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Abstract: This paper presents a new uniform framework for
solving the problem of minimum variance control of both discrete-
time and continuous-time linear time-invariant multi-input multi-
output systems described by general input-output models. Rather
surprisingly, it is shown that the continuous-time case can be an-
alyzed and synthesized without the necessity of involving the cele-
brated (and rather complex) theory of output predictor emulation,
so that quite similar, simple solution is obtained like for the well-
known discrete-time case.
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1. Introduction

The minimum variance control (MVC) problem has originally been formulated
and solved for LTI discrete-time systems, at first SISO (Åström, 1970; Åström,
and Wittenmark, 1973) and later square MIMO ones (Borisson, 1979; Keviczky
and Hetthessy, 1977; Koivo, 1979). The problem has not since been given
extensive research interest, apparently due to the lack of robustness of MVC
and its instability for nonminimum phase systems. Taking advantage of the
discrete-time control experience, in particular in terms of robust GPC (general-
ized predictive control) (Bitmead, Gevers and Wertz, 1990; Clarke and Mohtadi,
1989), continuous-time MVC and MVC-related strategies (analogous to GMVC,
Clarke and Gawthrop, 1975 and 1979 and WMVC, Moir and Grimble, 1986)
have been skipped over to immediately arrive at, e.g., robust continuous-time
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GPC (Demircioğlu and Gawthrop, 1991, 1992). Notwithstanding, an important
inheritance of the original MVC research has been to redefine the discrete-time
minimum phase LTI SISO systems as those whose transfer function zeros lie
strictly inside the unit disc, or those ’stable invertible’, or in, other words, those
systems for which MVC is asymptotically stable. This redefinition, probably
due to Åström’s group (Åström, 1970; Åström and Witternmark, 1973), has
soon been extended to the square MIMO case (Borisson, 1979; Keviczky and
Hetthessy, 1977; Koivo, 1979), involving the transmission zeros. This has later
turned attention to the MVC problem for nonsquare LTI MIMO systems, giving
rise to the introduction of new ’multivariable’ zeros, i.e. the so-called ’control
zeros’ (Latawiec, 1998; Latawiec, Bańka and Tokarzewski, 2000). The rationale
has been that a zero-reference MVC law can just be zeroing a deterministic
part of the output predictor, thus resulting in that zero-reference MVC, perfect
regulation and output-zeroing control laws are all identical.

Control zeros, being an extension of transmission zeros to nonsquare sys-
tems, have originally been introduced for discrete-time systems (Latawiec, 1998;
Latawiec, Bańka and Tokarzewski, 2000). The continuous-time MVC (CMVC)
problem has only recently been effectively tackled (Hunek, 2003; Latawiec, 2004)
in order to extend the definition of control zeros to continuous-time LTI MIMO
systems. It has turned out that the CMVC problem is more complex (than
MVC) to solve and it requires involving the theory of emulation of certain unreal-
izable operations (like continuous-time output prediction), see Gawthrop (1987,
1990), Demircioǧlu (1989), Demircioǧlu and Gawthrop (1991, 1992), Gawthrop,
Jones and Sbarbaro (1996), Latawiec and Hunek (2002), Hunek (2003), Latawiec
(2004). However, a closer inspection of the CMVC law has revealed striking sim-
ilarities between discrete-time and continuous-time solutions (Latawiec 2004).
This makes it possible to present both discrete-time and continuous-time MVC
cases in a unified framework and to offer a new, general MVC/CMVC solution.
It is interesting that, in the new uniform solution, the complicated emulation
theory is entirely circumvented for the continuous-time case.

It is important that our unified MVC framework is based on the assumption
that, in the s-domain continuous-time problem, the time-delay term is Padé-
approximated right at the beginning of the control synthesis process. This
follows the lines of Gawthrop’s celebrated continuous-time solution to the GPC
problem (Gawthrop, 1987, 1990). It is worth noticing that effective alterna-
tive approaches have been offered for s-domain solution of an LQG-type control
problem using state space form (Grimble, 1979) and Wiener form (Grimble,
1980). In those control synthesis procedures, a Padé approximation for the de-
lay term is applied at the end of the synthesis process, which can make the
approaches and solutions more general. However, applying those approaches to
our case cannot take us any further as our unified framework can be obtained
only when the Padé approximation is introduced at the beginning of the pro-
cedure. This is how our unified MVC framework is of a limited scope. But, on
the other hand, it is worth mentioning that, for the simple CMVC problems,
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the end of the control design procedure is in fact very close to the beginning,
which is quite different from the case of the LQG-type control design.

This paper is organized as follows. Having introduced the MVC/CMVC
problems, a uniform model valid for both discrete-time and continuous-time
systems is presented in Section 2. Sections 3 and 4 give the solutions to the
MVC problem for discrete-time and continuous-time systems, respectively, with
the reference in the latter case to the output predictor emulation theory. A
new unified MVC framework for discrete-time and continuous-time systems is
presented in Section 5. A new concept of robust MVC for nonsquare LTI MIMO
systems is introduced in Section 6. Simulation examples are provided in Section
7 and new results of the paper are summarized in the conclusions of Section 8.

2. System representations

Consider an nu-input ny-output LTI discrete-time system governed by the input-
output description

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)v(t) (1)

where u(t) and y(t) are the input and output vectors, respectively, v(t) is the
zero-mean uncorrelated disturbance vector, d is the time delay and A(q−1),
B(q−1) and C(q−1) are the appropriate matrix polynomials (in the backward
shift operator q−1) of orders n, m and l, respectively. As usual, we assume
that the leading coefficient of A(q−1) is equal to the identity matrix. Assume
that A(q−1) and B(q−1) as well as A(q−1) and C(q−1) are left coprime, with
B(q−1) and (stable) C(q−1) being of full normal rank ny. For general purposes
and for duality with the continuous-time case, we use here the ARMAX model,
even though it is well known that the C(q−1) polynomial matrix of disturbance
parameters is usually in control engineering practice unlikely to be effectively
estimated (and is often used as a control design, observer polynomial matrix
instead).

Consider also an nu-input ny-output LTI continuous-time system governed
by the input-output description

A(s)Y (s) = e−sT0B(s)U(s) + C(s)V (s) (2a)

where U(s), Y (s) and V (s) are the Laplace transforms of the respective input,
output and zero-mean uncorrelated disturbance vectors, T0 is the time delay
and A(s), B(s) and C(s) are the appropriate matrix polynomials in the Laplace
operator s, with all the assumptions for the matrix polynomials A(q−1), B(q−1)
and C(q−1) remaining valid here for the matrix polynomials A(s), B(s) and
C(s).

The continuous-time delay factor will be Padé-approximated as e−sT0 ≈
T (−s)/T (s), where T (s) is a stable polynomial of order nt (Hunek, 2003; Kowal-
czuk and Suchomski, 1997). (Note: A more general Padé approximation can
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also be used, with e−sT0 ≈ T1(−s)/T2(s) and the stable polynomials T1(s) and
T2(s) of orders n1 and n2 > n1, respectively, Holst, 1969 .) Thus we will proceed
with the continuous-time system description

A(s)Y (s) =
T (−s)

T (s)
B(s)U(s) + C(s)V (s). (2b)

It will be seen from general MVC considerations that system equations (1)
and (2b) can be presented in the following general form, valid for both discrete-
time and continuous-time systems

A(π)Y = D(π)B(π)U + C(π)V (3)

where for discrete-time systems we have π = q−1, A(.) = A(.), B(.) = B(.),
C(.) = C(.), Y = y(t), U = u(t), V = v(t) and D(.) = q−d, whereas for
continuous-time ones there is π = s, A(.) = A(.), B(.) = B(.), C(.) = C(.),
Y = Y (s), U = U(s), V = V (s) and D(.) = T (−s)/T (s). As usual, we assume
from now on that C(.) is stable and A(.), B(.) and A(.), C(.) are left coprime.
Also, we assume for clarity that time delays with respect to all inputs are equal.
The case of different time delays in various inputs is considered in Latawiec
(1998).

3. Minimum variance control (discrete-time systems)

Theorem 1 (Minimum variance control) (Latawiec, 2004) Let an LTI
discrete-time system be described by the left coprime ARMAX model (1), with
B(q−1) and C(q−1) being of full normal rank ny. Then the general MVC law,

minimizing E{‖y(t + d) − yref (t + d)‖2} with respect to u(t), is of the form

u(t) = BRF̃−1(q−1)[C̃(q−1)yref (t + d) − H̃(q−1)y(t)] (4)

where yref (t) is the output reference, BR(q−1) is a right inverse of B(q−1) and

the appropriate polynomial matrices F̃−1(q−1) and H̃−1(q−1) (both of dimen-
sions ny × ny) are computed from the polynomial matrix identity

C̃(q−1) = F̃ (q−1)A(q−1) + q−dH̃(q−1) (5)

with

C̃(q−1)F (q−1) = F̃ (q−1)C(q−1) (6)

and F̃ (q−1) = I + f̃1q
−1 + . . . + f̃d−1q

−d+1, H̃(q−1) = h̃0 + h̃1q
−1 + . . . +

h̃n−1q
−n+1.

Proof. Since the familiar output predictor

y(t + d)= C̃
−1

(q−1)[F̃ (q−1)B(q−1)u(t) + H̃(q−1)y(t)] + F (q−1)v(t)
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is precisely the same as for the square MIMO case (Borisson, 1979; Keviczky
and Hetthessy, 1977; Koivo, 1979), the result follows (asymptotically) from the
minimization of the performance index.

A general case of non-full normal rank systems is more difficult to tackle due
to the generalized inverse of the product F̃ (q−1)B(q−1) then involved in equa-
tion (4). Still, recall that the case of non-full normal rank systems is ruled out
in practical engineering situations (Latawiec, 1998). Anyway, we will continue
with full normal rank systems, implying that, in general, B(π) is of full normal
rank.

Theorem 2 (Stability of MVC) Let an LTI discrete-time system be des-
cribed by the left coprime ARMAX model (1), with B(q−1) and C(q−1) being of
full normal rank ny. Then the MVC law (4), where F̃ (q−1) and H̃(q−1) are as
above, is asymptotically stable iff B(q−1) is stably (right-)invertible.

Proof. Combining the model equation (1) with the control law (4) while em-
ploying the identity (5) and equation (6) one obtains

{I + F (q−1)C−1(q−1)[B(q−1)BR(q−1) − I]A(q−1)}ŷ(t + d) = yref (t + d),

with y(t + d) = ŷ(t + d) + F (q−1)v(t + d). Since C(q−1) is stable, the result
follows by virtue of the standard stability arguments.

Remark 1 Note that MVC is a sort of ’inverse-model control’ in that it involves
the factor BR(q−1) of the inverse system representation qdBR(q−1)A(q−1). A
variety of types of optimal right inverses of B(q−1) have been introduced in
Latawiec (2004), Latawiec, Hunek and Łukaniszyn (2005).

Remark 2 A ’symmetric’ (to Theorem 2) result, involving left invertibility
of B(q−1), can be easily obtained. However, in case of left invertible sys-
tems, MVC is not quite ’minimum variance’ here in that the absolute minimum

E[
∥

∥F (q−1)v(t)
∥

∥

2
] of the MVC performance index (or zero for perfect regulation)

cannot be reached, in general (Latawiec, 1998, 2004).

4. Continuous-time minimum variance control

We will first tackle the CMVC problem from the original viewpoint of emulation
of the output predictor transform (Gawthrop 1987, 1990; Demircioǧlu 1989;
Demircioǧlu and Gawthrop, 1991, 1992 and 2002; Gawthrop, Jones and Sbararo,
1996; Kowalczuk and Suchomski, 1997; Latawiec and Hunek, 2002; Hunek, 2003;
Latawiec, 2004). Full details of the emulator-based CMVC results can be found
in Hunek (2003), Latawiec (2004) and Latawiec and Hunek (2002). Then, we will
approach the CMVC problem right in the same way as for discrete-time systems
in order to arrive at a new result concerning the uniform MVC treatment for
both discrete-time and continuous-time forms.
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Consider an LTI MIMO system described by the s-domain model (2a). Again
we assume that A(s) and B(s) as well as A(s) and C(s) are left coprime, with
B(s) and (stable) C(s) being of full normal rank ny. In the continuous-time
case, the polynomial matrix C(s) (usually considered an observer) cannot be of
arbitrary order (l) due to physical realization reasons (Gawthrop, 1987; Demir-
cioǧlu, 1989; Demircioǧlu and Gawthrop, 1991; Hunek, 2003). In many cases,
differentiation of disturbances should be avoided, which can be provided by
choosing l = n − 1. Also, direct use of the plant output (without its low-pass
filtering) is in some cases undesirable, which can be obtained by selecting l = n.
Thus, we will assume that either l = n − 1 or l = n.

Referring to the models (2a) and (2b), the transform YT (s) = esT0Y (s) of
the output predictor is now approximately given as

YT (s) = A−1(s)B(s)U(s) +
T (s)

T (−s)
A−1(s)C(s)V (s). (7)

Accounting for (7), introduce the factorization (Demircioǧlu and Gawthrop,
2002)

A−1(s)C(s) = C̃(s)Ã−1(s) (8)

which is quite similar to (6), in terms of matrix incommutability.
Define the matrix polynomial identity (compare Gawthrop, 1987, Demir-

cioǧlu, 1989, for the SISO case)

T (s)

T (−s)
C̃(s)Ã−1(s) =

ET (s)

T (−s)
+ FT (s)Ã−1(s) (9)

whichconstitutes adecompositionof thedisturbance transforminto a strictly pro-
per, realizable part FT (s)Ã−1(s) and an unrealizable component ET (s)/T (−s)
(as T (−s) is unstable, Demircioǧlu, 1989, Gawthrop, 1987), where deg(FT ) =
deg(A)−1 , deg(Ã) = deg(A), deg(C̃) = deg(C) and ET (s) is of full normal rank
ny, with deg(ET ) = deg(T ) or deg(ET ) = (deg(T ))− 1 for deg(C) = deg(A) or
deg(C) = (deg(A)) − 1, respectively.

The transform of the output predictor can now be presented as

YT (s) = ȲT (s) + ĒT (s) (10)

where ȲT (s) is the predictor emulator and ĒT (s) = ET (s)
T (−s)V (s) represents the

emulation error.
The output predictor emulator is now of the form (Hunek, 2003; Latawiec,

2004; Latawiec and Hunek, 2002)

ȲT (s) =
1

T (s)
ET (s)C−1(s)B(s)U(s) + FT (s)C̃−1(s)Y (s). (11)
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Equating, in the standard way, the emulator ȲT (s) to the reference transform
Yref (s) we arrive at the CMVC law (Hunek, 2003; Latawiec, 2004; Latawiec and
Hunek, 2002)

U(s) = T (s)BR(s)C(s)ET
−1(s)[Yref (s) − FT (s)C̃−1(s)Y (s)]. (12)

Remark 3 It is interesting to note that the solution (12) can be obtained by
quite formal (without any physical interpretation) minimization of the "perfor-
mance index"

E{[YT (s)−Yref (s)]T[YT (s)−Yref (s)]} or E{[YT (s) − Yref (s)]∗[YT (s)−Yref (s)]}

with respect to U(s), where (.)T and (.)∗ are regular and conjugate transposes,
respectively. In fact, by taking e.g.

∂E{[YT (s) − Yref (s)]
T
[YT (s) − Yref (s)]}

∂U(s)
= 2E{[YT (s) − Yref (s)]T}

∂E[YT (s)]

∂U(s)

and assuming E[ĒT (s)] = 0 (since v(t) is a zero-mean disturbance) we arrive
at equation (12). It should be emphasized that the above peculiar stochastic
minimization formulation is deprived of any physical interpretation (what is the
expectation of a transform?), but still it is strongly supported by 1) MVC/CMVC
routine of equating the output predictor/emulator to the reference/reference
transform, and 2) right the same derivation process used for disrete-time do-
main formulated MVC. On the other hand, the peculiar stochastic minimization
formulation appears to support the unified discrete-time/continuous-time MVC
framework.

Theorem 3 (Stability of CMVC) Let an LTI MIMO continuous-time sys-
tem be described by the left coprime model (2b), with B(s) and C(s) being of
full normal rank ny. Then the CMVC law (12), where ET (s) and FT (s) are de-
fined in equations (9) and (8), is asymptotically stable iff B(s) is stably (right-)
invertible.

Proof. Similarly to the proof of Theorem 2, combining (2b) and (12), while
accounting for (8), (9), (10) and (11) we arrive at {I+ET (s)C−1(s)[B(s)BR(s)−
I]A(s)/T (s)}ȲT (s) = Yref (s). Since C(s) and T (s) are stable, the result follows
by virtue of the standard stability arguments.

It is interesting that the closed-loop system equation in the proof of Theo-
rem 3 is quite similar to that in the proof of Theorem 2. This indicates that the
CMVC control law (12) could be synthesized in an alternative way, just like for
discrete-time systems. In such a case, we could formally get around the whole
emulation theory, which would be rather surprising.
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Theorem 4 (Continuous-time minimum variance control revisited)
Let an LTI MIMO continuous-time system be described by the left coprime
model (2b), with B(s) and C(s) being of full normal rank ny. Then the general
MVC law, minimizing (quite formally) E{[YT (s) − Yref (s)]T[YT (s) − Yref (s)]}
or E{[YT (s) − Yref (s)]∗[YT (s) − Yref (s)]} with respect to U(s), is of the form

U(s) = T (s)BR(s)F̃−1(s)[C̃(s)Yref (s) − H̃(s)Y (s)] (13)

where the appropriate polynomial matrices F̃ ∈ R
ny×ny [s] and H̃ ∈ R

ny×ny [s]
are computed from the polynomial matrix identity

C̃(s) = F̃ (s)A(s)/T (s) + H̃(s)T (−s)/T (s) (14)

with

C̃(s)F (s) = F̃ (s)C(s) (15)

and H̃(s) = h̃0+ h̃1s+ ...+ h̃n−1s
n−1, F̃ (s) = I+ f̃1s+ ...+ f̃nf

snf , with nf = nt

(= deg[(T (s)]) for l = n or nf = nt − 1 for l = n − 1.

Proof. Since the output predictor transform can now be easily presented as
YT (s) = C̃−1(s)[H̃(s)Y (s)+ F̃ (s)B(s)U(s)/T (s)]+F (s)V (s)/T (−s), the result
follows.

Remark 4 It is striking how similar is the above result to that for the discrete-
time case. With B(s) being right-invertible, the whole analysis and synthesis
problems are practically identical for discrete-time and continuous-time systems.
Of course, the stability analysis is right the same as for Theorem 3, with the
closed-loop system equation {I +F (s)C−1(s)[B(s)BR(s)−I]A(s)/T (s)}ȲT (s) =
Yref (s), the result being ’almost’ the same as for discrete-time systems.

5. Uniform treatment of discrete-time
and continuous-time systems

The above enables to formulate new, general, uniform results valid for both
discrete- and continuous-time systems.

Theorem 5 (Discrete-time/continuous-time minimum variance con-
trol) Let an LTI discrete-time or continuous-time system be described by the
left coprime model (3), with B(π) and C(π) being of full normal rank ny. Then
the general MVC/CMVC law, minimizing (quite formally) E{[Y+−Yref ]T[Y+−
Yref ]} or E{[Y+ − Yref ]∗[Y+ − Yref ]} with respect to U , where Y+ = y(t + d)
and Yref = yref (t + d) for discrete-time and Y+ = YT (s) and Yref = Yref (s)
for continuous-time systems, is of the form

U = T+B
R(π)F̃−1(π)[C̃(π)Yref − H̃(π)Y] (16)
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where the appropriate polynomial matrices F̃ ∈ R
ny×ny [π] and H̃ ∈ R

ny×ny [π]
are computed from the matrix polynomial identity

C̃(π) = F̃(π)A(π)/T+ + D(π)H̃(π) (17)

with

C̃(π)F(π) = F̃(π)C(π) (18)

where H̃(π) = h̃0 + h̃1π + ... + h̃n−1π
n−1, F̃(π) = I + f̃1π + ... + f̃nf

πnf ,
with T+ = 1 for discrete-time and T+ = T (s) for continuous-time systems, and
nf = d−1 for discrete-time and nf = deg[(T (s)] for l = n or nf = deg[(T (s)]−1
for l = n − 1 for continuous-time systems.

Proof. Since the output predictor (or output predictor transform) can now be
easily presented as Y+ = C̃−1(π)[H̃(π)Y + F̃(π)B(π)U/T+] + F(π)V/T−, with
T− = 1 for discrete-time and T− = T (−s) for continuous-time systems, the
result follows.

Theorem 6 (Stability of MVC/CMVC) Let an LTI discrete-time or con-
tinuous-time system be described by the left coprime model (3), with B(π) and
C(π) being of full normal rank ny. Then the MVC/CMVC law (16), where

F̃(π) and H̃(π) are defined as above, is asymptotically stable iff B(π) is stably
(right-)invertible.

Proof. Similarly to the proofs of Theorems 2 and 3, combining equations (3) and
(16), while accounting for (17) and (18) as well as for the predictor equation
Y+ = Ŷ+ +F(π)V/T−, where Ŷ+ = C̃−1(π)[H̃(π)Y+ F̃(π)B(π)U/T+], we arrive
at {I + F(π)C−1(π)[B(π)BR(π) − I]A(π)/T+}Ŷ+ = Yref , with T+ and T− as
above. Since C(π) and T+ are stable, the result follows by virtue of the standard
stability arguments.

Remark 5 It is worth mentioning that solutions to the Generalized MVC
(GMVC) problems have been given both for discrete-time (Latawiec, 1998) and
continuous-time systems (Hunek, 2003). Those control problems can as well be
given a uniform formulation, easily extending the above MVC/CMVC results.
However, much more interesting would be an extension of the unifying frame-
work to discrete-time/continuous-time GPC, which is left for future research.

6. Robust MVC for nonsquare LTI MIMO systems

A variety of types of optimal (minimum norm) right inverses for B(π) have
given rise to defining of new ’multivariable’ zeros, being poles of BR(π) and
called control zeros (type 1 and type 2) (Latawiec, 1998, 2004, 2005; Latawiec
and Hunek, 2002; Hunek 2003; Latawiec, Hunek and Łukaniszyn, 2004, 2005).
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As a matter of fact, we are in a position to offer an infinite number of opti-
mal right inverses for B(π) (Latawiec, 2004), from which we can select such
inverse(s) that can provide robustness of MVC/CMVC (Latawiec, Hunek and
Adamek, 2005; Hunek, Latawiec and Łukaniszyn, 2006; Hunek, Latawiec and
Stanisławski, 2007; Hunek, 2008). In particular, stable MVC/CMVC can be ob-
tained even for the case when all channels of a nonsquare LTI MIMO system are
nonminimum phase (Hunek, Latawiec and Łukaniszyn, 2006; Hunek, 2008), this
result being rather surprising. This result will be illustrated on simple examples
below. Moreover, our new results concerning the stability of MVC/CMVC for
nonsquare LTI MIMO systems without transmission zeros show that we can al-
ways find a no-pole solution for BR(π), thus providing the tools for generic treat-
ment of any nonsquare LTI MIMO system as minimum phase (Hunek, Latawiec
and Łukaniszyn, 2006; Hunek, Latawiec and Stanisławski, 2007; Hunek, 2008).
Since nonsquare systems generically have no transmission zeros, this implies
that the structural stability of MVC/CMVC can generically be obtained for
nonsquare LTI MIMO systems, the feature being characteristic of, e.g., the
LQR strategy. This can offer a new tool for design of robust MVC/CMVC for
nonsquare LTI MIMO systems (Hunek, 2008), thus obviating, at least partly,
the need for application of some other powerful (but computationally involv-
ing) optimal control strategies. Preliminary results on the issue of robustness
of MVC/CMVC for nonsquare LTI MIMO systems, including selection of an
order of a no-pole inverse BR(π), have been presented in Hunek, Latawiec and
Łukaniszyn (2006), and Hunek, Latawiec and Stanisławski (2007). More com-
plete results, beyond the scope of this paper, have been presented in Hunek
(2008). Those results confirm the significance of (not quite well-known) control
zeros, whose contribution to design of robust MVC is crucial.

7. Simulation examples

Example 1 Consider a simple, two-input one-output continuous-time system
governed by the model (2b), with B(s) = [ s − 1.2 s ], A(s) = s + 0.5,
C(s) = s + 0.3, T0 = 1, nt = 3, var {v(t)} = 1e − 3 . Notice that both
channels of the system are nonminimum phase. Using the methods presented
in Latawiec, Hunek and Adamek (2005), Hunek, Latawiec and Łukaniszyn
(2006) we can find the no-pole inverse BR(s) =

[

− 25
86s − 5

6
25
86s + 125

258

]T

and an appropriate CMVC law according to (12) or (13) (for single-output
systems it does not matter which equation is used). Fig. 1 presents the per-
formance of CMVC as compared with perfect control (v(t) = 0). The per-
formance is quite negligibly affected by the choice of nt. Using the zero-
order hold with the sampling period of 0.1 s, the following ARMAX model
is obtained: B(q−1) = [ 1 − 1.117q−1 1 − q−1 ], A(q−1) = 1 − 0.9512q−1,
C(q−1) = 1− 0.9707q−1, with d = 10. Under a certain no-pole inverse (omitted
for brevity) we arrive at the MVC law (4), whose performance is presented in
Fig. 2. It is seen that the performance of MVC is better than that for CMVC
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Figure1a. CMVC vs. perfect control: plots of the input signals u1 and u2 for
Example 1.

Figure1b. CMVC vs. perfect control: plots of the output and output reference
signals, y and yref , respectively, for Example 1.
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Figure 2a. MVC: plots of the input signals u1 and u2 for Example 1.

Figure 2b. MVC vs. perfect control: plots of the output and output reference
signals, y and yref , respectively, for Example 1.



MVC – a unified framework 621

and this is inevitably caused by a rather poor quality of the Padé approxima-
tion for the time delay. We would like to additionally advocate the use of MVC
rather than CMVC by noting that the Matlab/Simulink tools (version 2007a)
for solving the continuous-time problems are sensitive to disturbances and open-
loop unstable systems, the issues nonexisting for discrete-time systems. In order
to illustrate the problem we consider Example 2.

Example 2 A two-input one-output unstable continuous-time system is de-
scribed with B(s) = [s2 − 1.2s + 3 −s2 + 0.5s ], A(s) = s2 + 0.6s − 0.8,
C(s) = s2 + 0.5s + 0.2, T0 = 0.2, nt = 3, var {v(t)} = 1e − 3 . Again, both
channels are nonminimum phase. Using the available Matlab/Simulink tools,
it is not possible to find a numerically stable solution for CMVC, nor even for
perfect control. In contrast, a discrete-time version of the system, with

B(q−1) = [ 1 − 2.1058q−1 + 1.1350q−2 −1 + 2.0525q−1 − 1.0525q−2 ],

A(q−1) = 1 − 1.9495q−1 + 0.9418q−2,

C(q−1) = 1 − 1.9543q−1 + 0.9563q−2

and d = 2, can be effectively stabilized under MVC with a certain no-pole
inverse BR(q−1), which can be appreciated from Fig. 3.

Figure 3a. MVC: plots of the input signals u1 and u2 for Example 2.
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Figure 3b. MVC vs. perfect control: plots of the output and output reference
signals, y and yref , respectively, for Example 2.

8. Conclusions

The minimum variance control problem for possibly nonsquare LTI MIMO sys-
tems has been presented in a new unifying framework, covering both discrete-
time and continuous-time systems in a joint, compact manner. The unifying
framework is valid under one limiting assumption made: the continuous-time
delay term is Padé-approximated. It is surprising that in the uniform MVC
solution valid for both discrete-time and continuous-time systems, no reference
for the latter case is necessary to be made to the celebrated theory of emulation
of the output predictor. The unifying framework allows for analyzing and syn-
thesizing the MVC for both discrete-time and continuous-time systems within
a uniform methodology, with stimulating implications for possible unification
of more advanced control strategies. Also, new ideas for robust MVC for non-
square LTI MIMO systems have preliminary been introduced on the basis of
the MVC-related concept of control zeros.
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