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Abstract: The paper considers the problem of preemptive sche-
duling in a two-stage flowshop with parallel unrelated machines at
the first stage and a single machine at the second stage. At the
first stage, jobs use some additional renewable resources which are
available in limited quantities. The resource requirements are of 0-1
type. The objective is minimization of the makespan. The prob-
lem is NP-hard. We develop heuristic algorithms which first solve
the problem occurring at stage 1, and then find a final schedule in
the flowshop. An extensive computational experiment shows that
the proposed heuristic algorithms can be an efficient tool capable of
finding good quality solutions.
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1. Introduction

In this paper, heuristic algorithms are proposed for solving the multiprocessor
flowshop scheduling problem which can be described as follows: there are n
preemptive jobs to be processed at two stages in the same technological order,
first at stage 1 then at stage 2. At stage 1 there are m parallel unrelated
machines, stage 2 has only one machine. A job, upon finishing its processing at
stage 1, is ready to be processed at stage 2. At stage 1, a job can be processed
on any of the parallel machines, and its processing times may be different on
different machines. Processing times of job j are equal to pij (if executed on
machine i) and sj , respectively, at stage 1 and at stage 2. Processing of a job on
a machine of stage 1 may be interrupted at any moment and resumed later on
the same or another machine. A job during its processing at stage 1 does not
use any additional resource or uses one unit of an additional resource. There are
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l types of additional resources. A resource of type r (r = 1, . . . , l) is available
in the amount limited to Wr units at a time. The total usage of resource r at
any moment by the jobs that are simultaneously processed on parallel machines
does not exceed Wr. The objective is to find a feasible schedule which minimizes
the maximum job completion time in the two-stage flowshop, Cmax, referred to
as makespan.

The considered problem is NP-hard in the strong sense since the problem
of preemptive scheduling in the two-stage flowshop with two identical parallel
machines at one stage and one machine at another is NP-hard in the strong
sense (Hoogeveen et al., 1996).

The problem of scheduling in a flowshop with multiple machines, also called a
hybrid flowshop, arises in real-life systems encountered in a variety of industries,
e.g. in chemical, polymer, petrochemical industries (Salvador, 1973), as well as
in computer systems and telecommunication networks (Brah, 1988). In the
multiprocessor flowshop there are stages with parallel machines. At each stage
with parallel machines jobs can be processed by any of these machines. Because
jobs that are simultaneously processed on parallel machines may use the same
resource, the problem of resource constrained scheduling arises when the amount
of the available resource is limited. This takes place when, e.g., the number
of workers attending the machines, or the number of tools that are used by
simultaneously executed jobs, is limited. Resource requirements of 0-1 type
can be met for example in computer systems in which one peripheral device
(e.g. a printer) is additionally required to perform a job (Keller and Strusevich,
2002). The problems with preemptive jobs are common in mass production of a
large number of products, which can be processed in parts or when an article is
produced in a great amount, for example in the textile industry (Serafini, 1996)
where processing of any job (the article to be woven) on one of the parallel
machines (the looms) may be interrupted (preempted) and resumed on the same
or another machine. The problem with parallel unrelated machines at the first
stage and a single machine at the second stage may arise in a manufacturing
environment in which products are initially processed on any of parallel machines
and then each product must go through a final testing operation, which is to be
carried out on a common testing machine.

During the last decade, the multiprocessor flowshops received considerable
attention from researchers. Most literature in this area addresses the minimum
makespan problems under the assumption that preemptions of jobs are not
allowed and the parallel machines at each stage are identical (e.g. Gupta, 1988;
Chen, 1995; Haouari and M’Hallah, 1997; Brah and Loo, 1999; Linn and Zhang,
1999). Only few papers concern the flowshop with parallel machines that are
not identical (Suresh, 1997; Ruiz and Maroto, 2006).

In Janiak (1986, 1988a,b, 1989, 1991, 1998), Janiak and Portmann (1998),
Grabowski and Janiak (1984) flowshop scheduling problems with resource con-
straints have been studied where processing times of jobs depend on the amount
of resources used by these jobs. In the case when processing times are given a
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priori, in the one stage environment the problem of preemptive scheduling unre-
lated parallel machines under resource constraints has been widely investigated
in the literature (e.g. Słowiński, 1980, 1981; de Werra, 1984; Figielska, 1999,
2005, 2006a). It is natural that such a problem may arise at some stages in
multiprocessor flowshop environment.

In this paper, we consider the two-stage flowshop preemptive scheduling
problem with unrelated parallel machines, renewable resource constraints and
0-1 resource requirements at the first stage and a single machine at the sec-
ond stage. It is assumed that the jobs, while processing at the second stage
do not require additional resources. For this problem, preliminary results have
been presented in Figielska (2006b). The two-stage flowshop scheduling prob-
lem with arbitrary resource requirements has been studied in Figielska (2006c).
For the considered problem, we propose effective heuristic algorithms which first
solve the resource constrained scheduling problem at the first stage and then,
taking into account the solution to this problem, construct the schedule at the
second stage. The solution of the problem at the first stage has a form of a set
of partial schedules which contain jobs processed in parallel under renewable
resource constraints. Twelve sequencing procedures for ordering partial sched-
ules are proposed to obtain possibly small makespan in the flowshop. In these
procedures, the priority rules popular in the literature (the shortest processing
time first (SPT), the longest processing time first (LPT), the Johnson algorithm,
Johnson, 1954) are adapted for the use in the situation where each job is tied to
a partial schedule. Proposed algorithms produce good quality results in a short
computation time (few seconds) for problems with a large number of jobs.

The remainder of the paper is organized as follows. In the next section a
heuristic algorithm is described in details. In Section 3 a lower bound is derived.
Results of a computational experiment are reported and discussed in Section 4.
Section 5 concludes the paper.

2. Heuristic algorithms

The heuristic algorithms proposed in this paper proceed in two steps, corre-
sponding to two subproblems, which can be distinguished in the problem under
consideration. The first of these subproblems, P1, is the resource constrained
parallel machine scheduling problem occurring at the first stage of the two-
stage flowshop. The second subproblem, P2, is a sequencing problem aiming at
minimizing the makespan in the flowshop.

Problem P1, because of the structure of resource constraints (0-1 resource
requirements of jobs), can be solved to optimality by the two-phase method
proposed independently by Słowiński and Węglarz (1977) and Lawler and La-
betoulle (1978) and extended for the cases with resource constraints by Słowiński
(1981) and de Werra (1984). In this paper, to lessen the computational effort
we use an approximate two-phase algorithm in which the first phase is the same
as that in Słowiński (1981) (in this phase the makespan - the maximum job
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completion time - is minimized), and in the second phase the schedule is con-
structed by a constructive procedure so that the makespan at stage 1 is close
to the optimal one.

A solution to problem P1 is composed of a number of partial schedules. (A
partial schedule assigns some jobs, or parts of jobs, to machines for parallel
processing during a certain period of time, so that resource constraints are
fulfilled at every moment.) The makespan of this schedule does not depend on
the ordering of the partial schedules, however, the times at which jobs finish their
processing at stage 1 are different for different sequences of partial schedules.
On the other hand, the makespan in the flowshop depends on job completion
times at stage 1 (for each job the ready time at stage 2 is equal to its completion
time at stage 1), so it depends on the ordering of partial schedules at stage 1.

Problem P2 is to find a sequence of the partial schedules which secures a
flowshop schedule with short makespan. For solving this problem sequencing
procedures are designed.

The proposed heuristic algorithms can be outlined as follows.

Step 1. Solving problem P1. The minimum makespan problem of unrelated
parallel machines scheduling with additional resource constraints, which
occurs at stage 1, is solved using an efficient approximate two-phase al-
gorithm. The solution is composed of a number of partial schedules each
satisfying renewable resource constraints.

Step 2. Solving problem P2. In order to obtain a flowshop schedule with small
makespan a sequencing procedure is used for partial schedules.

2.1. Illustrative example

To illustrate the problem and the solution method we present the following
example. Consider an instance of 10 jobs with processing times and resource
requirements as shown in Fig. 1. The availability of the resource is one unit at
a time, W1 = 1. Stage 1 has two parallel unrelated machines, stage 2 has one
machine. Fig. 2 presents two schedules for this instance. Each schedule in the
two-stage flowshop can be treated as composed of a schedule of the first stage
and a schedule of the second stage. The schedules of the first stage in Figs. 2a
and 2b are composed of the same 8 partial schedules. Each partial schedule
satisfies resource constraints at a time. For example, in the partial schedule of
index 1, S1, the total usage of the resource at any moment is equal to 1 (job 2
and 7 use 1 and 0 resource units, respectively). Similarly, all remaining partial
schedules satisfy resource constraints at any moment.

In Fig. 2a the sequence of the partial schedules is (S1, S2,S3, S4, S5, S6,
S7, S8). We can see that for this sequence of partial schedules, the first jobs
finishing processing at stage 1 are jobs 2 and 7. After finishing its processing at
stage 1, job 2 starts on the machine at stage 2. After completing job 2 at stage
2, job 7 starts at this stage (or first job 7 is processed, and then job 2). After
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completing jobs 2 and 7, the machine at stage 2 remains idle since it waits for
finishing processing job 4 at stage 1. The order in which jobs finish processing
at stage 1 is (2, 7, 4, 8, 6, 10, 1, 3, 5, 9). In Fig. 2a, we observe that the machine
at stage 2 remains idle after the completion of jobs 7, 4 and 8 when it waits for
finishing processing jobs 4, 8 and 6, respectively, at stage 1.

In Fig. 2b, the sequence of the partial schedules is (S6, S3, S7, S8, S4, S2,
S5, S1). This sequence has been found by the SQ12 procedure (see Table 1).
For this sequence of partial schedules, jobs finish their processing at stage 1 in
the order (10, 3, 9, 1, 8, 4, 5, 6, 2, 7) at the times which are different than those
in Fig. 2a, yielding a much shorter schedule. This is the optimal schedule: its
makespan is equal to the lower bound on the optimal makespan.

Figure 1. The data for an illustrative example

 

(a)
partial sch.

index: 1 2 3 4 5 6 7 8

Stage

1 m1 7 6 9 8 6 3 3 9

m2 2 4 3 1 5 10 1 5

2 m1 2 7 4 8 6 10 1 3 5 9

time

0 10 20 30 40 50 60 70 80

(b)
partial sch.

index: 6 3 7 8 4 2 5 1

Stage

1 m1 3 9 3 9 8 6 6 7

m2 10 3 1 5 1 4 5 2

2 m1 10 3 9 1 8 4 5 6 2 7

time

0 10 20 30 40 50 60

Figure 2. An illustrative example. The resulting schedules: a) the feasible
schedule with a random sequence of partial schedules, b) the schedule with the
partial schedule sequence which gives smaller makespan
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2.2. Solving problem P1 – the approximate two-phase algorithm

The minimum makespan problem of resource constrained preemptive scheduling
of parallel unrelated machines is solved by the approximate two-phase algorithm,
proceeding as follows:

Let tij be the time of processing job j on machine i (at stage 1), and T be
the time needed to finish processing all jobs at stage 1. The two-phase algo-
rithm consists in solving first a linear programming (LP) problem for obtaining
values of tij , ensuring the minimal value of T , T ∗; the second phase consists
in construction of a set of partial schedules based on times tij . In each partial
schedule, resource constraints are fulfilled at every moment, a machine works
on at most one job at a time and a job is processed on at most one machine at a
time. The constructed set of partial schedules forms a schedule with makespan
close to T ∗, which is independent of the ordering of the partial schedules.

The first phase. In this phase, the following LP problem is solved:

min T (1)

s.t.

m
∑

i=1

tij
pij

= 1, j = 1 . . . n, (2)

n
∑

j=1

tij ≤ T, i = 1 . . .m, (3)

m
∑

i=1

tij ≤ T, j = 1 . . . n, (4)

∑

j∈Nr

m
∑

i=1

tij ≤ WrT, r = 1 . . . l, (5)

tij ≥ 0, i = 1 . . .m, j = 1 . . . n, (6)

T ≥ 0, (7)

where tij , T are decision variables, and Nr is the set of jobs that use resource
of type r.

Constraints (2) ensure that the processing of each job at stage 1 is finished.
Due to constraints (3) and (4), respectively, the total working time of each
machine does not exceed T and each job is completed by time T . Constraints
(5) say that the total usage of every resource r over time period T does not
exceed the total availability of this resource (WrT ) over T .

As mentioned earlier, the first phase is the same as that in Słowiński (1981).

The second phase. Having the optimal values of tij , t∗ij , and the optimal
value of T , T ∗, a schedule composed of partial schedules is constructed. The
schedule construction process can be described as follows.
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Step 1. Set the partial schedule index b = 1, T = T ∗ and tij = t∗ij for (i =
1, . . . , m, j = 1, . . . , n).

Step 2. Calculate criticality ratios of machines, εI
i =

∑n

j=1 tij/T , jobs, εII
j =

∑m

i=1 tij/T , and resources, εIII
r =

∑

j∈Nr

∑m

i=1 tij/WrT . Machine i, job

j, and resource r are called critical if, respectively, εI
i = 1, εII

j = 1, and

εIII
r = 1.

Step 3. For each pair (i, j), calculate the sum of the criticality ratios. Choose
a set P of at most m pairs (i, j) (for which tij > 0) with the greatest
values of these sums so that no two pairs contain the same job index
or the same machine index and resource constraints at every moment are
satisfied. Pairs (i, j), chosen to be included in P , determine the assignment
of machines to jobs in partial schedule Sb.

Step 4. Calculate the partial schedule length ∆b:

Step 4.1. Let x = min(i,j)∈P {tij},

minimum slack time of machines that do not work in Sb

yI = mini:εI
i
<1

{

T (1 − εI
i )

}

,

minimum slack time of jobs that are not processed in Sb

yII = minj:εII
j

<1

{

T (1 − εII
j )

}

,

and minimum slack time for resources that are used in Sb in quantities
smaller than Wr ,

yIII = minr:εIII
r <1

{

WrT (1 − εIII
r )/

(

Wr −
∑

(i,j)∈P :j∈Nr
1
)}

.

Step 4.2. If b ≤ n set ∆b=min{x, yI , yII , yIII}, if b > n set ∆b=x.

Step 5. Decrease tij by ∆b for (i, j) ∈ P . If tij = 0 for (i = 1, . . . , m, j =
1, . . . , n) then stop, otherwise calculate

T = max







max
i=1,...,m







n
∑

j=1

tij







, max
j=1,...,n

{

m
∑

i=1

tij

}

, max
r=1,...,l







m
∑

i=1

∑

j∈Nr

tij/Wr













,

set b = b + 1 and go to Step 2.

The second phase differs from that in the optimal two-phase method (Słow-
iński, 1981) as follows. In the optimal two-phase method, in Step 3, set P is
constructed so that each critical machine (with εI

i = 1) works, each critical
job (with εII

j = 1) is processed, each critical resource (with εIII
r = 1) is used.

This guarantees that the schedule has length of T ∗ time units. In Step 4.2,
∆b = min{x, yI , yII , yIII}. In Step 5, T and tij (such that (i, j) ∈ P ) are
decreased by ∆b, and, if T = 0 the algorithm stops, otherwise it goes to Step 2.

The here used approximate two-phase algorithm is faster than the optimal
one. It provides solutions with the average (over all problems examined in
Section 4) deviation from the optimal makespan equal to 0.08%, which does not
influence the final results for the flowshop.
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2.3. Solving problem P2 – the sequencing procedures

After finding a set of partial schedules, the aim is to find a sequence of these
partial schedules, yielding the flowshop schedule with makespan as small as
possible.

For this purpose, we propose sequencing procedures, in which first, the values
of factors, denoted by eb

1 and eb
2, are determined for each partial schedule Sb and

then, the partial schedules are ordered taking into account these values. The
values of eb

1 and eb
2 for a partial schedule depend on the processing times at stage

1 and/or at stage 2 of jobs which belong to this partial schedule. The processing
time of job j at stage 1 (denoted by uj) is equal to the sum of the durations of
partial schedules, in which this job (or its parts) is executed (uj =

∑

b:j∈F b ∆b,

where F b is a set of indices of jobs that are processed, or whose parts are
processed, in partial schedule Sb). Let us remind that the processing time of job
j at stage 2 is denoted sj . While determining the values of eb

1 and eb
2 for partial

schedule Sb, we use the minimum processing time (minj∈F b{uj}), the maximum
processing time (maxj∈F b{uj}), the sum of processing times (

∑

j∈F b uj), and

the average processing time (
∑

j∈F b uj)/kb, where kb is the number of jobs

processed in Sb) at stage 1 of jobs from Sb, and the minimum processing time
(minj∈F b{sj}), the maximum processing time (maxj∈F b{sj}) and the sum of
processing times (

∑

j∈F b sj) at stage 2 of jobs from Sb.
In the proposed sequencing procedures, popular priority rules (SPT, LPT

and the Johnson algorithm, Johnson, 1954) are adapted for the situation where
jobs are bound to partial schedules. In this situation sequencing the jobs is not
performed directly but by means of sequencing the partial schedules.

We design twelve different sequencing procedures. For each of them, the
expressions according to which the values of eb

1 and eb
2 are calculated and the

way of finding the ordering of the partial schedules using these values are shown
in Table 1.

The twelve sequencing procedures listed in Table 1 are used in heuristic
algorithms A1-A12, examined in Section 4.

3. Lower bounds

Since determination of the optimal solution to the considered problem is prac-
tically impossible, we derive two lower bounds on the value of the optimal
makespan, which will be used in evaluating the performance of the proposed
heuristic algorithms.

An immediate lower bound is given by:

LB1 =
n

∑

j=1

sj + min
i = 1, . . . , m
j = 1, . . . , n

{pij}. (8)

The first term in LB1 is equal to the sum of job processing times at stage 2.
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Table 1. The sequencing procedures

Sqeuencing Description of the sequencing procedure

procedure

SQ1 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

minj∈F b{uj}

SQ2 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =
∑

j∈F b uj

SQ3 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

minj∈F b{uj}/ minj∈F b{sj}

SQ4 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

maxj∈F b{uj}/ maxj∈F b{sj}

SQ5 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =
∑

j∈F b uj/
∑

j∈F b sj

SQ6 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

minj∈F b{uj}/ maxj∈F b{sj}

SQ7 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

minj∈F b{uj}/
∑

j∈F b sj

SQ8 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =
∑

j∈F b uj/ maxj∈F b{sj}

SQ9 arranges partial schedules in non-decreasing order of eb
1, where eb

1 =

minj∈F b{uj/sj}

SQ10 first, arranges partial schedules with eb
1 ≤ eb

2 in non-decreasing order
of eb

1, and then arranges partial schedules with eb
1 > eb

2 in non-
increasing order of eb

2, where eb
1=minj∈F b{uj}, eb

2=maxj∈F b{sj}

SQ11 first, arranges partial schedules with eb
1 ≤ eb

2 in non-decreasing
order of eb

1, and then arranges partial schedules with eb
1 > eb

2

in non-increasing order of eb
2, where eb

1 =

(

∑

j∈F b uj

)

/kb, eb
2 =

maxj∈F b{sj}

SQ12 first, arranges partial schedules with eb
1 ≤ eb

2 in non-decreasing order
of eb

1, and then arranges partial schedules with eb
1 > eb

2 in non-

increasing order of eb
2, where eb

1 =

(

∑

j∈F b uj

)

/kb, eb
2 =

∑

j∈F b sj

F b is a set of indices of jobs that are processed (or whose parts are processed) in
partial schedule Sb, uj is the total processing time of job j at stage 1, kb is the
number of jobs processed in Sb.
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The second term is equal to the smallest job processing time at stage 1 (the
machine at stage 2 remains idle for at least the time needed to finish at stage 1
processing a job with the smallest processing time).

Another lower bound is given by:

LB2 = C∗

1 + min
j=1,...,n

{sj}, (9)

where C∗

1 denotes the minimal makespan (i.e. the minimum time needed to fin-
ish processing all jobs at stage 1) for the problem occurring at stage 1 (C∗

1=T ∗).
The second term represents the minimum unavoidable idleness at stage 1 which
is equal to the smallest job processing time at stage 2.

LB1 and LB2 will be effective for problem instances which are dominated
by jobs with large processing times at stage 2 and stage 1, respectively.

Hence, a lower bound on the optimal makespan in the considered two-stage
flowshop will be:

LB = max{LB1, LB2}. (10)

4. Computational experiment

An extensive computational experiment was carried out to evaluate the perfor-
mance of the proposed heuristic algorithms as well as to determine the effect
of job characteristics and the numbers of jobs, machines and resources on the
effectiveness of the algorithms.

The number of jobs was considered to be n =100, 300 and 600.
The number of machines, m, at stage 1 was set at 2, 4 and 6.
We considered the following two ways of modeling resource constraints:

– the number of resource types l was set to 1, the resource availability W1

was set at m/2 and resource requirements were set at 1 for 75% of jobs,
the rest of jobs did not require the resources;

– the number of resource types l was set at 2, 4, and 6 for problems with,
respectively, 2, 4 and 6 machines, the resource availability Wr was set at
1 for each resource type (r = 1, . . . , l), each job required 1 unit of one
randomly chosen resource type.

The job processing times at stage 2 were generated from U [1, 100] (U [a, b]
denotes the discrete uniform distribution in the range of [a, b]), the processing
times at stage 1 were generated from 10 intervals for each problem size.

For each examined combination of n, m, l and the processing time interval,
50 problems were generated. This results in 9000 problem instances. These
randomly generated instances were used to test the average performance of the
heuristic algorithms.

To evaluate the effectiveness of the proposed algorithms we used the value
of the percentage deviation of the heuristic makespan from the lower bound on
the optimal makespan:

δ =
C − LB

LB
× 100%, (11)
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C is the makespan found by a heuristic algorithm.
For each problem size and each processing time interval the ratio of the

minimal time needed for finishing processing all jobs at stage 1 to the sum of
job processing times at stage 2, denoted by θ (θ = C∗

1/
∑n

1 sj), was calculated.
Effectiveness of the proposed heuristic algorithms was analyzed in terms of θ.
Due to the generation of job processing times at stage 1 from 10 intervals we
can consider the cases with θ less than 1 (stage 2 is dominant), with θ close to 1
(the stages are balanced) and with θ greater than 1 (stage 1 is dominant).

Another performance measure is the CPU time (reported in seconds) con-
sumed by the heuristic algorithms.

All programs for the algorithms presented in the paper were written in C++
and run on a PC computer with Celeron 1.3 GHz. The LP problem (1-7) was
solved using lp_solve optimizer v.5.5 available from http://groups.yahoo.com/-
group/lp_solve.

The results of the computational experiment are presented in Tables 2-8. In
Tables 2-7, the average percentage deviations of the heuristic makespan from the
lower bound on the optimal makespan are shown for the proposed algorithms
A1-A12 and for algorithm (ARAND), that creates a random sequence of partial
schedules at stage 1. In these tables, the average values of θ calculated for each
problem size and each processing time interval are also depicted (column 3).
Table 8 contains computation times.

In Tables 2-7 we can see that all the algorithms A1-A12 produce significantly
better results than algorithm ARAND and that different algorithms are the best
for different problems (the best results are given in bold).

For problems with two machines (Tables 2 and 5) several algorithms (A4-
A12) provide excellent quality results (with δ close to 0), but algorithms A10
and A11 are superior to the others. The average δ (over all the instances with
m=2, Tables 2 and 5) equals 0.01%, 0.01%, 0.02%, 0.02%, 0.02%, 0.02%, 0.03%,
0.03%, 0.03%, 0.13%, 0.34% and 0.42%, respectively, for algorithms A10, A11,
A6, A7, A9, A12, A4, A5, A8, A3, A1 and A2. The average δ of ARAND is
2.01%.

For problems with bigger number of machines (m = 4 and 6, Tables 3, 4, 6
and 7) algorithm A9 is the best. The next best algorithm is A6. For problems
with 4 machines the average δ (over all the instances with m=4, Tables 3 and 6)
equals 0.39%, 0.47%, 0.53%, 0.54%, 0.59%, 0.71%, 0.89%, 1.03%, 1.29%, 1.36%,
1.39% and 1.88% for algorithms A9, A6, A5, A7, A10, A8, A1, A3, A4, A11, A2
and A12, respectively. The average δ of ARAND is 9.89%. For problems with
6 machines the average δ (over all the instances with m=6, Tables 4 and 7) is
1.11%, 1.33%, 1.60%, 1.61%, 2.05%, 2.47%, 2.81%, 3.09%, 3.36%, 5.47%, 5.87%
and 7.65% for algorithms A9, A6, A1, A7, A5, A8, A10, A2, A3, A4, A11 and
A12. The average δ of ARAND is 17.81%.

An interesting behavior of algorithms can be observed for problems with 4
and 6 machines and more than 1 resource type (Tables 6 and 7). In this case,
algorithm A9 gives the best results in the region where θ is less than or close to
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1, while in the region with greater values of θ algorithm A5 becomes superior
to other algorithms.

Most of the algorithms exhibit slightly worse performance for problems with
a greater number of resource types. The average deviations δ obtained by al-
gorithms A1-A12 are respectively equal to 0.85%, 1.64%, 1.04%, 1.64%, 0.80%,
0.46%, 0.45%, 0.99%, 0.38%, 0.67%, 1.57% and 2.07% for problems with 1 re-
source type (Tables 2, 3 and 4), and 1.03%, 1.62%, 1.98%, 2.89%, 0.94%, 0.75%,
1.00%, 1.15%, 0.63%, 1.61%, 3.26% and 4.29% for problems with more than 1
resource type (Tables 5, 6 and 7).

The most difficult problems (with the greatest value of δ) are the ones with
θ close to 1. In the region of θ close to 1 the stages in the flowshop are balanced
(i.e. the minimum makespan of the schedule at stage 1 is close to the sum of
the job processing times at stage 2) and the total idle time (the sum of the
idle time at stage 1, i.e. time when no machine works, and the idle time of
the machine at stage 2) is small, hence this region is very important from the
practical point of view. However, when θ is close to 1, for all problem sizes, one
can see high peaks in the values of deviation δ obtained by algorithm ARAND.
The proposed algorithms significantly lower these peaks. On the average (over
all instances considered), the ratio of the maximal deviation from algorithm
ARAND for problems with given n, m and l to the average maximal deviation
provided by the best algorithm for the same problems equals 402.53, 31.04 and
15.29, respectively, for problems with 2, 4, and 6 machines.

The performance of all algorithms A1-A12 improves considerably when the
number of jobs grows. When the number of machines increases the performance
of the algorithms deteriorates. This is caused by the fact that the greater the
number of machines the more jobs are tied to a partial schedule and it is more
difficult to find an appropriate ordering of jobs ensuring a short schedule in
the whole system. The increase in the values of δ caused by the increase in
the number of resources can be explained by the fact that when the number
of resources grows the resource constraints become weaker and more jobs are
executed at the same time, so that finding a proper sequence of jobs is more
difficult.
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Table 2. Computational results for problems with the number of machines m=2
and 1 resource type

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,100] 0.50 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 1.12

[1,200] 1.03 1.20 3.27 0.25 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.00 7.54

[1,300] 1.50 1.10 1.39 0.35 0.03 0.03 0.02 0.02 0.05 0.03 0.01 0.01 0.01 2.54

[1,400] 1.94 0.87 1.15 0.21 0.04 0.04 0.02 0.02 0.05 0.04 0.01 0.01 0.01 1.22

[1,500] 2.46 0.56 0.85 0.22 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.88

[1,600] 2.97 0.63 0.70 0.16 0.02 0.02 0.01 0.01 0.03 0.02 0.00 0.00 0.00 0.77

[1,700] 3.46 0.45 0.54 0.12 0.05 0.04 0.02 0.01 0.06 0.02 0.01 0.01 0.01 0.57

[1,800] 3.94 0.33 0.51 0.13 0.02 0.03 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.39

[1,900] 4.47 0.27 0.44 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.39

[1,1000] 4.95 0.26 0.39 0.08 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.31

average 0.57 0.92 0.16 0.02 0.02 0.01 0.01 0.03 0.02 0.00 0.01 0.01 1.57

300 [1,100] 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41

[1,200] 0.99 0.31 0.85 0.09 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 6.51

[1,300] 1.49 0.50 0.44 0.09 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.86

[1,400] 2.00 0.33 0.36 0.07 0.04 0.02 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.48

[1,500] 2.50 0.21 0.24 0.05 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.23

[1,600] 3.00 0.17 0.20 0.03 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.17

[1,700] 3.46 0.14 0.19 0.04 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.16

[1,800] 4.01 0.12 0.17 0.04 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.15

[1,900] 4.46 0.11 0.14 0.03 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.12

[1,1000] 4.96 0.09 0.12 0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.10

average 0.20 0.27 0.05 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.92

600 [1,100] 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25

[1,200] 0.99 0.19 0.73 0.04 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.04 0.00 6.47

[1,300] 1.51 0.25 0.22 0.06 0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.50

[1,400] 1.99 0.16 0.17 0.04 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.19

[1,500] 2.46 0.13 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

[1,600] 3.06 0.09 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08

[1,700] 3.48 0.08 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

[1,800] 3.99 0.07 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

[1,900] 4.49 0.06 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

[1,1000] 4.99 0.04 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

average 0.11 0.17 0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.78
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Table 3. Computational results for problems with the number of machines m=4
and 1 resource type

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,400] 0.60 0.00 0.67 0.03 0.75 0.37 0.00 0.01 0.54 0.01 0.00 0.54 0.38 8.83

[1,600] 0.88 0.85 3.61 0.79 2.54 1.08 0.16 0.16 1.49 0.14 0.12 1.89 2.20 21.44

[1,800] 1.19 3.30 6.05 4.09 3.98 2.32 1.54 1.45 3.48 1.18 1.54 3.25 3.96 20.54

[1,1000] 1.48 2.63 3.23 2.23 2.24 0.92 1.39 1.36 1.54 1.08 1.28 2.06 2.87 13.41

[1,1200] 1.72 2.12 2.53 1.63 1.59 0.83 1.09 1.07 1.24 0.89 1.06 1.40 1.91 9.05

[1,1400] 2.03 1.81 2.24 1.29 1.00 0.73 0.93 0.96 1.06 0.74 0.74 0.91 1.27 6.27

[1,1600] 2.38 1.47 1.95 1.22 0.63 0.50 0.70 0.62 0.85 0.63 0.56 0.78 0.92 3.90

[1,1800] 2.79 1.30 1.69 1.17 0.85 0.50 0.67 0.65 0.79 0.53 0.57 0.60 0.75 3.34

[1,2000] 3.02 1.24 1.49 0.96 0.70 0.53 0.62 0.55 0.72 0.56 0.51 0.56 0.54 2.67

[1,2200] 3.22 1.13 1.34 0.81 0.51 0.39 0.53 0.53 0.58 0.42 0.42 0.48 0.44 2.23

average 1.59 2.48 1.42 1.48 0.82 0.76 0.74 1.23 0.62 0.68 1.25 1.52 9.17

300 [1,400] 0.60 0.00 0.32 0.00 0.32 0.27 0.00 0.00 0.29 0.00 0.00 0.05 0.17 6.48

[1,600] 0.90 0.26 2.03 0.26 1.65 1.18 0.10 0.15 1.27 0.08 0.10 0.59 0.97 19.84

[1,800] 1.18 1.21 3.00 1.27 1.65 0.91 0.34 0.45 1.06 0.26 0.35 1.23 1.91 18.04

[1,1000] 1.47 0.97 1.43 0.72 0.83 0.32 0.30 0.32 0.38 0.24 0.24 0.40 0.60 9.22

[1,1200] 1.77 0.68 1.09 0.50 0.38 0.24 0.17 0.19 0.36 0.16 0.15 0.21 0.22 4.81

[1,1400] 2.10 0.54 0.74 0.39 0.31 0.18 0.15 0.17 0.20 0.13 0.12 0.13 0.17 2.76

[1,1600] 2.37 0.58 0.73 0.39 0.38 0.17 0.20 0.25 0.25 0.17 0.25 0.29 0.31 1.83

[1,1800] 2.67 0.46 0.55 0.30 0.26 0.15 0.12 0.13 0.22 0.14 0.08 0.09 0.09 1.28

[1,2000] 2.97 0.43 0.60 0.34 0.33 0.14 0.13 0.13 0.20 0.15 0.12 0.12 0.15 0.96

[1,2200] 3.23 0.38 0.44 0.28 0.21 0.11 0.12 0.15 0.16 0.11 0.10 0.11 0.14 1.08

average 0.55 1.09 0.45 0.63 0.37 0.16 0.19 0.44 0.14 0.15 0.32 0.47 6.63

600 [1,400] 0.60 0.00 0.35 0.00 0.45 0.32 0.00 0.00 0.32 0.00 0.00 0.04 0.06 5.62

[1,600] 0.88 0.00 1.19 0.05 0.84 0.75 0.00 0.00 0.81 0.00 0.00 0.81 0.57 17.73

[1,800] 1.18 0.69 1.80 0.62 0.65 0.64 0.16 0.26 0.51 0.15 0.34 0.88 1.33 15.96

[1,1000] 1.48 0.46 0.85 0.33 0.40 0.11 0.10 0.12 0.17 0.10 0.07 0.11 0.29 8.13

[1,1200] 1.78 0.35 0.55 0.22 0.12 0.06 0.05 0.06 0.09 0.06 0.05 0.05 0.05 3.88

[1,1400] 2.08 0.35 0.53 0.19 0.20 0.13 0.05 0.05 0.16 0.05 0.03 0.03 0.06 1.80

[1,1600] 2.37 0.29 0.33 0.16 0.13 0.05 0.06 0.07 0.08 0.04 0.10 0.12 0.13 1.23

[1,1800] 2.67 0.24 0.30 0.16 0.45 0.09 0.12 0.15 0.13 0.10 0.19 0.22 0.19 0.97

[1,2000] 2.97 0.22 0.27 0.16 0.12 0.06 0.06 0.06 0.08 0.06 0.05 0.05 0.05 0.56

[1,2200] 3.23 0.19 0.31 0.13 0.17 0.06 0.05 0.06 0.11 0.05 0.03 0.03 0.03 0.54

average 0.28 0.65 0.20 0.35 0.23 0.07 0.08 0.25 0.06 0.09 0.23 0.27 5.64
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Table 4. Computational results for problems with the number of machines m=6
and 1 resource type

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,600] 0.44 0.00 0.82 0.05 1.39 0.49 0.00 0.01 0.78 0.01 0.00 0.92 0.53 6.23

[1,900] 0.65 0.00 2.16 0.74 4.15 1.51 0.02 0.02 1.76 0.01 0.00 3.43 2.50 17.13

[1,1200] 0.88 1.47 6.48 5.03 10.76 3.55 1.18 0.88 5.03 0.59 1.78 10.62 11.64 28.06

[1,1500] 1.03 4.76 10.22 9.18 14.48 7.23 3.73 3.49 9.55 3.09 7.05 16.17 16.68 33.23

[1,1800] 1.24 4.63 7.67 7.17 10.45 4.77 3.81 3.51 6.29 3.90 6.50 11.17 14.32 27.86

[1,2100] 1.51 4.00 5.33 5.61 6.80 3.29 3.30 3.36 4.44 2.94 5.11 7.05 9.07 18.71

[1,2400] 1.72 3.43 4.89 4.20 4.03 2.29 2.74 2.54 3.23 2.15 3.18 4.45 5.86 14.78

[1,2700] 1.91 2.59 3.55 3.03 4.22 1.97 2.09 2.07 2.80 1.93 2.68 3.53 4.69 11.80

[1,3000] 2.08 2.59 3.38 2.96 2.52 1.43 1.92 1.65 2.16 1.47 1.74 2.23 3.50 9.59

[1,3300] 2.35 2.37 2.59 2.22 2.28 1.30 1.68 1.44 1.84 1.37 1.83 2.45 2.92 8.42

average 2.58 4.71 4.02 6.11 2.78 2.05 1.90 3.79 1.75 2.99 6.20 7.17 17.58

300 [1,600] 0.43 0.00 0.47 0.01 0.47 0.29 0.00 0.00 0.34 0.00 0.00 0.19 0.28 4.50

[1,900] 0.64 0.00 0.95 0.01 1.33 0.99 0.00 0.00 0.85 0.00 0.00 1.15 0.80 14.44

[1,1200] 0.85 0.17 4.96 1.12 7.41 3.40 0.10 0.06 3.92 0.10 0.31 6.57 6.92 25.53

[1,1500] 1.09 2.89 7.78 6.62 9.48 5.17 1.67 2.00 5.86 1.28 3.88 10.22 14.64 28.89

[1,1800] 1.29 2.12 4.15 3.89 5.36 2.58 1.51 1.46 2.83 1.29 2.82 6.21 10.48 21.27

[1,2100] 1.49 1.60 3.00 2.11 3.75 1.99 1.09 1.20 1.98 0.91 1.82 3.33 5.31 16.11

[1,2400] 1.71 1.41 1.92 1.54 2.50 1.15 0.97 0.91 1.24 0.72 1.17 2.04 3.72 10.97

[1,2700] 1.91 1.18 1.68 1.07 2.11 0.99 0.73 0.70 1.06 0.60 0.97 1.54 2.11 8.86

[1,3000] 2.15 1.01 1.25 0.88 1.42 0.59 0.72 0.60 0.85 0.69 0.77 1.23 1.69 6.52

[1,3300] 2.32 0.85 1.03 0.74 1.03 0.52 0.43 0.50 0.58 0.45 0.52 0.71 1.30 5.00

average 1.12 2.72 1.80 3.49 1.77 0.72 0.74 1.95 0.60 1.23 3.32 4.72 14.21

600 [1,600] 0.43 0.00 0.40 0.00 0.45 0.29 0.00 0.00 0.33 0.00 0.00 0.15 0.19 4.48

[1,900] 0.64 0.00 0.66 0.00 1.20 0.47 0.00 0.00 0.57 0.00 0.00 0.71 0.42 12.92

[1,1200] 0.86 0.12 2.27 0.74 4.93 1.40 0.02 0.01 1.56 0.00 0.18 6.26 6.28 24.68

[1,1500] 1.06 1.72 6.09 5.77 8.72 3.72 0.88 1.04 4.06 0.63 3.74 10.70 15.57 30.69

[1,1800] 1.29 1.30 3.09 2.27 4.67 2.28 0.67 0.67 2.06 0.43 1.43 4.47 8.41 20.09

[1,2100] 1.49 1.01 1.68 0.99 2.07 1.02 0.47 0.45 1.09 0.31 1.02 2.23 5.57 14.23

[1,2400] 1.69 0.86 1.36 0.83 1.89 0.99 0.45 0.59 0.81 0.32 0.68 1.55 3.21 10.31

[1,2700] 1.90 0.67 1.02 0.59 1.43 0.85 0.40 0.44 0.64 0.36 0.74 1.22 2.70 7.42

[1,3000] 2.12 0.54 0.66 0.42 0.48 0.50 0.31 0.43 0.41 0.29 0.38 0.58 1.41 5.54

[1,3300] 2.33 0.61 0.72 0.41 0.72 0.31 0.30 0.39 0.34 0.27 0.37 0.45 0.89 4.70

average 0.68 1.79 1.20 2.65 1.18 0.35 0.40 1.19 0.26 0.85 2.83 4.46 13.51
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Table 5. Computational results for problems with the number of machines m=2
and the number of resource types l = 2

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,100] 0.36 0.00 0.03 0.01 0.04 0.04 0.00 0.01 0.04 0.01 0.00 0.03 0.03 1.04

[1,200] 0.73 0.00 0.10 0.00 0.07 0.06 0.00 0.00 0.07 0.00 0.00 0.05 0.04 7.37

[1,300] 1.07 1.58 1.44 0.84 0.18 0.17 0.12 0.24 0.21 0.13 0.11 0.13 0.48 14.48

[1,400] 1.49 1.41 1.50 0.63 0.14 0.14 0.14 0.14 0.16 0.15 0.05 0.05 0.08 5.95

[1,500] 1.84 1.03 1.05 0.45 0.11 0.10 0.09 0.08 0.18 0.09 0.07 0.08 0.10 3.17

[1,600] 2.23 0.85 0.86 0.45 0.13 0.11 0.11 0.18 0.11 0.11 0.06 0.06 0.08 1.88

[1,700] 2.57 0.82 0.82 0.36 0.14 0.09 0.08 0.13 0.09 0.09 0.06 0.06 0.09 1.35

[1,800] 2.84 0.68 0.75 0.32 0.07 0.07 0.06 0.05 0.11 0.05 0.04 0.04 0.04 1.29

[1,900] 3.29 0.50 0.57 0.23 0.07 0.06 0.04 0.05 0.06 0.05 0.03 0.03 0.03 1.10

[1,1000] 3.64 0.52 0.60 0.26 0.06 0.05 0.06 0.07 0.08 0.05 0.03 0.03 0.03 1.02

average 0.74 0.77 0.36 0.10 0.09 0.07 0.10 0.11 0.07 0.04 0.05 0.10 3.86

300 [1,100] 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30

[1,200] 0.70 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 4.24

[1,300] 1.06 0.64 0.57 0.28 0.08 0.05 0.03 0.05 0.08 0.04 0.02 0.03 0.04 13.09

[1,400] 1.40 0.49 0.47 0.22 0.06 0.05 0.04 0.05 0.04 0.05 0.02 0.02 0.04 4.46

[1,500] 1.72 0.46 0.41 0.18 0.03 0.02 0.02 0.03 0.03 0.02 0.01 0.01 0.03 1.82

[1,600] 2.09 0.34 0.31 0.17 0.03 0.02 0.03 0.03 0.03 0.03 0.01 0.01 0.02 0.89

[1,700] 2.44 0.30 0.27 0.12 0.03 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.75

[1,800] 2.81 0.22 0.20 0.11 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.53

[1,900] 3.13 0.21 0.22 0.09 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.37

[1,1000] 3.51 0.17 0.19 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.40

average 0.28 0.27 0.13 0.03 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.02 2.69

600 [1,100] 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

[1,200] 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.04

[1,300] 1.03 0.28 0.26 0.12 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 12.29

[1,400] 1.38 0.28 0.25 0.11 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 3.83

[1,500] 1.72 0.21 0.18 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 1.27

[1,600] 2.05 0.18 0.16 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.74

[1,700] 2.44 0.16 0.15 0.07 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.35

[1,800] 2.74 0.14 0.12 0.06 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.29

[1,900] 3.11 0.10 0.10 0.05 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.24

[1,1000] 3.43 0.09 0.09 0.05 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.21

average 0.14 0.13 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 2.24
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Table 6. Computational results for problems with the number of machines m=4
and the number of resource types l = 4

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,400] 0.51 0.00 0.53 0.04 0.80 0.36 0.00 0.01 0.52 0.01 0.00 0.67 0.31 8.35

[1,600] 0.74 0.22 2.80 0.68 3.65 0.84 0.22 0.11 1.82 0.04 0.23 3.10 1.55 19.77

[1,800] 1.02 2.60 4.98 6.90 6.50 2.52 1.53 2.05 3.46 1.18 2.36 7.38 8.35 27.37

[1,1000] 1.31 3.45 4.69 4.08 4.46 1.80 2.22 2.48 2.58 1.75 3.36 5.81 6.58 22.09

[1,1200] 1.50 2.86 3.28 3.60 3.26 1.73 1.86 2.17 2.17 1.71 2.35 3.70 5.63 17.04

[1,1400] 1.79 2.48 2.70 2.39 2.14 1.24 1.65 1.92 1.55 1.44 1.98 2.51 4.02 11.15

[1,1600] 2.09 2.07 2.38 1.65 1.24 0.89 1.17 1.28 1.33 0.94 1.04 1.33 1.80 8.42

[1,1800] 2.26 2.16 2.34 1.93 1.39 1.15 1.39 1.43 1.35 1.20 1.33 1.48 1.93 7.67

[1,2000] 2.52 1.66 1.90 1.53 1.20 0.83 0.98 1.01 0.99 0.91 0.91 1.05 1.39 5.48

[1,2200] 2.83 1.31 1.60 1.18 0.79 0.63 0.82 0.77 0.77 0.77 0.56 0.60 0.92 4.83

average 1.88 2.72 2.40 2.54 1.20 1.18 1.32 1.65 1.00 1.41 2.76 3.25 13.22

300 [1,400] 0.46 0.00 0.09 0.01 0.18 0.08 0.00 0.00 0.10 0.00 0.00 0.14 0.08 5.09

[1,600] 0.69 0.00 0.23 0.03 1.12 0.18 0.00 0.00 0.26 0.00 0.00 0.85 0.25 15.35

[1,800] 0.89 0.28 1.57 1.62 4.62 0.35 0.09 0.22 0.68 0.08 0.28 4.83 5.38 26.01

[1,1000] 1.15 1.37 1.86 3.53 3.88 0.96 0.92 1.47 0.99 0.77 2.33 5.80 9.62 24.13

[1,1200] 1.41 1.25 1.41 1.79 2.06 0.57 0.77 1.01 0.75 0.68 1.36 2.48 4.65 17.00

[1,1400] 1.63 1.01 1.05 0.98 0.90 0.41 0.61 0.80 0.53 0.51 0.82 1.39 2.96 11.16

[1,1600] 1.82 0.87 0.85 0.94 0.61 0.36 0.52 0.72 0.43 0.44 0.55 0.83 2.05 8.53

[1,1800] 2.03 0.83 0.73 0.67 0.65 0.32 0.45 0.68 0.39 0.41 0.66 0.87 1.84 6.63

[1,2000] 2.33 0.72 0.66 0.55 0.41 0.26 0.38 0.48 0.31 0.36 0.33 0.37 0.91 4.00

[1,2200] 2.55 0.68 0.66 0.52 0.43 0.25 0.34 0.49 0.30 0.30 0.34 0.38 1.00 3.76

average 0.70 0.91 1.06 1.49 0.37 0.41 0.59 0.47 0.36 0.67 1.79 2.87 12.17

600 [1,400] 0.45 0.00 0.04 0.00 0.05 0.03 0.00 0.00 0.04 0.00 0.00 0.05 0.04 4.09

[1,600] 0.66 0.00 0.14 0.00 0.35 0.07 0.00 0.00 0.09 0.00 0.00 0.50 0.08 13.41

[1,800] 0.89 0.01 0.80 1.28 4.07 0.23 0.00 0.01 0.36 0.00 0.23 4.53 4.44 25.56

[1,1000] 1.10 0.83 0.91 2.28 4.97 0.40 0.46 0.71 0.42 0.42 2.19 7.12 10.66 27.62

[1,1200] 1.31 0.64 0.61 1.07 1.17 0.31 0.37 0.65 0.31 0.30 1.07 2.99 5.91 18.84

[1,1400] 1.54 0.54 0.63 0.52 0.77 0.26 0.30 0.40 0.38 0.25 0.51 1.19 2.59 12.94

[1,1600] 1.77 0.50 0.41 0.37 0.38 0.18 0.25 0.40 0.22 0.21 0.34 0.49 1.63 8.53

[1,1800] 1.95 0.41 0.50 0.39 0.35 0.17 0.24 0.36 0.20 0.20 0.35 0.45 1.34 6.51

[1,2000] 2.19 0.37 0.35 0.28 0.30 0.16 0.19 0.28 0.17 0.19 0.23 0.28 0.87 4.35

[1,2200] 2.40 0.37 0.35 0.29 0.28 0.17 0.26 0.35 0.18 0.20 0.32 0.39 1.04 3.48

average 0.37 0.47 0.65 1.27 0.20 0.21 0.32 0.24 0.18 0.52 1.80 2.86 12.54
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Table 7. Computational results for problems with the number of machines m=6
and the number of resource types l = 6

n pij θ δ%

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 ARAND

100 [1,600] 0.39 0.00 0.82 0.16 1.81 0.61 0.01 0.02 0.64 0.01 0.00 1.15 0.63 7.36

[1,900] 0.63 0.01 2.89 1.61 5.31 1.74 0.02 0.02 2.11 0.02 0.07 4.45 2.65 18.15

[1,1200] 0.81 1.13 6.30 6.07 11.76 4.93 1.39 2.50 5.96 0.76 3.15 11.09 11.01 30.01

[1,1500] 1.05 5.60 10.11 11.35 15.10 7.03 5.27 6.40 8.61 4.19 9.39 15.92 19.94 35.23

[1,1800] 1.24 5.80 7.93 10.28 11.68 5.60 5.35 6.31 7.21 4.37 8.19 13.29 17.89 30.99

[1,2100] 1.46 5.02 6.56 8.35 8.71 4.53 5.04 6.30 5.52 4.37 7.11 9.83 13.60 23.46

[1,2400] 1.62 4.58 5.64 6.17 6.38 3.43 4.09 5.01 4.50 3.62 6.02 7.74 10.94 19.80

[1,2700] 1.90 3.98 4.23 4.41 4.65 2.79 3.62 3.98 3.35 3.13 5.27 6.26 9.37 15.32

[1,3000] 2.01 3.57 3.68 4.15 3.29 2.21 3.04 3.35 2.74 2.63 3.99 4.68 7.67 12.14

[1,3300] 2.20 2.63 3.14 3.09 2.63 1.68 2.44 2.69 2.25 2.06 3.00 3.53 5.54 10.40

average 3.23 5.13 5.56 7.13 3.46 3.03 3.66 4.29 2.52 4.62 7.79 9.92 20.29

300 [1,600] 0.36 0.00 0.17 0.01 0.60 0.17 0.00 0.00 0.17 0.00 0.00 0.35 0.15 4.42

[1,900] 0.53 0.00 0.48 0.01 2.50 0.40 0.00 0.00 0.50 0.00 0.00 1.83 0.46 12.13

[1,1200] 0.73 0.00 2.02 1.61 7.58 1.25 0.01 0.01 1.86 0.00 0.37 6.60 3.61 22.91

[1,1500] 0.88 0.81 4.27 7.62 13.56 2.99 0.79 1.37 3.64 0.45 3.58 13.50 15.80 32.77

[1,1800] 1.04 2.61 6.57 12.57 17.08 5.57 2.63 4.03 6.09 2.09 10.40 18.57 23.25 36.76

[1,2100] 1.24 2.91 3.16 7.01 9.88 2.28 2.64 4.24 2.92 2.24 7.94 12.59 17.77 28.51

[1,2400] 1.38 2.20 2.35 5.60 6.62 2.01 2.27 3.36 2.04 1.83 6.21 9.67 14.92 24.00

[1,2700] 1.61 1.79 1.90 4.02 3.75 1.45 1.52 2.21 1.48 1.23 3.73 5.82 10.02 18.24

[1,3000] 1.79 1.58 1.55 2.50 2.45 0.98 1.39 1.97 1.15 1.23 3.52 4.99 8.82 14.47

[1,3300] 1.94 1.35 1.50 1.93 2.10 0.88 1.21 1.52 1.10 1.03 2.42 3.18 6.41 12.08

average 1.32 2.40 4.29 6.61 1.80 1.25 1.87 2.09 1.01 3.82 7.71 10.12 20.63

600 [1,600] 0.33 0.00 0.08 0.00 0.37 0.07 0.00 0.00 0.07 0.00 0.00 0.23 0.06 3.57

[1,900] 0.49 0.00 0.25 0.01 1.74 0.17 0.00 0.00 0.20 0.00 0.00 0.53 0.15 10.27

[1,1200] 0.67 0.00 0.69 0.16 5.78 0.36 0.00 0.00 0.61 0.00 0.00 3.64 0.75 19.49

[1,1500] 0.83 0.13 1.89 4.32 11.19 1.36 0.11 0.21 1.51 0.06 1.40 10.98 12.13 28.88

[1,1800] 0.99 1.11 5.42 9.99 17.53 4.56 1.05 2.38 4.91 0.67 8.87 18.49 22.69 37.23

[1,2100] 1.17 1.48 3.70 8.40 13.27 2.80 1.33 2.31 3.06 1.17 8.34 14.66 19.40 31.82

[1,2400] 1.34 1.06 1.99 4.52 7.67 1.44 1.02 1.75 1.71 0.96 5.79 9.93 14.31 24.55

[1,2700] 1.50 0.85 1.64 2.59 5.43 1.23 0.93 1.53 1.41 0.79 3.77 6.63 10.81 20.13

[1,3000] 1.65 0.92 1.23 1.66 3.29 0.76 0.96 1.61 0.85 0.80 3.15 5.16 8.46 16.69

[1,3300] 1.83 0.77 0.96 1.14 2.15 0.51 0.62 1.08 0.58 0.57 2.26 3.46 6.13 13.61

average 0.63 1.79 3.28 6.84 1.32 0.60 1.09 1.49 0.50 3.36 7.37 9.49 20.62
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The computation times are the same for all the algorithms. Table 8 shows
the average computation times over all the processing time intervals (compu-
tation times were almost the same for all the processing time intervals). The
computation times of the algorithms increase with the number of jobs. A smaller
impact on the computation time has the number of machines and the number of
resources. The computation time increases slightly with the number of machines
and tends to decrease when the number of resources grows.

Table 8. Computation times

n m l = 1 l = m
100 2 0.08 0.08
300 0.46 0.33
600 3.03 1.77
100 4 0.09 0.13
300 0.59 0.57
600 3.46 2.68
100 6 0.12 0.17
300 0.77 0.57
600 4.74 4.43

Significant improvement in the quality of the results for the problems where
the stages in the flowshop are balanced is a very important achievement of the
proposed algorithms.

5. Conclusions

In this paper we considered the problem of preemptive scheduling in multipro-
cessor two-stage flowshop, subject to additional renewable resource constraints.
We proposed heuristic algorithms for solving this problem. The algorithms have
been tested as to their effectiveness in finding a minimum makespan schedule
and their computation times. The results indicate that the proposed algorithms
can produce good quality solutions in a short computation time.
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