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Abstract: The paper presents a method for computing a matrix
partial fraction when a complete set of solvents for the "denomina-
tor" matrix polynomial does not exist. Partial fraction expansion
is a useful tool of analysis and of decomposition of multiple input,
multiple output linear time invariant system.
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1. Introduction

In system theory, matrix rational fractions are commonly used to describe mul-
tiple input, multiple output linear time invariant systems. A typical transfer
function can be expressed as:

H(λ) = G(λ)A−1(λ) (1)

where A(λ) is a monic regular matrix polynomial of degree m:

A(λ) = λmI + A1λ
m−1 + · · · + Am−1λ + Am, (2)

Ak are r × r square matrices. G(λ) is a given rectangular matrix polynomial of
degree n:

G(λ) = λnG0 + G1λ
n−1 + · · · + Gn−1λ + Gn, (3)

Gk are l × r matrices.
In this paper, the rational fraction H(λ) is assumed to be proper, i.e. n < m.

If the matrix polynomial possesses a complete set of right solvents Rk and similar
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left solvents Lk, the above matrix rational fraction can be expanded in partial
fractions (Tsay et al., 1982):

H(λ) =

m
∑

k=1

Xk (λI − Lk)
−1

. (4)

The residues are given by (Dahimene, 1992):

Xk = GR(Rk)P−1

kR
(Rk) (5)

Pk(λ) = (λI − Lk)−1A(λ). (6)

The subscript R indicates a right evaluation of the matrix polynomial:

AR(X) = Xm + A1X
m−1 + ... + Am−1X + Am ,

X is an r × r square matrix.
Partial fraction expansions are very useful in system analysis and design.

We can cite in this context system order reduction using dominant poles (which
are the latent roots of the "denominator").

2. The incomplete matrix partial fraction

Unfortunately, it is rare to find matrix polynomials having a complete set of
solvents. A more common case is provided by the following factorization of
the "denominator" A(λ). The matrix polynomial A(λ) has a right and a left
spectral factor of degree k (Gohberg et al., 1982). In other words, we can write:

A(λ) = Πk(λ)Fk(λ) = F k(λ)Πk(λ), (7)

where Πk(λ)and Πk(λ) are degree k monic matrix polynomials, Fk(λ) and F k(λ)
are degree m−k monic matrix polynomials with the following relations between
spectra:

σ(Πk) = σ(Πk) ; σ(Fk) = σ(Fk)

σ(Πk) ∩ σ(Fk) = ∅ ; σ(Πk) ∩ σ(Fk) = ∅ (8)

A special case of the above factorization is that when A(λ) has a right
solvent R. It will also have a left solvent L with the same spectrum. If the
matrix polynomial A(λ) satisfies the properties (7) and (8), then the rational
fraction H(λ) can be expanded as:

H(λ) = U(λ)Π−1

k
(λ) + V (λ)F

−1

k
(λ), (9)

where U(λ) is an l × r matrix polynomial of degree deg U < k and V (λ) is
also an l × r matrix polynomial of degree deg V < m − k. The result given by
equation (9) is a proper matrix rational fraction. To prove the above result, we
need the following theorem.
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Theorem 1 The linear diophantine equation

X(λ)A(λ) + Y (λ)B(λ) = C(λ) (10)

has always a solution X(λ) and Y (λ) if and only if the greatest common right
divisor of A(λ) and B(λ) is a right divisor of C(λ).

Proof. (See Kucera, 1979).

An easily proved corollary follows.

Corollary 1 If A(λ) and B(λ) are right coprime matrix polynomials, (10)
has always a solution.

The main result can now be stated as the subsequent proposition.

Proposition 1 Any l× r matrix polynomial G(λ) of degree less than m can be
written as:

G(λ) = X(λ)Πk(λ) + Y (λ)Fk(λ) (11)

where X(λ) and Y (λ) are r matrix polynomials of degree less than m− k and k

respectively.

Proof. (11) is a linear diophantine equation and since σ(Πk) ∩ σ(Fk) = ∅, then
it has always a solution. The general solution is given by Kucera (1979):

X(λ) = X0(λ) − T (λ)B1(λ)

Y (λ) = Y0(λ) + T (λ)A1(λ)

where T (λ) is an arbitrary matrix polynomial. X0(λ) and Y0(λ) a particular
solution of (11), while A1(λ) and B1(λ) are coprime matrix polynomials such
that:

B1(λ)Πk(λ) = A1(λ)Fk(λ).

Using the fact that A(λ) has the right and left spectral factorization (7), we have
A1(λ) = Πk(λ) and B1(λ) = F k(λ). Dividing Y0(λ) by Πk(λ), which yields

Y0(λ) = U(λ)Πk(λ) + V (λ); deg V < k

Y (λ) = U(λ)Πk(λ) + V (λ) + T (λ)Πk(λ),

T (λ) being an arbitrary polynomial, we can set it as: T (λ) = −U(λ) and then:

Y (λ) = V (λ)

X(λ) = X0(λ) + U(λ)F k(λ).

So:

G(λ) = Y (λ)Fk(λ) + X(λ)Πk(λ)

And, since deg Fk = m − k, deg Y < k and deg G < m, then deg X(λ)Πk(λ) <

m − k. Finally, deg X < m − k.
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The above proposition has the consequence that proper matrix rational frac-
tions can be expanded in incomplete partial fractions. Let A(λ) have the fac-
torization given by (7) and (8), and H(λ) given by (1). G(λ) being a matrix
polynomial of degree less than m, we can develop it as in (11):

G(λ) = X(λ)Πk(λ) + Y (λ)Fk(λ)

deg X < m − k deg Y < k.

So, using (1), (7) and ((11), the rational matrix H(λ) becomes:

H(λ) = Y (λ)Π−1

k
(λ) + X(λ)F

−1

k (λ).

Each term in the above sum is a proper matrix rational fraction.
In order to compute the residues X(λ) and Y (λ), we can use the fact that

[

X(λ)Πk(λ)
]

modΠk(λ) = 0 and [Y (λ)Fk(λ)] modFk(λ) = 0 (mod is the modulo
operation, i.e. the remainder of the division by its argument) to obtain the
following two equations:

G(λ) mod Πk(λ) = [Y (λ)Fk(λ)] mod Πk(λ) (12)

G(λ) mod Fk(λ) =
[

X(λ)Πk(λ)
]

mod Fk(λ). (13)

Equations (5) and (6) are a special case of the above relations. They apply
for Πk(λ) = (λI − L) and Πk(λ) = (λI − R). Equations (12) and (13) provide
us with sets of matrix equations between the coefficients of X(λ) and Y (λ) that
can be easily solved.

As a numerical example, consider the following matrix polynomial:

A(λ) = λ3I + λ2

(

−6 −3
−1 −6

)

+ λ

(

12 11
4 13

)

+

(

−9 −12
−3 −8

)

. (14)

This is a purely constructed example, chosen because it has simple factors
(the coefficients have integer values). It has the following factorization:

Πk(λ) = λI +

(

3 9
−4 −9

)

(15)

Fk(λ) = λ2I + λ

(

−9 −12
3 3

)

+

(

12 20
−5 −8

)

(16)

Πk(λ) = λI +

(

−3 −2
0 −3

)

(17)

F k(λ) = λ2I + λ

(

−3 −1
−1 −3

)

+

(

3 2
1 2

)

. (18)

Consider now the following matrix rational fraction:

H(λ) = G(λ)A−1(λ) (19)
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along with:

G(λ) = λ2I + λ

(

2 3
3 5

)

+

(

5 1
3 6

)

. (20)

We obtain the following partial fraction:

H(λ) = Y (λ)Π−1

k
(λ) + X(λ)F

−1

k
(λ). (21)

By computing the coefficients of X and Y using (12) and (13), we obtain:

X(λ) = λ











−5

31

−290

31

60

31

163

31











+











−391

31

−283

31

−51

31

−76

31











(22)

and

Y (λ) = Y0 =

(

−27 −71

2

−6 −6

)

. (23)

In order to find a particular spectral factorization of the matrix polynomial A(λ),
one can apply the right and left matrix quotient-difference (QD) algorithm as
developed in Dahimene (1992). This algorithm is a generalization of the scalar
one (Henrici, 1958) to matrix polynomials.

3. Conclusion

In this paper, a method for decomposition of matrix rational fraction is de-
veloped. This method presents the advantage of being more general than the
simple case of a complete set of solvents. It can be applied to a more general
class of matrix polynomials that just have to satisfy the requirements (7) and
(8). The method has been presented for a right division. The same results
(with transposition) can be presented for a left division. The method allows for
better system analysis and design since it enables the decomposition of complex
systems into a parallel combination of simpler systems.
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