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Abstract: Method materialization is a promising data access
optimization technique for multiple applications, including, in par-
ticular object programming languages with persistence, object data-
bases, distributed computing systems, object-relational data ware-
houses, multimedia data warehouses, and spatial data warehouses.
A drawback of this technique is that the value of a materialized
method becomes invalid when an object used for computing the
value of the method is updated. As a consequence, a materialized
value of the method has to be recomputed. The materialized value
can be recomputed either immediately after updating the object or
just before calling the method. The moment the method is recom-
puted bears a strong impact on the overall system performance. In
this paper we propose a technique of predicting access to materi-
alized methods and objects, for the purpose of selecting the most
appropriate recomputation technique. The prediction technique is
based on the Hidden Markov Model (HMM). The prediction tech-
nique was implemented and evaluated experimentally. Its perfor-
mance characteristics were compared to: immediate recomputation,
deferred recomputation, random recomputation, and to our previous
prediction technique, called a PMAP.

Keywords: method materialization, hierarchical materializa-
tion, access prediction, Hidden Markov Model.

1. Introduction

Object technologies and systems (see Loomis, 1995) have been initially devel-
oped in order to support storing and processing complex data and in order
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to ease software development. The technologies have been successfully applied
in such domains as, for instance, CAD, CAM, CASE, GIS (see Loomis and
Chaudhri, 1998), multimedia applications, multiple programming languages,
distributed computing systems like CORBA (see OMG, 2006), as well as in
Internet applications.

Object technologies are based on an object data model (see Catell et al.,
2000). In this model, real-world entities are represented by objects. Every
object has its state and behavior. The state of an object is defined by the
values of its properties that include attributes and relationships. A property of
type relationship allows to relate one object to another object. The behavior of
an object is defined by the set of methods (operations) that can be executed for
an object, further called a base object. Objects are instances of classes. A class
defines the common state and behavior of all its instances.

Methods can be very complex programs, they may access large number of
objects, and their computation may last long. Therefore, efficient execution
of methods has a great impact on system performance. Optimizing execution
of methods is challenging, since methods are expressed in object languages,
taking advantage of inheritance, polymorphism, overloading, and late binding.
Moreover, source codes of methods are usually complex, with loops, conditional
expressions, and calls to other methods.

A promising technique applied in optimization of method executions is called
method materialization (also known as precomputation or caching). Basically,
method materialization consists in: (1) computing the result of the first execu-
tion of a method, say mi, for a given base object, say oi, and with a given set
of input argument values, and then (2) storing the result persistently on a disk.
Every subsequent execution of mi for the same object oi and with the same set of
input argument values can be handled by fetching the already materialized value.

Method materialization is a promising data access optimization technique
not only in typical object systems but also in object-relational data warehouses
(ORDWs). In ORDWs (see, e.g., Gopalkrishnan, Li and Karlapalem, 2000;
Huynh, Mangisengi and Tjoa, 2000; Kandaswamy, 2003, and Konovalov, 2002),
materialized object views (see e.g., Ali, Fernandes, and Paton, 2000; Czejdo
et al., 2001, and Kuno and Rundensteiner, 1998) play an important role, sim-
ilarly as in traditional data warehouses. Firstly, due to the expressive power
of an object data model, object views are capable of accessing and transform-
ing data of an arbitrary complex structure and behavior into a common model
(see, e.g., Bukhres and Elmagarmid, 1995, and Fankhauser et al., 1998) used in
ORDW. For example, by materializing methods, one is able to represent beha-
vior of objects in terms of the relational data model. In this case, materialized
methods are just seen as attributes having persistent values. Secondly, material-
ized object views may be used in query optimization. Moreover, in multimedia
data warehouses (see, e.g., Arigon, Tchounikine and Maryvonne, 2006; Kim
and Park, 2003, and Messaoud, Boussaid and Rabaséda, 2004) and spatial data
warehouses (see, e.g., Bédard, Rivest and Proulx, 2006; Gorawski and Malczok,
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2005; Gorawski and Kamiński, 2006, and Yu, Atluri and Adam, 2006), mate-
rialized methods are useful mechanisms for optimizing analytical processing of
images, sounds, and spatial data.

A drawback of method materialization is that the materialized value of
method mi becomes invalid (outdated) when its base object is updated. As
a consequence, the materialized value has to be recomputed (rematerialized).
The materialized value of mi can be recomputed either immediately, following
the update of its base object (further called immediate recomputation) or just
before reading the value of mi (further called deferred recomputation).

On the one hand, immediate recomputation reduces response time for a
user’s application (session) since the method output is recomputed in advance.
On the other hand, it may cause unnecessary recomputations, when after re-
computing the value of mi it is immediately invalidated by an update of the
base object. On the contrary, the deferred recomputation better uses system
resources since a materialized method is recomputed only when needed, but it
causes delays in accessing invalidated methods since a user’s application has to
wait until a method is recomputed. For these reasons, there is a need for a tech-
nique that would support the selection of the most appropriate recomputation
technique based on a current workload characteristic. Existing approaches to
method materialization, i.e., Bertino (1991), Eder, Frank and Liebhart (1994),
Jhingran (1991), Kemper, Kilger and Moerkotte(1994), Liu and Teitelbaum
(1995), Liu, Stoller and Teitelbaum (1998) and Pugh and Teitelbaum (1989),
do not address this problem.

In this paper we present a method recomputation technique, called HMM
recomputation. It applies Hidden Markov Models (HMM) for the purpose of
predicting access to materialized methods and their base objects. Based on
the prediction, the most appropriate method recomputation technique is used,
i.e. either the immediate or the deferred one. The HMM recomputation was
implemented and evaluated experimentally. Its performance characteristics were
compared to: the immediate recomputation, deferred recomputation, random
recomputation, and to our previous recomputation technique, called PMAP
(Masewicz et al., 2006).

The paper is organized as follows. Section 2 overviews related approaches
to method materialization and maintenance. Section 3 presents basic concepts
referred to in this paper, i.e. hierarchical materialization, the PMAP recompu-
tation technique, and the Hidden Markov Model. Section 4 presents the concept
of the HMM recomputation and Section 5 discusses its experimental evaluation.
Finally, Section 6 summarizes and concludes the paper.

2. Related work

Several approaches to method materialization have been proposed in the re-
search literature. The approaches can be characterized as: (1) supporting a
persistent materialization, i.e., Bertino (1991), Jhingran (1991), Kemper Kilger



130 M. MASEWICZ, W. ANDRZEJEWSKI, R. WREMBEL, Z. KRÓLIKOWSKI

and Moerkotte (1994) and Liu and Teitelbaum (1995), and (2) supporting a
temporal materialization, i.e., Eder, Frank and Liebhart (1994) and Pugh and
Teitelbaum (1989).

The work presented in Jhingran (1991) analytically estimates costs of caching
complex objects accessed procedurally. Two data representations are considered,
i.e. a procedural representation and an object identity based representation. The
maintenance of cached (materialized) values was not taken into consideration.

In Bertino (1991), the results of materialized methods are stored in a B-tree
based index, called a method-index. While executing queries that use materi-
alized method mi, the system searches the method-index for the value of mi

before executing it. If the appropriate entry is found, then the already precom-
puted value is used. Otherwise, mi is executed for an object. A method may
be materialized provided that: it does not have input arguments, it computes
values based on only atomic types, and it does not modify values of objects.
Otherwise, a method is not materialized.

In Kemper, Kilger and Moerkotte (1994), the results of materialized methods
are stored in the so-called Reverse Reference Relation. It contains an informa-
tion on: an object used to materialize method mi, the name of a materialized
method, and the set of objects passed to mi as arguments. For the purpose of
method invalidations, every object has an appended set of identifiers of methods
that used the object. Moreover, every materialized method mi has an associ-
ated list of attributes, whose values were used for the materialization of mi.
In this approach, a system designer has to explicitly define in advance (during
a system design phase) data structures for storing materialized results for all
methods, but the defined data structures may never be used when methods are
not materialized.

In Liu and Teitelbaum (1995), the authors proposed to decompose complex
methods into the graph of component methods. The semantics of complex
and component methods is then analyzed in order to figure out which results
to cache. The approach requires huge secondary storage as method results
are cached extensively. Moreover, the maintenance of cached results is not
supported.

In Eder, Frank and Liebhart (1994), the concept of the so-called inverse
methods was proposed. When an inverse method is used in a query, say Q, it
is computed once, instead of computing it for each object returned by Q. The
result of an inverse method is cached in memory only within the duration time
of Q and it is accessible only to Q.

In Pugh and Teitelbaum (1989), the authors proposed to store results of
method executions in a hash table stored in memory. In this technique, for the
purpose of increasing the usage of cached results, complex functions are decom-
posed to simple ones, whose results are cached. The approach supports caching
methods with constant input values only, i.e. various calls of the same method
have to provide the same value of input arguments. This feature strongly limits
the application of the approach.
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Two concepts loosely related to method materialization concern: a cost
model of method executions (see Gardarin, Sha and Tang, 1996) and index-
ing methods along an inheritance hierarchy (see Kratky et al., 2005). The cost
model developed in Gardarin, Sha and Tang (1996) includes the number of O/I
operations and CPU time, but it does not consider method materialization. In
Kratky et al. (2005), the authors proposed and evaluated R-tree based indexes
for the optimization of searching methods. This approach focuses on indexing
metadata on methods, rather than method values.

The common limitation of the approaches mentioned above is that they do
not support any technique for selecting the most appropriate method mainte-
nance (rematerialization, recomputation). A wise method maintenance should
be based on a technique for predicting operations that will appear in a system,
as discussed in Section 1.

The research in the prediction area is conducted in multiple domains, from
meteorology, e.g., weather and tornado forecasting (see Drton et al., 2003),
genetics (see Deng and Ali, 2004), financial and stock markets (see Oral and
Kettani, 1989), to computer science, e.g., CPU communication (see Kaxiras and
Young, 2000), file access (see Pâris, Amer and Long, 2003), Web user behavior
(see Dongshan and Junyi, 2002), intrusion detection (see Khanna and Liu, 2006).
Most of the approaches apply Hidden Markov Models.

3. Method materialization and access prediction - basic

concepts

The HMM recomputation technique, proposed in this paper, is general, but we
implemented it for the so called hierarchical materialization (Bębel and Wrem-
bel, 2001, Jezierski et al., 2003, and Jezierski, Masewicz and Wrembel, 2004).
The HMM recomputation further extends our previous work, where we proposed
the PMAP recomputation technique (Masewicz et al., 2006). The essential ideas
behind the hierarchical materialization, the PMAP recomputation, and the Hid-
den Markov Model are presented in this section.

3.1. Hierarchical materialization

In the hierarchical materialization (similarly as in a traditional approach), the
first execution of mi, for object oi and with a given set of input argument values,
materializes the result of mi. Additionally, the hierarchical materialization en-
tails materialization of intermediate results of other methods transitively called
from mi. The intermediate materialized results are used for recomputing mi,
after the update of the mi base object. In this way, the recomputation time of
mi is reduced. The idea behind hierarchical materialization is illustrated with
the example below.

Example 1 Let us consider a simplified CAD design of a personal digital assis-
tant (PDA). This design is represented by object m515 (the instance of the PDA
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class), which is composed of objects mb100, sc100, and dsp100 (the instances
of the MainBoard, SoundCard, and Display classes, respectively); mb100 is
further composed of cpu33, etc.; each of these classes has method power() that
computes and returns power consumption of a certain object; a collaboration di-
agram (in the UML notation) between the instances of the PDA classes is shown
in Fig. 1; the value of power() for object m515 is computed as the sum of power
consumed by its components; the value of power() for mb100 is computed as the
sum of power consumed by the object itself and its component cpu33, etc.

m515:
PDA

mb100:
MainBoard

sc100:
SoundCard

dsp100:
Display

cpu33:
CPU

sp100:
Speaker

hu100:
HighlightUnit

power(int freq)

power()

power()

power()

power()

power()

lcd100:
LCDMatrix

power()

Figure 1. An example of a collaboration diagram of a PDA

Let us further assume that the power() method was invoked for object m515
and it was materialized hierarchically. In our example, the hierarchical ma-
terialization results in materializing also mb100.power(), sc100.power(), and
dsp100.power().

Having materialized the methods, let us assume that the component object
cpu33 was replaced with another central processing unit using 133MHz clock, in-
stead of 33MHz. This change results in higher power consumption of main board
mb100 and of the whole PDA m515. As a consequence, the materialized val-
ues of m515.power() and mb100.power() have to be invalidated and recomputed
during next invocation. However, during the recomputation of m515.power(),
the unaffected materialized results of sc100.power() and dsp100.power() can be
used.

Hierarchical materialization can have various applications, e.g., (1) in object
distributed environments (e.g. Corba) for synchronizing replica objects; (2) in
multimedia databases and multimedia data warehouses (see Messaoud, Bous-
said and Rabaséda, 2004) for computing parameters of images; (3) in object-
relational data warehouses (see Huynh, Mangisengi and Tjoa, 2000) as a tech-
nique for materializing object views.

3.2. PMAP

The PMAP recomputation technique is used for predicting forthcoming oper-
ations on materialized methods and their base objects. To this end, for every
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materialized method mi the system logs the history of mi reads (further noted
as R) and its base object oi updates (further noted as U). Operations on mi and
oi are represented as the so called workloads. A workload is the set of R and
U operations executed within a given time period (e.g. a day, an hour). The
number of R and U operations in a given workload is called workload length.
Workloads are ordered by time. The interleaved sequences of R and U within a
workload form the so called workload pattern. Because workload pattern may
change in time, multiple workloads having similar patterns are combined into
the so called workload sets, see Masewicz et al. (2006). The number of operations
in a workload set is further called workload set length and is denoted ϑ.

Predicting forthcoming operations on materialized methods and their base
objects is based on workload set. It works as follows. Firstly, the longest
[UU...U] sequence in the workload set is found. The sequence length, denoted
λ, is defined as the number of consecutive U operations.

Secondly, the system computes the frequency of a sequence of length l in the
workload set. This frequency is computed for sequences of length 1 to λ. Let
N i

U
be the number of [U. . .] sequences of length i, where i = {1, 2, . . . , λ}. The

frequency ρi

U
of [U. . .] sequences of length i in a workload set is expressed by

(1). In this formula,
∑ℓ

n=i
Nn

U
represents the number of U sequences of length

greater than or equal to i;
∑ℓ

n=1
Nn

U
represents the total number of U sequences:

ρi

u =

∑λ

n=i
Nn

U

ϑ +
∑λ

n=1
Nn

U

. (1)

Next, the system checks if the frequency is greater than a given (parame-
terized) value. If so, mi is left as invalidated since it is likely that the next
operation in the current workload is U. Otherwise mi is recomputed immedi-
ately since it is likely that the next operation in the current workload is R. The
presented concept is illustrated with the example below.

Example 2 Let us consider past daily workloads from four days, as shown be-
low:

[URUUURRRUR UUUUURUUUR UURRRRURUU URURRUUURU]

<- day1 -> <- day2 -> <- day3 -> <- day4 ->

For each of these four daily workloads independently we compute coefficients
representing shares of U operations. In our example, the coefficients are as fol-
lows: 5/10 (day1), 8/10 (day2), 5/10 (day3), and 6/10 (day4). Let us assume
that all consecutive workloads whose coefficients differ by at most 10% are in-
cluded into the same workload set. In our example, this condition is fulfilled
by workloads from day3 and day4 that are included in workload set denoted as
W. The other two workloads are left separated. Further analysis is performed
for W whose workload set length ϑ = 20. In W, we search for the longest U

sequence. In our example it is [UUU], i.e. λ = 3. Next, we count the number
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of occurences of sequence [UUU] in W. Such a sequence appears twice, which we
note as N3

U
= 2. Next, we count the number of sequences shorter by 1, i.e. [UU],

i.e. N2
U

= 1. Finally, we compute the number of [U] sequences, i.e. N1
U

= 3.
For every detected sequence of [U . . .] we compute its frequency ρi

U
, accord-

ing to Formula 1. Thus, ρ3
U

= 1/13, ρ2
U

= 3/26, and ρ1
U

= 3/13.
Let us now assume that a new workload arrives with the first operation U.

It invalidates the value of mi. Now the system must decide whether the next
operation in the new workload is [U] (no need to recompute mi) or [R] (mi has
to be recomputed). Based on the past workload the system computes the probable
frequency of the next U operation. In our example the frequency ρ2

U
= 3/26 and if

it is greater than the parameterized value ρ, then mi is recomputed immediately.
Otherwise mi is left invalid.

3.3. Hidden Markov Model

A Hidden Markov Model (HMM) (see Rabiner, 1989) is an automaton composed
of a finite set of states. With each of these states, a probability of transition to
all other states is defined. When the automaton enters one of its states, it emits
a symbol according to some probability distribution (defined separately for each
of the states). Next, with an appropriate transition probability, it changes the
state and the process repeats.

Example 3 As a simple example, let us consider an automaton with two states
S1 and S2, as shown in Fig. 2. From state S1 one can reach state S2 with
probability equal 0.2 and state S1 with probability equal 0.8. Being in S1 the
automaton can emit either symbol U or R with probability equal 0.4 or 0.6, re-
spectively.

S1 S2

0.8 0.9

0.2

0.1
U: 0.4
R: 0.6

U: 0.9
R: 0.1

Figure 2. An example of automaton with transition and emission probabilities

From S2 the automaton can reach state S1 with probability equal 0.1 and S2

with probability equal 0.9. Being in S2 the automaton can emit either symbol U
or R with probability equal 0.9 or 0.1, respectively.

There are two important assumptions for the HMM. Firstly, the transition
probabilities do not depend on the history of state transitions i.e., they have
the so-called Markov property. Secondly, an external observer sees only the
sequence of generated symbols, but he/she does not see the sequence of states
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which generated these symbols. Several algorithms were developed for the HMM
(see Rabiner, 1989), including:

• the Forward-Backward algorithms that may be applied to calculating the
probabilities of obtaining a given sequence of symbols;

• the Viterbi algorithm that may be applied to calculating the most likely
sequence of hidden states that generated a given sequence of symbols;

• the Baum-Welch algorithm that may be applied to calculating the transi-
tion and emission probabilities based on the sequence of observed emitted
symbols.

The three algorithms assume that the number of states is known.
Possible applications of the HMM include: speech recognition, image recog-

nition, DNA sequence analysis, automatic translation of texts, weather forecast-
ing.

4. HMM recomputation technique

We will now describe our approach to selecting a method recomputation tech-
nique that is most suitable for a current workload. This technique is self adapt-
able to a workload that may dynamically change. As mentioned in Section 1,
the technique, called the HMM recomputation is based on the Hidden Markov
Model, used for describing the behavior of a system. The system is composed
of a set of applications or user sessions, each of which can either read a given
method value or update a base object. Thus, an application can be represented
by a state that can emit with a given probability either symbol R or U. The or-
der, in which applications are executed, is represented by transition probabilities
between states.

A simple mapping of a system to the HMM is shown in Fig. 3. This system
is composed of n applications, represented by states S0, S1, . . . , Sn. Application
S0 reads a given method value with probability equal 0.3 and updates a base
object with probability equal 0.7. The probability that S1 will be executed next
equals 0.7 and the probability that S0 will be executed again equals to 0.3, etc.

S0 S1

0.3

0.7

0.5

S2

0.5

0.7

Sn

0.3

0.4

U: 0.7
R: 0.3

U: 0.5
R: 0.5

U: 0.7
R: 0.3

U: 0.2
R: 0.8

. . . . .

0.6

Figure 3. An example HMM automaton representing a simple system composed
of n applications executing either R or U operation
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In order to predict an operation that will be executed in the system as the
next one, we apply the Baum-Welch and Forward-Backward algorithms. First,
the HMM is trained, based on the history of operations, using the Baum-Welch
algorithm. The obtained model is then subsequently used for calculating the
probabilities of forthcoming operations using the Forward-Backward algorithms.
If the calculated probability of an operation is greater than 0.5, then it is as-
sumed that this operation will be executed as the next one.

In order to keep the HMM up-to-date we apply a technique similar to the
one used in the PMAP, i.e. the model is rebuilt each time we observe a signif-
icant change in the characteristics of the observed sequence of operations. In
order to detect such changes, we divide the observed sequence of operations
into periods of a fixed length l. At the time the model is built, we also estimate
the probabilities of occurrences of both types of operations (R and U), based
on the frequency of their occurrence and store them in a database. When the
subsequent periods finish, we estimate these probabilities once again, based on
the sequence of operations from the last period. If the change of probabilities is
greater than the specified threshold t, the HMM is rebuilt. In order to illustrate
this technique let us consider the following example.

Example 4 Assume that l = 5 and t = 0.1. Moreover, assume, that the ob-
served sequence of operations from the last period before the model has been built
is H1 = RRURR. Also, let us assume, that the sequence of operations from the
last period is H2 = URRUU . The probabilities estimated, based on the sequence
H1 are equal to P (U) = 0.2 and P (R) = 0.8, whereas for the sequence H2 the
estimated probabilities are equal to P (U) = 0.6 and P (R) = 0.4. Because the
difference in probabilities is greater than the predefined threshold t = 0.1, the
model needs to be rebuilt.

The presented technique for predicting the forthcoming operations is ex-
ecuted every time when the last observed operation is U (recall that update
operations invalidate the results of materialized methods). If the predicted op-
eration is also U, then the rematerialization of the invalidated method mi is
not executed, because the recomputed result would be invalidated again by the
forthcoming U operation. If the predicted operation is R, then the rematerial-
ization of mi is executed before providing its value.

Let us notice that the PMAP, presented in Section 3.2, is a special case of
the solution based on the HMM. In the PMAP, prediction is based on operation
frequencies. These frequencies are calculated based on the history of operations
performed on a given object. The PMAP can be represented by the HMM that
contains states corresponding to the series of updates of a given length. We will
now present a method for constructing the HMM representing the PMAP. We
will denote such a HMM as PMAPHMM .

PMAPHMM is composed of the following states:

• A starting state, denoted as Start that emits only one, meaningless, sym-
bol B (probability of emitting B is always 1). Symbol B does not influence
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predictions, since it appears only once at the beginning of a historical
workload. The HMM never returns to the state Start. In order to per-
form calculations based on the HMM representation of PMAP, symbol B
must be appended at the start of the observed sequence of symbols.

• State Sn−U that represents the following event: an update operation has
just been emitted (emission probability of U is 1) and previous n updates
have also been emitted.

• State Sn − R that represents the following event: a read operation has
just been emitted (emission probability of R is 1) and previous n updates
have also been emitted.

Transition probabilities are calculated using the following rules:
• P (start → S0−U) - probability of emitting an update, if no updates have

been observed;
• P (start → S0−R) - probability of emitting a read operation, if no updates

have been observed;
• P (Sn − U → Sn+1 − U) - the probability of emitting U, if n + 1 updates

have been observed;
• P (Sn − U → Sn+1 − R) - the probability of emitting R, if n + 1 updates

have been observed;
• P (Sn − R → S0 − U) - the probability of emitting U, if no updates have

been observed;
• P (Sn − R → S0 − R) - the probability of emitting R, if no updates have

been observed;
• P (Smax −U → S0 −U) (max denotes the longest, predefined sequence of
U) - the probability of emitting U, if no updates have been observed;

• P (Smax −U → S0 −R) - the probability of emitting R, if no updates have
been observed;

• probability of all other transitions is equal to 0.

In order to illustrate the HMM representation of the PMAP let us consider
the following example.

Example 5 Fig. 4 presents an example of HMM representing the PMAP, as-
suming that the maximum length of the sequence of updates equals 4. Thus,
we have four states Si − U and four states Si − R (i = 0, . . . , 3). The figure
presents all of the states as well as examples of their transition and emission
probabilities.
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Figure 4. An example of HMM representation of the PMAP for the length of
an update sequence equal 4

The PMAP has a low computation complexity and it offers good predic-
tion accuracy (see Masewicz et al., 2006). For these reasons, further in this
paper, we relate the characteristics of the HMM recomputation to the PMAP
recomputation.

5. Experimental evaluation

The proposed HMM recomputation technique was evaluated by experiments. Its
performance characteristics were compared to four other recomputation tech-
niques discussed in this paper, namely to: the deferred, immediate, PMAP, and
random recomputations. In the random recomputation an invalid materialized
result of method mi is recomputed randomly.

All the five recomputation techniques were implemented in Java in an object
database FastObjects t7 9.0 (see Versant, 2006). FastObjects was used also as a
storage system for test data, whose size reached 2GB. The experiments were run
on a PC with AMD Athlon 2GHz, with 512 MB of RAM, under WindowsXP.
Execution times of original non-materialized methods were equal 1 second.

For the purpose of evaluating the aforementioned recomputation techniques
we used two efficiency measures, namely: (1) system time overhead (STO) and
(2) user time overhead (UTO). The STO represents an overall time spent by the
system for: (1) predicting the forthcoming operation, (2) executing a method
(if needed), and (3) accessing a materialized value (if available). The UTO
represents an overall time that a user’s application (session) has to wait for
obtaining the result of a called method. Moreover, in order to compare the
quality of prediction we measured the number of hits. A hit is a correctly
predicted operation.
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The experiments were conducted for workloads of different lengths (ϑ) rang-
ing from 100 to 5000 interleaved R and U operations. The number of base object
updates in every workload was parameterized. We tested the performance for
five scenarios with 10%, 25%, 50%, 75%, and 90% of update operations in a
workload. In every test a workload pattern was randomly generated. In this
paper we present average time characteristics for 25% of update operations (75%
of read operations) in a workload. For other numbers of updates, we obtained
characteristics that are similar to the characteristics presented in this paper.
The number of applications running in parallel was parameterized and ranged
from 1 to 10.

Every experiment was run 10 times for the purpose of testing its repeatabil-
ity. The charts presented in this paper show average times of 10 runs of a given
experiment. In all of the experiments the standard deviation oscillated between
1% and 2% of an average value.

5.1. Experiment 1

This experiment measured the STO and the UTO of the five recomputation
techniques mentioned above and it was run for the following settings: (1) the
state graph, i.e. transitions between applications (used by the HMM recomputa-
tion), was fixed and known; (2) the probabilities of generating R and U operations
(used by the HMM recomputation) were fixed and known for all applications.

The results for five applications running in parallel are shown in Figs. 5a and
5b that present the STO and UTO, respectively. As we can observe from Fig. 5b,
the immediate recomputation technique (denoted as immediate) introduces the
lowest UTO, which is quite obvious since a method recomputation immediately
follows a base object update. Thus, a method value is ready for an application
before the latter requests the value. The deferred recomputation technique
(denoted as deferred) introduces the highest UTO.

From the system point of view, the immediate recomputation is the most
costly (see the immediate curve in Fig. 5a). It is because in many cases a previ-
ously recomputed result is invalidated by a forthcoming U operation. Moreover,
the deferred recomputation introduces the lowest STO (see curve deferred in
Fig. 5a since the system executes and rematerializes a method only when its
value is requested.

Comparing the PMAP and HMM recomputation techniques, we can observe
that the HMM recomputation offers lower UTO than the PMAP (see curves
HMM and PMAP in Fig. 5b). It is caused by a better prediction accuracy of
the HMM recomputation that predicts the right operation more frequently than
PMAP. However, by analyzing the chart from Fig. 5a we can observe that the
STO is higher for the HMM recomputation than for the PMAP.

The random recomputation technique (denoted as random) yields substan-
tially worse UTO and STO than the HMM and PMAP. This fact proves that
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Figure 5. The STO and UTO (five parallel applications; 25% of U operations
in workloads; workload length from 100 to 5000; the state graph and the prob-
abilities of generating operations are fixed and known)
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both the PMAP and HMM recomputation techniques offer a reasonable im-
provement in an overall performance of a system with materialized methods.

5.2. Experiment 2

In this experiment the state graph (i.e. the transitions between applications)
was unknown, therefore it was built by the Baum-Welsh and Viterbi algorithms
based on the observed R and U operations generated by applications. The prob-
abilities of generating R and U operations were fixed and known for all applica-
tions.

The results for five applications running in parallel are shown in Figs. 6a
and 6b, presenting the STO and UTO, respectively. The charts compare the
performance of the HMM recomputation with state graph building (denoted as
HMM+gb) to the performance of the recomputation techniques from Experi-
ment 1.

As we can observe from Fig. 6a, the HMM recomputation with graph build-
ing is more computationally costly with respect to STO as compared to the
HMM recomputation. We can also notice that after applying the HMM recom-
putation with graph building, the UTO remained the same as in Experiment 1
(see Fig. 5b). It means that the HMM with graph building well predicts the
transitions between states (applications).

5.3. Experiment 3

This experiment measured the STO, UTO, and prediction accuracy. It was
run for the following settings: (1) the state graph was fixed and known; (2)
the probabilities of generating R and U operations were fixed and known for five
applications; (3) the probabilities of generating R and U operations were random
for the other five applications.

The STO and UTO are shown in Figs. 7a and 7b, respectively. From the
charts we can clearly observe that the STO of the PMAP recomputation is much
lower than the STO of the HMM recomputation, similarly as in Experiment 1.
Moreover, the UTO of the PMAP is also much lower than the UTO of the
HMM, which is caused by the bigger number of hits, returned by the PMAP.
Similarly as in Experiment 1, the immediate and random recomputations offer
the highest STO. When analyzing the UTO for the random recomputation we
can notice that it is slightly lower than for the HMM recomputation. This is
caused by worse prediction accuracy of the HMM recomputation for five random
applications.

Fig. 8 presents the prediction accuracy of the HMM, PMAP, and random
recomputation with respect to the number of applications, whose behavior was
random. The prediction accuracy is represented by the percentage of hits. The
number of applications randomly generating R and U operations ranged from 0
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Figure 6. The HMM with state graph building: the STO and UTO (five parallel
applications; 25% of U operations in workloads; workload length from 100 to
5000; the state graph is unknown; the probabilities of generating operations are
fixed and known)



Predicting access to materialized methods by means of HMM 143

 0

 500

 1000

 1500

 2000

 2500

 3000

 5000 4000 3000 2000 1000 500 100

tim
e 

[s
]

sequence length

a) system time overhead (STO)

deferred
immediate

PMAP
HMM

random

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5000 4000 3000 2000 1000 500 100

tim
e 

[s
]

sequence length

b) user time overhead (UTO)

deferred
immediate

PMAP
HMM

random

Figure 7. The STO and UTO (ten parallel applications; 25% of U operations
in workloads; workload length from 100 to 5000; the state graph is fixed and
known; the probabilities of generating R and U operations are random for five
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144 M. MASEWICZ, W. ANDRZEJEWSKI, R. WREMBEL, Z. KRÓLIKOWSKI

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  2  4  6  8  10

%
 o

f p
re

di
ct

io
n 

hi
ts

number of random applications

HMM
PMAP

random

Figure 8. Prediction accuracy for the HMM, PMAP, and random recomputa-
tions (ten parallel applications; 25% of U operations in workloads; workload
lenght 5000; the state graph is fixed and known; the number of random appli-
cations ranges from 0 to 10)

(i.e. probabilities of generating R and U were fixed and known for all applications)
to 10 (i.e. probabilities of generating R and U were unknown for all applications).

From Fig. 8 we can observe that for applications, whose behavior was known
(0 of random applications), the HMM recomputation offers the highest hit num-
ber, i.e. approximately 72%, whereas the PMAP offers approximately 68%, and
the random recomputation offers approximately 50%. With an increase in the
number of random applications the hit number by the HMM substantially (al-
most linearly) decreases down to approximately 40% for 10 random applications.
The hit number by the PMAP decreases slightly, down to approximately 60%
for 10 random applications. For four and more random applications, the num-
ber of hits by the HMM becomes lower than by the PMAP. Such behaviour
can be explained by the fact that the PMAP analyzes the history of workloads,
whereas the HMM does not.

5.4. Experiment 4

In this experiment the state graph (i.e. the transitions between applications)
was unknown, and so it was built by the Baum-Welsh and Viterbi algorithms.
Moreover, the probabilities of generating R and U operations were unknown for a
parameterized number of applications that ranged from 0 to 10. This experiment
measured the STO, UTO, and prediction accuracy.
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Figs. 9a and 9b show the STO and UTO, respectively. These charts describe
a scenario where the probabilities of generating R and U operations were fixed
and known for five applications and for the other five applications they were
random.

As we can observe from Fig. 9a, the HMM recomputation with graph build-
ing (see the curve HMM+gb) is more computationally costly with respect to the
STO when compared to the HMM and PMAP recomputations. The UTO for
the HMM with graph building is lower than for the HMM. This is caused by a
better prediction accuracy of the HMM with graph building than of the HMM,
i.e. the number of hits by the HMM with graph building is greater than by the
HMM. However, applying the HMM with graph building results in higher UTO
when compared to the HMM and PMAP recomputations.

Fig. 10 presents the prediction accuracy of the PMAP, HMM, and random
recomputations with respect to the number of applications, whose behavior was
random. The number of applications randomly generating R and U operations
ranged from 0 to 10.

From Fig. 10 we can observe that the HMM with graph building offers a pre-
diction accuracy oscillating around approximately 70%, regardless of the num-
ber of random applications. With this regard, the HMM with graph building
is much better than the other recomputation techniques. Such a good predic-
tion accuracy was achieved since the prediction model was rebuilt as the result
of a workload change. The much worse prediction accuracy of the HMM was
caused by the fact that the prediction model built once remained unchanged
even if a workload changed. As a consequence, the prediction model of the
HMM recomputation did not describe correctly the current workload.

5.5. Experiment summary

By analyzing the results of the above four experiments we can draw the following
conclusions:

• the computation complexity (i.e. the STO) is greater for the HMM and
HMM with graph building recomputations than for the PMAP;

• the HMM recomputation guarantees lower UTO than the PMAP when
the probabilities of operations requested by applications are known, re-
gardless of the fact whether the state graph is known or not (see Experi-
ments 1 and 2);

• the HMM and the HMM with graph building recomputations guarantee
higher UTO than the PMAP when the probabilities of operations re-
quested by applications are unknown, regardless of the fact whether the
state graph is known or not (see Experiments 3 and 4);

• the HMM with graph building recomputation assures the best prediction
accuracy of all the tested recomputation techniques when at least one
random application is running in the system (see Experiment 4);
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Figure 9. The HMM with state graph building: the STO and UTO (ten parallel
applications; 25% of U operations in workloads; workload length from 100 to
5000; the state graph is unknown; the probabilities of generating operations are
fixed and known for five applications)
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• the HMM recomputation assures the best prediction accuracy when no
random applications are running in the system (see Experiment 4);

• the HMM, HMM with graph building, and PMAP recomputations as-
sure substantially better performance with respect to UTO and STO than
random recomputation. This fact well justifies the application of these
recomputation techniques.

6. Summary

In this paper we presented a technique, called HMM recomputation, for re-
computing materialized method results. The main goal of this technique is to
choose the most suitable moment of recomputing a materialized method result
for a given workload, so that an overall system performance should increase. To
this end, the proposed HMM recomputation predicts forthcoming operations on
methods and their base objects. The prediction model is based on the Hidden
Markov Model.

The proposed technique has been applied to an object system. However, it
is a general technique and it can also be applied in other systems, e.g. in dis-
tributed databases and distributed computing environments for synchronizing
replicas, or in data warehouses for refreshing materialized views.
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The proposed technique was implemented and experimentally evaluated. As
a reference we chose four other possible recomputation techniques, namely: the
immediate, deferred, random, and PMAP, which is also based on a prediction
model. The experiments show that: (1) after applying the HMM, HMM with
graph building as well as PMAP recomputations the overall system performance
increases; (2) the prediction accuracy depends on the number of random appli-
cations running in a system, however the HMM with graph building offers the
most promising characteristics.

For the work presented in this paper some parameters of the HMM and HMM
with graph building recomputation techniques were arbitrarily fixed. Such pa-
rameters include: (1) the length of historical workloads, (2) the probability
threshold, and (3) workload change threshold. Finding appropriate values of
these parameters remains an open problem and task for future development.

The length of historical workloads being analyzed has influences prediction
accuracy and time of computing the prediction. If the workload is too long, then
the HMM recomputation takes too long. On the contrary, if the workload is
short, then prediction accuracy decreases. Therefore, there should be a balance
between prediction accuracy and computation time that has to be found.

Moreover, the HMM recomputation recomputes an invalid method when the
probability of a forthcoming operation is greater than a given threshold. This
threshold influences system performance. If it is too high, then applications
will wait for method values more frequently, but the system will be less charged
with method recomputations. On the contrary, if the threshold is too low, then
a system will be more charged with recomputations, but applications will wait
shorter for method values. Therefore, finding the right threshold is another
important issue.

In a real system applications may dynamically change their behavior, i.e.
probabilities of executed operations on methods and objects. As a consequence,
an HMM model built once may no longer describe a current behavior of appli-
cations. For this reason another important issue is to find the right threshold
in application behaviors, triggering the rebuilding of an HMM model.

Yet another open problem is to consider priorities for applications, so that
applications requesting at the same moment contradictory recomputation tech-
niques can be scheduled according to their priorities.

Last but not least, an important research problem is to develop a cost model
that will allow for developing a kind of self tuning system, able to automatically
adjust the three aforementioned parameters according to the current behavior
of applications.
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