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Abstract: We consider the so-called generic combinatorial op-
timization problem, where the set of feasible solutions is some family
of subsets of a finite ground set with specified positive initial weights
of elements, and the objective function represents the total weight
of elements of a feasible solution. We assume that the weights of
all elements may be perturbed simultaneously and independently
up to a given percentage of their initial values. A feasible solution
which minimizes the worst-case relative regret, is called a robust so-
lution. The maximum percentage level of perturbations, for which
an initially optimal solution remains robust, is called the robustness
radius of this solution. In this paper we study the robustness as-
pect of initially optimal solutions and provide lower bounds for their
robustness radii.
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1. Introduction

Robust optimization (see, e.g., Kouvelis and Yu, 1997) deals usually with an
optimization problem in which the set of feasible solutions is known precisely,
but parameters defining the objective function may be uncertain. All possible
realizations of these parameters compose the set of so-called scenarios. It is
required to find a feasible solution – called a robust solution – which is rea-
sonably close, in terms of the objective function value, to the optimal one for
all possible scenarios. There are various measures of such a ’closeness’, leading
to various robust optimization models. For example, in minmax relative regret
optimization (see, e.g., Averbakh, 2005; Kouvelis and Yu, 1997) one seeks a
feasible solution which minimizes the worst-case relative regret, taken as the
maximum percentage deviation from the optimality of the considered solution
over the set of all scenarios.
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This paper deals with the minmax relative regret optimization model, but
instead of a single set of scenarios we are faced with a family of such sets depend-
ing on a parameter δ ∈ [0, 1). Namely, we consider the generic combinatorial
optimization problem, sometimes called the subset-type problem, defined for a
finite ground set with given positive initial weights of elements. The set of feasi-
ble solutions is some fixed family of subsets of the ground set and the objective
function, which we want to minimize, represents the total weight of the elements
of a feasible solution. To define the set of scenarios for a fixed value of δ, we as-
sume that the weights of the elements may be simultaneously and independently
perturbed (increased or decreased) by at most δ percent of their initial values.
In this case, the so-called accuracy function of a feasible solution, considered in
the sensitivity analysis context in Libura (1999), provides the worst-case relative
regret for this solution for any δ in the interval [0, 1). Thus, a feasible solution
is robust for a particular value of δ, if the corresponding value of the accuracy
function at this point is minimum among all the feasible solutions.

In contrast to standard robust optimization approach, our focus in this pa-
per is not a problem of finding a robust solution for a given set of scenarios
(corresponding to some δ), but rather a question of the robustness of a solution
being optimal for the initial weights. In particular, we are interested in the
largest value of δ, for which this solution remains robust. Such a value of δ

is called the robustness radius of the considered solution. Main results of this
paper concern some lower bounds for this radius.

The paper is organized as follows: In Section 2, we formally describe the
considered robustness model and provide the definition of the accuracy func-
tion. In Section 3, we define the regret function as a point-wise minimum of the
accuracy functions of all feasible solutions, and then we introduce the robustness
radius of an optimal solution. In Section 4, we provide lower bounds for the
robustness radius in two essentially different cases: If there is a single optimal
solution, then we present a lower bound for its robustness radius using derived
properties of the accuracy function. In case of multiple optimal solutions, first
we characterize these optimal solutions, which may be robust in the neighbor-
hood of δ = 0, and then we provide analogous bounds for their robustness radii.
Section 5 contains some concluding remarks.

2. The accuracy function

Let E = {e1, . . . , en} be a finite ground set and let c(e) > 0 denote the weight

of element e ∈ E. Consider a family F ⊆ 2E \ {∅} of nonempty subsets of E,
called the feasible solutions, and for X ⊆ E and c = (c(e1), . . . , c(en)) let

w(c, X) =
∑

e∈X

c(e)

denote the weight of subset X .



Robustness of solutions for combinatorial optimization problems 673

The generic combinatorial optimization problem

v(c) = min{w(c, X) : X ∈ F} (1)

consists in finding a feasible solution of minimum weight.
Various discrete optimization problems, like the traveling salesman problem,

the minimum spanning tree problem, the shortest path problem, the linear 0-1
programming problem, can be stated in this general form. In the following we
assume that the set of feasible solutions F is fixed, but the vector of weights c

may be perturbed or is given with errors. Namely, we assume that c ∈ C(co, δ),
where for co = (co(e1), . . . , c

o(en)) ∈ R
n, co > 0, and δ ∈ [0, 1),

C(co, δ) = {(d1, . . . , dn) ∈ R
n : |co(ei) − di| ≤ co(ei) · δ, i = 1, . . . , n}.

Thus, there is some initial vector of weights co > 0, and for a given value of the
parameter δ ∈ [0, 1) the maximum perturbation of any weight does not exceed
δ percent of its initial value.

Consider a feasible solution X ∈ F . The quality of this solution for a given
c ∈ C(co, δ) can be measured by its relative error (relative regret) ε(c, X),
where

ε(c, X) =
w(c, X) − v(c)

v(c)
. (2)

Observe that for any c ∈ C(co, δ) and for arbitrary X ∈ F , ε(c, X) ≥ 0. More-
over, ε(c, X) = 0 if and only if X is an optimal solution to problem (1).

For a given feasible solution X ∈ F and δ ∈ [0, 1) the accuracy function

a(X, δ), considered in Libura (1999), gives the maximum value of the relative
error ε(c, X) over the set C(co, δ), i.e.,

a(X, δ) = max{ε(c, X) : c ∈ C(co, δ)}. (3)

It is shown in Libura (1999) that for an arbitrary feasible solution X , a(X, δ)
is a nondecreasing and convex function of δ. Also general formulae for calcu-
lating its value for δ ∈ [0, 1) are given in Libura (1999, 2000). In Libura and
Nikulin (2004, 2006) some extensions and properties of the accuracy function
for multicriteria combinatorial optimization problems are studied.

The accuracy function has a finite number of breakpoints in the interval
[0, 1). If Xo is an optimal solution to problem (1) for c = co, then obviously
a(Xo, 0) = 0, but when δ grows, then a(Xo, δ) may become positive, which
means that Xo is no longer an optimal solution of (1) for some c ∈ C(co, δ). From
the practical point of view it is of special interest to know the first breakpoint
of the accuracy function, corresponding to the largest value of δ, for which
a(Xo, δ) = 0. This value is called the accuracy radius of the solution Xo and is
formally defined as follows:

ra(Xo) = sup{δ ∈ [0, 1) : a(Xo, δ) = 0}. (4)
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The accuracy radius of Xo gives thus the maximum percentage perturbation of
any weight which does not destroy the optimality of Xo. In Libura (2000) a
general formula for calculating the exact value of the accuracy radius is given,
and an approach to determine some lower bounds for this value is described.

Example 1. Consider an undirected graph G = (V, E), where V = {1, 2, 3, 4, 5}
and E = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {3, 5}, {4, 5}}. Let F be a fam-
ily of subsets of E corresponding to all spanning trees in G, and let co =
(14, 11, 14, 15, 13, 18, 17) be a vector of the initial weights of edges in G. Then
the combinatorial optimization problem (1) for c = co is just the minimum
spanning tree problem in the weighted graph G. The subset of edges Xo =
{{1, 2}, {1, 3}, {3, 4}, {4, 5}} is the unique optimal solution for this problem.
The graph G and the minimum spanning tree Xo are shown in Fig. 1.

Figure 1. Graph G and its minimum spanning tree indicated with bold lines.

In Fig. 2, the accuracy function a(Xo, δ) of the solution Xo is shown for δ ∈
[0, 0.5]. From this picture one can read that the solution Xo remains optimal if
the maximum percentage perturbation of any weight does not exceed approxi-
mately 2.8% of its initial value. This level of perturbations corresponds to the
accuracy radius of Xo, which is equal to 1/35. For larger values of δ the so-
lution Xo may become suboptimal and – for example – for δ = 0.3, i.e., when
the maximum perturbations of weights are equal 30% of their initial values, the
maximum relative error of Xo reaches 60%.

3. The regret function and the robustness radius

In the framework of robust optimization the set C(co, δ) for a given fixed value
of δ is interpreted as a set of possible scenarios. Then the accuracy function
a(X, δ) provides the value of so-called worst-case relative regret of the solution
X over the set of all possible scenarios. In minmax relative regret optimization
(see, e.g., Averbakh, 2005; Kouvelis and Yu, 1997) one wants to find such a
feasible solution that the worst-case relative regret for it is minimum among
the feasible solutions of problem (1). Therefore, we will consider the following
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Figure 2. The accuracy function of the optimal spanning tree Xo.

function of δ ∈ [0, 1):

z(δ) = min
X∈F

a(X, δ). (5)

We will call this function the minimum relative regret function or – for short
– the regret function for problem (1). A feasible solution X will be called a
robust solution for a given δ ∈ [0, 1) if and only if a(X, δ) = z(δ).

It is obvious that if a(X, δ) = 0 for some δ ∈ [0, 1), then the solution X

is a robust solution for this value of δ. Thus, if Xo is an optimal solution for
δ = 0, then it remains robust for any δ ≤ ra(Xo). But it may be robust also for
larger values of δ (see an example below). On the other hand, a feasible solution
which is non-optimal for δ = 0 may become a robust solution for larger values
of perturbations.

If Xo is an optimal solution to problem (1) for c = co, then the maximum
value of δ, for which Xo remains robust, is called the robustness radius of Xo

and is denoted by rr(Xo). Formally:

rr(Xo) = sup{δ ∈ [0, 1) : a(Xo, δ) = z(δ)}. (6)

Thus, rr(Xo) determines maximum percentage perturbations of the initial
weights, for which the solution Xo still guarantees minimum value of the worst-
case relative regret among all the feasible solutions. The robustness radius of an
initially optimal solution may be therefore regarded as some measure of quality
of this solution from the robustness point of view. If, in particular, there are
multiple optimal solutions of problem (1) for c = co, then a solution with the
largest robustness radius may be considered as a preferable one.
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Example 2. In Fig. 4, the regret function for the minimum spanning tree
problem in graph G from Fig. 1 is shown. According to (5), this function
is a point-wise minimum of the accuracy functions for all spanning trees in
graph G. Although there are 21 different spanning trees in G, in this case
the regret function is determined by the following three spanning trees: Xo =
{{1, 2}, {1, 3}, {3, 4}, {4, 5}}, X ′={{1, 2}, {1, 3}, {2, 4}, {4, 5}} and X ′′={{1, 2},
{2, 4}, {3, 5}, {4, 5}}; all other feasible solutions may be neglected in (5). The
corresponding accuracy functions for the feasible solutions Xo, X ′ and X ′′ are
shown in Fig. 3.
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Figure 3. Accuracy functions for spanning trees Xo, X ′ and X ′′.

Figure 4. The regret function for the minimum spanning tree problem.
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From Fig. 4 one can see that the solution Xo remains robust behind its
accuracy radius. Indeed, the robustness radius of this solution is determined
by the value of δ = δ′ = rr(Xo), for which the accuracy functions of Xo and
X ′ coincide. In our example δ′ is equal approximately 0.23. This means that
the solution Xo remains robust if the maximum percentage perturbation of any
edge weight does not exceed approximately 23% of its initial value.
For δ > δ′ the solution X ′ becomes a robust solution and it remains robust till
δ = δ′′ ≈ 0.43. For larger levels of perturbations, again, we have a new robust
solution: this time X ′′.

Computational complexity results in robust optimization (see, e.g., Aver-
bakh, 2005; Kasperski, 2008; Kouvelis and Yu, 1997) suggest that calculating
the exact value of the robustness radius may be a difficult task. Therefore in the
next section we give some simple bounds for the accuracy function of an arbi-
trary feasible solution and derive corresponding bounds for the regret function
and for the robustness radius of an optimal solution.

4. Bounds for the regret function and for the robustness

radius

In Libura (1999) it is shown that for X ∈ F and δ ∈ [0, 1) the accuracy function
of X is expressed by the following formula:

a(X, δ) = max
Y ∈F

w(co, X) − w(co, Y ) + δ w(co, X ⊗ Y )

(1 − δ) w(co, Y )
, (7)

where X ⊗ Y = (X ∪ Y ) \ (X ∩ Y ). It will be convenient to rewrite (7) in the
following equivalent form:

a(X, δ) = max
Y ∈F

(1 + δ)w(co, X) − (1 − δ)w(co, Y ) − 2 δ w(co, X ∩ Y )

(1 − δ) w(co, Y )
. (8)

Lemma 1 gives an upper bound for the accuracy function of an arbitrary
feasible solution in problem (1).

Lemma 1. For X ∈ F and δ ∈ [0, 1),

a(X, δ) ≤
2δ

1 − δ
+

1 + δ

1 − δ
· a(X, 0). (9)

Proof. For arbitrary X, Y ∈ F we have w(co, X ∩ Y ) ≥ 0 and

w(co, X) ≤ w(co, Y ) + w(co, X) − v(co).

Thus, after replacing in (8) w(co, X) with w(co, Y ) + w(co, X) − v(co) and
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removing a nonnegative component 2δ w(co, X ∩ Y ), we obtain:

a(X, δ) ≤ max
Y ∈F

{

(1 + δ)w(co, Y ) − (1 − δ)w(co, Y )

(1 − δ)w(co, Y )

+
1 + δ

1 − δ
·
w(co, X) − v(co)

w(co, Y )

}

=
2δ

1 − δ
+

1 + δ

1 − δ
· max

Y ∈F

w(co, X) − v(co)

w(co, Y )

=
2δ

1 − δ
+

1 + δ

1 − δ
· a(X, 0).

If Xo is an optimal solution in (1) for c = co, then a(Xo, 0) = 0, and from
(9) we have immediately:

Corollary 1. If Xo is an optimal solution in (1) for c = co, then for any

δ ∈ [0, 1),

a(Xo, δ) ≤
2δ

1 − δ
. (10)

Corollary 1 provides an upper bound for the maximum relative error of an
arbitrary optimal solution of problem (1) under the assumption that percentage
perturbations of weights do not exceed δ·100%. The same bound has been
obtained earlier in Oguz (2000) in the framework of the so-called tolerance
approach (see Wendell, 2004) for linear programs.

Observe also that now, directly from the definition of the regret function
and from the inequality (10), we have the following fact:

Corollary 2. For δ ∈ [0, 1),

z(δ) ≤
2δ

1 − δ
. (11)

It is easy to see that the bound (11) is tight for any δ ∈ [0, 1). Indeed, it is
enough to consider problem (1) where E = {e1, e2}, F = {{e1}, {e2}} and c =
co = (1, 1). Then z(δ) = min{a({e1}, δ), a({e2}, δ)}. Moreover, w(co, {e1}) =
w(co, {e2}) = 1 and w(co, {e1} ⊗ {e2}) = 2. Thus, from (5) and (7) it follows
that in this case z(δ) = 2δ

1−δ
for any δ ∈ [0, 1).

The following lemma provides a simple lower bound for the accuracy function
of any feasible solution X .

Lemma 2. For X ∈ F and δ ∈ [0, 1),

a(X, δ) ≥
1 + δ

1 − δ
· a(X, 0). (12)
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Proof. For a given feasible solution X and arbitrary Y ∈ F we have from (8)
the following inequality:

a(X, δ) ≥
(1 + δ)w(co, X) − (1 − δ)w(co, Y ) − 2δw(co, X ∩ Y )

(1 − δ)w(co, Y )
.

Taking Y = Xo, where Xo is an optimal solution in (1) for c = co, we have:

a(X, δ) ≥
(1 + δ)w(co, X) − (1 − δ)v(co) − 2δw(co, X ∩ Xo)

(1 − δ)v(co)
.

Replacing w(co, X ∩ Xo) with v(co) = w(co, Xo) ≥ w(co, X ∩ Xo), we obtain:

a(X, δ) ≥
(1 + δ)w(co, X) − (1 − δ)v(co) − 2δv(co)

(1 − δ)v(co)

=
1 + δ

1 − δ
·
w(co, X) − v(co)

v(co)

=
1 + δ

1 − δ
· a(X, 0).

Let Ω denote the set of all optimal solutions of problem (1) for c = co, and
let a be minimum non-zero value of the relative error for a feasible solution in
(1), i.e.,

a = min
X∈F\Ω

w(co, X) − v(co)

v(co)
. (13)

Observe that according to a standard convention, a = ∞ when F \ Ω = ∅.

If we know the exact value of a (or some positive lower bound for a), then the
bounds for the accuracy function provided by Lemma 1 and Lemma 2 allow for
calculation of the lower bound for the robustness radius of an arbitrary optimal
solution of (1). In the following, we will distinguish two cases: single optimal
solution for problem (1), and multiple optimal solutions for problem (1).

Assume first that Xo is a single optimal solution of problem (1) for c = co.
The following fact holds:

Theorem 1. If Xo is a single optimal solution of problem (1) for c = co, then

rr(Xo) ≥

{

a

2−a
if a < 1,

1 otherwise.
(14)

Proof. Consider the following two convex functions of δ on the interval [0, 1):
f ′(δ) = 2δ

1−δ
, which – according to Lemma 1 – is an upper bound on a(Xo, δ)

and f ′′(δ) = 1+δ

1−δ
· a, which – according to Lemma 2 – is a lower bound for the

accuracy function a(Y, δ) of any feasible solution Y ∈ F \ {Xo}.
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The solution Xo is obviously robust for δ = 0 and it remains robust for all
such δ ∈ [0, 1) that f ′(δ) ≤ f ′′(δ). If a ≥ 1, then this inequality holds for any
δ ∈ [0, 1) which means that rr(Xo) = 1. For a < 1 the inequality f ′(δ) ≤ f ′′(δ)
is valid for δ ≤ a

2−a
and this value provides a lower bound on the robustness

radius of Xo.

Consider now the case of multiple optimal solutions for problem (1), i.e.,
assume that |Ω| = p, p > 1. Although all the solutions belonging to Ω give
the same optimal objective value for δ = 0, they may differ from the robustness
point of view. It is obvious that any solution in Ω is robust for δ = 0, but
an interesting question arises, how to select an optimal solution which remains
robust in some neighborhood of δ = 0.

From the formula (7) on the accuracy function it follows directly that for
any X ∈ Ω, |Ω| > 1, we have a(X, δ) = 0 for δ = 0, and a(X, δ) > 0 for δ > 0.
Moreover, the following lemma states that for some neighborhood of δ = 0 the
accuracy function of any solution belonging to Ω depends only on the solutions
from this set, and does not depend on any feasible solution belonging to the set
F \ Ω.

Lemma 3. If X ∈ Ω and δ ≤ a

2+a
, then

a(X, δ) =
2δ

(1 − δ)

(

1 − min
Y ∈Ω

w(co, X ∩ Y )

v(co)

)

. (15)

Proof. For arbitrary X ∈ F and δ ∈ [0, 1) the formula (8) can be stated as
follows:

a(X, δ) = max{a′(X, δ), a′′(X, δ)}, (16)

where

a′(X, δ) = max
Y ∈Ω

(1 + δ)w(co, X) − (1 − δ)w(co, Y ) − 2 δ w(co, X ∩ Y )

(1 − δ) w(co, Y )

and

a′′(X, δ) = max
Y ∈F\Ω

(1 + δ)w(co, X) − (1 − δ)w(co, Y ) − 2 δ w(co, X ∩ Y )

(1 − δ) w(co, Y )
.

If X ∈ Ω, then w(co, X) = v(co), and for δ ∈ [0, 1) we have:

a′(X, δ) =
2δ

1 − δ

(

1 − min
Y ∈Ω

w(co, X ∩ Y )

v(co)

)

, (17)

and

a′′(X, δ) ≤
2δ + aδ − a

(1 − δ)(1 + a)
. (18)
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Indeed, substituting w(co, Y ) = v(co) for Y ∈ Ω, and observing that for any
Y ∈ F \ Ω, w(co, Y ) ≥ (1 + a)v(co), we obtain:

a′(X, δ) = max
Y ∈Ω

(1 + δ)v(co) − (1 − δ)v(co) − 2 δ w(co, X ∩ Y )

(1 − δ) v(co)

=
2δ

(1 − δ)

(

1 − min
Y ∈Ω

w(co, X ∩ Y )

v(co)

)

and

a′′(X, δ) = max
Y ∈F\Ω

(1 + δ)v(co) − (1 − δ)w(co, Y ) − 2 δ w(co, X ∩ Y )

(1 − δ) w(co, Y )

= max
Y ∈F\Ω

(1 + δ)v(co) − 2 δ w(co, X ∩ Y )

(1 − δ) w(co, Y )
− 1

≤ max
Y ∈F\Ω

(1 + δ)v(co)

(1 − δ) w(co, Y )
− 1 ≤

(1 + δ)v(co)

(1 − δ)(1 + a)v(co)
− 1

=
(1 + δ) − (1 − δ)(1 + a)

(1 − δ)(1 + a)
=

2δ + aδ − a

(1 − δ)(1 + a)
.

But a′(X, δ) ≥ 0 for any δ ∈ [0, 1) whereas a′′(X, δ) ≤ 0 when δ ≤ a

2+a
. This

implies that for X ∈ Ω and δ ≤ a

2+a
we have a(X, δ) = a′(X, δ), which proves

(15).

Lemma 3 allows for formulating a necessary condition for a solution from the
set Ω to be robust in the neighborhood of δ = 0. Directly from the definition of
the regret function and from (15) we have the following corollary:

Corollary 3. If an optimal solution Xo ∈ Ω remains robust in some neigh-

borhood of δ = 0, then the following condition must hold:

min
Y ∈Ω

w(co, Xo ∩ Y ) = max
X∈Ω

min
Y ∈Ω

w(co, X ∩ Y ). (19)

Proof. A solution Xo ∈ F is robust for a given δ ∈ [0, 1) if and only if a(Xo, δ) =
z(δ) = minX∈F a(X, δ). When for Xo ∈ Ω, |Ω| > 1, the condition (19) does not
hold, i.e., minY ∈Ω w(co, Xo ∩ Y ) < maxX∈Ω minY ∈Ω w(co, X ∩ Y ), then for δ ∈
(0, a

2+a
] it follows from (15) that a(Xo, δ) > minX∈Ω a(X, δ) ≥ minX∈F a(X, δ)

and therefore Xo is not a robust solution.

Let

Ωr =

{

X ∈ Ω : min
Y ∈Ω

w(co, X ∩ Y )

v(co)
= b

}

, (20)

where

b = max
X∈Ω

min
Y ∈Ω

w(co, X ∩ Y )

v(co)
. (21)

It is easy to see that b < 1 if |Ω| > 1.
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From Corollary 3 it follows that the robustness radius of any optimal solution
from the set Ω \ Ωr is equal to zero. In the following we provide a lower bound
for the robustness radius of an arbitrary optimal solution belonging to Ωr. We
will need the following fact:

Lemma 4. If X ∈ Ωr and

aδ − 2abδ − 2bδ + a ≥ 0, (22)

then

a(X, δ) =
2δ

1 − δ
(1 − b). (23)

Proof. If X ∈ Ωr, then, according to (17) and (18), for δ ∈ [0, 1),

a′(X, δ) =
2δ

1 − δ
(1 − b)

and

a′′(X, δ) ≤
2δ + aδ − a

(1 − δ)(1 + a)
.

But if the inequality (22) holds, then

2δ

1 − δ
(1 − b) ≥

2δ + aδ − a

(1 − δ)(1 + a)
,

which implies that a′(X, δ) ≥ a′′(X, δ) and consequently

a(X, δ) = max{a′(X, δ), a′′(X, δ)} = a′(X, δ) =
2δ

1 − δ
(1 − b).

Lemma 4 allows for finding such a neighborhood of δ = 0, depending on a

and b, in which the exact value of the accuracy function of any solution X ∈ Ωr

is given by (23). The following theorem uses this fact to provide a lower bound
for the robustness radius of arbitrary X ∈ Ωr.

Theorem 2. If X ∈ Ωr and a ≥ b

1−b
, then

rr(X) ≥

{

a

2(1−b)−a
if a < 1 − b,

1 otherwise.
(24)

If X ∈ Ωr and a < b

1−b
, then

rr(X) ≥

{

min
{

a

2(1−b)−a
, a

2b+2ab−a

}

if a < 1 − b,

a

2b+2ab−a
otherwise.

(25)
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Proof. Consider first the case, when a ≥ b

1−b
. Then the inequality (22) holds

for any δ ∈ [0, 1). Indeed, we have aδ− 2abδ− 2bδ + a ≥ aδ− 2abδ− 2bδ + aδ =
2δ(a − ab − b) ≥ 0.

The solution X ∈ Ωr remains robust for a given δ ∈ [0, 1) if the value of its
accuracy function a(X, δ) = 2δ

1−δ
(1 − b) does not exceed the lower bound of the

accuracy function for any solution Y ∈ F \ Ω, which, according to Lemma 2,
is equal to 1+δ

1−δ
a. But this holds for arbitrary δ ∈ [0, 1) if a ≥ 1 − b, and for

δ ≤ a

2(1−b)−a
if a < 1 − b, which proves (24).

If a < b

1−b
, then the inequality (22) holds for any δ ≤ a

2b+2ab−a
< 1. Using

the same arguments as before we obtain that min
{

a

2(1−b)−a
, a

2b+2ab−a

}

and

min
{

1, a

2b+2ab−a

}

= a

2b+2ab−a
provide lower bounds for the robustness radius

rr(X) for a < 1 − b and a ≥ 1 − b, respectively.

Example 3. Consider again the minimum spanning tree problem in graph G =
(V, E) shown in Fig. 1, where V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {1, 4},
{2, 4}, {3, 4}, {3, 5}, {4, 5}}, and assume that co = (2, 2, 2, 2, 1, 2, 2) is a vector
of the initial weights of edges. The set Ω of optimal solutions contains now 10
elements, corresponding to the following subsets of edges:

{{1, 2}, {1, 4}, {3, 4}, {3, 5}},

{{1, 2}, {1, 4}, {3, 4}, {4, 5}},

{{1, 2}, {1, 3}, {3, 4}, {3, 5}},

{{1, 2}, {1, 3}, {3, 4}, {4, 5}},

{{1, 2}, {2, 4}, {3, 4}, {3, 5}},

{{1, 2}, {2, 4}, {3, 4}, {4, 5}},

{{1, 3}, {2, 4}, {3, 4}, {3, 5}},

{{1, 3}, {2, 4}, {3, 4}, {4, 5}},

{{1, 4}, {2, 4}, {3, 4}, {3, 5}},

{{1, 4}, {2, 4}, {3, 4}, {4, 5}}.

But according to Corollary 3, the set Ωr of optimal solutions which are robust
in the neighborhood of δ = 0 contains only the following two solutions:
{{1, 2}, {2, 4}, {3, 4}, {3, 5}} and {{1, 2}, {2, 4}, {3, 4}, {4, 5}}.
Indeed, it is easy to see that for any X ∈ Ωr we have

min
Y ∈Ω

w(co, X ∩ Y ) = 3,

whereas for any X ∈ Ω \ Ωr,

min
Y ∈Ω

w(co, X ∩ Y ) = 1.
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We can now calculate a lower bound for the robustness radius of any solution
belonging to Ωr. For any X ∈ Ω we have w(co, X) = v(co) = 7 and for any
non-optimal feasible solution Y , w(co, Y ) = 8, which gives a = 1

7 . Calculating
b from (21) we obtain b = 3

7 . Finally, from Theorem 2 it follows, that for any
X ∈ Ωr,

rr(X) ≥
1

7
.

5. Conclusions

In this paper we consider the generic combinatorial optimization problem with
inexact data. It is assumed that any coefficient in the objective function may
differ from its initial value by at most δ percent of this value. Thus, in the
framework of the so-called robust optimization with interval data, the parameter
δ ∈ [0, 1) determines a particular set of scenarios.

We exploit our previous results concerning the accuracy function to derive
lower bounds for perturbations of the objective function coefficients, for which
an optimal solution, obtained for nominal values of these coefficients, remains
robust.

To use directly these results one has to know the set of optimal solutions of
the problem and at least some nontrivial lower bound for the relative error of
any non-optimal solution. A straightforward approach to get such data consists
in generating a sequence of so-called k-best solutions until the first one non-
optimal solution is obtained. Algorithms of this type are developed for various
combinatorial optimization problems (see, e.g., Hamacher and Queyranne, 1985;
Katoh et al., 1981; van der Poort et al., 1999).
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