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Abstract: The paper discusses the results of experiments with
a new context extension of a sequential pattern mining problem.
In this extension, two kinds of context attributes are introduced
for describing the source of a sequence and for each element in-
side this sequence. Such context based sequential patterns may be
discovered by a new algorithm, called Context Mapping Improved,
specific for handling attributes with similarity functions. For nu-
merical attributes an alternative approach could include their pre-
discretization, transforming discrete values into artificial items and,
then, using an adaptation of an algorithm for mining sequential pat-
terns from nominal items. The aim of this paper is to experimentally
compare these two approaches to mine artificially generated sequence
databases with numerical context attributes where several reference
patterns are hidden. The results of experiments show that the Con-
text Mapping Improved algorithm has led to better re-discovery of
reference patterns. Moreover, a new measure for comparing two sets
of context based patterns is introduced.

Keywords: knowledge discovery, sequential patterns mining,
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1. Introduction

The sequential pattern mining is one of essential tasks of data mining. Its defini-
tion was introduced by Agrawal and Srikant (1995) and can be shortly presented
in the following way – for a given database of sequences find all sequential pat-
terns with a user-specified minimum support threshold. The database contains
a set of sequences where each sequence is a list of elements (referring to transac-
tions) ordered by an associated identifier. The element of a sequence is a set of
items (shortly called an itemset). The support of the pattern (a sub-sequence)
is counted as a number of sequences in the database including this sub-sequence.
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An inclusion means that itemsets in the pattern are subsets of appropriate item-
sets in the supporting sequence with preserving a pattern element order. This
problem is illustrated in Fig. 2 by a simple shopping example of buying some
goods.

Mining sequential patterns has led to many applications, e.g. analysing
buying activities of customers in shops, behaviour of users of WWW servers,
telecommunication, medicine; for a review see, e.g., Dong and Pei (2007), Morzy
(2004). Moreover, it is a challenging research problem for the data mining com-
munity. Up to now, a lot of research concerned the most efficient approaches
to mining sequential patterns from large data bases. So, several algorithms
have been proposed, e.g. modifications of the Apriori algorithm, PrefixSpan,
SPADE, GSP algorithms, see reviews in Han, Pei (2001). Simultaneously, the
problem itself has been generalized to take into account other aspects of data
characteristics, such as time constraints, time windows, quantitative mining
and hierarchical patterns mining (Srikant and Agrawal, 1996, and Kim, Lim,
Ng, Shim, 2004). Other approaches have also exploited structural dependencies
between elements, mining frequent sub-trees and sub-graphs.

However, in the majority of these approaches itemsets containing sets of
nominal values only are used and rather limited information about sources of
transactions is exploited. This is also reflected by the inclusion operation while
comparing sequences which is feasible for nominal values. These properties may
limit modelling of some more complex real-life problems. In many cases sources
of transactions can provide additional non-nominal information associated with
either circumstances of transactions or the sequence itself (e.g. a description of
the place, environment factors, duration, engaged tools or persons, etc.). Han-
dling such information can be done by introducing two different sets of so called
context attributes, attached both at the level of the sequence and its elements.
These attributes may be defined on various scales, not only nominal but also
numerical ones. In general, such context attributes allow to mine “richer” se-
quence patterns in the sense of providing more descriptions of circumstances
for occurring frequent sub-sequences of events. Let us repeat that existing ap-
proaches to sequential patterns (shortly called traditional ones or abbreviated as
TSPM) cannot handle these additional pieces of information. This difference is
illustrated in Fig. 1, where one can notice additional data sources characterizing
source of the sequence and other data referring to the context where the given
transaction occurred.

Shortcomings of this traditional problem have led us to formulation of its
generalization, called context based sequential pattern mining (shortly CBSPM),
see Stefanowski, Ziembiński (2005). An important property is the ability to
handle directly context attributes (also numerical ones) which implies using
special functions measuring similarity of their values in contexts of a pattern
and a sequence instead of the set inclusion operation used in TPSM. As CBSPM
can not be solved by simple extensions of traditional mining algorithms, a new
algorithm, called ContextMappingImproved, was developed in Ziembiński (2007).
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Figure 1. Differences between context data and typical data in CBSPM and
TSPM problems.

Figure 2. Comparing a pattern and a sequence in TSPM (an upper part of the
figure) and CBSPM (a lower part).
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Previous experiments showed that looking for context patterns may require
more computational costs than for traditional sequential patterns (although
the computational cost still depends on proper tuning values of the minimal
support threshold). Thus, we could ask a question whether it is possible to
discover context patterns in another way by their proper adaptation to the
traditional problems. Following some motivations from Pinto at al. (2001), re-
ferring to another “multi-dimensional” sequential patterns mining problem, one
can think about artificially introducing attributes as additional elements into
items – though the authors referred to considered only nominal attributes char-
acterizing the complete sequence. Although the traditional approach does not
allow to process numerical data directly, it could be possible to consider yet an-
other approach to handle context numeric data as a “transformation approach”.
In this approach all numeric attributes are pre-discretized and their discrete val-
ues could be transformed into artificial nominal items suitable to be processed
by an extension of a “traditional” algorithm like PrefixSpan.

However, this leads us to another question about differences of results (let
us say, the “quality” of patterns) offered by both approaches: ContextMap-
pingImproved and the transformation of PrefixSpan with pre-disretization (the
equal width and the equal frequency local methods). We propose to compare
them by studying their ability to re-discover the original context based patterns
hidden in an artificially generated sequences database. We are interested in
verifying differences between results obtained from both algorithms and check-
ing whether the approach with pre-discretization could be an alternative to
the ContextMappingImproved algorithm. Measuring the patterns re-discovery
degree also requires some research on a new measure as the problem of calcu-
lating similarities between two sets of context based sequential patterns has not
been studied yet. A presentation of the results of this comparative, experimen-
tal study and an introduction of a new measure of similarity between context
patterns are main goals of this paper.

The paper is organized in a following way. Section 2 contains a brief presen-
tation of the problem of CBSPM and a general scheme of algorithms for mining
patterns coherent to the definition of CBSPM. In Section 3, we introduce a
new measure for comparing two sets of context patterns. Then, we describe a
conditions of experiments and their results in Section 4. Moreover, we briefly
present a generator of databases. The last section contains discussion of results
of experiments performed and final conclusions.

2. Basic concepts of mining context sequential patterns

2.1. A definition of the CBSPM Problem

We briefly describe the CBSPM problem – for more details see Ziembiński (2007)
and Stefanowski, Ziembiński (2005).
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As in the TPSM problem L = {i1, i2, . . . , in} is a set of items and X is
a non-empty subset of items. A sequence is an ordered list of elements s =
< t1, t2, . . . , tm >, where ti ⊆ L, i = 1, 2, . . . , m. An element ti of sequence
is an itemset (X). A sequence α =< α1, α2, . . . , αr > is included in another
sequence β =< β1, β2, . . . , βs > (what is denoted as α ⊑ β) if there exist
integers 1 ≤ j1 < j2 < . . . < jr ≤ s such that α1 ⊆ βj1 , α2 ⊆ βj2 , . . . , αr ⊆ βjr

.
In the set of sequences any sequence s is maximal if s is not included in any
other sequence from the same set.

In the CBSPM problem two kinds of sets of context attributes are addition-
ally introduced into the structure of sequences. The first set, called sequence
context, denoted as D =〈D1, ...Dv〉, is a set of attributes describing complete
sequence. It usually reflects some properties of the source of a sequence (e.g.
a user profile). The second set of different attributes C =〈C1, ..., Cw〉 is called
the element context. It is assigned to each element in the sequence and it de-
scribes circumstances of an event / transaction referring to the itemset in this
element. The structure of context attributes is homogeneous for all objects of
the same type (e.g. sequences, elements). It is also assumed that attributes may
be defined on either nominal, ordinal or numerical scales.

Unlike the TSPM, in the context based problem, besides the inclusion of
sequence elements, it is necessary to consider a similarity between a sequence
(being a candidate for a pattern) and other sequences in the data base. This
leads to calculating similarity between values of attributes, both for the se-
quence set D and for the transaction sets C. Thus, for each attribute a ded-
icated similarity function σ should be defined. For nominal attributes it can
be based on a simple indiscernibility relation. However, for ordinal or numer-
ical attributes more sophisticated functions should be used, e.g. based on dis-
tance measures, interval comparisons or even using some richer forms resulting
from the domain knowledge about the problem at hand. Such similarity func-
tions have to be pre-defined for the sequence context attributes D (denoted
as (σk(dk
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for sequence context, and analogously for element contexts. The aggregation
may be done using various operators like minimum, maximum, weighted sum or
other aggregation functions (OWA). The value of this aggregation is normalized
to the range [0,1]

Then, counting the support of a pattern by a sequence requires changing
this continuous value into a binary one - support or not. So, if an aggregated
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Figure 3. The support of a pattern by a sequence in the context based problem.

similarity value ΘC (or ΘD) is equal or greater than a user defined threshold
of minimal similarity level θC (or θD) the context attribute sets are similar,
otherwise they are considered dissimilar.

The essential concept of the support is extended in CBSPM in the following
way. An element α is supported by another element β if the context of α is
similar to the context of β (with respect to the predefined threshold level of
similarity θC) and the itemset in the element α is included in the itemset of
element β. This concept of calculating support is illustrated in Fig. 3.

A context based pattern is supported by a context sequence iff:
1. The context of the pattern is similar to the context of the sequence (with

respect to the thresholds θD);
2. Each element in the pattern is supported by the respective element the

sequence.

The problem of Context Based Sequential Pattern Mining is defined
as: given a database of context sequences, where sets of context attributes D, C
with their similarity functions σ and threshold values are defined, the task is to
find all maximal context based patterns among all sequences supported by at
least min_support of sequences in the database of sequences.

Thresholds θD , θC and the min_support are exploration parameters to be
set by a user for a given problem.

2.2. Algorithms for discovery of context based patterns

Algorithms specific for CBSPM have been introduced in Ziembiński (2007). A
limited space of this paper forbids us to present all details of the ContextMap-
pingImproved algorithm – we briefly introduce the concept of mapping similar
values of attributes, which is the essential step in it.
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The definition of the problem assumes that an element of a sequence is fre-
quent if the number of other sequences containing similar elements is greater
than the minimal support threshold required by the user. In the first phase
of the ContextMappingImproved algorithm a list of contexts (set of attributes)
similar to other contexts in the database is constructed. Similarity between
sets of attributes is calculated in the way defined in the previous sub-section
with respect to appropriate similarity functions σ and threshold values θD or
θC . If the number of similar contexts in the list, i.e. corresponding to differ-
ent sequences, is greater than the value of the threshold min_support, then this
context is considered as frequent. Each frequent context is transformed into two
interconnected artificial items, called A and B, respectively. In the original se-
quence item A replaces the frequent context (i.e. the set of attributes is replaced
by it) and the item B is added to itemsets of all elements from other sequences
on the list. It is assumed that only the item of type B supports the item of
type A. Moreover, the sequence context is mapped to an additional artificial
element added to the sequence - similarly to contexts of elements by artificial
items. This mapping transforms similar context sequences into traditional-like
database of sequences with nominal items only. In the next stage context pat-
terns can be discovered by a specific adaptation of the PrefixSpan algorithm
(Han et al. 2001). The algorithm ensures that all patterns must contain an
additional element representing the sequence context and further sequence of
elements being a pattern body. Each pattern element must contain an artificial
item representing the frequent context and frequent itemset. The final step is
connected to the reverse mapping of mined patterns. The replacement of arti-
ficial items with corresponding context values gives the resulting set of context
patterns.

Some experiments from Ziembiński (2007) showed that this algorithm may
be slower than PrefixSpan running on the same database with removed context
attributes. As the mapping can be memory consuming, a heuristic version of
the algorithm was also proposed. Its key point is preserving a limited number
of the most similar mappings only and avoiding “explosion” of the number of
additional items to be mined.

Another approach to handling values of numerical context attributes while
discovering context pattern is briefly described below. Unlike in the above
approaches, dedicated similarity functions are not considered, but domains of
each numerical attributes are discretized, i.e. a range of a numerical attribute is
automatically divided into a number of disjoint sub-intervals (folds) and original
numerical values are transformed into discrete values (codes). Let us remark
that a pre-discretization is quite often used in pre-processing before using many
mining algorithms and can be performed by many algorithms, for a review see,
e.g., Grzymala (2002), Yang, Webb and Wu (2005). Some pre-discretization
algorithms more specific for association rules and other patterns have also been
discussed in Agrawal et al. (1998). In our experiments, we decided to use low
cost local discretization methods, namely: equal width or equal frequency folds.
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Figure 4. Discretizations of domains of numerical context attributes with equal
frequency folds (A), equal width folds (B) – compared to a “similarity” based
approach used in the CBSPM problem and the ContextMappingImproved algo-
rithm (C).

Fig. 4 illustrates the difference in handling numerical attributes by this and
the former approach. Differences in fold size and the layout for both discretiza-
tion approaches are visible. One can also notice how the ContextMappingIm-
proved algorithm constructs a local neighborhood of the value of a given context
attribute while looking for similar values of this attribute in other sequences. It
clearly illustrates the difference to the direct pre-discretization.

After the pre-discretization, each discrete value of an attribute correspond-
ing to a particular discretization fold is transformed into an artificial item. Let
us notice that in this transformation we radically change data granulation as
one moves from numerical to nominal scale (as items do not carry any ordinal
information). However, having nominal items it is possible to introduce them as
additional components into the sequence and again adopt the Prefixspan algo-
rithm to process such data structure. It should be noticed, however, that such
patterns discovered from transformed sequences do not contain single attribute
values as in the definition of the pattern in the CBSPM problem. Instead, they
contain items representing folds – sub-intervals of context attributes.

3. Measuring similarity between context patterns

We want to evaluate the degree of similarity between two sets of context pat-
terns finding out how much discovered patterns are similar to reference patterns
hidden in the database containing context attributes. Some researchers already
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studied similarity of sequences, e.g. for a clustering problem – for more details see
Ronkainen (1998), Morzy, Wojciechowski, Zakrzewicz (1999), Guralnik, Karypis
(2001), Yang, Wang (2003), but here we need to take into account sets of con-
text attributes, which have not been studied before. So, a new measure of the
similarity for sets of patterns has to be developed. As several aspects of context
based pattern should be taken into account, we list below the requirements to
the new measure:

1. Its value is normalised to the range of 1.0 to 0.0 where 1.0 means that
both sets of patterns are exactly the same and 0.0 means that there is
no similar information related to the context, itemsets and element order
between both pattern sets.

2. The measure should “punish” two undesirable situations: when the set of
discovered patterns is larger than the reference set (the algorithm may
produce too many patterns) and when the algorithm discovers a smaller
set of patterns than in the reference set (e.g. as a result of inappropriate
discretization).

3. It should reflect a case when a shorter discovered pattern could be com-
pared to a different combination of elements from the longer reference
pattern. This may happen in a situation, where a longer pattern from the
reference set contains few repetitions of the shorter discovered pattern.

4. A non-similar element in comparing patterns is treated as a kind of “noise”
and should decrease the value of the measure. Resepectively, occurrence
of unused elements in reference patterns should be negatively reflected.

5. It is necessary to handle the values of context attributes from the Con-
textMappingImproved algorithm and “sub-intervals” from TSPM with a
discretization while comparing them to the reference pattern.

Taking into account all these requirements leads to quite a complex aggrega-
tion of basic similarities - so we decided to construct a similarity measure as an
aggregation function (not a simple measure based on a kind of distance metric
as often considered in data analysis).

3.1. Comparing two context patterns

Each element E from a pattern mp =(D, S = 〈E1, E2, ..., Ek〉) contains a con-
text (values of attributes) c and an itemset X . To evaluate similarity of item-
sets Jaccard’s coefficient can be used as in Guralnik, Karypis (2001). Assuming
that element E1(C1, X1) is compared to the element from the second pattern
E2(C2, X2) the Jaccard’s coefficient is defined as:

ΘX(X1, X2) =
|X1 ∩ X2|

|X1 ∪ X2|
.

If both elements have no common items, the measure returns 0.0. Respec-
tively, if both itemsets are identical, it gives 1.0. Similarity of context attributes
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Figure 5. Calculating similarity of respective elements in two patterns.

is calculated with similarity functions in the same way as it was described in
Section 2. However, thresholds of minimal similarities are not used here and
the similarity between values of the sets of context attribute is calculated as
continuous value using similarity functions: σC(c1, c2) for element contexts or
σD(d1, d2) for sequence contexts. This concept is illustrated in the Fig. 5.

In a more difficult case of TSPM, the pre-discretization fold is compared to a
value of the context attribute. For a pre-discretization fold an average similarity

value is calculated using the upper XD,C
2 and lower XD,C

2 boundary of the pre-
discretization fold. The aggregated similarity value is calculated using the same
similarity aggregation functions as used in CBSPM to obtain comparable results
in the same database:
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In experiments, presented later in the paper, the average function was used for
aggregation. The total similarity of the compared pair of elements is calculated
according to the following formulas:

ΨC(E1(C1, X1), E2(C2, X2))= ΘC(C1, c2) · Θ
X(X1, X2)

ΨD(mp1(D1, S1), mp2(D2, S2)) = ΘD(D1, D2)

where E1 ∈ mp1 and E2 ∈ mp2 in both CBSPM and TSPM approaches. We
thus take into account similarity values of compared sequence contexts, element
contexts and element itemsets.

While comparing two patterns, mp1 and mp2, we often encounter a situation
where compared patterns contain only a limited number of common similar ele-
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ments. Such common elements create a core mrmp
1
,mp

2
, identified as a common

maximal sub-sequence of both patterns. Then, the core sequence must contain
elements fulfilling the condition ΨC(E1(C1, X1), E2(C2, X2)) > 0 . The core
coefficient is defined as:

Λ(mp1, mp2) =
|mrmp

1
,mp

2
|

max(|mp1|, |mp2|)
.

to take into account common elements and existing non paired elements between
the reference pattern mp1 and the discovered pattern mp2.

The similarity of two patterns mp1, mp2 with the respect to a core
mrmp

1
,mp

2
is calculated according to the following equation:

mrsim(mp1, mp2, mrmp
1
,mp

2

) =
Λ(mp1, mp2) · Ψ

D · (ΨC
1 +ΨC

2 + ...+ΨC
r )

r

where r =|mrmp
1
,mp

2
|.

If patterns are not of the same size, then it is possible to encounter a case
where several different combinations of similar elements exist (multiple cores).
MR denotes a set of such cores. The total similarity of two patterns mp1, mp2

is calculated by averaging similarities calculated for all possible cores in both
compared patterns:

mpsim(mp1, mp2) =

∑

mrmp1,mp2
∈MRmp1,mp2

mrsim(mp1, mp2, mrmp
1
,mp

2

)

|MRmp
1
,mp

2
|

.

3.2. Comparing two sets of context patterns

Let us consider two sets: of the reference patterns MP r and of the discovered
patterns MP d. Similarity values of all pairs of patterns from the sets MPr, MPd

can be stored in a special similarity matrix. Using them we can define some
basic measures.

The reconstruction measure evaluates a re-discovery degree of hidden pat-
terns and is defined as:

RMSim(MPr, MPd) =

∑

i=1,...,k Lsim(i)

|MPr|

where k = |MPr| is the number of patterns in the reference set,

Lsim(i) =
∑

mpf∈L(mpi)

mpsim(mpf , mpi)/|L(mpi)|

and L(mpi) is the list of the most similar discovered patterns mpf to the given
i-th reference pattern mpi. Technically, this list is constructed in the following
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way: for each discovered pattern we find the most similar reference pattern
and put the discovered pattern on the list attached to the reference pattern.
If the similarity value of the next less similar reference pattern is very close
to the first value (with respect to an assumed acceptance threshold) then the
discovered pattern is also added to the list of this reference pattern. The process
repeats for less similar reference patterns until threshold condition is met. When
all discovered patterns have been processed, similarities between the reference
pattern and those stored on its list are averaged, yielding Lsim(i). If a list
of a reference pattern is empty, then Lsim(i) is equal to 0.0. Concluding,
the purpose of the reconstruction measure is to find the degree of coverage of
reference patterns by mined patterns.

Yet another possible measure is the average similarity measure. Its intu-
itive goal is to estimate an overall content of information in set of discovered
patterns related to reference patterns with respect to any “noise” elements that
discovered patterns may contain. By comparing to the previous basic measure
this one is calculated simply by adding similarity values between a reference
pattern and all mined patterns to the reference pattern list. List aggregation
procedure is exactly the same – it is based on averaging. This measure allows
for comparing all discovered patterns with each reference pattern, considering
even completely dissimilar pairs. Therefore, values of the measure are nominally
lower than values of the reconstruction measure, because the latter considers a
small fraction of the most similar pairs of patterns.

4. Experiments

The main aim of the experiments carried out to evaluate the ability of two
compared algorithm to re-discover the given number of context based patterns
hidden in artificially generated sequence data bases. These patterns will further
be called reference patterns.

As there were no ready benchmarks for context based sequence data bases
we had to construct a special generator of “artificial” data, which could be
parametrized to create required itemsets structure, context size and reference
pattern support. Due to the paper size, we only give a general idea of this
generator.

4.1. Generating a sequence data base

In general it is necessary to get a certain number of reference context patterns
which are characterized by defined length, itemset structure, context size and
support. It is assumed that the data base should contain a number (correspond-
ing to the support) of slightly diversified context based sequences which should
be sufficiently similar to an appropriate reference pattern.

There are two phases of generating such sequences: constructing itemsets
and generating values of context attributes.
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In the first phase for each reference pattern a required number of unique
itemsets is randomly constructed from the set of available items. Itemsets are
mutually dissimilar. Then, a required number of copies of one pattern are repli-
cated to sequences in the database according to the assumed support threshold
in such a way that these sequences are super-sets of the reference pattern, i.e.
their itemsets may be additionally increased. If the length of sequences should
be greater than the pattern length, additional random itemsets are randomly
introduced as elements into these sequences.

In the second phase of generation of data bases, values of context attributes
are assigned to these sequences. For each reference pattern, these contexts are
generated using a structure of the kind of a “grid” in the multi-dimensional real
number space, i.e. each distinct set of values of attributes corresponds to one
node in this grid. Distances between nodes of this hypergrid can be changed
to make contexts more distant or closer, i.e. reference patterns may be more
or less similar to each other. The context values of each reference pattern are
copied to “its” sequences in the data base. However, their values are slightly
changed, i.e. randomly distorted within a defined hypersphere in a real number
space. This ensures more realistic distribution of context values, not just simple
copies of values – which could make discovery not so trivial. The generator
performs rotations of the grid nodes according to randomly selected planes to
eliminate linear distribution of nodes along axes. We can say that instances
of context values in the data base create a kind of “cloud” around the context
of the hidden pattern. Contexts describing patterns and their elements are
independently generated using two different grids.

4.2. Conditions of experiments

The sequence of steps for each experiment is shown in the Fig. 6. The first step
involves the generation of an artificial data base with the set of hidden reference
patterns and chosen values of parameters. The same artificial data base is
mined using both ContextMappingImproved algorithm and “transformation and
discretization” approach. Both approaches discover a set of context patterns.
This set of discovered patterns is compared against the set of reference patterns
using the measure described in the previous section.

For the transformation approach the PrefixSpan algorithm was run with the
equal frequency pre-discretization and with the equal folds width pre-discretiza-
tion. Shortly speaking, the equal frequency pre-discretization divides the con-
text attribute domain into folds containing the same number of contexts. The
equal width pre-discretization creates folds with an equal width but containing
different number of contexts. More details are given in Grzymala (2002).

For the application of the ContextMappingImproved algorithm we will use
a similarity function assigned to each context attribute based on the following
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Figure 6. Basic steps in experiments.

formula:

σC,D(c1, c2) =

{

1.0 − |c1 − c2| ⇔ |c1 − c2| < 1.0
0.0 ⇔ |c1 − c2| ≥ 1.0

.

The ContextMappingImproved algorithm has been started with context sim-
ilarity thresholds θC and θD equal to 0.4 (CPT1 label in figures), 0.6 (CPT2)
and 0.8 (CPT3). A justification of these parameters is discussed later. The Pre-
fixSpan pre-discretization divided each attribute domain values into 3, 5 and 7
folds. These “settings” are denoted in the figures as DES1, DES2, DES3 for the
equal width pre-discretization and DEF1, DEF2, DEF3 for the equal frequency
pre-discretization. The results presented were obtained for database contain-
ing eight hidden reference patterns containing four elements with support equal
0.25. Each database sequence has length of 12 elements and it contains sub-
sequences that belongs to two hidden reference patterns and four additional
randomly created elements. Random itemsets in elements do not overlap with
itemsets used in reference pattern itemsets. A number of sequences in gener-
ated databases was 500. Sequence contexts and element contexts contain two
attributes created around hypergrid nodes. The distance between nodes in three
first experiments were greater than distortion spheres around nodes so the con-
texts from different elements were not too close to each other. In the fourth
experiment the distance was gradually decreased to zero. Some results of other
experiments correspond to very low values of a minimal support threshold –
what in the case of consideration of a much higher numbers of sequences and
the sequence length could make experiment infeasible. Moreover, we noticed
that increasing too much the number of sequences or the length of sequences
could make experiment infeasible when low values of minimal support or simi-
larity thresholds were considered, so we skipped them. Due to the space limit,
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we do not show results for other combinations of parameters, i.e. characteristics
of reference patterns, as they are consistent with the presented ones.

4.3. Results of experiments

First results, presented in Fig. 7A, illustrate the influence of the minimal support
threshold on the value of the re-discovery measure for both algorithms. The
second experiment was focused on studying the relation between the number
of pre-discretization folds and both measures for the transformation approach
and traditional algorithms – see Fig. 8A. The value of the minimal support
during mining was decreased to 0.04, because the TSPM approach with pre-
discretization showed quite poor performance for higher threshold values (notice
this in Fig. 7A). The third experiment aimed at studying an impact of the change
of minimal similarity thresholds in CBSPM on the reconstruction ability, see
Fig. 8B.

The final experiment verified the influence of the distance between generator
grid nodes (i.e. the distance between appropriate contexts of reference patterns)
on the quality of discovered patterns. The distance between nodes was gradually
decreased (but with maintenance of the same radiuses of the distortion spheres).
In consequence, the contexts that belonged to different patterns started to be
to similar to each other, so creating a kind of “noise” for mining algorithms –
see Fig. 7B.

5. Discussion and final remarks

Let us comment on the presented results of our experiments. One can easily
notice that in the first experiment the values of the reconstruction measure for
ContextMappingImproved algorithm (more specific for CBSPM) are at least five
times higher than the results for TSPM with pre-discretization (see Fig. 7A).
Moreover, only ContextMappingImproved algorithm could discover patterns at
the value of a minimal support threshold comparable to the value of support of
reference patterns applied while generating a data base.

On the other hand, we could say that the pre-discretization divided the space
of values of context attributes into quite small folds containing usually small
numbers of context instances. Therefore, the TSPM algorithms could find pat-
terns only when the “density” of context values (referring to sequences) in folds
is greater than the minimal support threshold. This occurs for much smaller
value of the minimal support threshold than it was in the case of ContextMap-
pingImproved. It seems that the ContextMappingImproved algorithm may work
better because it recognizes much better “dense neighborhoods” around values
of context attributes from the reference set of patterns due to the direct use of
similarity functions, which is a kind of a characteristic feature of the CBSPM
problem. The “transformation” approach with the equal width pre-discretization
detects dense clusters of contexts quite poorly. The worst quality was obtained
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Figure 7. (A) The reconstruction measure for patterns discovered by both algo-
rithms with respect to the minimal support threshold and (B) the “proximity”
between values of context attributes in the reference patterns.
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Figure 8. (A) The evaluation measures for patterns discovered by TSPM algo-
rithm with respect to a number of pre-discretization folds. (B) The quality of
patterns discovered by Context Mapping algorithm related to values of minimal
context similarity thresholds (both are equal for sequence and element contexts).
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by this approach when integrated with the equal frequency pre-discterization.
We could say that a greater number of pre-discretization folds could improve
the performance of the transformation approach. However, after increasing the
number of folds again a lower value of the minimal support threshold is required
to find patterns (see Fig. 7A where EFD3 finds patterns with a lower minimal
support than EFD1). Additionally, the number of folds cannot be also set too
high – see Fig. 8A – because a low value of the minimal support threshold may
result in discovering a high number of less ”accurate” patterns containing “noise”
itemsets.

Another experiment with the ContextMappingImproved algorithm showed
that minimal similarity thresholds in this case should be tuned in the range
0.3-0.7 – see Fig. 8B. Minimal similarity thresholds determine the size of ref-
erence context “neighborhood”, where supporting instances of values of context
attributes can be found. This algorithm should discover more patterns if sim-
ilarity thresholds are getting lower (and the “neighborhood” is getting larger).
However, such patterns may have worse quality, at the same, time because
they may contain some “noise” elements that do not belong to reference pat-
terns. Finally, the fourth experiment showed that reducing distance between
values of reference context attributes has much weaker impact on results of the
ContextMappingImproved algorithm than on the results of the transformation
approach – see Fig. 7B.

To sum up, all experiments with re-discovery of hidden patterns clearly
showed that the ContextMappingImproved algorithm worked much better than
previously known algorithms using a transformation approach to pre-discreti-
zation. The computational costs were only slightly higher in some cases and
even smaller in others, compared to pre-discretization with too many intervals.
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