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Abstract: We study the generation of analytic semigroups in the
L? topology by second order elliptic operators in divergence form,
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lutions of the corresponding evolution problems support integration
by parts. So, this paper provides the basis for deriving Carleman
type estimates for degenerate parabolic operators.
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1. Introduction

In this work we give some wellposedness results, using the semigroup approach,
for a class of second order parabolic problems, where the characteristic form of
the related second order operator, A, can be degenerate at the boundary of the
domain. We will study equations of the form

up = div(a(x)Vu) +c(t,x)u+f(t,x), (t,z) € @Q:=(0,T)xQ, T >0, (1.1)
Au

where
(1) Qis a bounded open subset of R? with boundary I' := 9Q of class C?;
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(2) a(z) = (aij(x))ijzl are symmetric matrices such that a;; € C°(Q) N
C*(Q) for each 4,7 = 1,2 and

2
a(z)é €= aii(2)&& >0 Vo eQ, £ € R
i,j=1
(3) ce L>®(Q) and f € L*(Q).
The above equation is associated with the initial condition

u(0,z) = uo(z) € L*(Q), (1.2)

and, in the weakly degenerate case defined in Section 2.2, the boundary condi-
tions of Dirichlet type

w=0  in(0,T)xT, (1.3)
or of Neumann type
v-aVu =0 in (0,7) xT. (1.4)

In the strongly degenerate case, (1.1) is associated with boundary conditions of
Neumann type (1.4) only (see also Section 2.2).

In Section 2.2, we shall impose further conditions on a(x). A model example
of such a degenerate coeflicient a(z) is a matrix-valued function such that the
corresponding differential operator Awu, in a suitable local coordinate system
preserving the boundary distance d(z), namely

T = (5a6)7 5:d(1'),
takes the form

_9 -1 'ﬂ% ﬁ "62@
Au—a(ﬁ 5 as)+85 (ﬁé aa)’ (1.5)

where k1, ko are non negative constants and [ is a suitable strictly positive func-
tion which depends on I'. We note that a similar class of operators— though
not exactly the same one—was considered in several papers that studied spec-
tral properties using pseudo-differential calculus, see, e.g., Egorov and Shubin
(1994).

We will use the weighted Sobolev spaces H.(Q), H2(2) (see Section 3) that
are, for an operator of the form (1.5), given to

ov ov
+y . 2/ ¢+ k1/29Y  cry/29Y 2/ e+
H1(ST) : {UEL(8)|5 85’6 aaeL(S )},

Ho(ST) := {u € H1(ST) | Au € L2(8+)},

SJF = (*50750) X (Oa +OO), S0 > 0.
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Similar H}(Q) spaces were introduced in the sixties by Fichera (1956) and
Oleinik and Radkewitch (1973) to study second order operators with nonnega-
tive characteristic. So, in some sense, the subject of this paper can be regarded
as a special case of the theory developed in Fichera (1956), Oleinik (1966),
Oleinik and Radkewitch (1973). On the other hand, due to the specific features
of the problem under investigation, the results we obtain here are much stronger
than the ones obtained for general degenerate operators.

For instance, we show that, in the above spaces, the analogues of standard
extension results for traces and normal traces hold true thanks to a suitable
Hardy type inequality (see, e.g., Alabau-Boussouira et al., 2006; Davies, 1995;
Martinez and Vancostenoble, 2006). Then, we derive a semigroup generation
result that, in turn, yields that problem {(1.1),(1.2)}, associated (1.3) or (1.4),
is well-posed. Finally, we provide maximal regularity estimates for the solution
of a such problem.

The main motivation of this work is to provide wellposedness results in spaces
that are suitable for integration by parts (see Section 4). Therefore, this paper
can also be viewed as a preliminary step to the analysis of null controllability
for degenerate parabolic operators in arbitrary space dimension. Indeed, as is
well-known for uniformly parabolic operators and for degenerate operators in
dimension 1 (see Alabau-Boussouira et al., 2006; Cannarsa et al., 2004, 2007;
Martinez and Vancostenoble, 2006), a key tool for such an analysis are Carleman
estimates, whose deduction heavily relies on integration by parts.

2. Assumptions
2.1. Assumptions on

In the following, €2 is a bounded open set in R? with boundary, T, of class C",
r > 2, and d(z) represents the distance from I', that is,

d(x) := mi — e R?.
(¢) =min|e—y| @

Moreover we name for every § > 0
Qs :={zcQ|dxz) <d}, Q:=0Q\Qs5 TI°:=00.

Since T is compact and at least of class C?, for some number &y € (0,1) we
have that

Ve € Qs, 3y, €T such that d(x) = |z — y.].
We will set y, = p.x (the projection of x onto I'). Further, as is well-known,
Vd(z) = —v(p.x) Vo € Qs,

where v(p.z) denotes the outward unit normal to 2 at p.z (see Section 7.1 for
more details).
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2.2. Assumptions on a

First, we give some preliminary notations. Let O be a subset of R? with suffi-
ciently smooth boundary we define

M3 (R) := {2 x 2 real matrices m = (mij)ijzl},

SQ(R) = {m S MQ(R) | mij = mji},

C"(O; M3(R)) := {0 3z m(z) € M2(R) | my; € C"(O)}, 7> 0.
We also denote by \;(z,m), E;(x,m), (i = 1,2) the eigenvalues and associated
eigenspaces of a matrix-valued function x — m(x) € S2(R) defined on 0. We

recall that, if m(z) € S3(R), we can choose at least two different orthonormal
eigenbases

51(1') m) S (l‘, m)a 52(337 m) € E2(x7 m)
preserving the orientation of R? 1. In the following, we shall call a determination

of unit eigenvectors one choice among all these bases. Further, for simplicity
we will set

Ai(z) = Ni(x,a), ei(z) =¢(x,a), i=1,2
if a is the coefficient of the second order operator in (1.1).

We shall assume that
(1) ac€ C’O(ﬁ; S2(R)) N CH(Q; S2(R));
(2) a(@)E-E>0 Ve, EeR? (ie a(r) >0VreQ)

(3) for all x € Qs, UT there exists a determination of unit eigenvectors
e1(x),e2(x) such that

ea(r) = —v(pre);
(4) there exists a constant C' € (0, 1] such that
a(@)¢-€ > Calws)e- € VEER?,
where
x € Qsy, ws:=x+dv(p.z), §€l0,d(z)].
In this work we shall admit two types of degeneracy for a(x):
— The weakly degenerate case (WD):

Ja €]0,1), co > 0 such that
a(2)§ € > cod(w)*|]* VEER?, x € Qs

ILet v1,v2 € R? a orthonormal basis of R? and [v1|v2] € Mz2(R) such that the j-th column
is equal to v;. So, (v1,v2) preserves the orientation of R? iff det [v1|va] = 1.
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if @ > 0,30 <9 < a such that, for all z € Qj,, the function
0,d(x)) 3§ — Ao(xs)/d(xs)"

is nondecreasing.
— The strongly degenerate case (SD):
3Cy > 0 such that \y(z) < Cyd(z) Vo € Qs,.
Notice that the (WD) case subsumes the nondegenerate case (a(z) > 0Vr € Q).
Now, we give some remarks concerning the above assumptions.

(i) We recall that, if a(z) € S2(R) then, choosing an orthonormal eigenbasis
e1(x),e2(z) of a(x) we can write?

a(z) = Z Ai(x)ei(z) @ei(x).

Notice that this representation formula does not depend on the particular
eigenbasis.

Moreover, since a(r) € S2(R) and it satisfies assumption (2), then there
exists a unique o : Q — S3(R) such that

a(r) =o(x)o(z) V2 eQ, o(x)>0 VYre.

Indeed, as well known, we can choose
2

o(x) =Y Vi) ei(r) @ei().

i=1

One can prove (see, e.g., Bellman, 1960; Freidlin, 1985) that the element
0ij(z) possess the same regularity in z € Q as do the elements of the matrix
a(z). Of course, since a € C°(;S>(R)) and it satisfies assumption (2),

then /A;(z) are continuous in §2. So, we have that
o€ O S (R)) NCHQ; S (R)) .
(ii) Assumption (4) is needed to prove the density result of Proposition 3.1.
A class of coeflicients with this property is given by all maps a satisfy-

ing properties (1),(2),(3) and such that there exist two strictly positive
functions

{b1,bs} C C°(Qs, UT),

such that for each z € Qs,, i € {1,2}, the functions
[0,d(x)] 2 0 — bi(zs)

2The tensor product of two vectors p, ¢ of R? is defined as (p ® ¢)(z) := p(q - x) Vx € R2.
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are nonincreasing and such that
bi(zs) < Ni(ws) < C 1oy (ws).
Indeed, it follows that

for all z € Qs,, § € [0, d(x)].

So, denoting by (&1(2),&(z)) the coordinates of £ € R? relative to the
orthonormal eigenbasis €1 (x),e2(x), one has

a(x)é - & = Ai(@)|&1(2)]* + Ae (@) [E2(2)
> C (M (ws)[€1(25)|* + Aa(ws)|€2(w5)P) = Calws)E - €.

(iii) Another interesting class of coefficients is given by all matrices a(z) sati-
stying properties (1),(2),(3) such that

A(x) = pr(x)d(z)™, A2(z) = p2(x)d(x)™ on Qs UT,

where p1,ps are strictly positive smooth functions and k1, k2 > 0. Obvi-
ously, in this case property (4) is satisfied and

a(z) is (WD) <  ky,k2 € [0,1),
a(z) is (SD) & kg > 1.

2.3. Some examples
Let Q = B(0,1) be the unitary ball in R? and define
A(z) :=d@)™, Ao(z) :=d(x)™, kK1,k2>0.

Observe that, in polar coordinates (p,#), we can write A;(p,0) = (1 — p)~i.
We also define for each (p,8) € (0, 1] x [0,27) the following vector fields

e1(p,0) := (—sinb,cosh), ea(p,0):= —(cosh,sinb). (2.1)

With some computations one has

2
a(p,0) := Z(l —p)"eilp, ) @eilp,0) =

(1—p)=1(cos6)? + (1—p)~2(sin 0)? sinfcos0((1—p)=2 — (1—p)=)

sinfcosf((1—p)=2 — (1—p)"1) (1—p)=2(cos6)? + (1—p)~ (sin 0)?
(2.2)
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Since

plr1,22) = |2| = (aF +23)"/?
cosf(z1,x2) = x1 |21 (2.3)
sin0(z1, x9) = xa|x| ™!

we have that, if K1 # ko, then the matrix in (2.2) can be degenerate on I' =
08B(0,1), it is bounded in B(0, 1), the versor fields

e1(z) = (—aalz| ", zilz| ™),  ea(z) = —(z1|z| ™, zalz| )

are for all x € B(0,1) \ {0} a determination of the eigenvectors of a(z), but, of
course, a it is not defined at the origin.

Instead, in the case of kK1 = ko = K, using (2.2), (2.3) we can write

(1 [a])* 0 _
ak(x) = , T €.
=14 (1 [a])" ©

This matrix-valued function has the same regularity as d(z)”, and the basis
(€1,€2) is a determination of the eigenvectors of a(z) for all x € B(0,1) \ {0}.

Now, we want to give an example of a matrix-valued function on B(0, 1) satisfy-
ing assumptions (1),(2),(3),(4). For this purpose we consider a smooth function
X : B(0,1) — [0,1] such that, for some 0 < §p < 1,0 < d; < 1 — o,

1 x€ 8(0,51),
0 zeB(0,1)\B(0,1—b).

x(z) =

Choosing €1(p, 8), €2(p,0) as in (2.1), we define

2
a(p,0) == x(p,0) Z ei(p,0) ® i(p, 0)
+ (L= x(p,0)) Y (1= p)~ici(p, 0) @ i(p, 0)

i=1

=x(p, )12 + (1 —=x(p,0))a(p,0).

Then, xIz, (1 — x)a € C°(2;S2(R)) N C> (€2 S2(R)) and a is positive definite
in Q.

We can generalize the previous example, by taking 2 as in Section 2.1 and
choosing orthogonal versor fields €1, 2 on R? such that

go(x) = —v(prx) z€ Qs UT
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and functions A1, A2 € C°(Q) N C1(Q) such that A, A\p are strictly positive in
Q and for each x € (5, the functions

[0,d(z)] 2 0 — Ni(zs)

are nonincreasing.
Let x € D(9;]0,1]) be a cut-off function such that

1 zeQn
x(z) =
0 ze€ ng s

where 0 < d3 < §1 < dg. Then, the matrix valued function defined by
2 2 2
a=xY ei®e+(1-x)D> Nei®ei=xh+(1-x)> Aei®e
i=1 i=1 i=1
satisfies assumptions (1),(2),(3),(4) of Section 2.2.

3. Main functional spaces

DEFINITION 3.1 H}(Q) := {v € L?(Q) | aVv-Vv € L}(Q)} is endowed with
the norm

2 2
[0l @) 7= [0l L2) + laVv - Vol Ly g). (3.1)
Here, Vv is the distributional gradient of v.
An equivalent definition of H!(€) is the following

v e HYQ) iff v e L3(Q) and there exists h = (hy, ha) € L} ()2 such that

loc

9

/u “"dxz—/h“odx Vo € D(Q), i =1,2
o) 8:01 O

and

/ a(x)h - hdx < co.
Q

Observe that H(Q) C H(Q) c H}.

5o (2). Moreover, we will prove the following
result (see Section 7.2):

PROPOSITION 3.1 H}(Q) is a Hilbert space. Furthermore, C*°(Q) is dense in

DEFINITION 3.2 H}(Q) := D(Q) Il o
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Let us mention that, in the (SD) case, one can prove that H, ,(Q) = H, ().
On the other hand, in the (WD) case the space H, (€2) may also be explic-
itly characterized (see later on in Propositions 5.2, 5.4). Lastly we define the
following pre-Hilbert space:

DEFINITION 3.3 HZ2(Q) := {u € H}X(Q) | div(aVu) € L*(Q)} endowed with
the norm

lullizz 0y = lullF ) + ldiv (@Vu) |72 - (3.2)

An equivalent definition of H2(2) is the following
u € H2(Q) iff ue HL(Q) and there exists g € L?(Q) such that

/aVu-Vgoda:z—/ggoda: Vo € D(Q).
Q Q

In Section 7.3 we will prove the following

LEMMA 3.1 H2(Q) is a Hilbert space. Moreover, H2(Q) C HZ (Q).

loc

We observe that in the (WD) case, we may have H2(Q2) ¢ H2((2). Indeed, by
choosing, for example

M(z) =1, Xo(z) =d(x)"? ze€Qs,
and a function v € C?(Q) such that
v(z) =1+d(x), =z € Qs,,
one has that v ¢ H2(Q).

4. Trace operators

In this section we recall the standard theory of trace and normal trace ope-
rators (for details see, e.g., Adams, 1975; Baiocchi and Capelo, 1983; Lions and
Magenes, 1972; Necas, 1967; Showalter, 1977; Temam, 1977), and we extend
the standard Normal Trace Theorem to more general function spaces.

4.1. Standard trace theory

Let © C R? be a Lipschitz domain with boundary T' and let ¢ € C>=(Q).
Then, since C>(12) is dense in H'(f2), the map ¢ @|r can be extended to
a continuous map v € L(H'(Q); L*(T)). Moreover, by defining the trace space
H'Y2(I') by

HY2(T) = y(HYQ),  @ll g2y = inf {lollme) | v € HYQ), y0=¢},

one has that H'/?(T) is a Banach space, the injection of H'/2(T) into L?(T")
is continuous with dense range, and, by definition, v € L(H'(Q); H'/2(T)).
Furthermore, we will denote by (H'(2))’ the dual of H'(2), and by H~'/2(T")
the dual of H'/2(T).
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4.2. Standard normal trace theory

Let us consider the Hilbert space
Hyiy(Q) :={w € L*(Q)? | div(w) € L*(Q)},

and, for w € Haiy(§2), the linear functional
Tyv = / div (w)v +w - Vodr, ve H'(Q).
Q

By standard theory, we have :
Vw € Haiv(€2), T, € (H(Q)).

Moreover, since C>(Q)? is dense in Hy;, (), there exists a unique normal trace
operator v, € L(Haiy(Q); H~/?(T')) such that

w = (V- w)r if w € C=°(Q)%
T v = (YW, Y0) gr-1/2(r) mri/2ry  for all w € Haiy(Q), v € HY(Q).

4.3. Extension to a more general space

We introduce the pre-Hilbert space
Ha o) = {w € L21() | div(w) € L2(Q)},
where
L2.(Q):={we L*()? | a'w-w € L'(Q)},
endowed by the norm
013, = a7 0 0] 2 gy + N0 2 (11)

Obviously, one has that Haiv,q(2) C Haiv(2). Hence, for all w € Hgiv,o(), Ty
is defined. We will prove (see Section 7.4) the following

LEMMA 4.1 Hgiyo(Q) is a Hilbert space. Moreover, if w € Hgpo(S2), then
Tw € (HX(Q))" where (H ()" denotes the dual space of HL(Q). Furthermore,
the following integration by parts formula holds :

Y(w,v) € Hgina() x HL(Q),
/ w-Vode = f/ div(w)v dx + Ty v.
Q Q
Finally, the number T, v is characterized by

Tw v = {SimO (’y,‘fw, ’76’U>H*1/2(F5),H1/2(F5)a
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where, for all 5 € (0,80), v° and vS are, respectively, defined as follows:
70 := s o rs where
rs  Hr () > v s € HY(Q) is the restriction operator and
vs € L(HY(Q%); HY/2(T%)) is the standard trace operator,

and

A Yv,5 © Rs where
Rs : Hiin,a(2) > v— Vjgs € Hdiv(Q‘s) is the restriction operator and
Yo.5 € L(Hgin(Q0); H-Y/2(T?)) is the standard normal trace operator.

Observe that using the above definition of Haiy q(f2), space H2({2) may also be
characterized by

H2(Q) ={uc H:Q) | aVu € Haiy.a(Q)}.
Thus, we have :

COROLLARY 4.1 For all u € H3(Q), Tovu € (HL(Q)) and the following inte-
gration by parts formula holds :

Y(u,v) € H2(Q) x HL(Q),

/ aVu-Vvdx = —/ div(aVu)vdz + Tygq v.
Q Q

We recall that, in the general case, 7,v, v is given by
Tovuv = }E%Wf(avu)a76U>H71/2(r6),1{1/2(r6)~

Let us mention that in the (WD) case, 7,v, v may also be characterized by
Tavuv = (75(aVu), Y*0) y-1/2 1y gi/2(pys

where v* and v are the operators defined below (see the following section).

5. Trace extensions on H!(Q)

PROPOSITION 5.1 (TRACE IN H}(Q)) In the (WD) case, there exists a unique
trace operator v* € L(HL(Q); L3(T)) that extends the standard one v € L(H(2);
L*(I)).

On the contrary, we observe that in the (SD) case, in general it is not possible
to define the notion of trace. Indeed, upon choosing, for example,

A(z) =1, X(z)=d(z), =€ Qs,
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any function v € C*(Q) such that

v(x) = log (‘ log (d(ac)) ‘), x € Qs,,
satisfies v € H}(Q) but v = cc on I.
PROPOSITION 5.2 In the (WD) case, there exists a constant Cy > 0 such that

Vv € Ker{~"}, /Q’U2 2?:(52) dx < CH/Qa(ac)Vv-Vvdx. (5.1)

Moreover, the space H,. ((Q) may be characterized by
H () = Ker{y%} i= {v € HA() | 70 =0},

Notice that the Hardy-type inequality (5.1) extends the Poincaré inequality to
the space H} (). As a consequence, the Hilbert space Hj ((€2) may be endowed
with the following norm

Yv € H;,O(Q)7 H’UHH;O(Q) = HaVv . V’UHLl(Q),

that is equivalent on Hy () to the previous norm || - || g1 (q)-

DEFINITION 5.1 (TRACE SPACE)

H,*(T) :=7"(H, ()

a

is a Banach space endowed with the norm
¥o € Hy2(D), 19l gure gy = inf {lvlmae) | v e Hy(Q), v*v = ¢}.

We also denote by Ha_l/Q(I‘) the dual space of H;/Q(I‘).

PROPOSITION 5.3 In the (WD) case , there exists a unique normal trace oper-
ator 4% € L(Hgin,a(2); Ha "/*(T)) such that

{fyzw = (v -w)r if we (@)
T v = (YW, Y'0) y—1/2py 2y Jor all w € Haina(Q), v € HL(Q).
Notice that, since Hgip,o(2) C Hgin(£2), then

Yow =yw Yw € Hgip,o ().
PROPOSITION 5.4 In the (SD) case one has that
(1) Haiv,a(2) € Ker{y,} := {w € Hiw(?) | vw=0};
(2) ¥ (u,v) € HZ(Q) x Hy(Q),

aVu - Vudr = 7/ div(aVu)vdx;

Q Q

(3) Hg(Q) = H, ().

a
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6. Well-posedness
6.1. The degenerate problem

Let us fix T > 0 and introduce the notations @ := (0,7)xQ and ¥ := (0,T) xT.
We are interested in the following evolution equation

up — div (a(z)Vu) + c(t, x)u = f(t, ) in Q, (6.1)

where f is given in L?(Q) and ¢ € L>=(Q). We associate with this equation the
initial condition

u(0, ) = ug(z) € L3(Q), (6.2)
and boundary conditions of Dirichlet type

Yu=0 in %, (6.3)
or of Neumann type

Tw(aVu) =0 in X. (6.4)

The choice of the boundary conditions depends on the way a(z) degenerates at
the boundary. If a(x) is (WD), it is possible to consider both boundary condi-
tions. Indeed, by the results established in the previous sections we know that,
as in theory of uniformly parabolic equations, we can define trace operators v¢,
~v&. So, by standard methods well-posedness follows. On the other hand, trace
operator v* does not make sense when a(x) is (SD). Moreover, by Proposition
5.4 we know that H, () = H, 4(Q); so, H, 4(€2) is not a suitable space to deal
with homogeneous Dirichlet boundary conditions. Hence, when a(z) is (SD),
we only consider the Neumann boundary condition (6.4). We now give the main
result of the paper:

THEOREM 6.1 One has that
(1) in both (WD) and (SD) cases, the operator (A1, D(A1)) given by
Ayu = div(aVu), D(A))={uec H3(Q) | v,(aVu) =0},
is m-dissipative and self-adjoint. Moreover, in the (SD) case,
D(Ay) = HX(Q).
(2) In the (WD) case, the operator (As, D(As)) given by
Agu = div(aVu), D(A3) = H2(Q)N H;O(Q)

is m-dissipative and self-adjoint. Moreover, As is strictly dissipative,
that is

sup { < Aau,u >r2() | u € D(Ay), ull2(q) = 1} <o.
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As a consequence, both A1 and As are the infinitesimal generators of the strongly
continuous semigroups denoted by e*41, e!42 respectively. We will also show (see

Section 7.9) that e*41, e*42 are analytic. Moreover, the family of operators in
L(L?*(Q)) given by

C(tyu = c(t,)u, te(0,T), wueL*Q)

can be seen as a family of bounded perturbation of A; (resp. As). Thus, using
standard techniques (see, e.g., Bensoussan et al., 1993; Cazenave and Haraux,
1998; Showalter, 1977), one can prove the following well-posedness results.

THEOREM 6.2 In both the (WD) and the (SD) case, for all f € L*(Q) and ug €
L%(RY), there exists a unique weak solution we C° ([0,T]; L*(Q))NL? (0,T; H2(S))
of {(6.1), (6.2)} with homogeneous Neumann boundary conditions (6.4). More-
over, one has

T T
sup ()]s )+ / Ja(®)2ps gt < C (nuon%m) + / IIf(t)||%2<Q>dt> ,
te[0,7] 0 0

for some constant C' > 0.

THEOREM 6.3 In the (WD) case, for all f € L?(Q) and ug € L3*(), there
exists a unique weak solution u € C°([0,T);L*(Q)) N L* (0,T;H} () of
{(6.1), (6.2) } with homogeneous Dirichlet boundary conditions (6.3). Moreover,
one has

t€[0,T]

T T
sup ||u(t)||2L2(Q)+/O |\U(t)|‘§{;0(ﬂ)dt <C <||u0||2L2(Q) +/0 ||f(t)||2L2(Q)dt> ;

for some constant C > 0.

6.2. Space regularity of solutions

Now, we give some L2-estimates for the first and second derivatives of functions
win D(A1) or in D(As).

In order to estimate solutions near the boundary, we first introduce the notions
of (distributional) directional derivatives along the unit eigenvectors of a:

Oz,u(z) == gi(x) - Vu(z), z€Qs, i=1,2.
For simplicity, we reduce our analysis to the particular case
M(z) =d(@)™, d(x) =d@)™, z€Qs,,

where k1, ko > 0.
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PROPOSITION 6.1 LetT' € C™ with r > 2. Then every u € D(A1) satisfies
d*1/29. u, d*2/?0.,u € L*(Qs, o).

Moreover, for r > 3 the second order derivatives can be estimated by distingui-
shing the two following cases:

(1) if k1 =0 and kg > 0, then

02 u, d®2/202, _ u, O-,(d™0-,u) € L*(Qs,)2);

€2,€1
(2) if k1 >0 and Ky > 0, then
d(”1+9)/28€21u, d<l{2+6)/28622,61u7 d(einl)/2a€2(dﬁza€2u) € L2(Q<50/2)7
where
0 := max{k1, k1 + (2 — K2)}.

Notice that if u € D(Az), one can prove that u satisfies properties (1) or (2) of
Proposition 6.1, as arguing in Section 7.10.

7. Proofs
7.1. Notations and preliminary results

We start summarizing some properties of the oriented boundary distance, that
will be used in most proofs (for details see, e.g., Cannarsa and Sinestrari, 2004;
Delfour and Zolesio, 1994; Gilbarg and Trudinger, 1983).

ProprosiTION 7.1 If T is a compact C"- differentiable curve with r > 2, then
there exists 8o > 0 such that for all x € B(T', o) := {x € R?* | d(z) < &0} there
exists a unique p.x in I' such that

(1) d(z) = |z —ppxl,
(2) T =PrZ — V(prz)dr (Z);

where v is the outward unit normal to Q and dr is the oriented boundary distance
defined by

p B d(z), x€Q,
rlo) = —d(z), zeR*\Q.

Moreover, one has that

(3) pr € CTHB(T, d0))?,

(4) d. e C"(B(T,d0)),

(5) Vd.(z) =—v(p.x) Vz e B(T,d).
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We observe that, by taking ¢;(z) := (g; o p.)(z) for i = 1,2, where e1(z),
g2(x) is a determination satisfying assumption (3) on a(z), one can extend these
vector fields to B(T',dp). As a consequence, one has

k(pp)

Dy (@)er(®) = — 10 v a @)

e1(x), D?d.(x)ea(x) =0, Vae B(,d).

Here, k(p.x) is the curvature of T" at p.a. Thus, using the notion of tensor
product,

D%d.(z) = —% e1(z) ®e1(z), =€ B(T,d). (7.1)

Notice that the function

Bla) =1 k(pr)d, (z) (7.2)
is strictly positive in B(T', dy) .

Next, we introduce the following map:
X(v,):Rp — R?
(5,0") = X(v,)(s,0") := 1, (s) = v(7,(5))d,

where

Y, (—8py sp) = R?, 5, >0
is a suitable C" local parametrization of I' such that

7,(0)=p, (s) =e1(7,(5), s€ (=5p,5p)
and

Ry = (—8p, 8p) X (—00,00) C R%.
Notice that, since I' € C", v € C™ (). Thus X(v,) € C""}(R,)?. For
simplicity, in the following we will set X, := X (v, ).

LEMMA 7.1 IfT' € C" with r > 2, then X, is a C"'- diffeomorphism of R,
onto X,(Rp). Moreover, the following results hold:

det DXy (s,0") = B(X,(s,0"));

DX, H(x)ez(x) = eg;

DX, H(z)er () = B(z) " ex;

a(z) := DX, H(z)a(z)(DX, (z))* = diag{\1(x)B(z) "% Xa(z)}.
Here, (e1,ez) is the standard basis of R? and f3 is defined as in (7.2).
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Proof of Lemma 7.1. Since 7, : (—Sp, Sp) — R? is one to one, it follows that X,
is invertible and its inverse is

X;l Xp(Rp) 22— (fy;l(prm),dr(z)) ERp.
Thus, by Proposition 7.1 it follows that
forallr >2, T'eC"™ = X,isa C"~ 1. diffeomorphism .

Let us compute the jacobian of X, :

0X d d
SL5,0) = T2 (s) = - (v(p(9)) 7

0X, N
25 (5,0") = —v(vp(9))-

Moreover, by the chain rule one obtains

% (V(%(S))) = D(¥(Pr ) jo=r,(5)81() o=, (s)

and by point (5) of Proposition 7.1 it follows that
D(l/(pFI))El (I) = _D2dr (I)El (I)

(7.4)

Since
D?d.(z)e1(x) = —k(z)e1(x) Vo el
(see (7.1)), by (7.4), we obtain that
DX,(5,6") = [e1(7p(5))B(Xp(5,0") | —v(7p(s))]- (7.5)
By assumption (3) on a(z) we know that ex(z) — —v(p.a) . So,
det [e1(z)| = v(pr2)] =1
whence
det DX ,(s,8") = B(X,(s5,0")) det [e1(7p(s)) | —v((s))] = B(Xp(s,8")).
Now, with easy algebraic computations, by (7.5) we obtain
DX, Nz) = [e1(2)B(x) " | ea(2)] .
Proof of (2):
DX, !(z)ea() = [e1(2)B(z) " | ea()] ea(w)
= (B(z) te1(@) - e2(x), e2(x) - £2(2)) = eo.
Proof of (3):
DX, ! (z)e1(z) = [e1(2)B(z) " | ea(x)] €1 ()
= (B(z) ter(@) - e1(@), e2(x) - e1(2)) = Bla) e
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a() = DX, (1) (M (@)1 (2) © 21(2) + a(w)ea (@) @ 2a(2) ) (DX, (@)
= M (2)DX,;  (2)e1(2) © DX, (2)er ()
+ do(2) DX, (2)e2(z) ® DX, M (2)ea ()
=M (2)B(7) 2 e1 @ €1 + Xa(T) €2 @ en
= diag{ 1 (2)B(z) "2, A2 () } . [ |

Now, we construct a system of localizations for the functions of H!(Q).
Since I' is compact, there exists a finite number of points pi,...,p, € I' such
that I' € UL, X, (Rp,); here, the sets Ry, and the maps X,, satisfy the
assumptions of Lemma 7.1. For k € {1,...,m}, we denote

By = (751%’ Spk)v Ri =Ry, Uk =X, (Rpk)
and set Uy := Q%/2 50 that one has that Q C Uit o Uk

Furthermore, choose xx € D(Uy; [0, 1]) such that >y Xr = 1 on a neighbor-
hood of € and set for simplicity

X = Xp,, Xo:=id.

Then, it is possible to rewrite v € H1(Q) as

v=>" v,oX tonQ,
SILyoeo X, )
v = Xxv o Xg.
We will call the functions vy, , k € {0,...,m}, the associated functions of v.

Last, we give the following

LEMMA 7.2 If f € C°(2) N LY(Q), then for all § € (0,80/2) one has that

N f(z)de = /0(S (/F fdr) do’.

Proof of Lemma 7.2. Using the previous setting it is possible to rewrite f in the
following form

f=Y0 fuo Xy ! on Qs
fre = xuf o Xk

Thus, because s — Xj(s,d’) is a local parametrization of %, by definition of
line integral one has

/. fdr= / Z feo X tdr = Z fr(Xi(s,0"))B(X(s,8"))ds. (7.7)
re’ | AC— =1 Bk
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On the other hand, one has that
mo .6
farde =Y [ [ FilXu(s, 880X (5 8))dsds’ .
Qs =170 JB;

7.2. Proof of Proposition 3.1

Let, for ¢ = 1,2, \;(z) and ;(z) be respectively, the eigenvalues and the unit
eigenvectors of the symmetric matrices a(z) = o(x)o(z). We observe that by
assumptions on a(x), it follows that \;(z) > 0 and o~ !(z) is defined Vz € Q.
Moreover, for all § € (0,dp), we can write

/ a(z)Vu - Voder = / o(z)Vv - o(x)Vvdz
Q )
(7.8)

2
:/ o(z)Vv-a(:c)Vvd:chZ/ les - Vol Ms(x) da.
Q0 i=1 /%

First step. We want to prove that H!(£2) is complete for the norm defined in
(3.1). For simplicity, we define the weighted space

L3(Q) := {w € Li,.(Q)? ‘ /Qa(z)w cwdr < oo} .

Let (v,)n be a Cauchy sequence in H!(Q). Then there exist v € L?(Q),
g = (g91,92) € L*(2)? such that

vy — v in L*(), oVou, — g in L*(Q)%

Therefore, if we show that Vo = o~ !¢ , we obtain the conclusion. For this
purpose, since

v, — v in L*(Q) = Vv, — Vo in D'(Q)
and the distributional limit is unique, it is sufficient to prove that
Vv, — o g in L2(Q) = Vv, —o g in D'(Q).

For all ¢ € D(Q) one has that

/(an — o tg)pdr
Q

< ol / Ve ol
supp{¢

1/2
< el oo o 192112 </ (Vo, —07'g) - (Vv —0'g) dfﬂ)
supp{«}

n—oo

< el Lo (o Q'* sup ||“_1($)||1/2 HVU" _0_19”1;2(9) — 0.
z€ supp{¢} “
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Second step. Now, we prove that H({2) is dense in H!(Q); we observe that,
since the injection of H'(Q) into H!(£2) is continuous, it directly follows from
this result that C°>°(Q) is dense in H}(Q). Let v € H}(Q) be given and define
the family (vs)s, with § € (0,00/2), in the following way:

v(x), =€,
vs(x) ==
v (pF%x + V(prx)d(x)) , T E Qé;
where p_,, x is the projection of x onto I'?%. We want to show that
(i) vs € HY(Q) for all § € (0,50/2);
(ii) vs — v in HY(Q) as § — 0.
For this purpose, we first state a preliminary lemma:

LEMMA 7.3 Let 6 € (0,80/2), if T € C" with r > 2, then the map
Ps P T Pl =D s T+ V(prz)d(z)a

is a C"~1- diffeomorphism of Qs onto Q0 \ Q2°. Moreover, for all x € Qs, one
has that

(1) psps=a;

(2) detDp,(x) = —B(psx)B(x)~";

(3) Dp,(z)e2(z) = —e2(w);

(4) Dp,(z)ei(z) = Blp,2)B(z) " e1(x).

Proof of Lemma 7.3. As a direct consequence of the definition it follows that p;
is a one to one map of 5 onto Q2° \ Q2 of class C"~! and satisfying (1). Using
Proposition 7.1 and (7.1) we compute the jacobian of p,.

Dp,(x) = D (2 — v(p.2)(20 — d(z)) + v(p,2)d(z))
= I, + 2D (v(p.z)(d(z) — 0))
=L+ 2v(p.x) @ V(d(z) — §) + 2(d(z) — 6)Dv(p.x)
=1, — 2v(p.z) @ v(p.x) + 2(d(x) — §)D*d(x)

2(d(z) — 6)k(p )
1 — k(prx)d(z)

= B(p;x)B(z) e1(z) @ e1(x) — 2(x) @ ea(x). u

Now let us complete the proof of Proposition 3.1.

e1(z) ® e1(x)

2
- Z gi(z) ® gi(w) — 2e2(z) ® ea(x) —

Proof of (i) : preliminarily, we observe that since H!(Q) c H\ _(Q), then

vops € HY(Qs) and e
V(vop,)(x) = (Dp,(x))*Vu(psx), =x-a.e. in Q. (7.9)
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As a consequence, for all ¢ € D(£2) one has

/05V<pd:c:/ vVgpd:ch/ vop;Vpdx
Q Qs Qs
:f/ chpd:c+/ Yvy0p (vop.)dr
Qs e

(7.10)
—/ V(UOps)goda:—/ 76(00p5)76<p (vop.)dr
Qs s

r
:f/ Vs pdz
Q

Vv in Q°

where

Vv(;:
V(wop,) in 5.

Proof of (i) : one has that

2 2 2 2
lvs = vl 1) = llvs = vl o) < 21011 0, + 2 l10sll 1 0y »

where ||’UH§{1(QJ) — 0 as & — 0. So, it is sufficient to estimate the term

||v5||§{1(96). By assumptions (1),(2),(3) on a(z), (7.8), (7.9) and Lemma 7.3,
one has that

/Q 5 v3(z) + a(z)Vs(x) - Vos(z) do

= /96 v3(z) + | Dp, (z)ea(z) - Vo(psz)[*Aa(x) + | Dp, (2)e1(z) - Volpyz)[* A (z) da
- /Qd V2 () + lea (@) - Vo(p,o)[PAe(@) + B(ps2)*B(x) 2|er(z) - Vo(p,2)|* M (z) da
= /95\925 (02(9) + le2(y) - Vv(y)|2/\2(p6y)> Blpsy)Bly) " dy

4 / Bosy)*Bu) " ler(y) - Toly) [P (o, ) dy -
96\926

(7.11)

Since (3 is a bounded strictly positive function, by (7.11) and assumption (4)
on a(z) one has

/ v3(z) + a(z)Vus(x) - Vus(z)dz < C v2(y) + a(y)Vv - Vody
Qs 96\926

for some positive constant C. As we pass to the limit as § — 0, the conclusion
follows.
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7.3. Proof of Lemma 3.1

We want to show that H2(Q) is complete for the norm defined in (3.2). Let
us consider a Cauchy sequence (uy), in H2(€)). Then there exist u € H(Q),
h € L?(2) such that

U, — u in H}Q), div(aVu,) — h in L*(Q).

Since the distributional limit is unique, to obtain the conclusion it suffices to
prove that

u, —u in HY(Q) = div(aVu,) — div(aVu) in D'(Q).

For all ¢ € D(f2) one has that

/Q (div(aVuy) — div(aVu)) e dz

= ‘— / (aVu, —aVu) - Vodz
)

<[Vl Lo (2 sup IIU(IE)H/ lo(Vup — Vu)| dx
zEN Q

n—oo

< IVl @2 5P flo (@) QY2 lun = ull gy 0.
x

7.4. Proof of Lemma 4.1

First step. We want to prove that Hg;, (€2) is complete for the norm defined
in (4.1). Let us consider a Cauchy sequence (wp)n in Hgi o(2). It follows
that o~ 'w, and div(w,) are also Cauchy sequences, respectively, in L%(Q)?2
and in L?(Q); then, o~ w, converges to some limit u in L?(2)2, that is, w,
converges to w = ou in L?_,(Q), and div(w,) converges to some limit g €
L?(€2). Furthermore, one has that

w, —win L2,(Q) = div(w,) — div(w) in D'(Q).
By the uniqueness of distributional limit, g = div(w).

Second step. We begin by proving that if w belongs to Hygiy,q(2), then 7, is
in (HL(Q))'. Let v e H(Q), then

|Zwv| =

/ div(w)v + oo tw - Vo dx
Q

< ldiv(w) 2y [Vl L2y + lo7 wl[ 12 g2 1oV 0]l L2 (g2
< (o el oy + Miv@)l 2y ) (Iollz2ey + Vol 22
<

HwHHdiv,a(Q) HUHH;(Q) :
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Now, since 7, € (H}(£2))’, by the absolute continuity of Lebesgue’s integral one
has

lim div(w)v +w - Vo dx = Tyv.
5—0 o)

On the other hand, by the standard normal trace theory, for all § € (0,dq) we
have

/ div(w)v + w - Vo dx = (')/S'UJ,’Y6U>H—1/2(F6)’H1/2(F6) .
0%

7.5. Proof of Proposition 5.1

As a first step we prove the following

LEMMA 7.4 If ¢ € C®(Q), then, for k = 1,...,m, the associated functions
oK = Xkp o Xy salisfy

11—« 50
/ 0w (s, 0)|2 ds < 507/ / (X4 (s,8))Vepr - Vo ds .
By co(l —a) Bi Jo

Proof of Lemma 7.4. One has

_ » )‘Q(Xk(saél)) 1z dpx / /
w0 == [ (SRm) N

thus, by Holder’s inequality it follows that

60 dé/ 50

o M (Xk(5,0) Jo ds'. (7.12)

|§0k(3, O)|2 <

! a !
(Xl ) | S 5.8

Now, since a(z) is (WD), we have that A2(z) > ¢od(z)® for all € Q and for
some fixed a € (0,1). Thus from (7.12), we obtain

L [ ds [ Oon
orts. 0 <t [ [t |5 .8

2
ds’. (7.13)

By property (4) of Lemma 7.1, for k = 1,...,m one has

a(X(s,0")Ver - Vo
2 (7.14)

Y

i,
a4’

= B(Xi(5,8)) 2N (Xi(5,5")) '%

+)\2(Xk(s,5’))‘

thus, upon integrating both members of (7.13) on By, the conclusion follows. B
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Let us now complete the proof of Proposition 5.1. For any ¢ € C°°(Q), using
Lemmas 7.1, 7.4 and (7.6), one has

/chd?":/|Z<,0;€0X,;1|2d7"§02/‘gakoX,;l‘2 dr
r r Py
*CZ/ |k (s,0)]? ds

do
<C Z a(Xk(s,8)Ver - Vioy ds dd’
By,

m

=3 [ Aok o X Vione X;)5) " de

<C / ©* 4+ a(x)Ve - Vode.
Q

Here C' is a suitable positive constant. Hence, the standard trace operator
is continuous from (C*(Q),]. HHI(Q)) into L?(T"). Finally, by the density of
Proposition 3.1 we obtain the conclusion.

7.6. Proof of Proposition 5.2

As a first step, we introduce the following inequality.

LEMMA 7.5 In the (WD) case , there exists Cy > 0 such that for all § € (0, do]
one has

/ v? AQ(:EQ) dz < C’}{/ a(x)Vuv - Vodz, Vv e Ker{y*}. (7.15)

o, d) Qs

Proof of Lemma 7.5. We first prove that for all ¢ € C>(2), § € (0,6] and

k=1,...,m, there exists a positive constant C' such that

5
A2 (X o’
/ / |¢k(575/) 7¢k(570)|2 %ﬁ’))d&ié/
B, Jo (9)

(7.16)

§
Br JO

where @y := @ o Xj,. Fix p € (9, 1), for all s € By, we have

5 1
/0 |Gr(s,0") = @n(s,0)[* %

s 5 A 2
:/ ‘/ t“/Qa—‘pf(s,t)fﬂ/th‘ 2o Xils,7) (5(5 ") g5
0

')?
< [ ([ o5l [ ra) 2

s’
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Hence, we have

5 L
/O |¢k(8751)¢k(8’0)|2W(ﬁ5/

1 L 9 2\ Aa(X(s,0"))
< - tH t)| dt | =/——=—"2—22 gy’
1)y </o o0’ (s )‘ (6")1+m

Applying Fubini’s Theorem, we obtain

S 2 Ma(Xi(5,8)
; |0k (s,0") — Pr(s,0)] Wdé

1 J Py, 2 J A2 (Xk(s,0"))
< © ? !
1 | t 5 (s,t)‘ (/t (5 dé’ | dt

Now, because a(z) is (WD), one has that for all fixed s € Bj the function
8+ Aa(Xk(s,6"))/(8")? is nonincreasing on (0, dg]. So, one has that

/6 Aa(Xk(5,07) 1o Ao(Xi(5,1)) /“(5,)19” i’

(5/)1+# - 9
1 )\Q(Xk-(s,t))
“u—1 tr '

(7.17)

Using this last inequality, integrating both members of (7.17) on By, and recalling
(7.14), we deduce (7.16) with C' = [(1 — p)(u — )]~ *

Next, let us consider v € Ker{y*} and let us prove (7.15). By Proposition
3.1 there exists a sequence (), C C*(2) such that ¢, — v on HL(Q);
denoting

Pk i =pnoXg, Qsp:=QNUg, k=1,....m

and using (7.16), one has that

_ 2 (:c) "

< Z/QM|%—7 n|22?;§2) dx

~ / N 2 >\2(Xk(575l)) / /
fz / / [Bu(5.8) = sl 00 STEG T 5, (5,87 s

§
< C}'I Z/B / E(Xk(sa 5/))V¢n,k . vcﬁn,k dsdd’
k
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~p Y [ a@Ven Vo b da

Here CY; is a suitable positive constant. So, passing to the limit as n — oo the
conclusion follows. ]

We are now ready to prove Proposition 5.2. First, we show that the inequa-
lity (5.1) follows from (7.15) and Poincaré’s inequality by a cut-off function
argument. Picking a smooth function y such that

0<x(x) <1, z€Q,
x(2) =1, x € Qo
X( ):O I€Q§0/25

using the Poincaré inequality and the Leibniz rule we obtain

/ |xv|? dz < 2Cp (/ | Vv|?dx +/ |Vx|2v2d:c> Vo € Ker {y*},
Q Q )

for a suitable positive constant Cp. Thus, by assumptions on a(z), it follows
that there exists C' = C(a, do, Cp) > 0 such that

2 A2(2) Vo dz Uz)‘2($) "
/mo P deC(/mO/z a(2) Vo - Vod +/960| P d) (7.18)

for all v € Ker {~+?} . Finally, using (7.15), (7.18) we obtain (5.1).

Next, by Proposition 5.1 we know that the trace operator 4 is continuous.
Thus, Ker {7} is a closed subspace of H}(2). Furthermore v*(D(f2)) = 0 and
s0, by the definition of H, ,(€2) one has that H, ;(2) C Ker {y"}.

Last, it remains to show that Ker{*} C Hj (). Let v € Ker{y"} be
given and define the family (vs)s, with § € (0,d0), in the following way

vs(x) := X, (z)o (),
X, () := (d(x)/6) A 1.

Since the injection of H(2) into H}() is continuous, it is sufficient to show
that

(i) vs € HY(Q) for all § € (0,5);
(ii) vs — v in HY(Q) as § — 0.
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Proof of (i) : one has that
/ v3 4 |Vus|? dr < / v? dr + 2/ vV xs|? + |xs Vv|? dx
Q Q Q

2 2
= / v? dr + 2 v? dx + 2/ |Vo|? da + 5 |d(z)Vv|? dz (7.19)
Q Qs Qs Qs

2 2
< / v? dx + —2/ v? dx + 2/ Vol de+cy' = [ a(z)Vo- Vo da.
Q 0% Jay Qs 0% Ja,

So, (vs)s € H'(Q). It remains to prove that yvs = 0 for all § € (0,8). Since

v € Ker{y*} C H(Q), by Proposition 3.1, there exists (), C C°>(Q) such
that ¢, — v in H}(Q), we have

Ker{y*} 3 xsn — xsv = vs in H(Q),

then, because Ker{~?} is closed, one has that vs € Ker{y%}. Thus, we have
obtained that v(vs) = v%(vs) = 0 for all § € (0, dp).

Proof of (ii) : one has that
[ o=l + lo(@) V(0 = ws) da
= [ =+ | =00 @) s + (1= o) (@) Vo da (7.20)
s
< /Qé v? dx + 2/95 lo(z)Vo|? dz + 5%/95 v?|o(x)Vd(z)|? d.

Finally, we estimate the last term of (7.20). By (7.15), one has

2 9 9 2 9 / 5 A2 ()
v = _ <2
5 /6 v?|o(x)Vd(x)|* dx = /6 v2 Ao () dz ) v @)? dz

< 20}{/ lo(2)Vv|? da.
Qs

(7.21)

From (7.20), (7.21) we obtain
/ |v — 5|2 + |o(x)V (v — vs)|? do < / v? dx 4+ 2(Cy + 1)/ |lo(2)Vo|? da.
Q Qs Qs

By passing to the limit as § — 0, the conclusion follows.

7.7. Proof of Proposition 5.3

In order to prove Proposition 5.3, we first give some regularity and density
results.
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LEMMA 7.6 In the (WD) case there holds H:(Q) Cc Wh1(Q).

Proof of Lemma 7.6. Because H}(Q) C H} (), it is sufficient to prove that if
u € HY(Q), then 9;u € L'(Qs) for i = 1,2 and § € (0,50/2). By Lemma 7.2 one

has

=

/ |Oju| dox < ( d(z)™ dx/ d(x)o‘|0iu|2da:)
Qs Qs Qs
5 3
= < dé’/ d=%dr d(ac)a|8iu|2dx>
0 re’ Qs

1
< <c01 /O (&)= | do’ /Q a(x)Vu-Vudx)
S5

Here, |T'%'| denotes the length of I, So, since 8’ — |I'*| is a bounded continuous
function on (0,40/2) and « € (0, 1), we obtain the conclusion. [

1
2

LEMMA 7.7 In the (WD) case, for v € HL(Q), denote by v its trivial extension
on R?:

~ o fou(x) zeQ
”(x)'{ 0 zeR2\Q

Then, if © € WY1 (R?), one has that v € Hy 4(€2).

Proof of Lemma 7.7. Let us consider the open covering {Ux}7",, of Q defined
in Section 7.1. We observe that, since I' € C" with r > 2, it is possible to find
{U}, such that, for k = 1,...,m, the sets Qi := QN Uy, are star-shaped (see,
e.g., Temam, 1977) with respect to one of their points. Moreover, let us consider
the partition of unity (yx)7, subordinated to this covering and v € H}(2); we
may write

on €.

<
—
8
~—
|
(]
>
o
—
8
N~—
<
—
8
N~—

k=0

Since the function yov has compact support in €2, it belongs to H;’O(Q). Thus
it remains to prove that all function vy := xxv, where k& > 1, belongs to the
same space. After a translation in R? we can suppose that €2 is star-shaped
with respect to 0 € Q. Let us consider the family

vpA(z) == vp(Az), A>1, z €,
where 0, is the trivial extension of v;, in R2. Since
H, () N Wy () = Hy o()

and vy € H!(Qg), to obtain the conclusion it is sufficient to prove that
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(4) v € Wyt (Q);
(i1) vgx — vg in WH(Q) as A — 1.

We have that supp{vg x} C AQx := {x € Q4 | Az € Qi }, thus in order to prove
(4), it is sufficient to show that vy € W11(Qy). Preliminarily, we observe that
if v, € WH1(R?) then

(1) (Vor)(z) = (Vug)(x), z-a.e. in Qy;

(2) (Vura)(z) = A(Vor)(Az), z-ae. in R?.

Here, V is the distributional gradient. One has that
vkl g = / |vg, A () |d +/ |Vovg,a () |dz
Qp Qp

@/ mumm+/ NV o0 (Az)|dz
Q% AQ

4 (7.22)
— [ Aoy + [ V5wl
Qk Qk
1
O N i+ [ 19,0l
Qe Qp

So, by Lemma 7.6, (i) holds. Now we prove point (i7). By the definition of vy »,

{ vea(z) = vp(z) x-ae. inQp as X — 1,

okl = vkl asA—1,
thus it follows that
vpa — vp  in LY(Q) as A — 1.

By the same argument we want to prove that
/ |V(vgx —vg)|de —0 as A — 1.
Qp

We know that
@ oy (D) .
Vg a(x) = AV (Az) = AVug(Az) x-a.e. in Q.
Then

Vupa(z) = Vug(z) x-ae inQy asA—1,
vakﬁ/\”Ll(Qk)? = ”vvk”Ll(Qk)? VA>1. [}

LEMMA 7.8 In the (WD) case C*(Q)? is dense in Hgiy o(€2).
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Proof of Lemma 7.8 . Let f € (Hgin.o())', by the Riesz Theorem there exists
a unique g = (g1, 92) € Hyiv,o(2) such that

< fyw>= / atg-wdz —|—/ div(g)div(w) dz, Yw € Hgjp,qa(2).
Q Q
Set h := div(g), if f = 0 on C>(Q)? we have that
/ alg-pdr = —/ hdiv(p)dx Yo € C(Q)2. (7.23)
Q Q

In particular, (7.23) holds for all ¢ € D(Q)?, then Vh = a~!lg in the sense of
distributions, and thus h € HL(Q).

Set
— a~lg inQ ~ h inQ
a~lg:= . o , h:= . o ,
0 inR*\Q 0 inR*\Q
by (7.23) one has that
a-lg-dz = f/ hdiv(y)dz Vi € D(R?)2. (7.24)
R? R?

Observe that by Lemma 7.6, h € W11(Q). Then Vh = a~1g € L}(Q)? and thus

—

a/:q; € L*(R2)2. Moreover, it follows from (7.24) that VA = a—lg in the sense
of distributions; so, we have obtained that h € W11(R?). Finally, by Lemma
7.7 one has that h € H, ;(Q).

In sum, we have shown that, if f € (Haiv.a(Q))" is such that < f, ¢ >= 0
Vo € C(Q)?, then there exists a unique h € H, ((€2) such that

<f7w>:/Vh~w+hdiv(w)d:c Vw € Haiv,a(S2).
Q

The last step to obtain the conclusion is to prove that A = 0. For this purpose
we consider the sequence of functionals (f,,), defined as

< fn,w >:= / Vhp - w+ hy div(w)de, w € Hgiy o),
Q

where (hy,), C D(Q) is such that h,, — h in H}(Q2). For showing that h = 0 it
is sufficient to prove that

(1) < fr,w>— < fiw> Yw € Hyp o)
(17) < fn,w>=0 VYneN, Yw € Hyipol).
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Proof of () :

< fo—fiw>]|< / 1601 (h — h) - ] + [l — Bl|div(w)| dz
Q

< (/Qav(h”_h)'v(hn—h)dm)% (/Qa_lw,wdx)%
+</Q|hnh|2dx>é</ﬂ|dw(w)|2dx)é .

Proof of (ii) : by the standard normal trace theory one has that
/ Vhy - w + hy div(w) de = (yw, Yhn) g-1/2(0y, g2y = 0
Q

Vw € Hgin o (), Vn € N. [

Finally, we are ready to give the proof of Proposition 5.3. Let w € C'* ()2
and v € H}(Q). By Proposition 3.1 we know that C°°(Q2) is dense in H}()
and therefore by the standard normal trace theory one has that

/(w V)Y dr = Tyv.

r

Furthermore, by Lemma 4.1 we obtain

/(w ~v)y*vdr
r

Set v%v = ¢ for ¢ € my* (T'), the last inequality holds for all ® € H}(Q) such
that v*® = ¢. Then

‘/F<w-u><z>dr

Hence, the functional

¢pr— < J(w-v)p,¢ >:= /(w-u)cf)dr

r

< Hwllgy,, . 1011 @) -

< Nl ., 0F {1l iy 1770 = 6

= ||w||Hd,,U,a(Q) ||¢||Hi/2(F) :

is continuous in H;/Q(I‘) and the operator

w— J(w-v)r € H7Y2(T),

is continuous from (C*°(€2)?, ||. | #4000 (2) ) into Ha_l/Q(I‘). Here, J is the Riesz

isomorphism in L?(T), that is

J: L*(T) > h— Jhe HYAT), < Jhv>= / hv dr.
r

So, by the density result claimed in Lemma 7.8 we obtain the conclusion.
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7.8. Proof of Proposition 5.4

As a first step we prove point (1) . Afterward we will show that (1) = (2) = (3).
Setting for simplicity < vow,y%v >:= (yow, 750>H71/2(F5)7H1/2(p5), preliminarily
we introduce some technical results.

LEMMA 7.9 Let w € Hy;,y (), v € HY(Q) be given. Then the functions

[0,60/2] 26 %/ Iyl dr,
rs
0,60/2] 36 — < 7ow,v°v >
MW, Y
are continuous.

Proof of Lemma 7.9. Let ¢ € C°°(Q2) and 61, 62 € [0,d0/2], recalling the proof
of Lemma 7.2, one has

/ Iv‘”@Ier—/ 7% | dr
o1 T'd2

<30 [l BB 81)) = K5 62)) B, 62 s
k=1 ke
‘a

< mm;;:mx|l3k|

(IcpoXkFﬂoXk) |61 — b2

90’ L>=(Rk)

So, by the density result of Proposition 3.1, it follows that fré |v%v|2dr is conti-
nuous in §. Now, by the Gauss-Green Formula one obtains

| < Yorw, o > — < 482w, 4% > | < sgn{dy — 02} . |div(wv)| dz
1 2
< HwHHm(Qél\mz) ”vHHl(Qél\Q‘Sz) .

Thus, since [ \ Q%] tends to zero as §; — d2 tends to zero, the conclusion
follows. u

Proof of (1). Let w € C®(Q)%, v € H'(Q) and &y, §2 € (0,80/2) such that
01 < d2. By Lemma 7.2 and Holder’s inequality one has that

52 52
2dd
/6 | < w0 > | F:/(; /ro‘ (w-l/opr>’yé’ud7’
o2 )
< / ( |w - VOPF|2d7”/ |’76’U|2d7’) 5
51 \Jrs rs

5,12 > 2 do
< d . dr ) —
< ([opotar) [ (L oevenTar) §

VI (@) - vlp)|”
= M (05, )/ml\m i@ dz.

2

(7.25)
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Since C*(2)? is dense in Hgy;, (), by (7.25) we obtain that for all w € Hg,, (Q),
v € H'(Q) one has

b2 2
50 a0 < 290 < / [w@ v (.96
/51 | < ’YDwﬂfy v > ‘ 5 — M(52;v) Q61 \962 d(x) deT ( ° )

On the other hand, by assumptions (1),(2),(3) on a(z) we have

2 2
2 w(z) -ex(@)|”  |w(@) - v(p.2)|

) = 7.27
Hw||La71(950) /6 ) + o) dz, ( )

thus, from (7.26), (7.27), because a(x) is (SD), it follows that for all w €
Haiv.a(Q), v € HY(Q) one has

d2
S P 2d5 2
| 1<ntunto s PL < b Gl o) (7.29)
On the other hand, by Lemma 7.9, § —< 73w, y%v > is continuous in § = 0,
thus by (7.28) one has that
%in%) <w, v > =< pw,yw >=0 Yw € Hyipa(Q), v € HY(Q),

which proves point (1) of Proposition 5.4.

(1) = (2). Ifve HY(Q) and w = aVu € Hgipo(Q), then by the standard
normal trace theory, one has that 7,,v =< y,w,yv >. Thus, by (1) we have
that 7,0 = 0 for all v € H'(Q). Since H*(Q) is dense in H.(Q) the conclusion
follows.

(2) = (3). We prove that if f € (H}(Q))" is such that f = 0 on D(2), then
f is the null functional. By the Riesz Theorem there exists a unique g € H(Q)
such that

< fv >:/gv+an-Vvd:c Yo € HX(Q).
Q

Thus, if f =0 on D(Q), it follows that

/ gpdr = —/ aVg-Veodr Y € D(Q),
Q Q
that is
div(aVg) =g (7.29)
in the sense of distributions. By (7.29) it follows that aVg € Hgiy,o(€2) and that

—pdiv(aVg) +1pg =0 Vi € C°(Q).
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Then, by point (2) we have that

0= / —¢div(aVg) +Ygdr = <v,9 >piq) VY€ C>(Q).
Q
By the density result of Proposition 3.1, the conclusion follows.

7.9. Proof of Theorem 6.1

In this section we prove the main result of this work; for this purpose we use the
Lions method (see, e.g., Baiocchi and Capelo, 1983; Bensoussan et al., 1993;
Lions and Magenes, 1972; Necas, 1967; Showalter, 1977) based on the Lax-
Milgram Lemma. As the first step we give some results related to the bilinear
form q(.,.) associated to the operator div(aVu).

LEMMA 7.10 The following results holds:
(1) the injection i : H:(2) — L?(Q) is continuous with dense range;

(2) the bilinear form
q(u,v) :== / aVu-Vvdr, u,v€ HX(Q),
Q

s continuous, positive, symmetric and there exist A € R, ag > 0 such that
2 2
q(v,v) + Aol 72q) = a0 [Vl Vv e H,(9);
moreover, the previous inequality holds for all A > 0;
(3) in the (WD) case, q(.,.) is also coercive on Hy (€2).

Proof of Lemma 7.10. Obviously, by definition of ||.|[z1 q), it follows that i is

continuous. Thus, since C°°(Q) is dense in H}(Q2) by Proposition 3.1, it is also
dense in L?(€2). Now, we prove point (2). One has that

lq(u, )| =

/ oVu-oVudx
Q

/ oVv-oVudx
Q

< loVoll p2qy2 loVull 2y -
Furthermore, by the definition of [|. || 1 g, for every A >0, v € H(Q), one has

2 2
q(v,0) + A [0l 72y = (LA N [[0]l771.q -

Thus, for some A € (0,1) we obtain that q(v,v) > 0 for all v € H}(Q). It
remains to prove point (3). By Hardy’s inequality (5.1),
2 A2(7)

q(v,v)ZC’H/ﬂv ()2 d:cEC/Q’UQd:c, VUEH;,O(Q),
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where C' is a suitable positive constant. Then, one has

IANC
q(v,v) > 5 ||U||§{;(Q)a Vo € Hy (). u

Now, we establish the following Green Formula:

LEMMA 7.11 If (u,v) € D(Ay) x H}(Q) or (u,v) € D(Az) x H} ((Q), one has
/ aVu-Vudr = —/ div (aVu)v dz. (7.30)
Q Q

Proof of Lemma 7.11. By Corollary 4.1, it is sufficient to check that 7,v,v = 0.
If u € D(A;), then

Tovuv = (7 (aVu), yv) g-1/2(ry, g2y =0 Vv € HY(Q).
Besides, H!(2) is dense in H](£2) by Proposition 3.1. Hence
Tovuv =0 Y(u,v) € D(A1) x H(Q).
If (u,v) € D(Az) x H, ((R), then
Tavuv = <73(avu)a ’}/av>H;1/2(F)7H;/2(F) =0,

since we have proved in Proposition 5.2 that Hy () = Ker{~"}. [ |

Now, we are ready to prove Theorem 6.1. From Lemma 7.11 and point (2)
of Lemma 7.10, it follows that A; and A, are dissipative: indeed for i = 1,2
one has

< Aju,u >p2)= / div(aVu)udr = —/ aVu-Vudr <0 Yue D(A;).
Q Q

We observe that by point (3) of Lemma 7.10 it directly follows that A is strictly
dissipative, and, by point (2), that A, Ay are generators of analytic semigroups.
Moreover, by Lemma 7.11 again, it follows that A; and As are also self-adjoint.
Now, we want to prove that A; is maximal. Let us consider the bilinear form
defined in Lemma 7.10. By the Lax-Milgram Lemma, one has that for all
f € L?() there exists a unique v € H}(Q) such that

/aVu~Vvd:c+)\/uvda::/fvdac, Yo € HX(Q). (7.31)
Q Q Q

In particular, u satisfies the variational problem (7.31) for all v € D(Q); then
div(aVu) = — f + Au in the sense of distribution and thus u € H2(Q2). Now, by
(7.30), (7.31), we have that for all f € L?(Q2) there exists a unique u € D(A4;)
such that

< (A= M)u+ f,v>12)=0 YweHNQ) <& R(A —\)=L*Q),



866 P. CANNARSA, D. ROCCHETTI, J. VANCOSTENOBLE

where R(A; — AI) is the range of A; — AI. In an analogous way one proves
the maximality of As. Last, it remains to check that, in the (SD) case, the
domain D(A;) is equal to H2(f2). Since u belongs to HZ({2), one has that aVu
belongs to Hyiy,q(2). Thus, by point (1) of Proposition 5.4, one obtains that
Y (aVu) = 0.

7.10. Proof of Proposition 6.1

We start by observing that u € D(A;) if and only if there exists f € L?() such
that u € HX(Q) solves the variational problem (7.31). Hence, picking a smooth
function x such that

0<x(x) <1, z€Q,
x(x) =0, x € Q%,
x(x) =1, z € Qs /2,

by the assumptions made on a(x), it follows that u € D(A;) solves

A(2) 02,1 O, (xv) + A2(2) Oz, u Oc, (xv) dz+ A uxvde = fxvdz,
ng ng Q‘SO

for all v € H(Q). So, choosing v = u, with some computations we obtain

that )\}/28€1u,)\§/2852u belong to L?(€s,/2). Now, we want to estimate the
distributional derivatives 92 u, 02, . u and 9., (d"20:,u). Set

Br(s,0) :== (B o X)(s,9), (7.32)
for k = 1,...,m, and let z € H2(Q) be given, with simple computations one
has that

4, 0
0:,2 =Py 1%(2 o X),

0
Oy 2 = %(z o X%),
02 2= 5—13 (5—13(2 o Xy)) (7.33)

e ko 9s\F s ’
K2 a K2 a
852(d 8522): %(5 %(ZOX]C)),
g ,,,0

8522,512 =55 (6k 1a(z o Xk))

Let us, for example, compute 05212, using Lemma 7.1. Since

z:zoXkoXk_1

we have that
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Oey2:=Vz-e1 = (DX, ")*V(zo0 Xk) e1=V(z0Xy) DX, '
=V(z0Xy) - B ter = B! S(ZOXk)
Thus
92 2=V (Vz-e1) -e1=(DX; ) V(V(z0Xy) e1) &1
= V(V(z0 X)) - 21) - DX} ter = V(57 S(zoXk)> Biler

=5 o (B (e X))

Since I' € C” with 7 > 3, one has that 3 € C!(Qs,) and X}, is a C2- diffeo-
morphism. Also, 3 is strictly positive on Qs,. So By, B, ' € Cl(ﬁ;), where

R: = Bk X (0,(50)
Consequently, in order to obtain the conclusion it is sufficient to estimate the
first and second derivatives of the functions

i :=uoXg, k=1,....m

Set Q) = QN Ux = Xix(R{) where {Uy}7, is defined as in Section 7.1, one
has that u € D(A;) solves

/ d(x)™ 0y u ey v + d(2)*20zyu Ocyvdr + X | wvdr = fvdz, (7.34)
Q Q Q

for all v € H!(Qy) which vanish in a neighborhood of Uy, .
By defining the Hilbert space

Hi(RY) = {v€L2 (R{) ‘(w/?a 5&2/225 GLQ(R+)}
endowed by the norm

oty = [ o+ [ 2] 450 220 duas

ety = [, 0 ds as|

using the diffeomorphism Xj on (7.34) and setting fi := f o Xy, it is easy to
see that 4y solves
15k oy, Ov , 0ty Qv
5k

D5 as-l—ﬁk(s v 85d d5+)\/ ukvﬁkdsdé—/ fkvﬁkdsdé

(7.35)

for all v € HY(R}) := {v € H1(R}) which vanish in a neighborhood of 9Ry}.
We note that 1y, satisfies the variational problem (7.35) for all v € D(R}).
Thus, it solves the partial differential equation

Aty = — (ﬁkl o 8; ’“) (ﬁmm 65;’“) = (Mg — fr)B,  (7.36)
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in the sense of distributions.

Now, we want to extend the classical difference quotients method for strongly
elliptic problems (see, e.g., Agmon, 1965; Necas, 1967) to problem (7.35). Let
v be a function defined on Rg such that the distance of the support of v from
ORy is positive. For each h € R such that |h| < dist (supp{v}, OR«) we define
the translate of v by

Trhv(s,8) :=v(s+ h,d)
and, if h # 0, the difference quotient of v by
Dyv = (Tpv —v)/h.
We give some elementary property of the operator D}, which will be useful later:

LEMMA 7.12 One has that
(1) &Dn=Dns, £Dy=Dp;

(2) all pairs of functions f, g on Rg which vanish in a neighborhood of ORy,
satisfy

Dyn(fg) = TnfDng + gDnf.

Moreover, if f, g € LQ(Rg), one has

< Dnf,g >L2(Rk+): — < f,D-ng >L2(Rk+)§

(3) ifve HY(RY) then Dpv — 22 on D'(RY) as h — 0;
(4) ifv e HY(R}) then Dpv € HY(RY);
(5) ifve HYURY) then 8% € HO(R}) for all & > min{0, (2 — k2)/2};
(6) let 0 > k1 and v € H)(R}), one has
ov 2
/ 8°|Dyu(s, 8)* dsds < / 6% | ==(s,0)| dsdo.
R R |0s

Proof of Lemma 7.12. The assertions (1),. .., (5) are only trivial remarks. Hence
it remains to prove (6). We can write

b oov
v(s+ h,0) —v(s,0) :/ h— (s + th, ) dt,
0 0s

hence

1 2
o(s + h, 8) — v(s,0)[2 < h2/ ‘?(s +th,d)| dt. (7.37)
0 5
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Thus, multiplying both members of (7.37) by 6%, taking the integral for (s,d) €
R; and using Fubini’s Theorem, we deduce

2

dsd5> dt

1
/ 69|th(s,6)|2dsd6§/ / 50 |20
Ry 0 Ry
2
dsd). [ |

a(s + th,é)

9 4,5)

= 5?
/R:j s

We are going to prove the main technical result of this section. Preliminarily we
give some notations and definitions. Let § > 0, first we introduce the following
pre-Hilbert space

ov ov
PR = {070 € LA(RE) |00 8028 pesor2 T 2mp

endowed by the norm

2 o 6
IolZ,, o) = /R+5 o dsds + 02, i)
k
(7.38)

2 2
dsdé .

Jdv
0s

= [ &%v?dsds +/ grte 1 grato |20

+
Rk

LEMMA 7.13 Hi,9(R}) is a Hilbert space.
Proof of Lemma 7.13. As first step we define the family
Ly(Ri) = {w € Lio(R{) | 0"*w € LAR{)}, p >0,

We pick a Cauchy sequence (vy,),, in Hi,g(R}), there exist u, g1, 92 € L*(R})
such that

(1) v, —v:i=056"92u in L3(R}),
(2) Qoo — =400 in 12 (R)),

s (k1+0)
(3) B — 5 Ct0/2, W L2 (RY).
By (1) we obtain that
vy, ov . Ovy, ov .
E — % mn D/(R;), W — % m D/(R;)

So, by (2),(3) and the uniqueness of the distributional limit, the conclusion
follows. [ |
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Next, let ¢ € D(Qk; [0, 1]) with £ = 1,...,m be cutoff functions such that
Y =1 on Ey = QNsupp{xx} and u € D(A;) we call

Rk = wk%
i’k = ”L[)kﬁk = (”L/)k o} Xk)(u o} Xk),
Er = X,:l(Ek) .

Notice that, by definition of {xx}7~,, one has
950/2 - UznzlEk . (739)
LEMMA 7.14 Choosing
(1) >0, if k1 =0 and k3 >0,
(2) 0> max{ri,k1 +(2—ka)}, if k1 >0 and k2 >0,

for each fized k € {1,...,m}, the differences Dz are uniformly bounded in
H179(R;€‘r).

Proof of Lemma 7.14. Preliminarily we define a bilinear form with coefficients
[9*7 g:l’ as

. [ (s e 2n OV re U OV
Q" i) 1= [ " (s. 55" SEGE + (5,06 ST s

k

where u, v € H1(RZ_), g* and g are two suitable functions on R;‘ We observe
that using Leibniz rule one has

QB Bl (ru,v) = Qlw Byt VBe] (u, )

+/R,j<356k )5 uas+<856k>5 u85d5d5

py Ov Oy vy OV

(7.40)

/R;(asﬁk )‘5 ”as+<05 ’“)5 Vg5 dedo

We suppose also that A is such that
h#0, |h< mkin {dist (supp{2x} , ORx)} . (7.41)
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We begin by proving the point (2). Set

90 = max{m, K1 + (2 — HQ)}

in the following we suppose that 8 > 6y. By points (4),(5) of Lemma 7.12 one

has that
Vo.nk = —0°D_pDpzy € HY(R)).
Next, we compute Q[ﬁk_l,ﬁk](ék,vgﬁ,k). Using Lemma 7.12, one has

Q8 Bl (2x, —0° D1, Dy 2x)

= _/ 51;15'“% 59ﬁD nDnzr + ﬁkWQ%g(é‘gD_hDhék) dsds
R+

Os  0Os 06 06

_ / Dy, (ﬁk Ly azk)éegDh,%k—i—Dh (ﬁké’” 82’“) 9 (5 Dize) dsds

0s 0s 06 ) 08

2
+ r]—hﬁk 5&24—9

Ry

0
_ —1sr14+6 | 2
= [ T 5

2
—Dp2;| dsdd

Dpzy 95

+ Eﬂk 95K2+9 18—? D_ hDth dsdd

8 0 0z 0
1sr14+0 9%k kot 9%k O
/ D ﬁk 1) thk + DpBrd —85 85Dh2k dsdd

0z
+ | DpBposto- lﬁthk dsds.
R+ 85
k
Using (7.40), (7.42) and observing that 2 = 9 one has

2
dsdd

2

0
+ Tn Bk 0720 | — D, 5

Dpzy 55

0
T —1sr14+60 | 2
/R A

—— | T, 06r2t0- 18—?D w D dsdd

R+
6zk ﬁ

0z 0
D 1ck1+0 D D Ko+6 k —D
/ ﬁk 4 s Os w2k + DpBro 35 9% nZk dsdd

- Dy 6 5~2+9—10—Dh2k dsdé

+0[8: ", Bl (tu, —r0°D_1 Dy
+ / <awk 8y )5“1*913 wDnie 2% s
R s
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+ / <awk By ) §r2top hthkuka dsdo
e 00

+/ <0¢kﬁk ) 5n1ak£(—(59D_hDh73k) dsdo
- 0s

oy, 0 9 (gt 2

OPk K2 —(=06"D_ Dz : 4
—i—/R; < Bl k) o ukaé( 6" D_pDpzk) dsdd (749

Next, we want to estimate the terms of the second member of (7.43). Using
the definition of 6y, one has that

/ T, By 0 8720 1%D WD 2x dsds
R a0

0%
a_k §72/2H0=11D_, Dp%| dsds
)

SR C e

k

IN

1/2
011l ey I3ellny ey [ 0%+20~D |D_y Dpzi dsd5>

IN

1/2
0118kl oo () 128l 34, (= < 5"+ | D_py D 2| d8d5> :

Indeed, one has that
H2+2(971)2I€1+9 =2 92/114‘(2*/{2).
By point (6) of Lemma 7.12, it follows that

/ T 05+0-19% 1 D2 dsds

5 p 0
9||6k||L°e(Rk+) sz”HI(Rkﬂ </R+ gt 9s
k

IN

Dz,

1/2
2 ed 5) (7.44)

IN

0 ||5k||Loe(7zk+) H2k||7-[1(72k+) |Dh2k|Hlyg(R;)-

Lw(R;)}

Next, set

My, := max { H 05, !

it

Loo(R+)
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and using Lagrange’s Theorem, we have

/ D ﬁk 15H1+QQ—D}121§ + Dhﬁk(Sereﬁgthk dsdd

06 99
< M, §rtt | 222 =D grato — Dy 2| dsdd.
= k./;z Bs | |35 12k T B0 | |gs PnAe| 4
Hence, by Holder’s inequality one obtains
_ 0%, 0 0%, 0
DB ot ——D DpBp6"2 0 === — Dy, 2y, dsds
/R;f nBy 95 Ds w2k + Dn By 9% 95 hZk ds (7.45)
< MillZellg, (mipy 1Pnrl, o mi):
Next, one has
/ DuB 06570192k 5 sds
R 96
< 0Mk/ gra/2 | 2k | g2 r2v0-1 5 s
R+ 96
k (7.46)

IN

1/2
OMe 1|2kl 3¢, (ot (/R+ 8" Dy 2 dsdé)
k

< OMi [12kllyg, rity [PRZkby, o mity-

Furthermore, since
Q18" Bl (i, —1hr 0’ D_Dpzy) = — / +(fk — Nt )38 D_p Dp 2 By, dsdd
Rk:

and 6 > 0y > k1, one has

1018, Bk (11, —1bw6® D_p D 23,)| < +(fk — Nig)D_p,Dp 2 6° B dsdd

k
9 1/2
§otr dsd5>

0

1/2
F s )2 s0—k1 v
< </R 84— K[ dsd5> (/R ‘

S
< Hﬁk(fk - Mbk)‘

Dz

L2(R;r) |thk|H1,9(Rk+) :

(7.47)
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Next, one has

s

+ Os
Rk

o0 1/2
Ok o ( 5" D, Dy 2i | dsd§> (/ §rte
0s R R

L>=(R})
2 1/2
dsds / srto
Ry
O,

-1 ~ ~
25 P 1Dn2klyy, poriy Nkl iy -
L= (R}

Ok s

By 16" TP Dy, Dy 3y, 95

IN

Js

5 1/2
dsdé)
Oty

o 9 1/2
OV dsda)
S

Y%k 6n1+9
Jds

IA

Bt

( 75 Dpzy
+ S
Lo Ry VR

IN

(7.48)

Likewise, one can prove

alﬁk +0 A A a'ak
—_rr k2P . D -
/le ( 25 ﬁk> 1) hpZEULE 95 dsdd

) 7.49
o0 (7.49)

< || —=
|| 9s

Bt

[ DnZilyg, o) Nkl (=) -
L=(Ry)

Finally, we estimate the last two terms of (7.43). One has

al/}k —1 K14 9 0 2
/RI:r (Eﬁk )(5 ukas( ) D_hDth)de(s

(7.50)

a_l/;k —1 n1+92 5
/RZ Dh < Ds ﬂk uk) ) 8S(thk)d8d5

< ¢k HﬁkHHl(R,j) |Dh5’k|m,e(n;)

for some positive constant ¢ . Next, one has

/ %619 5K2ﬂk£(*5eD7hDhﬁk)de5

a6
<),
R
.
R

oy,
%ﬂkuk

Dy, (%51@%)

06"+~ D_;, Dy, 5| dsdd (7.51)

§r2 +0
a9
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By Holder’s inequality, one obtains

/R; Dy, <%6kﬁk>
1/2
—(Dnzk)

~ 2
< / Do (225 3 || 6%+ dsas / gra+0 | 9
Rt B R+ 96
k k

<cj HakHHl(R;) |Dh2k|H1,e(R,§)

5%2—}-9

0 .
% (thk) dsdd

1/2
dsdé)

(7.52)

for some positive constant cﬁc . Moreover, one has

/ 5112/2

R}

<9 / e
RiE

< O ¢ 1kl L2 rry 1 Dnelyy, ,rr

0 6%2/>F0=Y D_}, Dy, 24| dsds

oM,
%@cuk

1/2

2
dsds < / grato 4

oy ,
% B dsdo

— D%

2 )1/ % (7.53)

for some positive constant ¢} . Thus, using (7.52), (7.53) in (7.51) one has

87/319 Ko 0 0 A
/Rk+ < 20 61@) 1) uka(s( ) D,hDth)de(S

(7.54)
< (e VO i) ikl (ripy [1DnZkly, mty -

Lastly, using the estimates (7.44), (7.45), (7.46), (7.47), (7.48), (7.49), (7.50),
(7.54) in (7.43) we obtain

2
+ T B 5%

2

0 0
T6; 165 0 | =Dz — D%
/RI:r hﬁk 1) Ds hZk 95 hZk dsdd

< Ci (Il oy + Well o) ) Db, i

for some positive constant Cj. On the other hand, one has

2
+ r]—hﬁk 5&24—9

2

o . .
%thk dsdd

=Dy
S

0
T 716#@1—}-9
/R; 2 9

> Cr|Dnzel3,,

Ri)
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for some positive constant C},. Thus, we have obtained that

|Dh2k|H179(Rk+) < (Ck/cllc) ( |‘ﬁkHH1(Rk+) + ka”p(Rk*))' (7.55)

Using (7.55) and point (6) of Lemma 7.12, we got

0z
~ N2 0| Y~k
Hthk||H1,e(Rk+) < / é a

7\ 2 N 7 2
. a5+ (00 04)? (Wil s+ el

for all kK = 1,...,m, 6 > 6y and h satisfying (7.41). Finally, by choosing
0 =6y =0 and vo pr = —D_pDp2, the case (1) can be treated in an analogous
way. [ ]

Using Lemma 7.14, it follows that, for suitable 0, k1, k2, from the family
Dy, %, we can extract a weakly convergent subsequence in Hq g(R ) let Z;, be
the weak limit. >From point (3) of Lemma 7.12 and the uniqueness of the
distributional limit it follows that

0%,
E:ZkEHLQ(R;:), k=1,...,m
that is, choosing
0 — 0 Zf K1 = 0
max{ml,/ﬁl + (2 — Iig)} ’Lf k1 >0,

since ’2k|8k = U, we have proved that
(1) if Ky =0 and k2 > 0, then

82’&k 5&2/2 82’&k

0s2’ 900s

(2) if k1 > 0 and k2 > 0, then

€ L*(&);

%4 %4
(k1+0)/2Y Tk - o(ka+0)/2Y 'k 2
) 552 ) 9905 € L*(&).

Thus, from (7.36) we deduce that

55 (5"2%) € L?(&) incase (1),

§(O0—r1)/2 0 6 (5*%2 auék) € L%*(&;) incase (2).

So, recalling (7.33) the conclusion follows. For instance, let us estimate 62 u
when 1 = 0. Using (7.39) one has

m
/ |8€21u|2 dz §/ |8€21u|2 dx < Z/ ‘8521u‘2 dx
Qsq /2 Uy Bk

,Z/g

Ot |
— | dsdé
+ 0s 569,

E)uk

Bt 83 (8" —5) 5
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where C' is a suitable positive constant.
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