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Abstract: This paper considers the problemof persistent bound-
ed disturbance rejection for a class of time-delay systems with para-
metric uncertainty by Lyapunov function and positively invariant
set analysis method. Sufficient conditions for internal stability and
L1−performance analysis are given in terms of linear matrix in-
equalities (LMIs). Based on the results, a simple approach to the
design of a linear state-feedback controller is presented to stabilize
robustly the uncertain time-delay systems and achieve a desired level
of disturbance attenuation. All the obtained conditions are delay-
dependent. A numerical example is included to illustrate the pro-
posed method.
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1. Introduction

The problem of designing robust controllers for time-delay systems with pa-
rameter uncertainty attracted much attention in control system literature (Li
and Jian, 1999; Kwon et al., 2006; Jeung et al., 1996). From the point of view
of robust control design methods, the variable structure control concept has
played an important role because of its robustness with respect to parameter
uncertainties and external disturbances (Jafarov, 2005; Mahmoud, Shi and Shi,
2003; Szita and Sanathanan, 1997). The conditions in Jafarov (2005) and Szita
and Sanathanan (1997) are, however not based on LMIs which can be solved
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very efficiently by various convex optimization algorithms. When the distur-
bances involved are persistently bounded with size measured in terms of peak
time-domain values, it leads to the problem of peak-to-peak gain minimization,
i.e., the L1 or induced L∞ problem, formulated in Vidyasagar (1986, 1991). It
has recently attracted attention because of incorporating time domain specifi-
cations directly, see, e.g., Bobillo and Dahleh (1992), Abedor, Nagpal and Poola
(1996), Hao et al., (2003), Blanchini and Sznaier (1995), Tang, Zhang and Ma
(2004) or Lin, Zhai and Antsaklis (2003), and the references therein. How-
ever, among these works, analysis and control synthesis problems of persistent
bounded disturbance rejection are studied for systems without time delay.

On the other hand, time delay is, in many cases, a source of instabil-
ity. Therefore, the control problem for time-delay systems are of theoreti-
cal and practical importance. Many proposed methods have presented delay-
independent conditions, Li and Jian (1999), Kwon et al. (2006). In general,
these conditions are more conservative than the delay-dependent ones when
the size of the time delay is small. There have been very few works concern-
ing delay-dependent persistent bounded disturbance rejection problems so far,
which motivates the present paper.

In this paper, we investigate the L1-control problem for parametric uncertain
linear time-delay systems subject to persistent bounded disturbances. By using
Lyapunov function and invariant-set analysis method, we first establish an LMI
condition that ensures internal stability and desired L1-performance for the
systems without uncertainty. Then we extend the result to uncertain time-
delay systems. The result suggests a simple approach to the design of a state-
feedback controller to robustly stabilize the system and to achieve a desired level
of disturbance attenuation. We also give a numerical example to illustrate the
theoretical result.

In this paper, Cn,d = C([−d, 0], Rn) denotes a Banach space of continuous
functions mapping the interval [−d, 0] into Rn with the topology of uniform
convergence. Then xt ∈ Cn,d can be defined by xt = x(t + θ), θ ∈ [−d, 0]. For
simplification, we use the following notation. R is the set of all real numbers.
Rn is the set of all n−tuples of real numbers. BRl denotes the closed unit ball

in the space Rl. The symbol Sym{·} denotes Sym{X} def
= X + XT , and the

symbol ∗ denotes the the submatrices that lie below the diagonal in a symmetric
block matrix.

2. Problem formulation and preliminaries

Consider the following parametric uncertain time-delay system:

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad
)x(t − d) + (B + ∆B)u(t) + (B1 + ∆B1)w(t)

z(t) = (C + ∆C)x(t) + (D + ∆D)u(t) (1)

x(t) = φ(t), t ∈ [−d, 0]
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where x(t) : R → Rn, u(t) : R → Rm, w(t) : R → Rl and z(t) : R → Rr are
the state, the input, external disturbance, and the regulated output vectors,
respectively. Further, A, Ad, B, B1, C, D are known real constant matrices of
appropriate dimensions. The time delay d > 0 is assumed to be known. φ(t) ∈
Cn,d is a real-valued continuous initial function on [−d, 0]. The parametric
uncertainties are described by

[∆A, ∆Ad
, ∆B, ∆B1 ] = F∆(t)[HA, HAd

, HB, HB1 ] (2)

[∆C , ∆D] = E∆(t)[HC , HD] (3)

where F , HA, HAd
, HB, HB1 , E, HC , HD are known matrices of appropriate

dimensions, and ∆(t) is Lebesgue measurable and belongs to ∆ =: {∆(t) :
∆T (t)∆(t) ≤ I}. Assume that the admissible disturbance set is W := {w :
R → BRl, wT w ≤ 1}. The L∞ norm is defined by ‖w‖∞ =: supt‖w(t)‖2. In

Cn,d, the trajectory of the system (1) is denoted by xφ
t . We firstly present the

following definitions in Cn,d which will be used in the development of our main
results.

Definition 1 A set Ξ is said to be positively invariant for dynamical system if
the trajectory xφ

t of the system remains in Ξ for all t > 0 and w ∈ W whenever
φ(t) ∈ Ξ. Furthermore, a set Ξ is said to be robustly positively invariant for a

dynamical system, if for φ(t) ∈ Ξ, the trajectory xφ
t of the system remains in Ξ

for all t > 0, w ∈ W and ∆ ∈ ∆.

Definition 2 Consider the case of φ(t) = 0. Then the origin reachable set
R∞(0) is said to be the set that the trajectory x0

t of the system can reach from
the origin, that is as follows.

R∞(0) = {x0
t |w ∈ W, ∆ ∈ ∆, t ≥ 0}.

It is the minimal closed positively invariant set containing the origin.

Definition 3 A set Ω is said to be a robust attractor of a system with respect to
w ∈ W , if all the state trajectories xφ

t initiating from the exterior of Ω eventually
enter and remain in Ω for all w ∈ W . Obviously, a robust attractor is also a
positively invariant set.

Definition 4 For fixed ∆ ∈ ∆ (respectively ∆ = 0), define the performance
set

Ω∆(ρ) = {xφ
t |‖z‖∞ = sup

t≥0

‖(C + ∆C)x(t)‖ ≤ ρ, ∀w ∈ W, ∆ ∈ ∆}

(respectively Ω(ρ) = {xφ
t |‖z‖∞ = sup

t≥0

‖Cx(t)‖ ≤ ρ, ∀w ∈ W})

Thus, if R∞(0) ⊂ Ω∆(ρ) for all w ∈ W , ∆ ∈ ∆, then the system has ro-
bust ρ−performance. Particularly, we say the system without uncertainty has
ρ−performance for all w ∈ W when ∆(t) ≡ 0 (R∞(0) ⊂ Ω(ρ)).
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The objective of this paper is to find for system (1) a state-feedback control
law u(t) = Kx(t) with constant gain matrix K ∈ Rm×n such that the resulting
closed-loop system

ẋ(t) = (A + BK + ∆A + ∆BK)x(t) + (B1 + ∆B1)w(t)

+(Ad + ∆Ad
)x(t − d)

z(t) = (C + DK + ∆C + ∆DK)x(t)

(4)

satisfies the following conditions:

(i) The closed-loop system is robustly internally stable, namely the system with-
out external disturbance (i.e., w = 0) is robustly asymptotically stable.

(ii) For a given scalar ρ > 0, the system has robust ρ−performance, that is
‖z‖∞ ≤ ρ for all w ∈ W and ∆ ∈ ∆.

In dealing with the above problem, we will make use of the concept of robust
attractor of a disturbed dynamical system. A set Ω is said to be a robust
attractor of system (4) with respect to w ∈ W , if all the state trajectories of the
system initiating from the exterior of Ω eventually enter and remain thereafter in
Ω for all w ∈ W . Obviously, a robust attractor is robustly positively invariant.

The following lemmas will be useful in our discussion.

Lemma 1 (Khargonekar, Petersen and Zhou, 1990) We are given a symmetric
matrix G and any matrices M , N of appropriate dimensions. Then

G + M∆N + NT ∆T MT < 0

for all ∆ satisfying ∆T ∆ ≤ I if and only if there exists a constant ε > 0 such
that

G + εMMT +
1

ε
NT N < 0.

Lemma 2 (Petersen, 1987) Given a symmetric matrix G and any nonzero ma-
trices M , N of appropriate dimensions, the following inequality holds:

G + M∆N + NT ∆T MT ≤ 0

for all ∆ satisfying ∆T ∆ ≤ I if and only if there exists a constant ε > 0 such
that

G + εMMT +
1

ε
NT N ≤ 0.

Lemma 3 (Hao et al., 2002) Let P be an n × n matrix, then, for any scalar
α > 0, it follows that

2xT PHw ≤ 1

α
xT PHHT Px + αwT w.



Persistent bounded disturbance rejection for uncertain time-delay systems 597

3. Main results

To formulate our problem, let us consider the following time-delay system

ẋ(t) = Ax(t) + Adx(t − d) + B1w(t)

z(t) = Cx(t)

x(t) = φ(t), t ∈ [−d, 0].

(5)

To analyze the stability of the system (5), we assume that A is stable. For a
symmetric and positive-definite matrix P , let the ellipsoid ΩP ={x : xT Px ≤ 1}.
We first consider system (5) for the above concepts.

Theorem 1 For prescribed positive scalars ρ > 0, d > 0, α1 > 0, σ > 0, if
there exist symmetric and positive-definite matrices P > 0, Q > 0 such that













(1, 1) −PAd 0 d(A + Ad)
T Q PB1

∗ −Q 0 −dAT
d Q 0

∗ ∗ −I dBT
1 Q 0

∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −α1I













< 0 (6)





−σP 0 CT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 ≤ 0 (7)

where (1, 1) = Sym{P (A+Ad)}+(α1 +1)P . Then system (5) is stable and ΩP

is a robust attractor of it with respect to w ∈ W . Moreover, ΩP ⊂ Ω(ρ), and
hence, the system has ρ−performance.

Proof. Consider a Lyapunov-Krasovskii functional candidate V (t) as follows:

V (t) = V1(t) + V2(t) + V3(t)

where

V1(t) = xT (t)Px(t)

V2(t) =
∫ t

t−d

[

∫ t

s
ẋT (θ)dθ

]

Q
[

∫ t

s
ẋ(θ)dθ

]

ds

V3(t) =
∫ d

0
ds

∫ t

t−s
(θ − t + s)ẋT (θ)Qẋ(θ)dθ.

If the time derivative of V (t) along the trajectory of the system (5) is negative
for any x /∈ ΩP , then ΩP is a robust attractor of (5) with respect to w ∈ W .

Note the identity (Leibniz-Newton):
∫ b

a
v̇(t)dt = v(b) − v(a).
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By Lemma 3, we have the following formula for any scalar α1 > 0

V̇1(t) = 2xT (t)P [(A + Ad)x(t) − Ad

∫ t

t−d
ẋ(θ)dθ + B1w(t)]

≤ 2xT (t)P (A + Ad)x(t) − 2xT (t)PAd

∫ t

t−d
ẋ(θ)dθ

+α−1
1 xT (t)PB1B

T
1 Px(t) + α1w

T (t)w(t)

= βT Ξ1β − (α1 + 1)[xT (t)Px(t) − wT (t)w(t)]

where

β =
[

xT (t)
∫ t

t−d
ẋT (θ)dθ wT (t)

]T

Ξ1 =





(1, 1) −PAd 0
∗ 0 0
∗ ∗ −I





(1, 1) = Sym{P (A + Ad)} + α−1
1 PB1B

T
1 P + (α1 + 1)P

V̇2(t) = 2
∫ t

t−d
(θ − t + d)ẋT (t)Qẋ(θ)dθ −

[

∫ t

t−d
ẋT (θ)dθ

]

Q
[

∫ t

t−d
ẋ(θ)dθ

]

V̇3(t) = 1
2
d2ẋT (t)Qẋ(t) −

∫ t

t−d
(θ − t + d)ẋT (θ)Qẋ(θ)dθ.

By Lemma 3, it can be shown that

2ẋT (t)Qẋ(θ) ≤ ẋT (t)Qẋ(t) + ẋT (θ)Qẋ(θ).

Therefore

V̇2(t) ≤ 1
2
d2ẋT (t)Qẋ(t) +

∫ t

t−d
(θ − t + d)ẋT (θ)Qẋ(θ)dθ

−
[

∫ t

t−d
ẋT (θ)dθ

]

Q
[

∫ t

t−d
ẋ(θ)dθ

]

.

Then, we can get

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)

≤ −(α1 + 1)[xT (t)Px(t) − wT (t)w(t)] + βT (Ξ1 + Ξ2 + Ξ3)β,

where

Ξ2 = d2





(A + Ad)
T

−AT
d

BT
1



Q
[

A + Ad −Ad B1

]

Ξ3 = diag{0,−Q, 0}.

By the Schur complement formula, (6) is equivalent to Ξ1 +Ξ2 +Ξ3 < 0. There-
fore, we have V̇ (t) < −(α1 + 1)xT (t)Px(t) < 0 whenever w = 0. Furthermore,
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since xT (t)Px(t) > 1 for x /∈ ΩP and wT (t)w(t) ≤ 1 for w ∈ W , we have
V̇ (t) < βT (Ξ1 + Ξ2 + Ξ3)β < 0 for any w ∈ W . Therefore, system (1) is stable
and ΩP is a robust attractor of it with respect to w ∈ W .
Again by the Schur complement formula, (7) is equivalent to the following in-
equality

[

−σP + CT C 0
∗ −(ρ2 − σ)I

]

≤ 0.

It follows that

σxT (t)Px(t) − xT (t)CT Cx(t) + (ρ2 − σ)wT (t)w(t) ≥ 0.

Then, we can get

(ρ2 − σ)wT (t)w(t) − ‖Cx(t)‖2σ + xT (t)Px(t) ≥ 0.

From this, it is clear that if x(t) ∈ ΩP and w(t) ∈ W , ‖z(t)‖2 = ‖Cx(t)‖2 ≤
σ + (ρ2 − σ) = ρ2. This shows that ΩP ⊂ Ω(ρ) and hence R∞(0) ⊂ ΩP ⊂ Ω(ρ).
Therefore, system (5) has ρ−performance. This completes the proof.

For given positive scalars α1, σ > 0, (6) and (7) are LMIs. And it is clear
that the results are delay-dependent. Then we give the following result for the
uncontrolled (i.e., u(t) = 0) uncertain system (1).

Theorem 2 For the given performance level ρ > 0, and prescribed positive
scalars d > 0, σ > 0, α1 > 0, if there exist positive scalars α2, α3, α4, symmetric
and positive-definite matrices P > 0, Q > 0 such that





















(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) PF 0
∗ (2, 2) (2, 3) −AT

d Q (2, 5) 0 0
∗ ∗ (3, 3) BT

1 Q 0 0 0
∗ ∗ ∗ −d−2Q 0 0 QF
∗ ∗ ∗ ∗ (5, 5) 0 0
∗ ∗ ∗ ∗ ∗ −α2I 0
∗ ∗ ∗ ∗ ∗ ∗ −α3I





















< 0 (8)









−σP + α4H
T
CHC α4H

T
CHD CT 0

∗ −(ρ2 − σ) + α4H
T
DHD 0 0

∗ ∗ −I E
∗ ∗ ∗ −α4I









≤ 0 (9)
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where

(1, 1) = Sym{P (A+Ad)} + (α1+1)P + (α2 + α3)(HA + HAd
)T (HA + HAd

)

(1, 2) = −PAd − (α2 + α3)(HA + HAd
)T HAd

(1, 3) = α3(HA + HAd
)T HB1

(1, 4) = (A + Ad)
T Q

(1, 5) = PB1 + α2(HA + HAd
)T HB1

(2, 2) = −Q + (α2 + α3)H
T
Ad

HAd

(2, 3) = −α3H
T
Ad

HB1

(2, 5) = −α2H
T
Ad

HB1

(3, 3) = −I + α3H
T
B1

HB1

(5, 5) = −α1I + α2H
T
B1

HB1

then the uncontrolled system (1) is robustly internally stable and ΩP is a robust
attractor of it with respect to w ∈ W . Moreover, ΩP ⊂ Ω∆(ρ) and hence the
system has robust ρ−performance.

Proof. For the system (1) without control, we can obtain by Theorem 1 that
the following inequalities hold for any ∆ ∈ ∆.













(1, 1) (1, 2) 0 (1, 4) (1, 5)
∗ −Q 0 −(Ad + F∆HAd

)T Q 0
∗ ∗ −I (B1 + F∆HB1)

T Q 0
∗ ∗ ∗ −d−2Q 0
∗ ∗ ∗ ∗ −α1I













< 0 (10)





−σP 0 (C + E∆HC)T

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 ≤ 0 (11)

where

(1, 1) = Sym{P (A + Ad + F∆HA + F∆HAd
)} + (α1 + 1)P

(1, 2) = −P (Ad + F∆HAd
)

(1, 4) = (A + Ad + F∆HA + F∆HAd
)T Q

(1, 5) = P (B1 + F∆HB1.)

Equivalently, the inequality (10) can be rewritten as

Γ + Sym{ζ1∆ζ2 + ζ3∆ζ4} < 0
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where

Γ =













(1, 1) −PAd 0 (A + Ad)
T Q PB1

∗ −Q 0 −AT
d Q 0

∗ ∗ −I BT
1 Q 0

∗ ∗ ∗ −d−2Q 0
∗ ∗ ∗ ∗ −α1I













(1, 1) = Sym{P (A + Ad)} + (α1 + 1)P

ζ1 =
[

FT P 0 0 0 0
]T

ζ2 =
[

HA + HAd
−HAd

0 0 HB1

]

ζ3 =
[

0 0 0 FT Q 0
]T

ζ4 =
[

HA + HAd
−HAd

HB1 0 0
]

.

By Lemma 1, there exist scalars α2 > 0, α3 > 0 such that

Γ +
1

α2

ζ1ζ
T
1 + α2ζ

T
2 ζ2 +

1

α3

ζ3ζ
T
3 + α3ζ

T
4 ζ4 < 0.

By Schur complement formula, this is equivalent to (8).

Similarly, the inequality (11) can be written as





−σP 0 CT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 + Sym











0
0
E



∆
[

HC 0 0
]







≤ 0.

By Lemma 2, there exists a scalar α4 > 0 such that





−σP 0 CT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 + 1
α4





0
0
E





[

0 0 ET
]

+ α4





HT
C

0
0





[

HC 0 0
]

≤ 0.

By Schur complement formula, this is equivalent to (9). Thus, if (8) and (9)
hold, by Theorem 1, the uncontrolled system (1) is robustly internally stable and
ΩP is a robust attractor of it with respect to w ∈ W . Moreover, ΩP ⊂ Ω∆(ρ)
and hence the system (1) has the robust ρ−performance. This completes the
proof.

Theorem 3 For the uncontrolled system (1), a given performance level ρ > 0,
and prescribed positive scalars d > 0, σ > 0, α1 > 0, if there exist positive scalars
α2 > 0, α3 > 0, α4 > 0, symmetric and positive-definite matrices X > 0, S > 0
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such that




















(1, 1) −AdS 0 (1, 4) B1 (1, 6) (1, 7)
∗ −S 0 −SAT

d 0 −SHT
Ad

−SHT
Ad

∗ ∗ −I BT
1 0 0 HT

B1

∗ ∗ ∗ (4, 4) 0 0 0
∗ ∗ ∗ ∗ −α1I HT

B1
0

∗ ∗ ∗ ∗ ∗ −α2I 0
∗ ∗ ∗ ∗ ∗ ∗ −α3I





















< 0 (12)









−σX 0 XCT XHT
C

∗ −(ρ2 − σ)I 0 0
∗ ∗ −I + α4EET 0
∗ ∗ ∗ −α4I









≤ 0 (13)

where

(1, 1) = Sym{(A + Ad)X} + (α1 + 1)X + α2FFT

(1, 4) = X(A + Ad)
T

(1, 6) = (1, 7) = X(HA + HAd
)T

(4, 4) = −d−2S + α3FFT

then the system is robustly internally stable and ΩX−1 is a robust attractor of the
system with respect to w ∈ W and all the parameter uncertainties. Moreover,
ΩX−1 ⊂ Ω∆(ρ) and hence the system has robust ρ−performance.

Proof. For system (5), by Theorem 1, premultiplying and postmultiplying
diag{P−1, Q−1, I, I, I} on both sides of (6) and taking X = P−1, S = Q−1, we
can obtain the following inequality.













(1, 1) −AdS 0 X(A + Ad)
T B1

∗ −S 0 −SAT
d 0

∗ ∗ −I BT
1 0

∗ ∗ ∗ −d−2S 0
∗ ∗ ∗ ∗ −α1I













< 0 (14)

where (1, 1) = Sym{(A + Ad)X} + (α1 + 1)X .
Similarly, (7) is equivalent to the following inequality.





−σX 0 XCT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 ≤ 0. (15)

For the uncontrolled system (1), we have

Σ + Sym{ξ1∆ξ2 + ξ3∆ξ4} < 0




−σX 0 XCT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 + Sym











0
0
E



∆
[

HCX 0 0
]







≤ 0
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where

Σ =













(1, 1) −AdS 0 X(A + Ad)
T B1

∗ −S 0 −SAT
d 0

∗ ∗ −I BT
1 0

∗ ∗ ∗ −d−2S 0
∗ ∗ ∗ ∗ −α1I













(1, 1) = Sym{(A + Ad)X} + (α1 + 1)X

ξ1 =
[

FT 0 0 0 0
]T

ξ2 =
[

(HA + HAd
)X −HAd

S 0 0 HB1

]

ξ3 =
[

0 0 0 FT 0
]T

ξ4 =
[

(HA + HAd
)X −HAd

S HB1 0 0
]

.

By Lemma 1, there exist scalars α2 > 0, α3 > 0 such that

Σ + α2ξ1ξ
T
1 +

1

α2

ξT
2 ξ2 + α3ξ3ξ

T
3 +

1

α3

ξT
4 ξ4 < 0 (16)





−σX 0 XCT

∗ −(ρ2 − σ)I 0
∗ ∗ −I



 + α4





0
0
E





[

0 0 ET
]

+ 1
α4





XHT
C

0
0





[

HCX 0 0
]

≤ 0.

(17)

By Schur complement formula, (16) and (17) are equivalent to (12) and (13)
respectively. This completes the proof.

Theorem 4 For a given performance level ρ > 0, and prescribed positive scalars
d > 0, σ > 0, α1 > 0, if there exist positive scalars α2 > 0, α3 > 0, α4 > 0,
symmetric and positive-definite matrices X > 0, S > 0 and a matrix L such
that the LMIs (18) and (19) hold:











(1, 1) −AdS 0 X(A+Ad)T +LT BT B1 X(HA+HAd
)T +LT HT

B
X(HA+HAd

)T +LT HT
B

∗ −S 0 −SAT
d

0 −SHT
Ad

−SHT
Ad

∗ ∗ −I BT
1 0 0 HT

B1
∗ ∗ ∗ −d−2S + α3F F T 0 0 0

∗ ∗ ∗ ∗ −α1I HT
B1

0

∗ ∗ ∗ ∗ ∗ −α2I 0
∗ ∗ ∗ ∗ ∗ ∗ −α3I











<0

(18)
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







−σX 0 XCT + LT DT XHT
C + LT HT

D

∗ −(ρ2 − σ)I 0 0
∗ ∗ −I + α4EET 0
∗ ∗ ∗ −α4I









< 0 (19)

where

(1, 1) = Sym{(A + Ad)X + BL} + (α1 + 1)X + α2FFT

then there exists a state-feedback controller u(t) = Kx(t) with

K = XL−1 (20)

such that the closed-loop system (4) is robustly internally stable and ΩX−1 is a
robust attractor of (4) with respect to w ∈ W and the parameter uncertainties
specified by ∆.

Moreover, ΩX−1 ⊂ Ω∆(ρ) and hence the closed-loop system (4) has robust
ρ−performance.

Proof. By Theorem 3, it is easy to prove the result.

4. Illustrative example

Consider the system (4) with the following parameters:

A =

[

−1 0
0.2 0.1

]

, Ad =

[

0.1 0
0 0.01

]

, B =

[

0
1

]

B1 =

[

0.3 0.1
0 0.1

]

, C =

[

0.3 0.1
0.3 1.8

]

, D =

[

0.4
0.7

]

HB = HD =

[

1
0

]

, HAd
=

[

0.1 0
0.3 0.1

]

, F = 0.05I

E =

[

0.1 0.2
0 0.1

]

, HA = HB1 = HC = I.

Notice that the system matrix A is unstable, and the pair (A, B) is not con-
trollable. Here, we use Theorem 4 to find a linear state-feedback controller
to stabilize the system and guarantee the closed loop system to have the ρ-
performance with ρ = 0.9.

Assume d = 1, α1 = 0.1, σ = 0.8, we can solve the LMIs in Theorem 4
and obtain a state-feedback controller u = Kx for the system where the gain
matrix is

K =
[

−0.6 −0.8
]

.
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Furthermore, let the external bounded disturbance

w =
[

(1/
√

2) sin(3πt + 1) (1/
√

2) cos(6πt + 1)
]T

.

The numerical simulation of the state response of the system without distur-
bances is shown in Fig. 1, and that of the system involving the disturbance
effects – in Fig. 2. The initial states are both chosen to be (0.6, -0.2).

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

Figure 1. State response of the system without disturbances

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

Figure 2. State response of the system with external disturbances

5. Conclusions

We have discussed the problem of persistent bounded disturbance rejection for
uncertain time-delay systems by using the concept of positive invariant set and
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Lyapunov function method. Delay-dependent sufficient conditions are derived
that ensure the internal stability and desired level of persistent bounded distur-
bances. Then the state-feedback controller is designed to achieve both robust
stability and a desired performance level of disturbance rejection for a perturbed
time-delay system. A numerical example shows the effectiveness of the method.
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