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Abstract: Let X be a normed space and V ⊂ X a convex
set with nonempty interior. Let α : [0,∞) → [0,∞) be a given
nondecreasing function. A function f : V → R is α(·)-midconvex if

f

(

x + y

2

)

≤
f(x) + f(y)

2
+ α(‖x − y‖) for x, y ∈ V.

In this paper we study α(·)-midconvex functions. Using a version of
Bernstein-Doetsch theorem we prove that if f is α(·)-midconvex and
locally bounded from above at every point then

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + Pα(r, ‖x − y‖)

for x, y ∈ V and r ∈ [0, 1], where Pα : [0, 1] × [0,∞) → [0,∞)
is a specific function dependent on α. We obtain three different
estimations of Pα.

This enables us to generalize some results concerning paraconvex
and semiconcave functions.

Keywords: approximately midconvex function, convexity, para-
convexity, semiconcavity.

1. Introduction

The existing various notions of generalized convexity are very useful, in particu-
lar in optimal control theory (Cannarsa and Sinestrari, 2004) and optimization
(for more information and references see Rolewicz, 2005). Therefore, convenient
conditions which guarantee generalized convexity are very useful. As we know
from the classical theory of convex functions, midconvexity and local upper
boundedness guarantee convexity. Not surprisingly, a similar type of behaviour
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can be expected for generalized (mid)convexity. Since our considerations are
motivated by the results concerning this problem, let us recall some of them.

Let X be a normed space and V a convex subset of X . A function f : V → R

is convex if

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) for x, y ∈ V, r ∈ [0, 1].

If the above inequality holds for r = 1/2 that is if

f

(

x + y

2

)

≤
f(x) + f(y)

2
for x, y ∈ V

then f is called midconvex (or Jensen convex). From the very beginning the
relation between convexity and midconvexity attracted a lot of attention. In
this context one should mention the celebrated Bernstein-Doetsch Theorem.

Bernstein-Doetsch Theorem (Bernstein and Doetsch, 1915; Kuczma, 1985).
Let V be an open convex subset of X and let f : V → R be midconvex. If f is
locally bounded above at a point then f is convex.

The notion of approximate convexity was introduced by D.H. Hyers and
S.M. Ulam (Hyers and Ulam, 1952; Hyers, Isac and Rassias, 1998). Let δ ≥ 0.
A function f : V → R is called δ-convex if

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + δ for x, y ∈ V, r ∈ [0, 1].

Analogously, f is called δ-midconvex if

f

(

x + y

2

)

≤
f(x) + f(y)

2
+ δ for x, y ∈ V.

An analogue of Bernstein-Doetsch Theorem adapted to the above definition was
obtained by C.T. Ng and K. Nikodem (1993). They proved that if V is convex
open and f : V → R is δ-midconvex and locally bounded at a point then f is
2δ-convex (a further improvement was recently obtained in Mrowiec, Tabor and
Tabor, 2009).

Another type of approximate convexity was introduced by S. Rolewicz (1979
a,b): a function f : I → R, where I is a subinterval of R is γ-paraconvex if for
a certain ε > 0

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + ε|x − y|γ for x, y ∈ I, r ∈ [0, 1].

S. Rolewicz proved that if γ > 2 then every γ-paraconvex function is convex.
In the series of proceeding papers S. Rolewicz has developed a general theory of
paraconvex functions, see Rolewicz (2006) for more information and references.

Let α : [0,∞) → [0,∞) be a given nondecreasing function such that

lim sup
r→0+

α(r)/r < ∞ .
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A function f : V → R is α(·)-paraconvex if there exists C > 0 such that

f(rx+(1− r)y) ≤ rf(x)+(1− r)f(y)+Cα(‖x−y‖) for x, y ∈ V, r ∈ [0, 1],

and strongly α(·)-paraconvex if there exists C > 0 such that

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + C min(r, 1 − r)α(‖x − y‖)

for x, y ∈ V , r ∈ [0, 1].
There is also an analogous definition of semiconvexity (Cannarsa and Sines-

trari, 2004), which is especially adapted to the optimal control theory, where
the function min(r, 1 − r) in the last definition is replaced by r(1 − r), see also
Zajíček (2008) (another modification was also studied in Páles, 2003).

In a similar manner δ-midconvexity was generalized by A. Házy and Zs.
Páles in Házy and Páles (2004, 2005) and Házy (2005). The idea consisted in
exchanging the "midconvexity bound" δ by a specific function of ‖x − y‖: in
Házy and Páles (2004) it was replaced by ε‖x − y‖ + δ, in Házy (2005) it was
ε‖x − y‖p + δ and in Házy and Páles (2005)

∑

i εi‖x − y‖pi .
We are going to generalize the above definitions in the spirit of paraconvex

functions introduced by S. Rolewicz. A very similar definition to the one we
propose was used by Cannarsa and Sinestrari (2004, Theorem 2.1.10). However,
we would like to underline that contrary to the just mentioned authors, we do
not assume that lim sup

r→0+

α(r)/r < ∞.

Definition 1.1 Let V be a convex subset of a normed space X and let a non-
decreasing function α : [0,∞) → [0,∞) be given. A function f : V → R is called
α(·)-midconvex if

f

(

x + y

2

)

≤
f(x) + f(y)

2
+ α(‖x − y‖) for x, y ∈ V.

The above definition is also motivated by the notion of α(·)-lipschitz func-
tions introduced by R. Mauldin and S. Williams (1986) (α(·)-lipschitz function is
simply a function which is simultaneously α(·)-midconvex and α(·)-midconcave).

Now we are ready to present the main problem we investigate in this paper.
Let a nondecreasing function α : [0,∞) → [0,∞) be given. Find a function

(if possible—optimal) Pα : [0, 1] × [0,∞) → [0,∞) such that for every locally
bounded above at a point α(·)-midconvex function f we have

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + Pα(r, ‖x − y‖)

for all x, y in the domain of f and r ∈ [0, 1].

We briefly describe the contents of the article.
In the next section we generalize the estimations obtained in the previously

mentioned papers of A. Házy and Zs. Páles. As shown by numerical simulations,
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this estimation is sharp for the case when α(x) = xp for all p ∈ [0, 1] (up till
now the proof exists only for the cases p = 0, Mrowiec, Tabor and Tabor, 2009,
and p = 1, Boros, 2008).

The third section is motivated by the results of S. Rolewicz (1979 a,b) which
showed that a γ-paraconvex function with γ ∈ (1, 2] is strongly γ-paraconvex.
We obtain a result of this type for α(·)-midconvex functions. We would like to
add, see Tabor and Tabor (2009), that our result is optimal in the case when
α(x) = xp, p ∈ [1, 2].

Fourth section deals with a generalization of Cannarsa and Sinestrari (2004,
Theorem 2.10) concerning the comparison of (mid)-semiconcave and semicon-
cave functions. In particular we show that our technique of proof gives a better
estimation then that obtained in Cannarsa and Sinestrari (2004, Theorem 2.10),
which consequently gives a partial answer to the question stated in Cannarsa
and Sinestrari (2004, Remark 2.1.11).

The last section is inspired by the results of S. Rolewicz (1979b, 2000) and
that of K. Nikodem and Zs. Páles (2003/4). We prove that if

lim inf
r→0+

α(r)/r2 = 0

then a locally bounded above α(·)-midconvex function is convex. This, in partic-
ular, gives a positive answer to the question formulated by S. Rolewicz directly
after the proof of Proposition 1 in Rolewicz (2000).

At the end of the introduction we establish some notation. By N we denote
the set of positive integers and by N0 the set of nonnegative integers. By V
we denote a convex subset of a normed space X . We will need the function
d : R → R defined by

d(r) := 2dist(r; Z).

In the whole paper we assume that α : [0,∞) → [0,∞) is a given nondecreasing
function.

2. Házy and Páles type estimation

Let us first briefly discuss the results of A. Házy and Zs. Páles from Házy and
Páles (2004, 2005) and Házy (2005). In Házy and Páles (2004) they proved the
following theorem:

Theorem HP (Házy and Páles, 2004, Theorem 4). Let V be an open convex
subset of a Banach space X and let f : V → R be (δ, ε)-midconvex, i.e.

f

(

x + y

2

)

≤
f(x) + f(y)

2
+ ε‖x − y‖ + δ for x, y ∈ V,

where ε, δ ≥ 0, and locally bounded above at a point, then it satisfies the inequa-
lity

f(rx+(1−r)y) ≤ rf(x)+(1−r)f(y)+2εϕ(r)‖x−y‖+2δ for x, y ∈ V, r ∈ [0, 1],
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where ϕ : [0, 1] → R is the Takagi function ϕ(r) =
∑

∞

k=0

1

2k dist(2kr; Z) for
r ∈ [0, 1].

This result was later improved in Házy (2005) and Házy and Páles (2005)
for the "midconvexity bound" of the form ε‖x − y‖p + δ and

∑

i εi‖x − y‖pi ,
respectively. In Házy (2005) and Házy and Páles (2005) the case of t-convexity
was also considered.

In this section we generalize some of the above mentioned results for the
case of the general mid-convexity bound (not only of the form

∑

i εi‖x− y‖pi).
Moreover, we do not restrict ourselves to the case of locally bounded above
functions (in this case one can only expect to obtain estimation for r ∈ [0, 1]∩Q).

We begin with the version of the Bernstein-Doetsch Theorem adapted to
α(·)-midconvex functions.

Theorem 2.1 Let f : V → R be a locally bounded above at one point α(·)-
midconvex function. Then f is locally bounded at each point of intV .

Moreover, if lim
r→0+

α(r) = 0 then f is continuous on intV .

Proof. Clearly it is enough to consider the case when intV 6= ∅. Let x0 be the
point at which f is locally bounded from above. We can choose such x0 from
intV . Let r > 0 be arbitrarily chosen. Let Vr = intV ∩B(x0, r), where B(x0, r)
denotes the open ball centered at x0 with radius r. Since α is nondecreasing we
obtain that f is α(2r) midconvex on Vr. By Theorem of Ng and Nikodem (1993)
we obtain that f is locally bounded at each point of Vr. As r was arbitrary, we
obtain that f is locally bounded at each point of intV .

The proof of continuity of f on intV is an obvious modification of the proof of
continuity in the Bernstein-Doetsch Theorem (Kuczma, 1985; Házy and Páles,
2004) and therefore we skip it.

Let us observe that the above theorem implies that if the domain of f is
open to check if f is locally bounded above at every point of the domain it is
sufficient to check if f is locally bounded above at one point.

We are goingto obtain a globalestimation for locallybounded α(·)-midconvex
functions. We begin with the following proposition.

Proposition 2.1 Let D ⊂ [0, 1] be such that

x ∈ [0, 1/2]∩ D ⇒ 2x ∈ D, x ∈ [1/2, 1] ∩ D ⇒ 2x − 1 ∈ D.

Let h : D → R be an upper bounded function such that

h(x) ≤ h(2x)/2 + α(2x) for x ∈ D ∩ [0, 1/2],

h(x) ≤ h(2x − 1)/2 + α(2 − 2x) for x ∈ D ∩ [1/2, 1].

Then

h(r) ≤
∞
∑

k=0

1

2k
α(d(2kr)) for r ∈ D.
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Proof. Let

C := sup
r∈D

(

h(r) −
∞
∑

k=0

1

2k
α(d(2kr))

)

.

By the assumptions we obtain that C < ∞. We are going to prove that C ≤ 0.
For an indirect proof, suppose that this is not the case. Choose an r0 ∈ D

such that

h(r0) −
∞
∑

k=0

1

2k
α(d(2kr0)) > C/2.

Let us first consider the case when r0 ∈ [0, 1/2]. Then we obtain

h(2r0) ≥ 2h(r0) − 2α(2r0) > 2

∞
∑

k=0

1

2k
α(d(2kr0)) + 2C/2 − 2α(d(r0))

=

∞
∑

l=0

1

2l
α(d(2l(2r0))) + C.

Consequently

h(2r0) −
∞
∑

l=0

1

2l
α(d(2l(2r0))) > C,

a contradiction with the definition of C.
The case when r0 ∈ [1/2, 1] can be treated similarly (we begin with the

inequality h(2r0 − 1) ≥ 2h(r0) − 2α(2 − 2r0) and proceed analogously).

As a direct corollary we get:

Corollary 2.1 Let h : [0, 1] → R be an α(·)-midconvex function such that
h(0) = h(1) = 0. Then

h(r) ≤
∞
∑

k=0

1

2k
α(d(2kr)) for r ∈ [0, 1] ∩ Q.

Moreover, if h is upper bounded then the above inequality holds for all r ∈
[0, 1].

Proof. Let r = k/n ∈ Q ∩ [0, 1], where k ∈ Z, n ∈ N. We put D =
{0, 1/n, . . . , (n− 1)/n, 1}. Then D satisfies the assumptions of Proposition 2.1.
Since D is finite, h|D is bounded, and therefore Proposition 2.1 applied to h|D
makes the proof complete.

The case when h is upper bounded follows directly from Proposition 2.1.
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Now we are ready to present the main result of this section.

Theorem 2.2 Let f : V → R be an α(·)-midconvex function. Then

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) +

∞
∑

k=0

1

2k
α(d(2kr)‖x − y‖) (1)

for x, y ∈ V , r ∈ [0, 1] ∩ Q.
Moreover, if f is locally bounded above at every point of V then (1) holds

for all x, y ∈ V , r ∈ [0, 1].

Proof. As α is nondecreasing and d is bounded, we obtain that the right hand
side of (1) is well-defined.

Let us fix x, y ∈ V . We define the function h : [0, 1] → R by the formula

h(r) = f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) for r ∈ [0, 1].

Then h(0) = h(1) = 0. By the α(·)-midconvexity of f we obtain that

h

(

r + s

2

)

≤
h(r) + h(s)

2
+ α(|r − s|‖x − y‖) for r, s ∈ [0, 1].

That is, h is θ(·)-midconvex, with θ(w) := α(w‖x − y‖). By Corollary 2.1 we
obtain that

h(q) ≤
∞
∑

k=0

1

2k
θ(d(2kq)) =

∞
∑

k=0

1

2k
α(d(2kq)‖x − y‖) for q ∈ [0, 1] ∩ Q,

that is, for r ∈ [0, 1] ∩ Q

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤
∞
∑

k=0

1

2k
α(d(2kr)‖x − y‖).

Let us discuss now the case when f is locally upper bounded. Then h has
the same property. Since the interval [0, 1] is compact we obtain that h is upper
bounded. Corollary 2.1 completes the proof.

One can easily notice that for α(r) := εr + δ we obtain Theorem HP (in fact
we obtain its "upgrade" since we deal also with the case when f is not locally
bounded).

3. Rolewicz type estimation

In this section we obtain an estimation, which is to some extent dual to that
from the previous section. It occurs that it is optimal for p ∈ [1, 2], see Tabor
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and Tabor (2009). This means that the next Theorem 3.1 should give a better
estimation than Theorem 2.2 in the case when lim

r→0+
α(r)/r = 0.

By D we denote the set of dyadic numbers in Q, that is – elements of the
form l/2n, where l ∈ Z and n ∈ N. By the degree deg(q) of a dyadic number q
we understand the smallest nonnegative integer n such that 2nq ∈ Z.

Proposition 3.1 Let h : [0, 1]∩D → R, h(0) = h(1) = 0 be an α(·)-midconvex
function. Then

h(q) ≤
∞
∑

k=0

α(1/2k)d(2kq) for q ∈ [0, 1] ∩D. (2)

Proof. We are going to prove (2) by induction over the degree of q. Obviously
(2) is valid if deg(q) = 0, that is if q = 0 or q = 1. Assume that for a certain
n ∈ N0 (2) holds true for all q ∈ [0, 1] ∩ D such that deg(q) ≤ n.

Let q ∈ [0, 1] ∩ D, deg(q) = n + 1, that is q = (2l + 1)/2n+1 for a certain
l ∈ {0, . . . , 2n − 1}. Then q = (l/2n + (l + 1)/2n)/2, and by the inductive
assumption

h(q) ≤ [h(l/2n) + h((l + 1)/2n)]/2 + α(1/2n)

≤ α(1/2n) +
∞
∑

k=0

α(1/2k)
d(l/2n−k) + d((l + 1)/2n−k)

2
. (3)

Obviously l/2n−k, (l + 1)/2n−k ∈ Z for all k ≥ n. Let us observe that for every
k ∈ {0, . . . , n − 1} there exists an mk ∈ Z such that

l/2n−k, (l + 1)/2n−k ∈ [mk/2, (mk + 1)/2]. (4)

Suppose, for an indirect proof, that this is not the case for a certain k ∈
{0, . . . , n − 1}. Since

(l + 1)/2n−k − l/2n−k = 1/2n−k ≤ 1/2,

there would exist an m ∈ Z such that l/2n−k ∈ [m − 1/2, m), (l + 1)/2n−k ∈
(m, m+1/2]. This implies that (l− 2n−km)/2n−k < 0 < (l +1− 2n−km)/2n−k,
and consequently that l − 2n−km < 0 < l + 1 − 2n−km, a contradiction.

Now let us notice that d(m) = 0 and d(m + 1

2
) = 1 for all m ∈ Z and that d

is piecewise affine, more precisely,

d(
x + y

2
) = (d(x) + d(y))/2 for x, y ∈ [m/2, (m + 1)/2], m ∈ Z.

Concluding, by applying (3) and (4) we obtain that

h(q) ≤ α(1/2n) +

n−1
∑

k=0

α(1/2k)d((2l + 1)/2n+1−k) =
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=
n
∑

k=0

α(1/2k)d((2l + 1)/2n+1−k) =
∞
∑

k=0

α(1/2k)d(2kq).

Now we are ready to present the main result of this section.

Theorem 3.1 Let f : V → R be an α(·)-midconvex function. Then for all
x, y ∈ V and r ∈ [0, 1] ∩ D we have

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤
∞
∑

k=0

α(‖x − y‖/2k) · d(2kr). (5)

Moreover, if f is locally upper bounded and

∞
∑

k=0

α(1/2k) < ∞ (6)

then f is continuous on intV and (5) holds for all x, y ∈ V and r ∈ [0, 1].

Before proceeding to the proof let us make some comments on condition
(6). From this condition we obtain that limk→∞ α(1/2k) = 0, and consequently,
by the fact that α is nondecreasing, that limr→0+ α(r) = 0. Moreover, it is
equivalent to the fact that the right hand side of (5) is finite for all x, y ∈ V ,
r ∈ [0, 1] (observe that the value of the right hand side of (5) at the point
r = 1/3 is equal to 2

3

∑

∞

k=0
α(‖x − y‖/2k)).

Proof of Theorem 3.1 Let us fix x, y ∈ V and define the function h : [0, 1] → R

by the formula

h(r) = f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) for r ∈ [0, 1].

Clearly h(0) = h(1) = 0, and by the α(·)-midconvexity of f we obtain that

h

(

s + t

2

)

≤
h(s) + h(t)

2
+ α(|s − t|‖x − y‖) for s, t ∈ [0, 1].

It means that h is θ-midconvex with θ(w) := α(w‖x − y‖). By Proposition 3.1

h(r) ≤
∞
∑

k=0

θ(1/2k)d(2kr) =

∞
∑

k=0

α(‖x− y‖/2k)d(2kr) for r ∈ [0, 1]∩D, (7)

which consequently yields that for r ∈ [0, 1] ∩ D

f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) ≤
∞
∑

k=0

α(‖x − y‖/2k) · d(2kr). (8)
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Now let us assume that f is locally bounded above. Since α is nondecreasing,
it follows from (6) that r 7→

∑

∞

k=0
α(‖x−y‖/2k)d(2kr) is a well-defined function

for every x, y ∈ V . Furthermore, due to the continuity of d it is continuous.
By Theorem 2.1 f is continuous on intV . Applying Theorem 2.1 to h we

obtain that h is continuous on (0, 1). Since r 7→
∑

∞

k=0
α(‖x − y‖/2k)d(2kr) is

continuous and h is continuous on (0, 1) the formula (7) holds for all r ∈ (0, 1).
Since it trivially holds for r = 0, 1 we obtain that (8) holds for all r ∈ [0, 1].

4. Semiconcavity

We will show that Theorem 3.1 can be applied to obtain a generalization of
Cannarsa and Sinestrari (2004, Theorem 2.1.10). More precisely, we prove that
under relatively weak assumptions a (mid)-semiconcave function is semiconcave.
For more information on this subject we refer the reader to Cannarsa and Sines-
trari (2004, Chapter 2). For the convenience of the reader we state the result
obtained in the proof of Cannarsa and Sinestrari (2004, Theorem 2.1.10) in the
form slightly adapted to our settings.

Theorem CS (Cannarsa and Sinestrari, 2004, Theorem 2.1.10). Let ω̃ :
[0,∞) → [0,∞) be a nondecreasing upper-semicontinuous function such that
limρ→0+ ω̃(ρ) = 0. Let S ⊂ X be arbitrary and let u : S → R be a function such
that

u(x) + u(y) − 2u(
x + y

2
) ≤

‖x − y‖

2
ω̃(‖x − y‖)

for any x, y ∈ S such that the segment [x, y] is contained in S.
Then for every x, y ∈ S such that [x, y] ⊂ S we have

λu(x) + (1 − λ)u(y) − u(λx + (1 − λ)y) ≤ λ(1 − λ)‖x − y‖ω(‖x − y‖) (9)

for λ ∈ [0, 1] ∩ D, where

ω(z) =

∞
∑

k=0

ω̃(
z

2k
) for z ∈ [0,∞).

If w̃ is linear, then we can take ω = ω̃.
Moreover, if u is continuous then (9) holds for all λ ∈ [0, 1].

Let us begin with the following proposition.

Proposition 4.1 Let ω̃ : [0,∞) → [0,∞) be a nondecreasing function. Let
S ⊂ X be arbitrary and let u : S → R be such that

u(x) + u(y) − 2u(
x + y

2
) ≤

‖x − y‖

2
ω̃(‖x − y‖)

for any x, y ∈ S such that the segment [x, y] is contained in S.
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Then for every x, y ∈ S such that [x, y] ⊂ S we have

λu(x)+(1−λ)u(y)−u(λx+(1−λ)y) ≤
1

4

∞
∑

k=0

‖x − y‖

2k
ω̃(

‖x − y‖

2k
)d(2kλ) (10)

for λ ∈ [0, 1] ∩ D.
Moreover, if u is locally lower bounded then (10) holds for all λ ∈ [0, 1].

Proof. We fix x, y ∈ S such that [x, y] ∈ S. Take V = [x, y], f = −u|V ,
α(r) = rw̃(r)/4 for r ∈ [0,∞) and apply Theorem 3.1.

To show that above proposition improves Theorem CS we need to observe
that the right hand side of (10) can be estimated from above by the right hand
side of (9):

Observation 4.1 Let ω̃ : [0,∞) → [0,∞) be a nondecreasing function and let

ω(z) :=

∞
∑

k=0

ω̃(
z

2k
) for z ∈ [0,∞).

Then

1

4

∞
∑

k=0

z

2k
ω̃(

z

2k
)d(2kλ) ≤ λ(1 − λ)zω(z) for z ∈ [0,∞), λ ∈ [0, 1]. (11)

Moreover, if ω̃ is linear then the analogue of (11) holds with ω̃ in place of ω.

Proof. To prove (11) in the general case it is enough to check that for every
k ∈ N

1

4

z

2k
ω̃(z/2k)d(2kλ) ≤ λ(1 − λ)zω̃(z/2k),

or equivalently that

d(2kλ)/2k ≤ 4λ(1 − λ). (12)

Let fk(λ) := d(2kλ)/2k. Clearly, fk is Lipschitz with lip(f) = 2 and satisfies
fk(0) = fk(1) = 0. This implies that

|fk(λ)| = |(1 − λ)(fk(λ) − fk(0)) + λ(fk(λ) − fk(1))|

≤ |1 − λ|lip(fk)|λ − 0| + |λ|lip(fk)|λ − 1| = 4λ(1 − λ),

which consequently proves (12).
Now let us consider the case when ω̃ is linear. We have to prove the following

inequality
∞
∑

k=0

d(2kλ)/4k ≤ 4λ(1 − λ) for λ ∈ [0, 1].

However, as one can easily show even the equality holds true (Yamaguti and
Hata, 1983).



666 J. TABOR, J. TABOR

Jointly the two above results form a generalization of Theorem CS. They also
give a partial answer to the question posed in Cannarsa and Sinestrari (2004,
Remark 2.1.1) – the technique we use is an improvement to that used in the
proof of Theorem CS (observe that in fact the proof of Theorem CS is divided
into two: the case of linear and nonlinear ω̃; while in our Theorem 3.1 we use a
unified approach).

5. Superstability phenomenon

S. Rolewicz (1979b) proved that if a function f : I → R, where I is a subinterval
of R, satisfies with a certain C ≥ 0, p > 2 the inequality

f(rx+(1−r)y) ≤ rf(x)+(1−r)f(y)+C|x−y|p for x, y ∈ I, r ∈ [0, 1], (13)

then it is convex. This statement can be understood as a superstability phe-
nomenon – a respective perturbation of the convexity condition still guarantees
convexity.

We are going to generalize this result for α(·)-midconvex functions. We will
need the following lemma.

Lemma 5.1 Let N ∈ N, N ≥ 2, C ∈ R, and let x0, . . . , xN ∈ R, x0 = xN = 0,
be a given sequence such that

xk ≤ (xk−1 + xk+1)/2 + C for k = 1, . . . , N − 1. (14)

Then

xk ≤ Ck(N − k) for k = 0, . . . , N.

Proof. The proof goes by induction over N . If N = 2 the assertion is trivial.
Suppose that the assertion holds for a given N ≥ 2. We prove that it holds for
N + 1.

Let x0, . . . , xN+1, x0 = xN+1 = 0 be a given sequence satisfying (14). Con-
sider the sequence yk, k = 0, . . . , N , defined by

yk = xk −
k

N
xN .

Then, yk satisfies (14) and y0 = yN = 0. By the inductive assumption we obtain
that yk ≤ Ck(N − k), that is

xk ≤
k

N
xN + Ck(N − k) for k = 0, . . . , N. (15)

We estimate xN . By the assumptions, applying (15) for k = N − 1, we obtain

xN ≤ (xN−1 + xN+1)/2 + C ≤
N − 1

2N
xN + C(N − 1)/2 + C.

Consequently, we obtain that xN ≤ CN . Making use of this inequality we
obtain from (15)

xk ≤ Ck(N + 1 − k) for k = 0, . . . , N.

Obviously, the above inequality is valid for k = N + 1.
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Proposition 5.1 Let h : [0, 1] ∩ Q → R be an α(·)-midconvex function such
that h(0) = h(1) = 0. Let N ∈ N. Then

h(k/N) ≤ k(N − k) · α(2/N) for k = 0, . . . , N.

Proof. The assertion is obvious for N = 1. So assume that N ≥ 2 and define the
sequence xk := h(k/N) for k = 0, . . . , N , put C = α(2/N) and apply Lemma
5.1.

S. Rolewicz (2000) proved (Proposition 1) (see also Nikodem and Páles,
2003/4, and Rolewicz, 1979b) that if f is α(·) paraconvex and absolutely con-
tinuous on each line segment contained in the domain of f , where α satisfies the
condition

lim inf
r→0+

α(r)/r2 = 0,

then f is convex. In the comment after the proof of Proposition 1 of Rolewicz
(2000), he also asked whether the assumption of absolute continuity on the lines
can be removed.

The following theorem gives the generalization of the above mentioned result
(to observe this just put A = 0). It also shows that the answer to S. Rolewicz’s
question is positive (it is enough to assume that f is locally bounded above).

Theorem 5.1 We assume that

A := lim inf
r→0+

α(r)/r2 < ∞.

Let f : V → R be a given α(·)-midconvex function locally bounded above at every
point. Then

f(rx + (1 − r)y) ≤ rf(x) + (1 − r)f(y) + 4Ar(1 − r)‖x − y‖2 (16)

for x, y ∈ V, r ∈ [0, 1].

Proof. Without loss of generality we may assume that α(r) > 0 for all r > 0 (in
the opposite case we apply the Theorem for αδ(r) := α(r) + δr2 and go with
δ → 0+).

Choose arbitrary x, y ∈ V , x 6= y and define the function

h(r) := f(rx + (1 − r)y) − rf(x) − (1 − r)f(y) for r ∈ [0, 1].

Clearly, limr→0 α(r) = 0, which by Theorem 2.1 and local upper boundedness of
f implies that h is continuous on (0, 1). By applying Proposition 5.1 we obtain

h(K/N) ≤ K(N − K)α(2‖x − y‖/N) for K ∈ N0, N ∈ N, K ≤ N. (17)
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Now, choose a sequence rk → 0 such that

lim
k→∞

α(rk)/r2
k = A. (18)

Let us put

Nk := ⌈2‖x − y‖/rk⌉ ∈ N for k ∈ N.

Then, by (18) and the fact that α is nondecreasing we get

lim sup
k→∞

α(2‖x − y‖/Nk)

(2‖x − y‖/Nk)2

≤ lim sup
k→∞

α(2‖x − y‖/Nk)

α(rk)
· lim sup

k→∞

(rk)2

(2‖x − y‖/Nk)2
· lim sup

k→∞

α(rk)

(rk)2

≤ 1 · 1 · A = A.

By the definition of A we directly obtain that

lim
k→∞

α(2‖x − y‖/Nk)

(2‖x − y‖/Nk)2
= A.

Let us now choose an arbitrary r ∈ (0, 1). Then, there exists a sequence
(Kk)k∈N of positive integers such that Kk/Nk → r. By applying (17) and the
above inequality we obtain

h(r) = lim
k→∞

h(Kk/Nk) ≤ lim sup
k→∞

Kk(Nk − Kk)α(2‖x − y‖/Nk)

= lim sup
k→∞

Kk(Nk − Kk)
α(2‖x − y‖/Nk)

(2‖x − y‖/Nk)2
(2‖x − y‖/Nk)2

≤ lim sup
k→∞

4Kk

Nk

(1 − Kk

Nk

)
α(2‖x − y‖/Nk)

(2‖x − y‖/Nk)2
‖x − y‖2 = 4r(1 − r)A‖x − y‖2.

By the definition of h this makes the proof complete.
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