω

∇hn · w + hn div(w) dx = 〈γνw, γhn〉H−1/2(Γ),H1/2(Γ) = 0

∀w ∈ Hdiv,a(Ω), ∀n ∈ N.

Finally, we are ready to give the proof of Proposition 5.3. Let w ∈ C∞(Ω)2

and v ∈ H1
a(Ω). By Proposition 3.1 we know that C∞(Ω) is dense in H1

a(Ω)
and therefore by the standard normal trace theory one has that

∫

Γ

(w · ν)γav dr = Twv.

Furthermore, by Lemma 4.1 we obtain
∣∣∣∣
∫

Γ

(w · ν)γav dr

∣∣∣∣ ≤ ‖w‖Hdiv,a(Ω) ‖v‖H1
a(Ω) .

Set γav = φ for φ ∈ H
1/2
a (Γ), the last inequality holds for all Φ ∈ H1

a(Ω) such
that γaΦ = φ. Then

∣∣∣∣
∫

Γ

(w · ν)φdr

∣∣∣∣ ≤ ‖w‖Hdiv,a(Ω) inf
{
‖Φ‖H1

a(Ω) | γaΦ = φ
}

= ‖w‖Hdiv,a(Ω) ‖φ‖H
1/2
a (Γ)

.

Hence, the functional

φ 7−→ < J(w · ν)|Γ, φ >:=

∫

Γ

(w · ν)φdr

is continuous in H
1/2
a (Γ) and the operator

w 7−→ J(w · ν)|Γ ∈ H−1/2
a (Γ),

is continuous from
(
C∞(Ω)2, ‖ . ‖Hdiv,a(Ω)

)
into H

−1/2
a (Γ). Here, J is the Riesz

isomorphism in L2(Γ), that is

J : L2(Γ) ∋ h 7−→ Jh ∈ H−1/2
a (Γ), < Jh, v >:=

∫

Γ

hv dr.

So, by the density result claimed in Lemma 7.8 we obtain the conclusion.
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7.8. Proof of Proposition 5.4

As a first step we prove point (1) . Afterward we will show that (1) ⇒ (2) ⇒ (3).
Setting for simplicity< γδ

νw, γ
δv >:= 〈γδ

νw, γ
δv〉H−1/2(Γδ),H1/2(Γδ), preliminarily

we introduce some technical results.

Lemma 7.9 Let w ∈ Hdiv(Ω), v ∈ H1(Ω) be given. Then the functions

[0, δ0/2] ∋ δ 7−→

∫

Γδ

|γδv|2dr,

[0, δ0/2] ∋ δ 7−→ < γδ
νw, γ

δv >

are continuous.

Proof of Lemma 7.9. Let ϕ ∈ C∞(Ω) and δ1, δ2 ∈ [0, δ0/2], recalling the proof
of Lemma 7.2, one has

∣∣∣∣
∫

Γδ1

|γδ1ϕ|2dr −

∫

Γδ2

|γδ2ϕ|2dr

∣∣∣∣

≤

m∑

k=1

∫

Bk

∣∣∣|ϕ(Xk(s, δ1))|
2β(Xk(s, δ1)) − |ϕ(Xk(s, δ2))|

2β(Xk(s, δ2))
∣∣∣ ds

≤ mmax
k

|Bk|

∥∥∥∥
∂

∂δ′

(
|ϕ ◦Xk|

2β ◦Xk

)∥∥∥∥
L∞(Rk)

|δ1 − δ2|.

So, by the density result of Proposition 3.1, it follows that
∫
Γδ |γ

δv|2dr is conti-
nuous in δ. Now, by the Gauss-Green Formula one obtains

∣∣ < γδ1
ν w, γ

δ1v > − < γδ2
ν w, γ

δ2v >
∣∣ ≤ sgn{δ1 − δ2}

∫

Ωδ1\Ωδ2

|div(wv)| dx

≤ ‖w‖Hdiv(Ωδ1\Ωδ2 ) ‖v‖H1(Ωδ1\Ωδ2 ) .

Thus, since |Ωδ1 \ Ωδ2 | tends to zero as δ1 − δ2 tends to zero, the conclusion
follows.

Proof of (1). Let w ∈ C∞(Ω)2, v ∈ H1(Ω) and δ1, δ2 ∈ (0, δ0/2) such that
δ1 < δ2. By Lemma 7.2 and Holder’s inequality one has that

∫ δ2

δ1

∣∣ < γδ
νw, γ

δv >
∣∣2 dδ
δ

=

∫ δ2

δ1

∣∣∣∣
∫

Γδ

(
w · ν ◦ pΓ

)
γδv dr

∣∣∣∣
2
dδ

δ

≤

∫ δ2

δ1

(∫

Γδ

∣∣w · ν ◦ pΓ

∣∣2dr
∫

Γδ

|γδv|2dr

)
dδ

δ

≤ max
δ∈[0,δ2]

(∫

Γδ

|γδv|2dr

)∫ δ2

δ1

(∫

Γδ

∣∣w · ν ◦ pΓ

∣∣2dr
)
dδ

δ

= M(δ2, v)

∫

Ωδ1\Ωδ2

∣∣w(x) · ν(p
Γ
x)
∣∣2

d(x)
dx.

(7.25)
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Since C∞(Ω)2 is dense in Hdiv(Ω), by (7.25) we obtain that for all w ∈ Hdiv(Ω),
v ∈ H1(Ω) one has

∫ δ2

δ1

∣∣ < γδ
νw, γ

δv >
∣∣2 dδ
δ

≤M(δ2, v)

∫

Ωδ1\Ωδ2

∣∣w(x) · ν(p
Γ
x)
∣∣2

d(x)
dx. (7.26)

On the other hand, by assumptions (1),(2),(3) on a(x) we have

‖w‖2
L2

a−1(Ωδ0
) =

∫

Ωδ0

∣∣w(x) · ε1(x)
∣∣2

λ1(x)
+

∣∣w(x) · ν(p
Γ
x)
∣∣2

λ2(x)
dx, (7.27)

thus, from (7.26), (7.27), because a(x) is (SD), it follows that for all w ∈
Hdiv,a(Ω), v ∈ H1(Ω) one has

∫ δ2

0

∣∣ < γδ
νw, γ

δv >
∣∣2 dδ
δ

≤M(δ2, v)C0 ‖w‖
2
Hdiv,a(Ωδ2

) . (7.28)

On the other hand, by Lemma 7.9, δ 7→< γδ
νw, γ

δv > is continuous in δ = 0,
thus by (7.28) one has that

lim
δ→0

< γδ
νw, γ

δv > = < γνw, γv >= 0 ∀w ∈ Hdiv,a(Ω), v ∈ H1(Ω),

which proves point (1) of Proposition 5.4.

(1) ⇒ (2). If v ∈ H1(Ω) and w = a∇u ∈ Hdiv,a(Ω), then by the standard
normal trace theory, one has that Twv =< γνw, γv >. Thus, by (1) we have
that Twv = 0 for all v ∈ H1(Ω). Since H1(Ω) is dense in H1

a(Ω) the conclusion
follows.

(2) ⇒ (3). We prove that if f ∈ (H1
a(Ω))′ is such that f = 0 on D(Ω), then

f is the null functional. By the Riesz Theorem there exists a unique g ∈ H1
a(Ω)

such that

< f, v >=

∫

Ω

gv + a∇g · ∇v dx ∀v ∈ H1
a(Ω).

Thus, if f = 0 on D(Ω), it follows that
∫

Ω

gϕ dx = −

∫

Ω

a∇g · ∇ϕdx ∀ϕ ∈ D(Ω),

that is

div(a∇g) = g (7.29)

in the sense of distributions. By (7.29) it follows that a∇g ∈ Hdiv,a(Ω) and that

−ψ div(a∇g) + ψg = 0 ∀ψ ∈ C∞(Ω).
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Then, by point (2) we have that

0 =

∫

Ω

−ψ div(a∇g) + ψg dx = < ψ, g >H1
a(Ω) ∀ψ ∈ C∞(Ω).

By the density result of Proposition 3.1, the conclusion follows.

7.9. Proof of Theorem 6.1

In this section we prove the main result of this work; for this purpose we use the
Lions method (see, e.g., Baiocchi and Capelo, 1983; Bensoussan et al., 1993;
Lions and Magenes, 1972; Necas, 1967; Showalter, 1977) based on the Lax-
Milgram Lemma. As the first step we give some results related to the bilinear
form q(., .) associated to the operator div(a∇u).

Lemma 7.10 The following results holds:

(1) the injection i : H1
a(Ω) → L2(Ω) is continuous with dense range;

(2) the bilinear form

q(u, v) :=

∫

Ω

a∇u · ∇v dx, u, v ∈ H1
a(Ω),

is continuous, positive, symmetric and there exist λ ∈ R, α0 > 0 such that

q(v, v) + λ ‖v‖
2
L2(Ω) ≥ α0 ‖v‖

2
H1

a(Ω) ∀ v ∈ H1
a(Ω);

moreover, the previous inequality holds for all λ > 0 ;

(3) in the (WD) case, q(., .) is also coercive on H1
a,0(Ω) .

Proof of Lemma 7.10. Obviously, by definition of ‖.‖H1
a(Ω), it follows that i is

continuous. Thus, since C∞(Ω) is dense in H1
a(Ω) by Proposition 3.1, it is also

dense in L2(Ω). Now, we prove point (2). One has that

|q(u, v)| =

∣∣∣∣
∫

Ω

σ∇u · σ∇v dx

∣∣∣∣ =

∣∣∣∣
∫

Ω

σ∇v · σ∇u dx

∣∣∣∣ ≤ ‖σ∇v‖L2(Ω)2 ‖σ∇u‖L2(Ω)2 .

Furthermore, by the definition of ‖.‖H1
a(Ω), for every λ > 0, v ∈ H1

a(Ω), one has

q(v, v) + λ ‖v‖
2
L2(Ω) ≥ (1 ∧ λ) ‖v‖

2
H1

a(Ω) .

Thus, for some λ ∈ (0, 1) we obtain that q(v, v) ≥ 0 for all v ∈ H1
a(Ω). It

remains to prove point (3). By Hardy’s inequality (5.1),

q(v, v) ≥ CH

∫

Ω

v2λ2(x)

d(x)2
dx ≥ C

∫

Ω

v2 dx, ∀v ∈ H1
a,0(Ω),
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where C is a suitable positive constant. Then, one has

q(v, v) ≥
1 ∧ C

2
‖v‖2

H1
a(Ω) , ∀v ∈ H1

a,0(Ω).

Now, we establish the following Green Formula:

Lemma 7.11 If (u, v) ∈ D(A1) ×H1
a(Ω) or (u, v) ∈ D(A2) ×H1

a,0(Ω), one has

∫

Ω

a∇u · ∇v dx = −

∫

Ω

div (a∇u)v dx. (7.30)

Proof of Lemma 7.11. By Corollary 4.1, it is sufficient to check that Ta∇uv = 0.
If u ∈ D(A1), then

Ta∇uv = 〈γν(a∇u), γv〉H−1/2(Γ),H1/2(Γ) = 0 ∀v ∈ H1(Ω).

Besides, H1(Ω) is dense in H1
a(Ω) by Proposition 3.1. Hence

Ta∇uv = 0 ∀(u, v) ∈ D(A1) ×H1
a(Ω).

If (u, v) ∈ D(A2) ×H1
a,0(Ω), then

Ta∇uv = 〈γa
ν (a∇u), γav〉

H
−1/2
a (Γ),H

1/2
a (Γ)

= 0,

since we have proved in Proposition 5.2 that H1
a,0(Ω) = Ker{γa}.

Now, we are ready to prove Theorem 6.1. From Lemma 7.11 and point (2)
of Lemma 7.10, it follows that A1 and A2 are dissipative: indeed for i = 1, 2
one has

< Aiu, u >L2(Ω)=

∫

Ω

div(a∇u)u dx = −

∫

Ω

a∇u · ∇u dx ≤ 0 ∀u ∈ D(Ai).

We observe that by point (3) of Lemma 7.10 it directly follows that A2 is strictly
dissipative, and, by point (2), that A1, A2 are generators of analytic semigroups.
Moreover, by Lemma 7.11 again, it follows that A1 and A2 are also self-adjoint.
Now, we want to prove that A1 is maximal. Let us consider the bilinear form
defined in Lemma 7.10. By the Lax-Milgram Lemma, one has that for all
f ∈ L2(Ω) there exists a unique u ∈ H1

a(Ω) such that
∫

Ω

a∇u · ∇v dx+ λ

∫

Ω

uv dx =

∫

Ω

fv dx, ∀v ∈ H1
a(Ω). (7.31)

In particular, u satisfies the variational problem (7.31) for all v ∈ D(Ω); then
div(a∇u) = −f + λu in the sense of distribution and thus u ∈ H2

a(Ω). Now, by
(7.30), (7.31), we have that for all f ∈ L2(Ω) there exists a unique u ∈ D(A1)
such that

< (A1 − λI)u+ f, v >L2(Ω)= 0 ∀v ∈ H1
a(Ω) ⇔ R(A1 − λI) = L2(Ω),
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where R(A1 − λI) is the range of A1 − λI. In an analogous way one proves
the maximality of A2. Last, it remains to check that, in the (SD) case, the
domain D(A1) is equal to H2

a(Ω). Since u belongs to H2
a(Ω), one has that a∇u

belongs to Hdiv,a(Ω). Thus, by point (1) of Proposition 5.4, one obtains that
γν(a∇u) = 0.

7.10. Proof of Proposition 6.1

We start by observing that u ∈ D(A1) if and only if there exists f ∈ L2(Ω) such
that u ∈ H1

a(Ω) solves the variational problem (7.31). Hence, picking a smooth
function χ such that





0 ≤ χ(x) ≤ 1, x ∈ Ω,

χ(x) = 0, x ∈ Ωδ0 ,

χ(x) = 1, x ∈ Ωδ0/2,

by the assumptions made on a(x), it follows that u ∈ D(A1) solves
∫

Ωδ0

λ1(x)∂ε1u ∂ε1(χv)+λ2(x)∂ε2u ∂ε2(χv)dx+λ

∫

Ωδ0

uχv dx =

∫

Ωδ0

fχv dx,

for all v ∈ H1
a(Ω). So, choosing v = u, with some computations we obtain

that λ
1/2
1 ∂ε1u, λ

1/2
2 ∂ε2u belong to L2(Ωδ0/2). Now, we want to estimate the

distributional derivatives ∂2
ε1
u, ∂2

ε2,ε1
u and ∂ε2(d

κ2∂ε2u). Set

βk(s, δ) := (β ◦Xk)(s, δ), (7.32)

for k = 1, . . . ,m, and let z ∈ H2
a(Ω) be given, with simple computations one

has that





∂ε1z = β−1
k

∂

∂s
(z ◦Xk),

∂ε2z =
∂

∂δ
(z ◦Xk),

∂2
ε1
z = β−1

k

∂

∂s

(
β−1

k

∂

∂s
(z ◦Xk)

)
,

∂ε2(d
κ2∂ε2z) =

∂

∂δ

(
δκ2

∂

∂δ
(z ◦Xk)

)
,

∂2
ε2,ε1

z =
∂

∂δ

(
β−1

k

∂

∂s
(z ◦Xk)

)
.

(7.33)

Let us, for example, compute ∂2
ε1
z, using Lemma 7.1. Since

z = z ◦Xk ◦X−1
k

we have that
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∂ε1z :=∇z · ε1 = (DX−1
k )∗∇(z ◦Xk) · ε1 = ∇(z ◦Xk) ·DX−1

k ε1

=∇(z ◦Xk) · β−1
k e1 = β−1

k

∂

∂s
(z ◦Xk) .

Thus

∂2
ε1
z = ∇(∇z · ε1) · ε1 = (DX−1

k )∗∇(∇(z ◦Xk) · ε1) · ε1

= ∇(∇(z ◦Xk) · ε1) ·DX
−1
k ε1 = ∇

(
β−1

k

∂

∂s
(z ◦Xk)

)
· β−1

k e1

= β−1
k

∂

∂s

(
β−1

k

∂

∂s
(z ◦Xk)

)
.

Since Γ ∈ Cr with r ≥ 3, one has that β ∈ C1(Ωδ0) and Xk is a C2- diffeo-

morphism. Also, β is strictly positive on Ωδ0 . So βk, β−1
k ∈ C1(R

+

k ), where

R+
k := Bk × (0, δ0).

Consequently, in order to obtain the conclusion it is sufficient to estimate the
first and second derivatives of the functions

ûk := u ◦Xk, k = 1, . . . ,m .

Set Ωk := Ω ∩ Uk = Xk(R+
k ) where {Uk}

m
k=1 is defined as in Section 7.1, one

has that u ∈ D(A1) solves
∫

Ωk

d(x)κ1∂ε1u ∂ε1v+ d(x)κ2∂ε2u ∂ε2v dx+ λ

∫

Ωk

uv dx =

∫

Ωk

fv dx, (7.34)

for all v ∈ H1
a(Ωk) which vanish in a neighborhood of ∂Uk .

By defining the Hilbert space

H1(R
+
k ) :=

{
v ∈ L2(R+

k )
∣∣∣ δκ1/2 ∂v

∂s
, δκ2/2 ∂v

∂δ
∈ L2(R+

k )

}
,

endowed by the norm

‖v‖
2
H1(R

+
k ) :=

∫

R+
k

|v|2 + δκ1

∣∣∣∣
∂v

∂s

∣∣∣∣
2

+ δκ2

∣∣∣∣
∂v

∂δ

∣∣∣∣
2

dsdδ,

using the diffeomorphism Xk on (7.34) and setting f̂k := f ◦Xk, it is easy to
see that ûk solves
∫

R+
k

β−1
k δκ1

∂ûk

∂s

∂v

∂s
+βkδ

κ2
∂ûk

∂δ

∂v

∂δ
dsdδ+λ

∫

R+
k

ûkv βk dsdδ =

∫

R+
k

f̂kv βk dsdδ

(7.35)

for all v ∈ H0
1(R

+
k ) := {v ∈ H1(R

+
k ) which vanish in a neighborhood of ∂Rk}.

We note that ûk satisfies the variational problem (7.35) for all v ∈ D(R+
k ) .

Thus, it solves the partial differential equation

Akûk :=
∂

∂s

(
β−1

k δκ1
∂ûk

∂s

)
+

∂

∂δ

(
βkδ

κ2
∂ûk

∂δ

)
= (λûk − f̂k)βk, (7.36)
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in the sense of distributions.

Now, we want to extend the classical difference quotients method for strongly
elliptic problems (see, e.g., Agmon, 1965; Necas, 1967) to problem (7.35). Let
v be a function defined on R+

k such that the distance of the support of v from
∂Rk is positive. For each h ∈ R such that |h| < dist (supp{v}, ∂Rk) we define
the translate of v by

Thv(s, δ) := v(s+ h, δ)

and, if h 6= 0, the difference quotient of v by

Dhv := (Thv − v)/h.

We give some elementary property of the operator Dh which will be useful later:

Lemma 7.12 One has that

(1) ∂
∂δDh = Dh

∂
∂δ , ∂

∂sDh = Dh
∂
∂s ;

(2) all pairs of functions f , g on R+
k which vanish in a neighborhood of ∂Rk

satisfy

Dh(fg) = ThfDhg + gDhf.

Moreover, if f , g ∈ L2(R+
k ), one has

< Dhf, g >L2(R+
k )= − < f,D−hg >L2(R+

k );

(3) if v ∈ H0
1(R

+
k ) then Dhv → ∂v

∂s on D′(R+
k ) as h→ 0;

(4) if v ∈ H0
1(R

+
k ) then Dhv ∈ H0

1(R
+
k );

(5) if v ∈ H0
1(R

+
k ) then δθv ∈ H0

1(R
+
k ) for all θ ≥ min{0, (2 − κ2)/2};

(6) let θ ≥ κ1 and v ∈ H0
1(R

+
k ), one has

∫

R+
k

δθ|Dhv(s, δ)|
2 dsdδ ≤

∫

R+
k

δθ

∣∣∣∣
∂v

∂s
(s, δ)

∣∣∣∣
2

dsdδ.

Proof of Lemma 7.12. The assertions (1), . . . , (5) are only trivial remarks. Hence
it remains to prove (6). We can write

v(s+ h, δ) − v(s, δ) =

∫ 1

0

h
∂v

∂s
(s+ th, δ) dt,

hence

|v(s+ h, δ) − v(s, δ)|2 ≤ h2

∫ 1

0

∣∣∣
∂v

∂s
(s+ th, δ)

∣∣∣
2

dt. (7.37)
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Thus, multiplying both members of (7.37) by δθ, taking the integral for (s, δ) ∈
R+

k and using Fubini’s Theorem, we deduce

∫

R+
k

δθ|Dhv(s, δ)|
2 dsdδ ≤

∫ 1

0

(∫

R+
k

δθ

∣∣∣∣
∂v

∂s
(s+ th, δ)

∣∣∣∣
2

dsdδ

)
dt

=

∫

R+
k

δθ

∣∣∣∣
∂v

∂s
(s, δ)

∣∣∣∣
2

dsdδ.

We are going to prove the main technical result of this section. Preliminarily we
give some notations and definitions. Let θ ≥ 0, first we introduce the following
pre-Hilbert space

H1,θ(R
+
k ) :=

{
δθ/2v ∈ L2(R+

k )
∣∣∣ δ(κ1+θ)/2 ∂v

∂s
, δ(κ2+θ)/2∂v

∂δ
∈ L2(R+

k )

}
,

endowed by the norm

‖v‖2
H1,θ(R+

k ) :=

∫

R+
k

δθ|v|2dsdδ + | v |2
H1,θ(R+

k )

:=

∫

R+
k

δθ|v|2dsdδ +

∫

R+
k

δκ1+θ

∣∣∣∣
∂v

∂s

∣∣∣∣
2

+ δκ2+θ

∣∣∣∣
∂v

∂δ

∣∣∣∣
2

dsdδ .

(7.38)

Lemma 7.13 H1,θ(R
+
k ) is a Hilbert space.

Proof of Lemma 7.13. As first step we define the family

L2
p(R

+
k ) := {w ∈ L1

loc(R
+
k ) | δp/2w ∈ L2(R+

k )}, p ≥ 0.

We pick a Cauchy sequence (vn)n in H1,θ(R
+
k ), there exist u, g1, g2 ∈ L2(R+

k )
such that

(1) vn → v := δ−θ/2u in L2
θ(R

+
k ),

(2) ∂vn

∂s → δ−(κ1+θ)/2g1 in L2
(κ1+θ)(R

+
k ),

(3) ∂vn

∂δ −→ δ−(κ2+θ)/2g2 in L2
(κ2+θ)(R

+
k ).

By (1) we obtain that

∂vn

∂s
→

∂v

∂s
in D′(R+

k ),
∂vn

∂δ
→

∂v

∂δ
in D′(R+

k ).

So, by (2),(3) and the uniqueness of the distributional limit, the conclusion
follows.
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Next, let ψk ∈ D
(
Ωk; [0, 1]

)
with k = 1, . . . ,m be cutoff functions such that

ψk = 1 on Ek := Ω ∩ supp{χk} and u ∈ D(A1) we call




zk := ψku,

ẑk := ψ̂kûk = (ψk ◦Xk)(u ◦Xk),

Ek := X−1
k (Ek) .

Notice that, by definition of {χk}
m
k=0, one has

Ωδ0/2 ⊂ ∪m
k=1Ek . (7.39)

Lemma 7.14 Choosing

(1) θ ≥ 0, if κ1 = 0 and κ2 ≥ 0,

(2) θ ≥ max{κ1, κ1 + (2 − κ2)}, if κ1 > 0 and κ2 ≥ 0,

for each fixed k ∈ {1, . . . ,m}, the differences Dhẑk are uniformly bounded in
H1,θ(R

+
k ).

Proof of Lemma 7.14. Preliminarily we define a bilinear form with coefficients
[g∗, g], as

Q[g∗, g](u, v) :=

∫

R+
k

g∗(s, δ)δκ1
∂u

∂s

∂v

∂s
+ g(s, δ)δκ2

∂u

∂δ

∂v

∂δ
dsdδ,

where u, v ∈ H1(R
+
k ), g∗ and g are two suitable functions on R+

k . We observe
that using Leibniz rule one has

Q[β−1
k , βk](ψ̂ku, v) = Q[ψ̂kβ

−1
k , ψ̂kβk](u, v)

+

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1u

∂v

∂s
+

(
∂ψ̂k

∂δ
βk

)
δκ2u

∂v

∂δ
dsdδ

= Q[β−1
k , βk](u, ψ̂kv)

−

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1v

∂u

∂s
+

(
∂ψ̂k

∂δ
βk

)
δκ2v

∂u

∂δ
dsdδ

+

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1u

∂v

∂s
+

(
∂ψ̂k

∂δ
βk

)
δκ2u

∂v

∂δ
dsdδ.

(7.40)

We suppose also that h is such that

h 6= 0, |h| ≤ min
k

{
dist

(
supp{ẑk} , ∂Rk

)}
. (7.41)
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We begin by proving the point (2). Set

θ0 := max{κ1, κ1 + (2 − κ2)}

in the following we suppose that θ ≥ θ0. By points (4),(5) of Lemma 7.12 one
has that

vθ,h,k := −δθD−hDhẑk ∈ H0
1(R

+
k ).

Next, we compute Q[β−1
k , βk](ẑk, vθ,h,k). Using Lemma 7.12, one has

Q[β−1
k , βk](ẑk,−δ

θD−hDhẑk)

= −

∫

R+
k

β−1
k δκ1

∂ẑk

∂s
δθ ∂

∂s
D−hDhẑk + βkδ

κ2
∂ẑk

∂δ

∂

∂δ
(δθD−hDhẑk) dsdδ

=

∫

R+
k

Dh

(
β−1

k δκ1
∂ẑk

∂s

)
δθ ∂

∂s
Dhẑk +Dh

(
βkδ

κ2
∂ẑk

∂δ

)
∂

∂δ
(δθDhẑk) dsdδ

=

∫

R+
k

Thβ
−1
k δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

+ Thβk δ
κ2+θ

∣∣∣∣
∂

∂δ
Dhẑk

∣∣∣∣
2

dsdδ

+

∫

R+
k

Thβk θ δ
κ2+θ−1∂ẑk

∂δ
D−hDhẑk dsdδ

+

∫

R+
k

Dhβ
−1
k δκ1+θ ∂ẑk

∂s

∂

∂s
Dhẑk +Dhβkδ

κ2+θ ∂ẑk

∂δ

∂

∂δ
Dhẑk dsdδ

+

∫

R+
k

Dhβk θ δ
κ2+θ−1 ∂ẑk

∂δ
Dhẑk dsdδ. (7.42)

Using (7.40), (7.42) and observing that ẑk = ψ̂kûk one has

∫

R+
k

Thβ
−1
k δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

+ Thβk δ
κ2+θ

∣∣∣∣
∂

∂δ
Dhẑk

∣∣∣∣
2

dsdδ

= −

∫

R+
k

Thβk θ δ
κ2+θ−1 ∂ẑk

∂δ
D−hDhẑk dsdδ

−

∫

R+
k

Dhβ
−1
k δκ1+θ ∂ẑk

∂s

∂

∂s
Dhẑk +Dhβkδ

κ2+θ ∂ẑk

∂δ

∂

∂δ
Dhẑk dsdδ

−

∫

R+
k

Dhβk θ δ
κ2+θ−1 ∂ẑk

∂δ
Dhẑk dsdδ

+Q[β−1
k , βk](ûk,−ψ̂kδ

θD−hDhẑk)

+

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1+θD−hDhẑk

∂ûk

∂s
dsdδ
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+

∫

R+
k

(
∂ψ̂k

∂δ
βk

)
δκ2+θD−hDhẑkûk

∂ûk

∂δ
dsdδ

+

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1 ûk

∂

∂s
(−δθD−hDhẑk) dsdδ

+

∫

R+
k

(
∂ψ̂k

∂δ
βk

)
δκ2 ûk

∂

∂δ
(−δθD−hDhẑk) dsdδ . (7.43)

Next, we want to estimate the terms of the second member of (7.43). Using
the definition of θ0, one has that

∣∣∣∣∣

∫

R+
k

Thβk θ δ
κ2+θ−1∂ẑk

∂δ
D−hDhẑk dsdδ

∣∣∣∣∣

≤ θ ‖βk‖L∞(R+
k )

∫

R+
k

δκ2/2

∣∣∣∣
∂ẑk

∂δ

∣∣∣∣ δ
κ2/2+θ−1 |D−hDhẑk| dsdδ

≤ θ ‖βk‖L∞(R+
k ) ‖ẑk‖H1(R

+
k )

(∫

R+
k

δκ2+2(θ−1) |D−hDhẑk|
2
dsdδ

)1/2

≤ θ ‖βk‖L∞(R+
k ) ‖ẑk‖H1(R

+
k )

(∫

R+
k

δκ1+θ |D−hDhẑk|
2
dsdδ

)1/2

.

Indeed, one has that

κ2 + 2(θ − 1) ≥ κ1 + θ ⇔ θ ≥ κ1 + (2 − κ2) .

By point (6) of Lemma 7.12, it follows that

∣∣∣∣∣

∫

R+
k

Thβk θ δ
κ2+θ−1∂ẑk

∂δ
D−hDhẑk dsdδ

∣∣∣∣∣

≤ θ ‖βk‖L∞(R+
k ) ‖ẑk‖H1(R

+
k )

(∫

R+
k

δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

dsdδ

)1/2

≤ θ ‖βk‖L∞(R+
k ) ‖ẑk‖H1(R

+
k ) |Dhẑk|H1,θ(R+

k ).

(7.44)

Next, set

Mk := max

{∥∥∥∥
∂β−1

k

∂s

∥∥∥∥
L∞(R+

k )

,

∥∥∥∥
∂βk

∂s

∥∥∥∥
L∞(R+

k )

}
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and using Lagrange’s Theorem, we have

∣∣∣∣∣

∫

R+
k

Dhβ
−1
k δκ1+θ ∂ẑk

∂s

∂

∂s
Dhẑk +Dhβkδ

κ2+θ ∂ẑk

∂δ

∂

∂δ
Dhẑk dsdδ

∣∣∣∣∣

≤ Mk

∫

R+
k

δκ1+θ

∣∣∣∣
∂ẑk

∂s

∣∣∣∣
∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣+ δκ2+θ

∣∣∣∣
∂ẑk

∂δ

∣∣∣∣
∣∣∣∣
∂

∂δ
Dhẑk

∣∣∣∣ dsdδ.

Hence, by Holder’s inequality one obtains

∣∣∣∣∣

∫

R+
k

Dhβ
−1
k δκ1+θ ∂ẑk

∂s

∂

∂s
Dhẑk +Dhβkδ

κ2+θ ∂ẑk

∂δ

∂

∂δ
Dhẑk dsdδ

∣∣∣∣∣

≤ Mk ‖ẑk‖H1(R
+
k ) |Dhẑk|H1,θ(R+

k ).

(7.45)

Next, one has

∣∣∣∣∣

∫

R+
k

Dhβk θ δ
κ2+θ−1 ∂ẑk

∂δ
Dhẑk dsdδ

∣∣∣∣∣

≤ θMk

∫

R+
k

δ
κ2/2

∣∣∣∣
∂ẑk

∂δ

∣∣∣∣ δ
κ2/2+θ−1 |Dhẑk| dsdδ

≤ θMk ‖ẑk‖H1(R+
k

)

(∫

R
+
k

δ
κ1+θ |Dhẑk|

2
dsdδ

)1/2

≤ θMk ‖ẑk‖H1(R+
k

)
|Dhẑk|H1,θ(R+

k
)
.

(7.46)

Furthermore, since

Q[β−1
k , βk](ûk,−ψ̂kδ

θD−hDhẑk) = −

∫

R+
k

(f̂k − λûk)ψ̂kδ
θD−hDhẑk βk dsdδ

and θ ≥ θ0 ≥ κ1, one has

∣∣Q[β−1
k , βk](ûk,−ψ̂kδ

θD−hDhẑk)
∣∣ ≤

∣∣∣∣∣

∫

R+
k

(f̂k − λûk)D−hDhẑk δ
θβk dsdδ

∣∣∣∣∣

≤

(∫

R+
k

|βk(f̂k − λûk)|2 δθ−κ1 dsdδ

)1/2(∫

R+
k

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

δθ+κ1 dsdδ

)1/2

≤
∥∥∥βk(f̂k − λûk)

∥∥∥
L2(R+

k )
|Dhẑk|H1,θ(R+

k ) .

(7.47)
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Next, one has

∣∣∣∣∣

∫

R+
k

∂ψ̂k

∂s
β
−1
k δ

κ1+θ
D−hDhẑk

∂ûk

∂s
dsdδ

∣∣∣∣∣

≤

∥∥∥∥∥
∂ψ̂k

∂s
β
−1
k

∥∥∥∥∥
L∞(R+

k
)

(∫

R+
k

δ
κ1+θ|D−hDhẑk|

2
dsdδ

)1/2(∫

R+
k

δ
κ1+θ

∣∣∣∣
∂ûk

∂s

∣∣∣∣
2

dsdδ

)1/2

≤

∥∥∥∥∥
∂ψ̂k

∂s
β
−1
k

∥∥∥∥∥
L∞(R+

k
)

(∫

R+
k

δ
κ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

dsdδ

)1/2(∫

R+
k

δ
κ1+θ

∣∣∣∣
∂ûk

∂s

∣∣∣∣
2

dsdδ

)1/2

≤

∥∥∥∥∥
∂ψ̂k

∂s
β
−1
k

∥∥∥∥∥
L∞(R+

k
)

|Dhẑk|H1,θ(R+
k

)
‖ûk‖H1(R+

k
)
.

(7.48)

Likewise, one can prove

∣∣∣∣∣

∫

R+
k

(
∂ψ̂k

∂δ
βk

)
δκ2+θD−hDhẑkûk

∂ûk

∂δ
dsdδ

∣∣∣∣∣

≤

∥∥∥∥∥
∂ψ̂k

∂s
β−1

k

∥∥∥∥∥
L∞(R+

k )

|Dhẑk|H1,θ(R+
k ) ‖ûk‖H1(R

+
k ) .

(7.49)

Finally, we estimate the last two terms of (7.43). One has

∣∣∣∣∣

∫

R+
k

(
∂ψ̂k

∂s
β−1

k

)
δκ1 ûk

∂

∂s
(−δθD−hDhẑk) dsdδ

∣∣∣∣∣

=

∣∣∣∣∣

∫

R+
k

Dh

(
∂ψ̂k

∂s
β−1

k ûk

)
δκ1+θ ∂

∂s
(Dhẑk) dsdδ

∣∣∣∣∣

≤ ck ‖ûk‖H1(R
+
k ) |Dhẑk|H1,θ(R+

k )

(7.50)

for some positive constant ck . Next, one has

∣∣∣∣∣

∫

R+
k

(
∂ψ̂k

∂δ
βk

)
δκ2 ûk

∂

∂δ
(−δθD−hDhẑk) dsdδ

∣∣∣∣∣

≤

∫

R+
k

∣∣∣∣∣
∂ψ̂k

∂δ
βkûk

∣∣∣∣∣ θ δ
κ2+θ−1|D−hDhẑk| dsdδ

+

∫

R+
k

∣∣∣∣∣Dh

(
∂ψ̂k

∂δ
βkûk

)∣∣∣∣∣ δ
κ2+θ

∣∣∣∣
∂

∂δ
(Dhẑk)

∣∣∣∣ dsdδ .

(7.51)
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By Holder’s inequality, one obtains

∫

R+
k

∣∣∣∣∣Dh

(
∂ψ̂k

∂δ
βkûk

)∣∣∣∣∣ δ
κ2+θ

∣∣∣∣
∂

∂δ
(Dhẑk)

∣∣∣∣ dsdδ

≤



∫

R+
k

∣∣∣∣∣Dh

(
∂ψ̂k

∂δ
βkûk

)∣∣∣∣∣

2

δκ2+θ dsdδ




1/2(∫

R+
k

δκ2+θ

∣∣∣∣
∂

∂δ
(Dhẑk)

∣∣∣∣ dsdδ
)1/2

≤ c′k ‖ûk‖H1(R
+
k ) |Dhẑk|H1,θ(R+

k )

(7.52)

for some positive constant c′k . Moreover, one has

∫

R+
k

δκ2/2

∣∣∣∣∣
∂ψ̂k

∂δ
βkûk

∣∣∣∣∣ θ δ
κ2/2+θ−1|D−hDhẑk| dsdδ

≤ θ



∫

R+
k

δκ2

∣∣∣∣∣
∂ψ̂k

∂δ
βkûk

∣∣∣∣∣

2

dsdδ




1/2(∫

R+
k

δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

dsdδ

)1/2

≤ θ c′′k ‖ûk‖L2(R+
k ) |Dhẑk|H1,θ(R+

k )

(7.53)

for some positive constant c′′k . Thus, using (7.52), (7.53) in (7.51) one has

∣∣∣∣∣

∫

R+
k

(
∂ψ̂k

∂δ
βk

)
δκ2 ûk

∂

∂δ
(−δθD−hDhẑk) dsdδ

∣∣∣∣∣

≤ (c′k ∨ θ c′′k) ‖ûk‖H1(R+
k ) |Dhẑk|H1,θ(R+

k ) .

(7.54)

Lastly, using the estimates (7.44), (7.45), (7.46), (7.47), (7.48), (7.49), (7.50),
(7.54) in (7.43) we obtain

∫

R+
k

Thβ
−1
k δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

+ Thβk δ
κ2+θ

∣∣∣∣
∂

∂δ
Dhẑk

∣∣∣∣
2

dsdδ

≤ Ck

(
‖ûk‖H1(R

+
k ) + ‖f̂k‖L2(R+

k )

)
|Dhẑk|H1,θ(R+

k )

for some positive constant Ck. On the other hand, one has

∫

R+
k

Thβ
−1
k δκ1+θ

∣∣∣∣
∂

∂s
Dhẑk

∣∣∣∣
2

+ Thβk δ
κ2+θ

∣∣∣∣
∂

∂δ
Dhẑk

∣∣∣∣
2

dsdδ

≥ C′
k|Dhẑk|

2
H1,θ(R+

k )
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for some positive constant C′
k . Thus, we have obtained that

|Dhẑk|H1,θ(R+
k ) ≤

(
Ck/C

′
k

)(
‖ûk‖H1(R

+
k ) + ‖f̂k‖L2(R+

k )

)
. (7.55)

Using (7.55) and point (6) of Lemma 7.12, we got

‖Dhẑk‖
2
H1,θ(R+

k ) ≤

∫

R+
k

δθ

∣∣∣∣
∂ẑk

∂s

∣∣∣∣
2

dsdδ+
(
Ck/C

′
k

)2(
‖ûk‖H1(R

+
k )+‖f̂k‖L2(R+

k )

)2

for all k = 1, . . . ,m, θ ≥ θ0 and h satisfying (7.41). Finally, by choosing
θ = θ0 = 0 and v0,h,k = −D−hDhẑk, the case (1) can be treated in an analogous
way.

Using Lemma 7.14, it follows that, for suitable θ, κ1, κ2, from the family
Dhẑk we can extract a weakly convergent subsequence in H1,θ(R

+
k ): let ẑ′k be

the weak limit. >From point (3) of Lemma 7.12 and the uniqueness of the
distributional limit it follows that

∂ẑk

∂s
= ẑ′k ∈ H1,θ(R

+
k ), k = 1, . . . ,m,

that is, choosing

θ =

{
0 if κ1 = 0

max{κ1, κ1 + (2 − κ2)} if κ1 > 0 ,

since ẑk|Ek
= ûk, we have proved that

(1) if κ1 = 0 and κ2 ≥ 0, then

∂2ûk

∂s2
, δκ2/2 ∂

2ûk

∂δ∂s
∈ L2(Ek);

(2) if κ1 > 0 and κ2 ≥ 0, then

δ(κ1+θ)/2 ∂
2ûk

∂s2
, δ(κ2+θ)/2 ∂

2ûk

∂δ∂s
∈ L2(Ek).

Thus, from (7.36) we deduce that




∂
∂δ

(
δκ2 ∂ûk

∂δ

)
∈ L2(Ek) in case (1),

δ(θ−κ1)/2 ∂
∂δ

(
δκ2 ∂ûk

∂δ

)
∈ L2(Ek) in case (2).

So, recalling (7.33) the conclusion follows. For instance, let us estimate ∂2
ε1
u

when κ1 = 0 . Using (7.39) one has

∫

Ωδ0/2

∣∣∂2
ε1
u
∣∣2 dx ≤

∫

∪m
k=1Ek

∣∣∂2
ε1
u
∣∣2 dx ≤

m∑

k=1

∫

Ek

∣∣∂2
ε1
u
∣∣2 dx

=

m∑

k=1

∫

Ek

∣∣∣∣β
−1
k

∂

∂s
(β−1

k

∂ûk

∂s
)

∣∣∣∣
2

βk dsdδ ≤ C

m∑

k=1

∫

Ek

∣∣∣∣
∂2ûk

∂s2

∣∣∣∣
2

+

∣∣∣∣
∂ûk

∂s

∣∣∣∣
2

dsdδ,
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where C is a suitable positive constant.
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