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Gdańsk University of Technology, Gdańsk

ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk Wrzeszcz, Poland
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Abstract: In this article a single machine time-dependent sche-
duling problem with total completion time criterion is considered.
There are n given jobs, j1, . . . , jn, and the processing time pi of the
i-th job is given by pi = 1 + bisi, where si is the starting time of
the i-th job, i = 1, . . . n. If all jobs have different and non-zero
deterioration rates and bi > bj ⇒ bi ≥

bmin+1
bmin

bj + 1
bmin

, where bmin =

min{bi}, then an optimal schedule can be found in O(n log n) time.
The conducted computational experiments show that the presented
algorithm performs very well even on data not satisfying the assumed
constraints.
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1. Introduction

Scheduling time-dependent jobs has received increasing attention in recent years.
In such a scheduling problem, the time needed to complete a given job is not
constant, but depends on the job starting time. There are two types of functions
describing such a change of processing time. The first type is related to non-
decreasing functions (deteriorating jobs) and the second type to non-increasing
ones. Numerous applications of this kind of scheduling include metallurgy, fire-
fighting, problems of military activities, modeling of financial operations, main-
tenance or cleaning assignments. Most published results concern a single ma-
chine and the makespan or the total completion time criteria. There are also
known results for identical and dedicated parallel machines. A comprehensive
survey of known results can be found in Cheng et al. (2004) and Gawiejnowicz
(2008).
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Given a set of n jobs j1, . . . , jn with processing times pi = a + bisi, where
a > 0, bi > 0, and si ≥ 0 denote job starting time, for i = 1, . . . , n, our aim
is to find a schedule of length as small as possible or a schedule with total
completion time as small as possible. These two scheduling problems can be
described by the three-field notation scheme α|β|γ (Graham et al., 1979), as
follows: 1|pi = a + bisi|Cmax and 1|pi = a + bisi|

∑

Ci. The first problem
represents a criterion advantageous to the processor. This is so because Cmax

reflects the effort required to complete all tasks (manpower, processor time, fuel
consumption etc.). The second one realizes the “interest” of tasks. Why? This
is so because the total completion time reflects the mean time, taken over all
jobs, having elapsed from the moment the job becomes available for execution to
its completion. For example, in terms of dealing with forest fires, this means the
average time, during wich a fire damages the environment. These two objectives
are often in conflict, as shown in the following example. Suppose that we have
n = 4 fires to contain with processing times pi = 1 + bisi, where b1 = 0 and
bi = 1 for i = 2, 3, 4. In Fig. 1(a) we show a Gantt chart of the optimal schedule
with Cmax = 8 and

∑

Ci = 19, while in Fig. 1(b) we show a Gantt chart of the
optimal schedule with Cmax = 9 and

∑

Ci = 17.

The situation when all jobs have only deterioration rate (i.e. the processing
time of the i-th job can be expressed as pi = bisi) is among the easiest. Any
order of tasks gives the same value of the schedule length, because its value is
equal to the product of all deterioration rates increased by one and the t0 –
the moment at which the first job starts being processed (it should be greater
than zero, because otherwise all jobs would require no time to complete). All
schedules without idle periods are optimal (Mosheiov, 1994). When the base
processing time is present, but is proportional to the job deterioration rate
(i.e. when pi = bi + rbisi, and r is common to all jobs), the problem remains
trivial (Bachman and Janiak, 1997). All schedules have the same, and therefore
optimal, length.
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Figure 1: Minimizing Cmax does not always result in a schedule with the smallest
∑

Ci
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In general, every job has its own base processing time and deterioration
rate, i.e. pi = ai + bisi. The shortest job sequence can be found by ordering
all jobs in nondecreasing order of ai

bi

. This is quite plausible — jobs with short
base processing time and large deterioration rate should be processed before
the ones that require longer time to complete but deteriorate slower. If there
are jobs that have no base processing time (ai = 0), they should be processed
before all others (in which case they will take no time, since their execution
begins at moment si = 0). Jobs that do not deteriorate (their deterioration rate
is equal to zero) should be processed last, as they may be postponed without
any penalty (Gawiejnowicz and Pankowska, 1995). Thus, all we need is sorting
the remaining jobs according to ai

bi

, which can be done in O(n log n) time.
The

∑

Ci criterion is more difficult to consider. Our goal is to find a sequence
of jobs that gives the smallest possible sum of completion times of all jobs. This
criterion is equivalent to minimizing the average completion time of all jobs.

Even when jobs do not have the base processing time, the problem is no
longer trivial. However, the optimal solution can be found quickly by means of
sorting — the nonincreasing order of deterioration rates gives the best possible
schedule (Mosheiov, 1994).

Similarly, in the presence of the base processing time proportional to the
job deterioration rate (i.e. when pi = bi + rbisi, and r is common to all jobs),
the problem can also be solved by ordering jobs. The optimal solution has the
deterioration rates arranged with respect to nondecreasing order of bi (Bachman
and Janiak, 1997).

The case with common deterioration rate and individual base processing
times also can be solved by means of sorting — the best schedule has its jobs
ordered in nondecreasing order of base processing times (Cheng and Ding, 2000).

In the paper we focus on the problem with common base processing time
and individual deterioration rates (pi = a + bisi), where a > 0, bi > 0 Some
interesting properties of an optimal schedule are known. One of the most im-
portant is that the optimal schedule is V-shaped with respect to deterioration
rates (Mosheiov, 1991), i.e.

• the job with the largest deterioration rate is placed first,
• the job with the smallest deterioration rate is scheduled neither second

nor last,
• jobs occurring before the job with the smallest bi are arranged in nonin-

creasing order of bi,
• jobs occurring after the job with the smallest bi are arranged in nonde-

creasing order of bi.
The V-shape property of an optimal schedule allows us to significantly reduce
the number of possibly optimal schedules.

Another interesting fact is that reversing the order of all jobs except for the
first, in any schedule, results in a solution whose total completion time is the
same as that of the original schedule (Mosheiov, 1991). As a consequence, there
are always at least two optimal solutions.
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Only the presence of common base processing time is important. Its value
only acts as a scale factor of the goal function, therefore it is often assumed to
be 1.

A number of approximation algorithms for solving this problem have been
proposed (e.g. Gawiejnowicz et al., 2002, and Mosheiov, 1991), but none of them
guarantees that the returned solution is close to the optimal one. It was also
shown (Gawiejnowicz, Lai and Chiang, 2000), that if there is only a fixed number
of different deterioration rates, this problem can be solved in polynomial time
by enumerating all possible schedules and choosing the one with the smallest
value of the goal function.

2. The optimal algorithm

Consider the following algorithm. ([. . .] denotes a list, and [. . .] + [. . .] is the
operation of list concatenation):

Algorithm P :

Step 1. Order the jobs in such a way that bi < bi+1, for i = 1, . . . , n − 1.
Step 2. Set P = (1 + bn−1), πb = [bn, bn−1], R = 0, πe = [ ].
Step 3. For i = n − 2 down to 2 do:

Step 3a. If P >R, put bi at the beginning of πe and set R=(R + 1)(bi + 1)

Step 3b. Otherwise, put bi at the end of πb and set P = (P + 1)(bi + 1).

Step 4. Return πb + [b1] + πe.

Theorem 1 If:
(1) bmin > 0,
(2) all bi are different,
(3) bi > bj ⇒ bi ≥

bmin+1
bmin

bj + 1
bmin

,
where bmin is the value of the smallest deterioration rate of all jobs, the algorithm
P solves such instance of data optimally in O(n log n) time.

Proof. For convenience, let Bi represent the i-th job deterioration rate increased
by one, i.e. Bi = 1 + bi for i = 1, . . . , n. The completion time of this job
in a schedule π can be determined by using the following formula: Cπ(i) =

1 +
∑i

j=2

∏i

k=j Bπ(k) (where π(i) is the index of the i-th job in the schedule

π), and the sum of completion times of jobs 1, . . . , n is equal to
∑n

i=1 Ci =

n+
∑n

i=2

∑i

j=2

∏i

k=j Bπ(k). When we begin execution at the moment T instead
of 0, the total completion time changes to

n
∑

i=1

Cπ(i)(T ) = n +

q
∑

i=p

i
∑

j=p

i
∏

k=j

Bπ(k) + (T − 1)

q
∑

i=p

i
∏

k=p

Bπ(k).

Therefore, the contribution of a sequence of jobs jπ(p), . . . , jπ(q) to the total
completion time of a schedule is described by a function of the completion time
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of the job scheduled before jπ(p), namely:

q
∑

i=p

Cπ(i) = Sp,q + Vp,q(Cπ(p−1) − 1), (1)

where Sp,q = (|q−p|+1)+
∑q

i=p

∑i

j=p

∏i

k=j Bπ(k) and Vp,q =
∑q

i=p

∏i

k=p Bπ(k).

Consider two schedules differing only in the order of a set of consecutive jobs
jp, . . . , jq, where p < q. Such schedules are presented in Fig. 2. The difference
between the total completion times of these two schedules can be seen in Fig. 3.
Because both these schedules have the same sequences of jobs before the p-th
and after the q-th position, the following equalities occur: S1,p−1 = S′

1,p−1,
Cp−1 = C′

p−1, Sq+1,n = S′

q+1,n and Vq+1,n = V ′

q+1,n. Moreover, Sp,q = S′

q,p, i.e.
both these values are the sums of the same products, although they are added
in different order. If we consider sequence jp, . . . , jq, whose processing starts at
the time Cp−1, and notice that C′

p − Cq = Vp,q − V ′

q,p, then we obtain:

TC(π′)−TC(π) = (Rq −Pp)((Ypq +1)(bπ(p) +1)− (Xpq +1)(bπ(q) +1)) (2)

where

Pp =

p−1
∑

j=2

p−1
∏

k=j

Bπ(k) Rq =

n
∑

j=q+1

j
∏

k=q+1

Bπ(k)

Xpq =

q−1
∑

j=p+1

q−1
∏

k=j

Bπ(k) Ypq =

q−1
∑

j=p+1

j
∏

k=p+1

Bπ(k).

Note that the first factor of the right-hand side of equation (2) (i.e. Rq −Pp)
depends only on the jobs at positions 1, . . . , p − 1 and q + 1, . . . , n, while the
second one depends on the jobs at positions p, . . . , q. Moreover, since Xpq and
Ypq are calculated using the same set of jobs, the difference between them can
be estimated as follows.

jp(1), ..., jp(p-1) jp(q+1), ..., jp(n)jp(p),jp(p+1), ..., jp(q-1), jp(q)

jp(1), ..., jp(p-1) jp(q+1), ..., jp(n)jp(q),jp(q-1), ..., jp(p+1), jp(p)

Figure 2: Reversing a set of jobs jp, . . . , jq
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jp(1), ..., jp(p-1) jp(q+1), ..., jp(n)jp(p), ..., jp(q)p:

TC(p)= S1,p-1 +Sp,q+Vp,q(Cp-1-1) +Sq+1,n+Vq+1,n(Cq-1)

jp(1), ..., jp(p-1) jp(q+1), ..., jp(n)jp(q), ..., jp(p)p’:

TC(p’)= S’1,p-1 +S’p,q+V’p,q(C’p-1-1) +S’q+1,n+V’q+1,n(C’q-1)

Figure 3: Total completion times of consecutive parts of schedules before (π)
and after reversing a set of consecutive jobs (π′)

Consider a set of jobs jp+1, . . . , jq−1 and a positive value K that is smaller
than the smallest deterioration rate of all jobs, i.e. bπ(i) ≥ K (i = p+1, . . . , q−1).
Both Xpq and Ypq are greater than the product of deterioration rates increased
by one of all the jobs in the considered set, which is one out of (q−p−1) elements
of the sums Xpq and Ypq. Also, both these sums can be bounded from above —
neither of them is greater than the above product multiplied by K+1

K
. Therefore,

the difference between those sums is not greater than the difference between
their upper and lower bounds. That means that |Xpq − Ypq| ≤

1
K

min(Xpq, Ypq)

Now, assume that all bi are different and that if bi > bj then bi ≥
K+1

K
bj + 1

K
.

Consider a schedule π = {j1, . . . , jn} and a pair of jobs jp and jq, such that
bp > bq. If job jp is scheduled sometime before jq, reversing the sequence of jobs
jp, . . . , jq will result in the following value of the second factor of equation (2)

(Ypq+1)(bp+1)−(Xpq+1)(bq+1) ≥ (bq+1)

(

−
1

K
Ypq +

1

K
Ypq +

1

K

)

> 0. (3)

Similarly, if job jq is scheduled before jp, we have

(Ypq + 1)(bq + 1) − (Xpq + 1)(bp + 1) < 0.

The sign of the expression (Ypq +1)(bp +1)− (Xpq +1)(bq +1) depends only on
the position of max{bp, bq}: if the larger one is next to (Ypq + 1) — the value of
the expression is positive, if it is next to (Xpq + 1) — it is negative.

As a consequence, knowing the first part (i.e. j1, . . . , jp−1) and the last part
(i.e. jq+1, . . . , jn) of the optimal schedule, one can decide where to put the job
ji with the largest deterioration rate among the remaining jobs:

(i) if Pp > Rq then the job ji should stand just before jq+1 (otherwise it would
be scheduled just after jp−1 and a schedule with the reversed sequence of
jobs jp, . . . , jq would have a smaller total completion time),

(ii) if Pp < Rq then ji should stand just after jp−1,
(iii) in the case Pp = Rq, ji can be placed either before jq+1 or after jp−1

— there are two optimal schedules, having a different ordering of jobs
jp, . . . , jq.
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Having a starting point, one can repeatedly assign the remaining jobs, using the
above rules to construct an optimal schedule.

As mentioned before, the job with the largest deterioration rate must be
scheduled first. Because the optimal schedule is V-shaped, a job with the second
largest deterioration rate has to be placed either second or last. Since the
order of all jobs except the first one can be reversed without changing the total
completion time, there are always at least two optimal solutions, one of them
having the job with the second largest deterioration rate scheduled last, and the
other having this job scheduled second. This fact gives us freedom to choose
the starting point for the construction of an optimal schedule. We can begin
with either an initial chunk consisting of two jobs with the largest deterioration
rates and an empty final chunk, or an initial chunk containing the job with the
largest value of bi and a final chunk containing the job with the second largest
value of bi.

The most time-consuming part of this algorithm is the initial ordering of jobs
in Step 1, requiring O(n log n) time. The loop in Step 3 repeatedly inserts jobs
into the schedule, either by appending to an already constructed initial part of
a schedule, or inserting it before the last part of a schedule, using rules (i)–(iii).
This takes Θ(n) iterations, each of them consuming O(1) time, giving the total
of Θ(n). Both the initialization of variables in Step 2 and the construction of
the result in Step 4 require O(1) time. Therefore, the complexity of the whole
algorithm P is O(n log n).

It should be noted that the greater the value of K, the more easily the
presented requirements are met. Therefore, the greatest value of K that we can
use is the value of the smallest deterioration rate of all jobs.

The presented conditions guarantee that the algorithm finds an optimal so-
lution, but this does not mean that the returned schedule cannot be optimal
if they are not satisfied. Satisfying the condition bi+1 ≥ bmin+i

bmin+1bi + i
bmin+1 ,

which is sometimes more easily met than the above conditions, also results in
an optimal schedule. The proof of this fact is based on the observation that
|Xpq − Ypq| ≤

bmin+q−p−1
bmin+1

∏q−1
j=p+1(bj + 1), and the arguments presented in this

paper.

3. Computational experiments

If none of the presented conditions is satisfied, the presented algorithm can still
be used as an approximation algorithm, and it still appears to perform quite well.
Table 1 shows a comparison of computational results of different heuristics. H1
and H2 are heuristics presented in Mosheiov (1991) and algorithm G comes from
Gawiejnowicz, Kurc and Pankowska (2002), while our algorithm is denoted by P .
Optimal solutions, whose values are presented in the OPT column, were found
using an exhaustive-search algorithm. In the last four columns, ∆A denotes
the average difference between the optimal solution and the value returned by
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Table 1. Results of computational experiments with algorithms H1, H2, G

and P

α n OPT ∆H1 ∆H2 ∆G ∆P

1.0 10 2.075 ·1002 3.02 ·10−01 4.32 ·1000 2.43 ·10−02 1.05 ·10−02

1.0 15 1.546 ·1003 2.37 ·1000 2.70 ·1001 5.80 ·10−02 4.66 ·10−02

1.0 20 6.794 ·1003 7.78 ·1000 1.02 ·1002 1.53 ·10−01 9.30 ·10−02

1.0 25 7.631 ·1004 4.02 ·1001 6.69 ·1002 9.14 ·10−01 7.73 ·10−01

1.0 30 4.320 ·1005 1.56 ·1002 3.27 ·1003 3.42 ·1000 1.17 ·1000

10.0 10 5.899 ·1006 1.14 ·1003 5.54 ·1004 1.55 ·1001 1.05 ·1001

10.0 15 2.169 ·1010 6.54 ·1005 1.55 ·1008 3.07 ·1004 1.93 ·1003

10.0 20 3.205 ·1014 6.51 ·1009 1.12 ·1012 1.28 ·1008 2.14 ·1006

10.0 25 6.810 ·1018 3.81 ·1013 1.95 ·1016 2.98 ·1011 8.54 ·1010

10.0 30 6.207 ·1021 3.19 ·1016 1.40 ·1019 1.61 ·1015 4.50 ·1010

algorithm A, for A = H1, H2, G, P . All results are averaged over 20 iterations,
n denotes the number of jobs in a problem instance and deterioration rates were
chosen randomly in the range 〈0, α〉. The value of the base processing time was
equal to 1.

As Table 1 shows, schedules returned by P have their total completion time
closest to the optimum. The difference increases as the size of the problem (n)
or the values of deterioration rates tend to infinity.

4. Conclusions

In this paper we have studied a single processor time-dependent scheduling prob-
lem of minimizing the total completion time of a set of jobs having a common
base processing time and deteriorating at a linear rates. We have presented a
polynomial algorithm for a certain set of instances. The algorithm efficiency on
other kinds of input data has been studied as well. Future research may focus
on expanding the polynomially solvable set of instances by developing tighter
bounds for expressions used in the proof. The presented results can also be
helpful in limiting the solution space in a branch-and-bound algorithm for the
given problem.
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