Control and Cybernetics

vol. 38 (2009) No. 2

Properties and pre-processing strategies to enhance the
discovery of functional dependency with degree of
satisfaction*'

by
Qiang Wei, Guoqing Chen and Xiaocang Zhou

Department of Management Science and Engineering,
School of Economics and Management, Tsinghua University
Beijing 100084, China
e-mail: weiq@sem.tsinghua.edu.cn

Abstract: Functional dependency with degree of satisfaction
(FDy) is an extended notion in data modeling, and reflects a type
of integrity constraints and business rules on attributes, mainly for
massive databases, in which incomplete data such as noise, null and
imprecision may exist. While existing approaches are considered ef-
fective in general, attempts for further improvement in efficiency are
deemed meaningful and desirable as far as knowledge discovery is
concerned. This paper focuses on discovering (FDg)s as a form of
useful semantic knowledge, aiming at providing an enhancement to
the FD; mining process in a more efficient manner. In doing so,
properties of FD, are in-depth investigated along with a measure
for degree of distinctness. Subsequently, a number of optimization
strategies are developed for pre-processing, which are then incorpo-
rated into the mining process, giving rise to an enhanced approach
for mining functional dependency with degree of satisfaction, namely
e-MFDD. Finally, data experiments revealed that e-MFDD signifi-
cantly outperformed the original approach without pre-processing.

Keywords: functional dependency, incomplete data, degree of
distinctness, data mining.

1. Introduction

Nowadays, most of the commercial data repositories for business, engineering
and scientific applications including web-based ones are relational databases
(RDB). While research on RDB has been intense and long-lasting, on norma-
lization, integrity constraint, Entity-Relationship (ER) conceptual modeling,
relational algebra, SQL language, query optimization, etc. (Codd, 1970; Ullman,

*Partly supported by the National Natural Science Foundation of China
(70890083/70621061), and Tsinghua Research Center for Contemporary Management.
TSubmitted: December 2007; Accepted: October 2008.

368 Enhancing the discovery of functional dependency

1988; Ullman and Widom, 1997), recent years have witnessed a shift in focal
point towards large-scale data environments where data generation, storage and
use are pervasive, and the volume of information is extraordinarily huge. The
implication of the shift is then regarded profound in two respects: one is a need
to revisit related theories and applications that may only be valid or sensible
with a limited amount of data; the other is to explore new issues that are
relevant due to enormous capacities of the IT (information technology)-enabled
applications.

Functional dependency (FD) is one of the key notions in the field of data
modeling. It is a type of integrity constraints among data attributes on which
RDB design theories are based, while reflecting a form of semantic knowledge as
business rules of the real world concerned. Generally speaking, an FD indicates
a correspondence between two sets of attributes in terms of dependence of one
on the other. Concretely, for two collections A and B of attributes, a functional
dependency (FD) A — B means that A values uniquely determine B values.
An example of A — B is (Customer#, Product#)—Quantity, meaning that the
value of Quantity can be uniquely determined by a given value of Customer#
and a given value of Product#. Formally, let A and B be subsets of the attribute
set U ={l,Is,...,I,}, i.e., A, B C U, R(U) be an m-ary relational scheme
on domains D1, Da, ..., D,, with Dom(I;) = D;, and R be a relation of scheme
R(U), R C D1 xDyX...xD,,. Afunctionally determines B (or B is functionally
dependent on A), denoted as A — B, if and only if

Vi, t' € R, if t(A) = t'(A) then t(B) = t'(B),

where t and t’ are tuples of R, and t(A), t'(A), ¢(B) and t'(B) are values of ¢t and
t' for A and B respectively. It is important to note that functional dependency
possesses several desirable properties, including the so-called Armstrong axioms
that constitute a FD inference system (Ullman, 1988):

Al: If BC A, then A — B;
A2: If A — B, then AC — BC;
A3: If A— Band B — C, then A — C.

The soundness and completeness of the system (axioms Al, A2, and A3)
guarantees, given a set F' of functional dependencies (FDs) with respect to R(U),
the equivalence of two notions, namely F* (the set of all FDs logically implied
from F in M(U)) and F4 (the set of all FDs inferred from F with the axioms),
(Ullman, 1988; Ullman and Widom, 1997). Here, by FDs being logically implied
from F we mean those FDs that hold in all relations of schema QR(U). This
enables RDB designers to normalize the relational schemes and obtain related
decomposition algorithms in light of dealing with data redundancy and update
anomalies.

In many cases, either due to the improper design of the initial RDB scheme,
or due to the insufficient enforcement of FDs while populating/adding data
over time, or due to databases re-structuring resulting from various purposes

Q. WEI, G. CHEN, X. ZHOU 369

(e.g., business merges, convenient data handling, intermediate outcome storage,
data warehousing etc.), there may exist unknown FDs that are hidden in data
and useful in scheme evolution and semantic representation. Some of the FDs
could also be used as integrity constraints or business rules for RDB and related
information systems to enforce (e.g., via a RDBMS - relational database man-
agement system). Thus, as the volume of data gets more and more massive,
finding FDs became a subject of research focus, especially in the data min-
ing context (Andersson, 1994; Baudinet, Chomicki and Wolper, 1999; Bell and
Brockhausen, 1995; Castellanos and Saltor, 1993; Fayyad, Piatetsky-Shapiro
and Smyth, 1996; Flach and Savnik, 1999; Savnik and Flach, 2002; Wijsen,
Ng and Calders, 1999; Wyss, Giannella and Robertson, 2001). Moreover, some
other attempts centered on extended forms of FD, such as functional dependen-
cies with null values (Liao, Wang and Liu, 1999), partial determination (Kramer
and Pfahringer, 1996), approximate functional dependencies (Huhtala et al.,
1998, 1999; King and Legendre, 2003; Matos and Grasser, 2004), soft func-
tional dependency (Ilyas et al., 2004), fuzzy functional dependencies (FFDs)
(Bhuniya and Niyogi, 1993; Bosc, Dubois and Prade, 1999; Chen, Kerre and
Vandenbulcke, 1994, 1996; Chen, Vandenbulcke and Kerre, 1991; Chen, 1998;
Cubero et al., 1995, 1999; Kiss, 1991; Kruse, Nanck and Borgelt, 1999; Liu,
1993; Maimon, Kandel and Last, 2001; Mitra, Pal and Mitra, 2002; Mouaddib,
1995; Raju and Majumdar, 1988; Saxena and Tyagu, 1995; Shenoi, Melton and
Tan, 1992; Wang, Shen and Hong, 2002; Yang and Singhal, 1999), functional
dependency with degree of satisfaction (FDg) (Wei and Chen, 2003a,b, 2004,
2006; Wei, Chen and Kerre, 2002), etc.

In the environment of massive databases, where the issues addressed in this
paper are relevant, incomplete, noisy or distorted data often appear, including
conflicts, nulls, and errors that may result from, for instance, inaccurate data
entry, transformation or updates. Apparently, these could hardly be tolerated
by traditional FDs that by definition strictly express the semantics that “Equal
A values determine equal B values (for all tuples)”. As a result, any tiny noise
would probably lead to negation of FD existence. On the other hand, even
without noisy data, sometimes a partial truth of an FD may still make sense.
For instance, “an FD almost holds in a database” or “Equal A values determine
equal B values for most of the tuples” expresses a sort of partial knowledge,
meaning that the FD satisfies the RDB of concern to a certain extent. This
gives rise to a notion of functional dependency with degree of satisfaction (FDg)
introduced by Wei, Chen and Kerre (2002).

Related work could be found in Huhtala et al. (1998, 1999), Ilyas et al.
(2004), King and Legendre (2003), Matos and Grasser (2004), where some no-
tions of approximate dependency were introduced, including some measures for
an error of a dependency and bounds for discovering dependencies with errors.
Hubhtala et al. (1998, 1999) defined the proximity of a dependency in terms of
an error based on the minimum number of rows that need to be removed from
the relation. Similar efforts have been made to find approximate dependencies

370 Enhancing the discovery of functional dependency

using an SQL-based algorithm (Matos and Grasser, 2004) and partition-based
level-wise algorithm (King and Legendre, 2003). Ilyas et al. (2004) proposed
the so-called soft functional dependency, which represents the dependency of
one attribute (column) on the other (column), based on statistical correlations
with sampling. They also derived several properties to improve the discovery
efficiency for their notions of dependencies. However, these notions of depen-
dencies are different from FD, in form and semantics. Moreover, the Armstrong
axioms were not extended in their work and therefore were not used to infer
dependencies for optimizing the discovery process.

Overall, the usefulness of discovering functional dependencies (that could
have various forms, though) is threefold. First, newly discovered functional de-
pendencies are of interest for modeling purposes. These discovered functional
dependencies could be used to refine database schemas/views, where necessary
(Hick and Hainaut, 2006; Patig, 2006). For example, some relationships be-
tween data attributes (e.g., in long-standing large databases) might not be of
FD nature at the stage of database design, which were therefore not enforced
thereafter by the system over years. However, some of these relationships satis-
fied the FD condition starting from a certain point of time due to evolving char-
acteristics of the businesses. Apparently, these relationships are not traditional
FDs, in consideration of the whole data over years, but could be represented by
(FDg)s. Hence, after being confirmed by business analysts in the light of FDg,
this change of business semantics may need to be reflected by enforcing the re-
lationships as FDs. Furthermore, in many cases, data warehouses/marts need
to be constructed resulting from relevant data attributes of different sources,
where the discovered functional dependencies reflecting semantic relationships
of these attributes could be useful. Second, these newly discovered functional
dependencies are by themselves certain types of associative knowledge, which
could be used as business rules for decision making. Third, it is deemed desir-
able that newly discovered functional dependencies could be used as semantic
constraints in query formulation and optimization, especially in the context of
high volume information retrieval and search (Hick and Hainaut, 2006). Thus,
discovering (FDy)s as a specific form of functional dependencies is meaningful
in the light of noise tolerance and partial knowledge representation.

The rest of this paper is organized as follows. Section 2 will introduce the
related notions about functional dependency with degree of satisfaction. Section
3 will discuss Property 4, presented in Section 2, in more detail and introduce
the degree of distinctness to measure the “distinctness” of attributes. Then,
some related properties will be explored with three optimization strategies being
derived so as to improve the efficiency of the FD; mining process. Section 4
will present an enhanced algorithm that incorporates the three strategies as
pre-processing, along with some analysis and discussion on the contribution of
the pre-processing strategies in the light of computational complexity. Some
experimental results will be discussed in Section 5 to illustrate the effectiveness
of the strategies and efficiency of the enhanced algorithm.

Q. WEI, G. CHEN, X. ZHOU 371

2. Related work

Let RR(U) be a relation scheme, A, B C U, and R be a relation of BR(U) with n
tuples, then an FDg (A — B),, is defined as the degree (denoted as dr(A — B),
or simply d(A — B)) « at which R satisfies A — B:

Z dit; 1, (A — B)
Vti,t; € R

d(A — B) = dp(A — B) = 7Y

NTP ’

where 0 < a < 1, NTP represents the number of distinct pairs of tuples in R
(which equals n(n —1)/2, where n is the number of tuples), and d, +,)(A — B)
is the degree that B is functionally dependent on A for the distinct pair of tuples
(ti,tj) in that if tl(A) = tJ(A) and tZ(B) 7§ tj(B), then d(ti,tj)(A — B) = O,
otherwise 1. In other words, an FDy (A — B),, reflects the semantics that equal
B values depend on equal A values at a certain degree (a). Given a minimal
satisfaction threshold 6, 0 < 6 < 1, if d(A — B) > 6, then A — B is called a
satisfied functional dependency. In a manner analogous to association rule min-
ing, where minimal thresholds are used for degrees of support and confidence
in assessing the levels of strength and significance, 8 is a minimal threshold for
assessing (FDg)s in terms of the level of dependency tolerance. These thresholds
are usually context-related and often pre-specified by business analysts and do-
main experts (see Agrawal, Imielinski and Swarmi, 1993; Agrawal et al., 1996;
and Agrawal and Shafer, 1996).

It is worth mentioning that FDg, is different from the notions of fuzzy func-
tional dependencies. Existing fuzzy functional dependencies are extensions of
traditional FDs, focusing on different aspects for generalization (Bosc, Dubois
and Prade, 1999; Chen, 1998; Chen, Kerre and Vanderbulcke, 1994; Chen, Van-
derbulcke and Kerre, 1991; Cubero et al., 1995; Kiss, 1991; Liao, Wang and
Liu, 1999; Liu, 1993; Maimon, Kandel and Last, 2001; Mouaddib, 1995; Raju
and Majumdar, 1988; Saxena and Tyagu, 1995; Shenoi, Melton and Tan, 1992;
Yang and Singhal, 1999). For instance, 1) fuzziness in attribute values and
tuple belongingness could be introduced into RDB models in terms of differ-
ent fuzzy data representation; 2) if-then truth values in traditional FDs could
be extended with fuzzy implication operators (FIOs); 3) equality (=) for at-
tribute values could be extended with similarity /proximity/closeness measures;
4) the degree of dependency between attributes could be assessed in different
ways using composition/aggregation methods, giving rise to various definitions
of fuzzy functional dependencies. Generally speaking, fuzzy functional depen-
dencies (e.g., A to B) represent semantic relationships such as “similar attribute
values of A (approximately) determine similar attribute values of B”. As an
example, a fuzzy functional dependency A —4 B is defined as:

min (1((A) = ' (A), 1(B) ~ ' (B))} > ¢,

372 Enhancing the discovery of functional dependency

where A, B C U, [is a fuzzy implication operator (FIO) (e.g., Godel operator),
~ is a closeness measure (reflexive and symmetric), ¢ € [0, 1] (Chen, Kerre and
Vanderbulcke, 1996).

Unlike fuzzy functional dependencies, a FD4 (A — B), represents the se-
mantics that “Equal values of attribute A determine equal values of attribute
B for a fraction (a) of tuple-pairs”. More importantly, while fuzzy functional
dependencies are of fuzzy nature, where membership functions pertain, FDg is
not based on fuzziness-related membership functions but a frequency-related
measure. In other words, a FDy reflects the extent to which a FD holds in a
traditional non-fuzzy sense.

Moreover, three important properties of FD, are proven to hold as a form
of extended Armstrong axioms (Wei and Chen, 2004):

A1’ If BC A, then d(A — B) =1, (PROPERTY 1)

A2’ If d(A — B) > a, then d(AC — BC) > «, (PROPERTY 2)

A3 If d(A — B) > a and d(B — C) > (3, then d(A — C) > ~, where
a+p—1<~v<1. (PROPERTY 3)

These then constitute an FD, inference system, based on which the notion
of FD; minimal set is presented (Wei and Chen, 2003a,b, 2004, 2006; Wei,
Chen and Kerre, 2002). Furthermore, an effective algorithm for mining (FDy)s
(namely MFDD) has been provided by incorporating the properties into the
mining process in order to directly infer (FDg)s and reduce the computational
complexity due to scanning of the entire database (Wei and Chen, 2004, 2006).

For illustrative purposes, let us consider an example (Example 1) as follows.

ExXAMPLE 1 Table 1 is a Student database, which contains the data about stu-
dent ID numbers, the departments that students belong to, and the locations
of the departments. Note that tuple 1 has a noisy value (denoted as #) in
Location. “#” can be erroneous data, such as “bvilding 2”, distorted string
“F4& Q7 or null value.

Table 1. Student Database
ID Department Location

1 001 CS #

2 002 IS Building 2
3 003 CS Building 2
4 004 CS Building 2
5 005 CS Building 2

To find traditional functional dependencies, all 6 candidate FDs (i.e., ID—
Department, ID—Location, Department—ID, Department—Location, Location
—ID, and Location—Department) need to be examined by scanning the data-
base. By one scan, we mean scanning the relevant attribute of each tuple once.

Q. WEI, G. CHEN, X. ZHOU 373

In other words, one scan is to read every tuple only once, although whether
the read is for all its attributes or merely for its relevant attributes depends on
the implementation. Thus, after scanning the database 6 times (once for each
FD candidate), it could be found that ID—Department and ID—Location hold.
Note that Department— Location could not be discovered due to the noisy data
value in location, which otherwise ought to hold semantically.

Consider functional dependencies with degrees of satisfaction. Given 6 = 0.6,
the set of (FDg4)s with respect to this 6 value, i.e., {(ID — Department); o, (ID
— Location); o, (Location — Department)g 7, (Department — Location)g. 7},
can be generated using algorithm MFDD, in which Properties 1, 2 and 3 have
been integrated to optimize the mining process.

For example, when (ID—Department); o and (Department—Location)q 7
were discovered, according to Property 3, it could be inferred directly that
d(ID — Location) > d(ID — Department) 4+ d(Department — Location) — 1 =
14+0.7—1=0.7> 0. In other words, ID—Location could be inferred as satis-
fied without scanning database. Clearly, it is desirable to infer as many (FDgy)s
as possible without scanning database, especially with huge m (the number of
attributes) and n (the number of tuples). [

As far as computational efficiency in data mining is concerned, it is usu-
ally deemed meaningful and desirable to explore the properties of the relevant
notions and develop corresponding algorithmic optimization strategies (such as
pruning and inferring) so as to reduce scanning of the databases and respective
computations.

In addition to the above three properties, the following property (Property 4)
has been proved in Wei and Chen (2004):

PrOPERTY 4 Ifd(A — B) =a, thend(B—C)>1-a.

In Property 4, d(A — B) = o means that the ratio of the cases with ¢;(A) =
t;(A) and t;(B) # t;(B) over total number of distinct pairs of tuples (i.e., NTP)
equals 1 — ae. That is to say, the ratio of the cases with ¢;(B) # t;(B) is at least
1 — a. The ratio of the cases with ¢;(B) # ¢;(B) and (t;(C) # t;(C) or t;(C) =
t;(C)) is at least 1 — . This implies d(B — C) > 1 — « (Definition 1). This
property will play an important role in further improvement of computational
efficiency of FDy discovery, which will be discussed in detail in the following
sections of the paper.

For instance, according to the definition of traditional FD, if A — B, e.g.,
d(A — B) =1, it says little about B — C (e.g., d(B — C) > 0). On the other
hand, in the context of FDy, if d(A — B) = a < 1, then B — C could be inferred
with d(B — C) > 1 — «, which says something and is regarded meaningful. It
is also worthwhile to indicate that, with this property, the transitive inference
(Property 3) will all have non-negative degrees, that isy > 0 (i.e., v > a+6-1 >
a+(1—a)—1=0).

374 Enhancing the discovery of functional dependency

The focus of this paper is placed on further enhancement of the discovery
efficiency in finding (FDg)s. The main idea for the enhancement is, based on
Property 4, to investigate desirable properties along with a measure of degree of
distinctness for attributes, and to develop corresponding pre-processing strate-
gies to be integrated with MFDD, resulting in an enhanced algorithm named
e-MFDD. The analysis and data experiments will show that e-MFDD effectively
outperforms the original MFDD.

3. Degree of distinctness and optimization strategies

As mentioned previously, while the above-mentioned Properties 1, 2 and 3 are
used for FDy inference in original MFDD (Wei and Chen, 2004), Property 4
may further play an important role in the efficiency improvement. Note that
in the discussions of this section and thereafter, strategies, which are mainly
resulting from properties, are meant as the conditions to be used in algorithmic
optimization.

First, Property 4 could be used directly as a strategy in discovering (FDy)s.
Given a threshold 0, A, B C U, we have:

STRATEGY 0 Given the threshold 0, if d(A — B) <1—0, then d(B—Y) > 6,
VY eU.

Proof. 1t follows directly from the Property 4. [

According to Strategy 0, in the discovery process, if it is discovered that
d(A — B) <1—0, then any B — Y is satisfied (i.e., d(B — Y) > 6), where
Y € U. This is quite useful, since it could be used to save many scanning
operations for computing the degrees of satisfaction of all (B — Y')s. Moreover,
from the perspective of RDB, B could be regarded as a candidate key, since
only candidate keys can functionally determine all the other attributes. This
carries an important piece of knowledge for further RDB modeling.

Also importantly, Property 4 provides some very interesting information
that a dissatisfied FDg4 could also be utilized to infer other satisfied (FDg)s.
This is novel and does not hold in the traditional FD context. For instance, in
the traditional FD context, if an FD A — B is not satisfied in a database, it
means that for equal A values, there exists at least one pair of B values that
are different. However, no more information about B could be deduced: any
B — Y cannot be further inferred, satisfied or not. Instead, in the context
of FDg, the degree of satisfaction (dissatisfaction) could be measured, which
could be further utilized in the inference process to improve the efficiency of the
discovery. To further illustrate the idea, let us look at Example 2.

EXAMPLE 2 Consider the Student database as shown in Table 1. If Strate-
gy 0 could be integrated in the algorithm MFDD, then since it could be dis-
covered by scanning database that d(Department—ID) = 0.4 < 6 = 0.6, both

Q. WEI, G. CHEN, X. ZHOU 375

ID—Department and ID—Location are definitely satisfied accordingly. Totally,
the computational complexity includes four database scanning operations and
two inference operations, which is more efficient than that of MEDD (five times
scanning and once inference).

3.1. Degree of distinctness

Intuitively, Property 4 means that if d(A — B) is sufficiently small (< 1 —
), then the values of B are quite different from each other, which reflects an
important characteristic of a candidate key in relational databases. In fact, the
level at which the values of any attribute set A are different from each other
represents a sort of “distinctness” of A. To measure it, a degree of distinctness
is defined as follows (Definition 1).

DEFINITION 1 Let R(U) be a relation scheme, A C U, and R be a relation of
R(U) with n tuples, then the degree of distinctness in A, denoted by dr(A) (or
d(A) for simplicity), is defined as:

Z d(ti it5) (A)

Vti,t; € R
t; 1t

NTP

where NTP represents the number of distinct pairs of tuples in R (which equals
n(n—1)/2), and d(t;, t;)(A) =1, if t;,(A) # t;(A), otherwise 0.

In other words, this measure reflects the degree of pair-wise difference of an
attribute (set). Let us use an example to illustrate the idea. Suppose there are
n tuples in a database with k distinct values evenly distributed. That is, we
can form k distinct groups, each with identical values that are different from
the values in another group. Then, we obtain d(4) = (n/(n—1))* ((k —1)/k)).
This means that if all the values are identical (i.e., k = 1) then d(A) = 0; if all
the values are mutually distinct (i.e., &k = n), then d(A) = 1. When n is very
large, which is common nowadays, we have approximately d(A) = (k—1)/k. In
this case, for instance, if k = 2, 4, 6, 8, 10, then approximately d(A) = 0.50,
0.75, 0.83, 0.88, 0.90, respectively. For k = 2, this is a case with two distinct
groups, each of which accounts for 50% of tuples, which is different from a case
with & = 1. That means the ratio of 50% over 100%. Likewise, for k = 4,
we have the ratio of 75% over 100%, and so on. Moreover, d(A) is not only
dependent on the number of distinct groups (i.e., k), but also on how the values
are distributed among groups. That is to say that d(A) with evenly distributed
values is different from d(A) with unevenly distributed values. For example, for
k = 2, let us have two groups with sizes i and n — i, respectively. Then d(A)
can be depicted with respect to i/n (in percent) by a curve as shown in Fig. 1.

376 Enhancing the discovery of functional dependency

d(A4)

/TN
L/ \
/ \

0 20 40 60 80 100 120

Figure 1. d(A) curve

Fig. 1 indicates that the curve of d(A) is symmetric with its maximal value
being at 50%, meaning that the sizes of the two groups are equal (i.e., evenly
distributed).

Essentially, the degree of satisfaction of a FDy (i.e., d(A — B)) is highly
related to d(A) and d(B). Generally, the more distinct is A (i.e., d(A) is higher),
the higher is the degree of satisfaction of A — B (i.e., d(A — B)). The less
distinct is B, the higher is the degree of satisfaction of A — B (i.e., d(A —
B)). Furthermore, for the Student database example, attribute ID is completely
distinct, i.e., the ID values of any two tuples are different. Then, it is a candidate
key. In order to take advantage of Property 4, we do not need to calculate any
ID— Y, where Y C U. We only need to scan the database and calculate d(ID)
before mining (FDg)s, and if ID is distinct enough, then it could be inferred
that ID—Department and ID—Location are satisfied.

Note that if A values of all tuples are identical, then d(A) = 0, meaning that
the attribute set A is not distinct in value at all. If the A value of each tuple
is unique (mutually distinct), then d(A) = 1, meaning that attribute set A is
totally distinct in value, which also indicates that A is a candidate key. Further,
if there exists an attribute set X C U, which is totally distinct, then we have
a number of relationships between the degree of distinctness and the degree of
satisfaction as follows.

PROPERTY 5 VA, X CU, ifd(X) =1 then d(A) =d(A — X).

Proof. Without loss of generality, all the distinct pairs of tuples (i.e., {(¢;, t;)|t:, t;

Q. WEI, G. CHEN, X. ZHOU 377

€ R,t; ;é i}) could be classified into two groups, namely, G; and Ga:
=A{(ti,t))lti, 15 € R, ti # 15, ti(A) = ;(A)};

={({ti, t;)|ti t; € R, i # t5, ti(A) #1;(A)}.

Since d() = 1, then Vt,,t; € R, t;(X) # t;(X). Subsequently, by defini-
tion, dy,,)(A) = 1if t;(A) # t;(A), otherwise 0. Furthermore, by definition,
d(t t5) (A — X) =1if tZ(A) 7é tJ(A) and tZ(X) # tJ(X), or d(ti,tj)(A — X) =0
if t;(A) =t;(A) and ¢;(X) # t;(X). This could be summarized in the following
table with |G1| = N1 and |G2| = NQ.

Group of dis-| Number of
tinct pairs |distinct pairs|t;(A) # t;(A) ti(X) # t;(X)|d@,,e;)(A) di, e (A — X)
of tuples of tuples
G1 N1 No Yes 0 0

G Ny Yes Yes 1 1

Hence, according to the definitions of d(A) and d(A — X), we have d(A —

Moreover, one can easily get, VY e U, d(X - Y)=1if d(X) =

Based on Definition 1 and the above-mentioned properties, some important
derivatives could be further obtained. Let R be a relation on R(U) and A, B C
U, then we have the following properties (Properties 6 and 7).
PROPERTY 6 d(AB) > d(A).
Proof. It 3X C U, d(X) = 1, then, according to Property 5, d(AB) = d(AB —
X) and d(A) = d(A — X). If X ¢ U, we could easily construct U’ = U U X,
such that d(X) = 1. In this case, AB, X C U’, then again, according to
Property 5, d(AB) = d(AB — X) and d(A4) = d(A — X).

According to Properties 2 and 3,

d(AB) Zd(AB—>X) > d(AB —>A)+d(A—>X) —-1>1
So d(AB) > d(A). m
PROPERTY 7 d(AB) < d(A) 4+ d(B).
Proof. Similarly to the proof of Property 6 for dealing with X, d(AB) =
d(AB — X), d(A) = d(A — X) and d(B) = d(B — X). According to Proper-
ties 1, 2 and 3, we have
d(A— X)>d(A— AB)+d(AB— X)—1=d(A— B)+d(AB — X)—1.

According to Property 4, we have d(A — B)+d(B — X) > 1,s0 d(A — B) >

—d(B — X). Then we have d(A — X)>1—d(B — X))+ d(AB — X) — 1.
Thus, d(A — X)+d(B — X) > d(AB — X). Therefore, d(A) +d(B) > d(AB)
(Property 5). L]

378 Enhancing the discovery of functional dependency

3.2. Optimization strategies

Based on the properties discussed in the previous subsection, this subsection
mainly concentrates on optimization strategies that will be used in the algorith-
mic enhancement to be described in greater detail in later sections.

PROPERTY 8 d(A — B) > d(4).

Proof. Similarly to the proof of Property 6 for dealing with X, d(4) = d(A —
X). Further, d(A — B) > d(A — X)+d(X — B) — 1 (Property 3). Since
d(X — B) =1, then d(A — B) > d(A — X) = d(A). Therefore, d(A — B) >
d(A).]

PROPERTY 9 d(A — B) >1—d(B).

Proof. Similarly to the proof of Property 6 for dealing with X,d(B) = d(B —
X). Further, d(A — B) +d(B — X) > 1, according to Property 4. Then
d(A— B)>1—d(B — X)=1—d(B). That is d(A — B) > 1 — d(B). .

PROPERTY 10 d(A — B) < d(A)+1—d(B).

Proof. Similarly to the proof of Property 6 for dealing with X, d(4) = d(A —
X) and d(B) = d(B — X). Further, d(A — X) > d(A — B)+d(B — X) — 1,
according to Property 3. Then d(A4) > d(A — B) + d(B) — 1. That is, d(A —
B) <d(A)+1—d(B). n

Note that with Properties 8, 9 and 10, if all the attributes could be examined
to compute the degrees of distinctness prior to the mining process of MFDD,
then some (FDg)s could be inferred satisfied or dissatisfied without scanning
the database. Accordingly, some algorithmic optimization strategies could be
developed as follows.

STRATEGY 1 If d(A) > 0, then d(A — Y) > 0, which means that A — Y s
satisfied, VY € U.

Proof. Tt can be directly obtained based on Property 8. [

Strategy 1 means that, for an FDy A — Y, if A values are sufficiently distinct
(i.e., d(A) > 0), then A — Y is satisfied (i.e., d(A — Y) > 6), whatever Y is.
This is because the degree of satisfaction is mainly determined by distinct A
values. A could be considered as a candidate key of the relation.

STRATEGY 2 If1—d(A) >0, then d(Y — A) > 0, which means that Y — A is
satisfied, VY € U.

Proof. Tt can be directly obtained based on Property 9. [

Q. WEI, G. CHEN, X. ZHOU 379

Strategy 2 means that, for an FD; Y — A, if A values are not so distinct (i.e.,
1—d(A) > 0), then Y — A is satisfied (i.e., d(Y — A) > 0), whatever Y is. This
is because the degree of satisfaction is mainly determined by equal A values.

STRATEGY 3 If d(B) — d(A) > 1 —0, then d(A — B) < 0, which means that
A — B is dissatisfied.

Proof. Since d(B) —d(A) > 1 —6, then d(B) —1—d(A) > 1—6 — 1, which is
d(A)+1—-d(B) < 6. Further, according to Property 10, d(A — B) < d(A)+1—
d(B) < 0, which is d(A — B) < 6. Therefore, A — B is dissatisfied. L]

Strategy 3 means that, for an FD4 A — B, if B values are much more distinct
than A values (i.e., d(B) — d(A) > 1—6), then A — B will be dissatisfied (i.e.,
d(A — B) < 0).

These three strategies could be used to form a set of pre-processing opera-
tions incorporated with MFDD, which enables us to infer as many (FDg)s as
possible prior to the mining process with MFDD, and therefore to consider-
ably improve efficiency. Moreover, it is worthwhile to indicate that Strategy 0
could be replaced by Strategy 1. That is, for strategy 0, if d(A — B) <1 —6,
then d(A — B) > 1 — d(B) (according to Property 9). Further, we have
1—-d(B)<1-0,s0d(B) >0, then d(B —Y) > 0 (according to Strategy 1),
where Y € U. In other words, if an FD4 can be inferred by Strategy 0, then
this FDg4 can be inferred by Strategy 1. Therefore, it suffices to use Strategy 1
without further considering Strategy O.

4. Procedure for pre-processing operations

The algorithmic details of the procedure for pre-processing operations with the
above mentioned Strategies 1, 2 and 3 are shown in Table 2.

Consider the computational efficiency of the procedure. First, if d(A) is large
(> 0) enough, which represents the fact that the attribute set A is quite distinct
and could be a candidate key of the database, Strategy 1 will take effect. Then,
A — Y, VY € U, will be inferred satisfied. The number of inferred satisfied
(FDg)s will be |[U| =1 = m — 1, which is a quite effective inference process.
Here, the smaller 6, the more effective Strategy 1 will be.

Second, if d(A) is small (< 1 —) enough, Strategy 2 will take effect. Then
Y — A, VY € U, will be inferred satisfied. The number of inferred satisfied
(FDg)s will be m — 1, which is also a quite effective inference process. Similarly,
the smaller 6 is, the more effective Strategy 2 will be.

Third, if d(B) —d(A) > 1 — 0, then A — B is dissatisfied. At a first glance,
compared with Strategies 1 and 2, Strategy 3 is seemingly not so effective,
since it could only infer one FD,. In real applications, however, to guarantee
the reliability of discovered (FDy)s, 6 may be set to a quite large value (e.g.,
significantly greater than 0.5). In this case, it is quite likely that d(B) — d(A)
will be bigger than 1 — . That is, Strategy 3 will also make a significant effect

380 Enhancing the discovery of functional dependency

Table 2. Procedure for pre-processing operations

Procedure for pre-processing operations

for A € U { Calculating d(A); // Scan and calculate d(A)
for Ac U
{ ifd(A) >0

{ for X e(U-4)
{ Mark A — X as inferred satisfied;
d(A — X) = d(A);

}

} // Strategy 1
for Ac U

{ if1-d(A)>¥6
{ for X € (U-4)
{ Mark X — A as inferred satisfied;
d(X — A)=1-d(A);
}

}

} y // Strategy 2
for AcU
{ for BeU

{ ifd(B)—dA4)>1-46
{ Mark A — B as inferred dissatisfied;
d(A — B) = 0;
}
}
} // Strategy 3

in inference. Here, the larger 6, the more effective Strategy 3 will be. This is
shown by data experiments in Section 5.

Importantly, given 6, the whole mining process (pre-processing + MFDD)
will be quite efficient when 6 is either small or large. This is a novel feature. The
time complexity of MFDD without pre-processing is increasing with the increase
of 6. This is because, as 6 increases, the number of inferred (FDg)s decreases,
leading to more database scans. This situation can be improved by introducing
the pre-processing operations prior to MFDD. First, Strategies 1 and 2 will
infer more satisfied (FDg4)s when 6 is small, which saves the time needed to
scan databases for finding the satisfied (FDg4)s. Second, Strategy 3 will infer
more dissatisfied (FDy)s when 6 is large, which saves the time needed to scan
databases for finding the dissatisfied (FDg4)s. Overall, the time complexity curve
along 0 for the whole mining process is roughly N-shaped.

Q. WEI, G. CHEN, X. ZHOU 381

As expressed previously, 6 is a minimal threshold for assessing (FDg)s in
terms of the level of dependency tolerance. The setting of § is usually context-
related and often pre-specified by business analysts and domain experts. The
above discussion shows that the three strategies would perform differently in
inferring (FDy)s at different levels of 6.

More specifically, the cost of pre-processing is to scan m attributes with n
tuples, i.e., O(m x n?), usually m << n. However, for an FD; A — B, the
time complexity of calculating its degree of satisfaction is O(2 x n?), due to
the database scanning operation. Roughly, if m/2 (FDg4)s could be inferred
(satisfied or dissatisfied) after pre-processing, the efficiency of the whole mining
process will be improved, which is demonstrated by real data experiments to be
discussed in Section 5.

It is worth indicating that there are similarities and differences with respect
to association rule mining. On the one hand, both association rules and func-
tional dependencies, such as (FDg,)s, are associative knowledge, which are of
interest for discovery. In the context of massive data, both mining approaches
apply optimization strategies to reducing the computational complexity. An
important strategy is to use the lattice-type relationship to reduce the search
space in rule/dependency generation. On the other hand, these two types of
associative knowledge are different in form and semantics. The correspond-
ing optimization strategies are developed depending upon their specific notions.
For instance, in association rule mining, apriori-type approaches are commonly
used (Agrawal, Imielinski and Swarmi, 1993; Agrawal et al., 1996; Agrawal and
Shafer, 1996), while in FD, discovery, extended Armstrong axioms are used,
resulting in different technical treatment and implementation procedures.

5. Data, experimental results and analysis

In order to examine the effectiveness of the pre-processing operations with
MFDD, we tested it on some benchmarking data sets available in UCI Ma-
chine Learning Repository (Merz and Murphy, 1996), which are widely used
in data mining performance evaluation. Five datasets were selected in consid-
eration of reasonable size (e.g., > 100 tuples), null value proportion (no less
than 30%) and application variety. Table 3 shows information about the five
datasets. The experiments were conducted with 6 ranging from 0.50 to 1.00
(which is considered reasonable in usual applications where noisy/null data are
present) and in the environment of a Pentium IV 3.0GHz computer, with 1G
RAM and Visual Studio 2005 on Windows XP platform.

In order to clearly investigate the performance of the three pre-processing
strategies, we ran the experiments with five algorithms, namely, “Original”
(MFDD), “S1” (Strategy 1 + MFDD), “S2” (Strategy 2 + MFDD), “S3” (Strat-
egy 3 + MFDD), and “All” (e-MFDD: Strategies 1, 2, 3 + MFDD).

In the light of the previous analysis (Wei and Chen, 2004), computational
complexity is mainly attributed to scanning databases. For illustrative pur-

382 Enhancing the discovery of functional dependency

Table 3. Information about the five datasets used in the experiments

No. Dataset Number of Attributes | Number of Tuples
1 | Led-Display-Creator 7 3200
2 Zoo 18 101
3 Lymph 19 148
4 Machine 10 209
5 Solar 13 323

poses, we focused on the number of those (FD,)s that could only be determined,
whether satisfied or dissatisfied, by scanning databases, called Scanned (FDg)s.
All the other (FDg4)s could be determined, whether satisfied or dissatisfied, by
inference without scanning databases. Moreover, the running times of the five
algorithms were also compared. Figs. 2-3, 4-5, 6-7, 8-9, and 10-11 present the
numbers of scanned (FDg4)s and the running times for the five datasets, respec-
tively.

Notably, the curves of the numbers of scanned (FDg)s were quite similar,
in shape, to the curves of the running times. This observation reflects the
fact that the computation mainly depends on database scanning rather than
on FD, inference. Strategy 1 was effective and reduced the running times,
especially when 6 was small. Strategy 2 was effective and significantly reduced
the running times, especially when 6 was not large. Strategy 3, as analyzed
previously, was effective, too, and significantly reduced running times, especially
when 6 was large. Furthermore, as an aggregate effect, the process with three
strategies (i.e., e MFDD, denoted as “All” in the figures) was very effective in
lowering down the whole computational complexity and outperformed the other
four algorithms, with the curves of both the numbers of scanned (FDg)s and
the running times showing to be somewhat N-shaped.

Moreover, in order to further illustrate the effect of aggregating the three
strategies, a real-world database was used for the enhanced algorithm (e-MFDD).
The database contains the real business data of The Insurance Company (TIC)
Benchmark provided by Dutch Data Mining Company Sentient Machine Re-
search, which is usually used as benchmarking data for evaluating data mining
algorithms. The database is from “The Insurance Company 2000,” containing
5,822 tuples with 86 attributes (The Insurance Company, 2000). For illustrative
purposes and the sake of simplicity, we projected the whole dataset on the first
10 attributes (m = 10, n = 5,822). Each tuple represents some of the customer’s
basic information, e.g., Customer Subtype, Customer Main Type, Number of
Houses, Age, Married, etc.

First, pre-processing was carried out with the degrees of distinctness com-
puted as shown in Table 4.

Q. WEI, G. CHEN, X. ZHOU

383

60

50 e : :

40
=
&
=]
2 —— Original
g 20 —a—s
n —&—S2

——S3
10)// —¥%— All
0
0.45 0.55 0.65 0.75 0.85 0.95

Minimal Degree

1.05

Figure 2. Numbers of Scanned (FDg)s for the Led-Display Creator dataset

6000
5000
4000
£
é 3000
[l
2000 —Q—SIriginal
—h—S2
—6—3S3
1000
:y —*¢— All
0
0.45 0.55 0.65 0.75 0.85 0.95

Figure 3. Running times for the Led-Display Creator dataset

Minimal Degree

1.05

384 Enhancing the discovery of functional dependency

300
250
< 200
- /
=
2 150
=]
g
3 / —— Original
100 —&—S1
/ —A— 2
50 —0— 53
/ —*— All
0
0.45 0.55 0.65 0.75 0.85 0.95 1.05

Minimal Degree

Figure 4. Numbers of Scanned (FDy)s for the Zoo dataset

70

—&— Original
60 || —®—DIl

A\
—a—D2 / \
50 | —0—D3
—— All O k‘_"’\
40 /’
30 D/

10 '///
0 n(//, . .
0.45 0.55 0.65 0.75 0.85 0.95 1. 0f

Minimal Degree

Time (ms)
)
S

Figure 5. Running times for the Zoo dataset

Q. WEI, G. CHEN, X. ZHOU 385
400
350
300 //
< 250
g
= 200
=
2
5 150
Q o
175]
/ // —— Original
100 —a—31
/ —a—s2
—0—S3
50 —*— All
0 . . .
0.45 0.55 0.65 0.75 0.85 0.95 1.05

Figure 6. Numbers of Scanned (FDy)s for the Lymph dataset

Minimal Degree

120
) //O/‘—_jjg
’ " /;/ ¥
2
T 60 R Q
£
= /
40 / —&— Original
—&—S1
20 —&—S2
—0—S3
—¥— All
0
0.45 0.55 0.65 0.75 0.85 0.95

Minimal Degree

Figure 7. Running times for the Lymph dataset

1.05

386

Enhancing the discovery of functional dependency

Scanned (FDs)d

Time (ms)

80

70 —&— Original i
s / ’[

60 —&—S2
—o0—s3 / /

50 —¥— All

40 //

\ g S S

20
o ot — M

10

0 » : = ‘ / . ‘

045 055 0.65 0.75 0.85 095 1.05

Minimal Degree
Figure 8. Numbers of Scanned (FDg)s for the Machine dataset

35
—&— Original

30 —&—s1 b 4 ﬁ
b |

25 —6—S3
S / A /

20

XX ST

5

JVAAVAAVESS. M

0.45 0.75 .05

Minimal Degree

Figure 9. Running times for the Machine dataset

Q. WEI, G. CHEN, X. ZHOU

387

Time (ms)

Scanned (FDs)d

180
160 |— —@— Original
—a—35I
140 | —a—s2
——3 ‘/A—‘—z
i . / /
0 M /
” 5’7 & /
40
20 — ae//
0 ‘ ‘ ‘ ‘ .
0.45 0.55 0.65 0.75 0.85 0.95 1.05
Minimal Degree
Figure 10. Numbers of Scanned (FDg)s for the Solar dataset
180
160 | —&— Original
—a—sI
140 A2
——53
120 —¥— All
100 - \—{//{/
‘ — /N
40 e
20 * ¥ X~
0 ‘ ‘ ‘ . ‘
045 0.55 0.65 0.75 0.85 0.95 1.05

Minimal Degree

Figure 11. Running times for the Solar dataset

388 Enhancing the discovery of functional dependency

Table 4. Degrees of distinctness (m = 10, n = 1,000)
Attribute # Attribute Name Degree of Distinctness

I Customer Subtype 0.950
I Number of Houses 0.175
I3 Average Size Household 0.643
14 Average Age 0.634
I Customer Main Type 0.849
I Roman Catholic 0.595
I7 Protestant 0.821
Iy Other Religion 0.699
Iy No Religion 0.818
I Married 0.822

Table 4 indicates that most of the attributes had relatively high degrees of
distinctness, especially attribute I; with d(I;) = 0.950. In fact, I is “Customer
Subtype”, which to a large extent could be deemed as a candidate key of the
database. It can be seen that Strategy 1 took effect in inferring (I; — Y),
VY € U, as satisfied. Then, attribute I> had a relatively low degree, d(I2)
= 0.175, where Strategy 2 took effect in inferring (Y — I), VY € U, as
satisfied. Moreover, because of the largely distinct degrees for attribute Io and
other attributes, it could be expected that Strategy 3 was effective in inferring
(I, = Y), VY € U, as dissatisfied. Figs. 12 and 13 visualize the experimental
results.

Apparently, algorithm e-MFDD (“All”) significantly improved the efficiency.
In addition, the discovery outcomes appeared to be intuitively appealing. For
instance, given 6 = 0.95, the discovered satisfied (FDg4)s are shown in Table 5.

It is worth mentioning that the traditional notion of FD would only result
in Customer Subtype— Customer Maintype (i.e., #8 in Table 5), whereas other
attributes (i.e., #1, 6, 7, 9, 10, 11, 12 and 13 in Table 5) could hardly be con-
sidered to depend on Customer Subtype, in the traditional FD sense, due to
the existence of noisy data in the database, which, however, might be regarded
to hold semantically otherwise. On the other hand, the high degree of depen-
dency on Customer Subtype was identified in terms of discovered (FDg4)s. More
importantly, (FDg4)s 1, 6, 7, 8, 9, 10, 11, 12 and 13 could be directly inferred
with Strategy 1, since d(Customer Subtype) > 0.95. Further, in this example,
since 1 — d(Number of Houses) = 0.825 < 6 = 0.95, Strategy 2 did not take
any effect, which is reflected in Fig. 11. Finally, many dissatisfied (FDy)s (they
were not included in the set of discovered (FDg)s) were pruned out according
to Strategy 3, which is reflected in Fig. 11. Owverall, it can also be seen that
e-MFDD with all three strategies (“All”) were superior, in the light of compu-
tational efficiency, to other algorithms concerned (i.e., “Original”, “S17, “S2”,
and “S37).

Q. WEI, G. CHEN, X. ZHOU

389

Scanned (FDs)d

Time(ms)

100
—— Original R
90 [_g g *
——32
80 I —e—s3
—%— All
.)/
. o
“ M
) _ / /
30 a_// /\/
20 /
e
0 ‘ ‘ ‘ ‘ ‘
0.45 0.55 0.65 0.75 0.85 0.95 1.05
Minimal Degree
Figure 12. Numbers of Scanned (FDy)s
900
—— Original
800 - —W—SI
—a—S2
——s3 aad
700 [—x—All /
600 /‘/
500 X
400
300 W/\/
200 b £
100 |
0 ‘ ‘ ‘ ‘
0.45 0.55 0.65 0.75 0.85 0.95 1.05

Minimal Degree

Figure 13. Running times

390 Enhancing the discovery of functional dependency

Table 5. Discovered Satisfied (FDg)s with 8 = 0.95

| Discovered Satisfied (FD,)s Degree of
Satisfaction
1. | Customer Subtype—Number of Houses 0.99
2. | Customer Maintype—Number of Houses 0.98
3. | Protestant—Number of Houses 0.97
4. | No Religion—Number of Houses 0.97
5. | Married—Number of Houses 0.97
6. | Customer Subtype— Average Size Household 0.97
7. | Customer Subtype— Average Age 0.97
8. | Customer Subtype— Customer Maintype 1.00
9. | Customer Subtype—Roman Catholic 0.98
10. | Customer Subtype—Protestant 0.96
11. | Customer Subtype—Other Religion 0.97
12. | Customer Subtype—No Religion 0.96
13. | Customer Subtype—Married 0.96

6. Conclusions

Discovery of functional dependency with degree of satisfaction (FDg) is con-
sidered meaningful and necessary in business modeling and RDB design, espe-
cially in the context of massive datasets where incomplete data (such as noisy
data) appear. Based upon the concept of FD; meant to tolerate possible noises
in data as well as to reflect valuable partial knowledge of dependency among
data attributes, this paper has proposed an efficient enhancement to discovering
(FDg4)s. The proposed approach along with the corresponding mining algorithm
(namely e-MFDD) has resulted from introducing the measure of degree of dis-
tinctness, obtaining a number of related important properties, and developing
three algorithmic pre-processing strategies that have then been incorporated
into the whole mining process so as to optimize the FD, discovery in reducing
the computational complexity. The theoretical analysis and data experiments
have revealed that the properties were desirable, the corresponding strategies
were effective, and the enhanced algorithm (e-MFDD) was well advantageous
over other ones in improving the efficiency.

The future effort will be in extending the approach to deal with possible
closeness relation in data where each distinct pair of tuples may be partially
equal. This extended scope of research focus on data and discovery is then
generally in the realms of possibility-based database modeling and of fuzzy
data mining in that imprecise attribute values and/or close domain elements
are assumed, and the respective knowledge discovered (e.g., FD4) would be
semantically richer. Another possible subject for future research is to explore

Q. WEI, G. CHEN, X. ZHOU 391

the possibility of database modeling using discovered (FDg)s, where relational
(de)composition needs to be further investigated (Berzal et al., 2002).

References

AGrAawAL, R., IMIELINSKI, T. and SwaARMI, A. (1993) Mining Association
Rules between Sets of Items in Large Databases. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Wash-
ington, DC, USA. ACM Press, 207-216.

AGRAWAL, R., MANNILA, H., SRIKANT, R., TOIVONEN, H. and VERKAMO,
A.I. (1996) Fast Discovery of Association Rules. In: U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, eds., Advances in Knowl-
edge Discovery and Data Mining, AAAT Press/The MIT Press, MA, USA,
1-30.

AGrawAL, R. and SHAFER, J. (1996) Parallel Mining of Association Rules.
IEEFE Transactions on Knowledge and Data Engineering 8, 962-969.
ANDERSSON, M. (1994) Extracting an Entity Relationship Schema from a Re-
lational Database through Reverse Engineering. Lecture Notes in Com-
puter Science 881, Proceedings of the 13th International Conference on

the Entity-Relationship Approach. Springer Verlag, London, 403-419.

BAUDINET, M., CHOMICKI, J. and WOLPER, P. (1999) Constraint-generat-
ing dependencies. Journal of Computer and System Science 59 (1), 94-
115.

BELL, S. and BROCKHAUSEN, P. (1995) Discovery of Data Dependencies in
Relational Databases. University of Dortmund, Computer Science De-
partment, LS-8 Report 14.

BERzAL, F., CUBERO, J.C., CUENCA, F. and MEDINA, J.M. (2002) Relation-
al decomposition through partial functional dependencies. Data & Knowl-
edge Engineering 43 (2), 207-234.

BHUNIYA, B. and Nivocr, P. (1993) Lossless join property in fuzzy relational
databases. Data & Knowledge Engineering 11 (22), 109-124.

Bosc, P., DuBors, D. and PRADE, H. (1999) Fuzzy functional dependencies
and redundancy elimination. Journal of the American Society for Infor-
mation Science, 49 (3), Special Issue: Management of Imprecision and
Uncertainty, Published Online, 217-235.

CASTELLANOS, M. and SALTOR, F. (1993) Extraction of Data Dependencies.
European-Japanese Conf. on Information Modelling and Knowledge Bases,
Budapest, Hungary, May 31-June 3. IOS Press, Amsterdam, 401-421.

CHEN, G.Q. (1998) Fuzzy Logic in Data Modeling: Semantics, Constraints
and Database Design. Kluwer Academic Publishers, Boston.

CHEN, G.Q., KERRE, E.E. and VANDENBULCKE, J. (1994) A computational
algorithm for the FFD closure and a complete axiomatization of fuzzy
functional dependency (FFD). International Journal of Intelligent Sys-
tems 9, 421-439.

392 Enhancing the discovery of functional dependency

CHEN, G.Q., KERRE, E.E. and VANDENBULCKE, J. (1996) Normalization
Based on Fuzzy Functional Dependency in a Fuzzy Relational Data Model.
Information Systems 21 (3), 299-310.

CHEN, G.Q., VANDENBULCKE, J. and KERRE, E.E. (1991) A step towards
the theory of fuzzy relational database design. In: B. Loewen, M. Roubens,
eds., Proc. of the 4" IFSA World Congress, Brussels, 44-47.

Copp, E.F. (1970) A Relational Model for Large Shared Data Banks. Com-
munications of the ACM 13 (6), 377-387.

CUBERO, J.C. et al. (1999) Data Summarization in Relational Databases thro-
ugh Fuzzy Dependencies, Information Sciences 121 (3-4), 233-270.
CUBERO, J.C., MEDINA, J.M., Pons, O. and ViLa, M.A. (1995) Rules dis-
covery in fuzzy relational databases. In: Conference of the North Ameri-
can Fuzzy Information Processing Society, NAFIPS’95. Maryland (USA).

IEEE Computer Society Press, 414-419.

FAYYAD, U., PIATETSKY-SHAPIRO, G. and SMYTH, P. (1996) From Data Mi-
ning to Knowledge Discovery: An Overview. In: U, Fayyad, G. Piatetsky-
Shapiro, P. Smyth, R. Uthurusamy, eds., Advances in Knowledge Dis-
covery and Data Mining, Cambridge, MA: AAATI Press/The MIT Press,
U.S.A., 1-30.

FracH, P.A. and SAVNIK, I. (1999) Database Dependency Discovery: A Ma-
chine Learning Approach. AI Communications 12 (3), 139-160.

Hick, J.M. and HAaNAUT, J.L. (2006) Database Application Evolution: A
Transformational Approach. Data & Knowledge Engineering 59, 534-558.

HuHTALA, Y., KARKKAINEN, J., PORKKA and P., TorvoNEN, H. (1999)
TANE: An Efficient Algorithm for Discovering Functional and Approxi-
mate Dependencies. The Computer Journal 42 (2), 100-111.

HUHTALA, Y., KARKKAINEN, J., PORKKA, P. and ToIvoNEN, H. (1998) Ef-
ficient Discovery of Functional and Approximate Dependencies Using Par-
titions. Proc. 14th Int. Conf. on Data Engineering, IEEE Computer
Society Press.

Iuyas, ILF., MARKL, V., Haas, P., BROWN, P. and ABOULNAGA, A. (2004)
CORDS: automatic discovery of correlations and soft functional depen-
dencies. International Conference on Management of Data. Proceedings
of the 2004 ACM SIGMOD, Paris, France. ACM Press, 647-658.

KING, R.S. and LEGENDRE, J.J. (2003) Discovery of functional and approx-
imate functional dependencies in relational databases. Journal of Applied
Mathematics and Decision Sciences 7 (1), 49-59.

Kiss, A. (1991) A-decomposition of fuzzy relational database. Annales Univ.
Sci. Budapest., Sect. Comp.

KRAMER, S. and PFAHRINGER, B. (1996) Efficient Search for Strong Partial
Determinations. KDD 1996. AAAI Press, 371-374.

KRUSE, R., NANCK, D. and BORGELT, C. (1999) Data Mining with Fuzzy
Methods: Status and Perspectives. In: Proc. 7th European Congress on In-
telligent Techniques and Soft Computing (EUFIT’99), Aachen, CD-ROM.

Q. WEI, G. CHEN, X. ZHOU 393

Liao, S.Y., WaNG, H.Q. and Liu, W.Y. (1999) Functional Dependencies
with Null Values, Fuzzy Values, and Crisp Values. IEEFE Transactions on
Fuzzy Systems 7 (1), 97-103.

Liu, W. (1993) The fuzzy functional dependency on the basis of the semantic
distance. Fuzzy Sets and Systems 59 (2), 173-179.

MaiMoN, O., KANDEL, A. and LAsT, M. (2001) Information-Theoretic Fuzzy
Approach to Knowledge-Discovery in Databases. In: R. Roy, T. Furuhashi
and P.K. Chawdhry, eds., Advances in Soft Computing - Engineering De-
sign and Manufacturing, Springer-Verlag, London, 315-326.

Maros, V. and GRASSER, B. (2004) SQL-based discovery of exact and ap-
proximate functional dependencies. ACM SIGCSE Bulletin 36 (4), 58-63.

MEeRz, C.J. and MURPHY, P. (1996) UCI repository of machine learning da-
tabases (http://www.cs.uci.edu/ mlearn/MLRepository.html)

MITRA, S., PAaL, S.K. and MITRA, P. (2002) Data Mining in Soft Comput-
ing Framework: A Survey. IEEFE Transactions on Neural Networks 13
(1), 3-14.

MouaDDIB, N. (1995) Fuzzy Integrity Constraints in Relational Databases.
In: Proceedings of the 6th IFSA World Conggress, Sdo Paulo, Brazil, 389-
392.

PaTiG, S. (2006) Evolution of Entity-Relationship Modeling. Data & Knowl-
edge Engineering 56 (2), 122-138.

RaJu, K.V.S.V.N. and MAJUMDAR, A.K. (1988) Fuzzy functional dependen-
cies and lossless join decomposition of fuzzy relational database systems.
ACM Transactions on Database Systems 13 (2), 129-166.

SAvVNIK, I. and FLACH, P.A. (2002) Discovery of Multi-valued Dependencies
from Relations. Intelligent Data Analysis Journal 4 (3-4), 195-211.
SAXENA, P.C. and Tvyacu, B.K. (1995) Fuzzy functional dependencies and
independencies in extended fuzzy relational database models. Fuzzy Sets

and Systems 69 (1), 65-89.

SHENOI, S., MELTON, A. and TAN, L.T. (1992) Functional dependencies and
normal norms in the fuzzy relational database model. Information Sci-
ences 60, 1-28.

The Insurance Company (2000)(© Sentient Machine Research,
http://www.smr.nl.

ULLMAN, J.D. and WipoM, J. (1997) A First Course in Database Systems.
Prentice Hall, Inc., a Simon & Schuster Company.

ULLMAN, J.D. (1988) Principles of Database and Knowledge-Based Systems.
Maryland, Computer Sciences Press Inc.

WAaNG, S.L., SHEN, J.W. and HoNG, T.P. (2002) Incremental discovery of
functional dependencies based on partitions. Intelligent Data Analysis.

WEI, Q. and CHEN, G.Q. (2003a) An Efficient Algorithm on Mining a Min-
imal Set of Functional Dependencies with Degrees of Satisfaction. In-
ternational Conference of IFSA 2003, Istanbul, Turkey. Springer Verlag,
Berlin.

394 Enhancing the discovery of functional dependency

WEI, Q. and CHEN, G.Q. (2003b) Mining a Minimal Set of Functional De-
pendencies with Degrees of Satisfaction. International Conference FIP
2003, Beijing, China, March 1-4. Tsinghua University Press.

WEI, Q. and CHEN, G.Q. (2004) Efficient Discovery of Functional Dependen-
cies with Degrees of Satisfaction. J. of Intelligent Systems 19, 1089-1110.

WEI Q. and CHEN, G.Q. (2006) Optimized Algorithm of Discovering Func-
tional Dependencies with Degrees of Satisfaction. In: D. Ruan, et al.,
eds., “Applied Artificial Intelligence”. Proceedings of the 7th International
FLINS Conference, Word Scientific Press, 169-176.

WEI, Q., CHEN, G.Q. and KERRE, E.E. (2002) Mining Functional Depen-
dencies with Degrees of Satisfaction in Databases. In: Proceedings of Joint
Conference on Information Sciences, Durham, NC, USA. Association for
Intelligent Machinery, Inc.

WUwSEN, J.NG.R.T. and CALDERS, T. (1999) Discovering Roll-Up Dependen-
cies. Conference on Knowledge Discovery in Data. Proceedings of the
fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, California, United States. ACM Press, 213-
222.

Wyss, C., GIANNELLA, C. and ROBERTSON, E. (2001) FastFDs: A heuristic-
driven depth-first algorithm for mining functional dependencies from rela-
tion instances. Technical Report 551, CS Department, Indiana University,
July.

YANG, Y.P. and SINGHAL, M. (1999) Fuzzy Functional Dependencies and Fuz-
zy Association Rules. Proceedings of the First International Conference
on Data Warehousing and Knowledge Discovery, LCNS 1676, Springer
Verlag, Berlin, 229-240.

