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Abstract: The anonymous data from 1352 companies concern-
ing the economic climate in Polish servicing sector from the Euro-
pean Economic Survey 2005 was obtained by courtesy of The Polish
Chamber of Commerce. The Grade Correspondence Analysis (GCA)
with posterior clustering (GCCA) is introduced and applied to this
data. The main task of this analysis is to create the first view of data
and to reveal their latent structure. This provides an insight into
the economic factors and enables making conclusions about business
conditions in Poland.
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1. Introduction

Knowledge about the main economic indicators and parameters derived from
business data enables forecasting future trends – in optimistic, pessimistic or
neutral terms – in the country. In this article we aim to present two objectives:
(a) the results of analysis of economic factors in Poland in servicing sector (b)
using the algorithms of Grade Data Exploration, mainly Grade Correspondence
Analysis and related clustering. The analyzed data are derived from the Euro-
pean Economic Survey 2005 (EES’2005) and concern the economic climate in
Poland in 2004 and the forecast for 2005. The carefully chosen data, introduced
in Section 1.2, were given to us by the Polish Chamber of Commerce, as we were
not allowed to receive or buy comparable raw data from the Central Statistical
Office; however, as we aim to focus on methodology rather than a particular
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application, we hope that clarity of the chosen example will help in grasping
intuition of grade data exploration.

In our analysis we wanted to examine the interdependence between economic
factors and describe business climate in Poland in 2004 and in 2005 using grade
data analysis. Native grade data visualizations: overrepresentation maps of raw
and ordered data, aggregated clusters of rows and rank correlation tables are
given to interpret the results and support their understanding. Grade method-
ology itself is introduced in Section 1.1 and explained in greater detail in Section
2. Section 3 presents in short particular stages of the analysis: data prepara-
tion, visualization and interpretation of results, and also psychometric remarks
on the EES Survey, which may be helpful in deeper understanding of the results.
The last Section 4 concludes the analyzes and proposes how grade data analysis
supplements traditional methods

All analyses and figures were made in program GradeStat. Further informa-
tion concerning GradeStat, grade infrastructure and grade methods is available
at http://gradestat.ipipan.waw.pl.

Brief summary of Grade Data Analysis

The main idea behind analyses of economic reports as those published at the
website of Polish Central Statistical Office (http://www.stat.gov.pl) or of the
National Bank of Poland (http://www.nbp.pl) is to examine economic situation
by casting overall prognosis based on summary indices, which are calculated
separately for particular issues. In such an approach particular firms are usually
classified according to their trade, while in grade exploration the main aim is to
cluster firms, accounting for the profile of all their answers (not only to combine
them by trade and/or size). In the grade approach, raw data with full answers
of each firm are needed, and the method may give us additional information, as
we will see later on.

Grade data analysis is efficient on variables measured on any measurement
scales (even categorical), because it bases on dissimilarity measures such as con-
centration curves and some precisely defined measure of monotonic dependence.
Its main framework is grade transformation (proposed in Szczesny, 1991). The
idea is to transform any distribution of two variables into a convenient form
of the so called grade distribution. This transformation leaves unchanged the
order of variables, ranks, values of monotone dependence measures like Spear-
man’s ρ* and Kendall’s τ . In case of empirical data this approach consists in
analyzing the two-way table of objects/variables, preceded by proper recoding
of variable values. After grade transformation we can treat contingency table
as a probability table (the benefits of probability tables are explained in Section
2.1).

The main tool of grade methods is Grade Correspondence Analysis (GCA),
referring to classical correspondence analysis, but going significantly beyond
it, owing to grade transformation. To put it simply, GCA orders the vari-
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ables/objects table in such a way that adjacent objects are more similar than
those further apart, and at the same time, adjacent variables are also more
similar than those further apart. When optimal ordering is found it is possi-
ble to aggregate adjacent objects and adjacent variables, and therefore to build
a definite number of clusters, consisting of objects (or variables) with similar
distributions.

Last but not least, it is possible to indicate main trend in data, find objects
(or variables) highly departing this trend and remove these objects from further
analyses. This feature distinguishes grade data analysis from classical analyses,
where outlying objects are excluded, but are not then analyzed as a sub-table.
In grade methods outliers are removed and analyses are applied again to the
more regular sub-table and to the sub-table with outliers.

Decisions on what level of departure is proper, how many cluster should be
determined or what the detected trend shows are aided by visualizations, mostly
overrepresentation and correlation maps. Overrepresentation map is the chart
of the probability density of grade distribution, showing which cells are over-
or underrepresented in a particular dataset, while correlation maps show linear
dependences between variables.

While typical analyses focus on relating the results to larger population,
grade data analysis puts the stress on trends found in gathered data. The
conclusions are drawn from data and give useful information even in case of
bad randomization or other problems common in analyzes of real data. It
should be noted at this point that grade data analysis is an exploratory method
(Greenacre, 1984) based on the development of model (or models) that fits the
data, rather than on rejection of hypotheses due to the lack of fit. Therefore,
there are no statistical significance tests applied to the results, as the main
purpose of this method is to get “deeper insight” into analyzed data.

2. Grade Data Analysis - methodology

2.1. Grade transformation and overrepresentation maps

The main tool of grade methods is Grade Correspondence Analysis (GCA), an
algorithm to order variables/objects matrix in such a way that adjacent objects
are relatively more similar than those further apart, and at the same time,
adjacent variables are also relatively more similar than those further apart. It is
then possible to cluster adjacent objects (variables) or remove objects (variables)
highly departing from the detected trend. However, the original table must be
in some way normalized before ordering and one of possible methods is grade
transformation.

Let us now remind that grade of x is a term dating from the very beginning
of statistics, meaning value of CDF FX (cumulative distribution function) given
at point x, so that “grade of x” is equal to FX(x), where FX(x) = P (X ≤ x).
It describes the position of value x of variable X in the interval [0, 1] against
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the background of the whole probability distribution of this variable. There-
fore, all methods associated with transformation of one variable by a suit-
ably chosen CDF of another variable are called grade methods. In statistical
literature the notion of grade is connected with Spearman rho index, which
measures the strength of monotone dependence of a pair of random variables
(X, Y ). For continuous variables X and Y this index equals correlation coef-
ficient corr(FX(X), FY (Y )) of X and Y variables transformed by their CDFs,
and is called grade correlation.

The core of analysis and interpretation of objects/variables table is compar-
ison of object with object (record with record) and of the values of one variable
values with the values of another variable. In both cases sequences of vari-
able values are compared. A measure of differentiation between two ordered
sequences is needed to measure the strength of dependence between them and
departure of this pair from regularity. Such a differentiation allows for building
a model in the set of objects/variables tables, referring to the model of mono-
tone dependence of bivariate probability distributions. The framework of this
model was introduced in Kowalczyk et al. (2004). This model is called mix-
ture of bivariate distributions with regular monotone dependence and research
concentrates on model identification and its robustness.

As mentioned, in order to introduce this model it is necessary to trans-
form the objects/variables table so that it can be treated as a probability table
of bivariate distributions. The distribution itself is just a model for the ob-
jects/variables table, or a pair (Objects, Variables), or, more universally, of
(Rows, Columns), the respective terminology being appropriate for the sets of
m objects and k columns. To generalize this model to an infinite distribution
we can change the terminology to (Vertical, Horizontal) but we can also stay
with (Rows, Columns), meaning countless number of rows and columns.

What are the conditions for treating (Rows, Columns) table as a probabil-
ity table of a bivariate distribution? First of all, cells in the table must be
nonnegative; when we divide each cell by the total sum of all cells we obtain
the table which formally is a probability table of a certain distribution. The
subsequent condition asks whether such addition and division are reasonable.
It is very difficult to fulfill this condition, perhaps it would be possible to con-
sider when such operations are allowed, basing on measurement theory where
concept of meaningfulness exists. Formally, a parameter of an image of some
relational structure is meaningful when it has a prototype in this structure and
can be obtained from this prototype with the help of admissible measurement
scale. To build meaningful probability table from the table objects/variables,
it is necessary to describe the set of such tables with accompanying relations
where prototypes of adding and dividing have sense.

The family of objects/variables table which without reservation can be trans-
formed into a family of probability tables is the family of contingency tables
obtained from an N × 2 table where N objects are described by two nomi-
nal or ordinal variables with, respectively, m and k values. For example in
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election with N eligible voters we can have two variables: “party chosen” and
“province of voter”. This results are unobservable in the case of first variable,
but a “province/party” table can be obtained from data available for the elec-
toral commission, in which each cell is the number of voters in this province for
this party. Here it is completely reasonable to add values in cells horizontally
as well as vertically, and also sums of column, sums of row and total sum are
meaningful.

The simplest grade correlation consists in transformation of a single interval
or categorical variable. CDF is a basic term describing distribution of both
variable and random variable. For interval random variable its transformation
of X by FX , i.e. variable FX(X), is obviously uniform.

For a categorical variable with values x1...xk its transformation of X by FX

are points p1, p1 +p2, ..., 1 in the unit interval. To build from it a uniformly dis-
tributed random variable it is necessary to uniformly “blur” the probability pi

for every i...k in the interval from (p1 + ...+pi−1) to (p1 + ...+pi); in probability
theory such a transformation is performed by suitably defined probability trans-
formation function. The length of this interval is exactly equal pi. This simplest
grade transformation is used, e.g., to examine a pair of categorical variables with
respectively m and k categories, when we transform them by “blurred” CDF.
Let the probability table pij describe the probability of occurrence of an object
of the ith category for the first variable and of the jth category for the sec-
ond variable, i = 1m, j = 1k, then the resulting grade transformation will be
probability density:

h(u, v) =
pij

pi+p+j

where pi+ = pi1 + ... + pik and in a similar way p+j = p1j + ... + pmj . Density
h attains its values almost everywhere in a unit square and is constant on
rectangles, therefore it is possible to draw its chart (Fig. 1).
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Figure 1. Table T1 with values of exemplary data (left) and map of densities
h(T 1) for this data with color of the cell background corresponding to the value
of density (right).
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Density h is constant and equal 1 for the whole unit square when variables
X and Y are independent, so its chart – called overrepresentation map – is
uniformly grey for all rectangles (Fig. 2). The rectangles are filled with color
corresponding to the value of overrepresentation depicted by each rectangle:
grey for value equal 1, approaching white when overrepresentation value is less
than 1 and approaching black when overrepresentation value is higher than 1.
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Figure 2. Overrepresentation maps (map of densities): table with constant
density (left); similar table but the density of cell (4,2) is higher than of the rest
(right).

The width of columns corresponds to the share of each column in the whole
table, the same applies to the width of rows. Respectively the size of pij rectan-
gle corresponds to the share of this cell in the whole table. Overrepresentation
maps help in taking an overview on distributions of rows and columns. It is also
possible to draw lines showing the centres of mass of columns and of rows, as
shown in the next section.

Basic grade concepts may seem elderly, and indeed they are. The foundations
of grade exploration are over one century old. The most important concepts were
created by Gini and Lorenz at the beginning of 20th century. However, Lorenz
curve and Gini index continue to be the basis for numerous statistical analyses,
and for considerations oriented at decision making.

Originally, Lorenz curve described differentiation between two variables, with
the first consisting of earnings of selected group of people and the second con-
taining number of people in each group. The data made table with two columns
[(xi, ni), i = 1, ..., m], where m is the number of groups. Both variables were
then normalized by creating vectors:

q = (qi, i = 1, . . . , m) =

(

xi
∑m

j=1
xj

, i = 1, . . . , m

)

,

p = (pi, i = 1, . . . , m) =

(

ni
∑m

j=1
nj

, i = 1, . . . , m

)

.
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Vectors q and p are called probability vectors, because their components
have values in interval [0, 1] and sum to 1. With every selected ordering of
groups it is possible to sum cumulatively components of every vector and then
compare them both and therefore create the sequence of points in unit square:
{(Si =

∑i

j=1
pj, Ti =

∑i

j=1
qj); i = 1, . . . , m}.

If the sequence is preceded by the point (0,0) and consecutive points are con-
nected by lines, then broken line in the unit square might be drawn connecting
points (0,0) and (1,1). If everybody’s earnings are equal, then vectors p and
q are equal, and curve lies on the diagonal connecting points (0,0) and (1,1);
otherwise the curve lies under or above the diagonal, or crosses it.

There are as many different curves as there are possible orderings of groups.
Lorenz curve bases on the ordering when quotient qi/pi is non-increasing, there-
fore curve is convex and lies under the diagonal (or on the diagonal when vectors
pi and qi are equal), as seen in Fig. 3. The curves based on any other ordering
are drawn between the Lorenz curve and its counterpart drawn symmetrically on
the other side of diagonal, called upper Lorenz curve and based on the ordering
of groups exactly opposite to the one for Lorenz curve.
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Figure 3. Concentration curves for variables from the example T 1: left – C(Y 1 :
Y 2), right – with added maximal concentration curve Cmax(Y 1 : Y 2).

Area between diagonal and a curve is expressed by an integral:
∫ 1

0
(x −

C(x))dx. The integral is equal to the difference between 1/2 (average value of
diagonal) and average value of curve C(x). In case of two extreme possibilities
curve C(x) lies on the side of square: bottom horizontal/vertical right (and its
average is equal 0), or vertical left / upper horizontal (and its average is equal 1).
So, the area between diagonal and curve has values in interval [−1/2, 1/2].
To get a conventionally normalized index with values in the interval [0, 1] the
difference of diagonal average and curve average is doubled, and the normalized
index of curve C is denoted ar : ar(C) = 2

∫ 1

0
(x − C(x))dx.
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Index ar is equal to twice the absolute difference between the diagonal and
the curve. Index ar calculated for Lorenz curve is called Gini index. In bivariate
model the plot of CDF is called concentration surface (in analogy to concen-
tration curve). Grade model is thoroughly described in Kowalczyk et al. (2004)
and Książyk et al. (2005), where it is shown that for the convex curve index
ar is maximal and called armax. Index ar is a very important concept used in
other parts of grade data exploration (especially in outlier detection), hence it
was introduced here.

2.2. Grade Correspondence Analysis (GCA)

GCA is the main tool used in grade data exploration. The purpose of the al-
gorithm is to reorder the rows and columns of a table to maximize a certain
measure of dependence between variables and objects, namely the Spearman’s
Rho (ρ∗). It proceeds by alternating permutations of rows and columns. The
rule for choosing the next permutation guarantees that ρ∗ is increased at each
step, as shown in Ciok et al. (1995). The algorithm stops when the rule can-
not produce further improvements. GCA is a Monte Carlo method, and so
the termination of the process does not mean that the largest possible ρ∗ has
been reached, but practice proves that repeating the algorithm over 10 ∼ 100
times produces orderings with values of ρ∗ very close to the highest possible, as
shown in Matyja (2002). When the table is small it is also possible to check all
permutations or rows and columns and find the maximum ρ∗.

Spearman ρ∗ originally was defined for continuous distributions, however
it may be defined also as Pearson’s correlation applied to distribution after
the grade transformation. The grade distribution may be defined for discrete
distribution too, and it is possible to calculate Spearman ρ∗ for probability table
P with m rows and k columns, where pis is the frequency (“probability”) of ith
row in sth column:

ρ∗(P ) = 3

m
∑

i=1

k
∑

s=1

(pis(2Srow (i) − 1)(2Scol(s) − 1))

where:

Srow(i) =





i−1
∑

j=1

pj+



+
1

2
pi+

Scol(s) =

(

s−1
∑

t=1

p+t

)

+
1

2
p+s

and pj+ and p+t are marginal sums defined as:

pj+ =

k
∑

s=1

pjs, p+t =

m
∑

t=1

pts.
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GCA tends to maximize ρ∗ by ordering rows and columns according to their
so called grade regression, which is “the centre of mass” of each row or of each
column. Grade regression for columns is defined as:

Regrcol(s) =

∑m

i=1 (pisSrow (i))

p+s

and for rows as:

Regrrow(i) =

∑k

s=1 (pisScol(s))

pi+

.

Grade regressions calculated for previously presented example are shown as
horizontal and vertical lines in Fig. 4. This figure illustrates also how GCA
works. If we calculate the grade regression for columns and sort the columns
by its values the regression for columns will increase, but regression for rows
will change. Then, if we sorted regression for rows, regression for columns
changes. Still, as proved in Ciok et al. (1995) each sorting of the grade regression
increases the value of Spearman ρ∗. The number of possible states (combination
of permutations of rows and columns) is finite and equal k!m! and so the GCA
must stop.

Each time the value of Spearman ρ∗ increases, and the last ordering produces
the largest ρ∗, called local maximum of Spearman ρ∗.

The output from GCA depends on the initial permutation of rows and
columns, and if we order the reversed initial permutation, we achieve symmet-
rically reversed local maximum, therefore by local maximum we mean a pair of
ρ∗: original and its reversal.

For more irregular examples than the one shown here it is necessary to try
many initial permutations and choose the result with the highest ρ*. GCA
at first randomly permutes rows and columns and reorders them to achieve a
local maximum. This process is iterated as many times as needed (typically
100 iterations) and the result with the highest ρ∗ is chosen. If we checked all
possible start permutation the result would be the global maximum of ρ∗ (the
largest possible in the table).

It is important to state that calculation of grade regression requires non-zero
sum of every row and column in a table, so this requirement applies also to the
GCA. (More information on GCA is available in Kowalczyk, Pleszczyńska and
Ruland, 2004, and in Matyja, 2002.)

2.3. Grade Correspondence Cluster Analysis (GCCA)

Cluster analysis aims at discovering structures in data, but without explaining or
interpreting why these structures exist. Typically it sorts different objects into
groups so that similarity between two objects is maximal if they belong to the
same group and minimal otherwise. Grade Correspondence Cluster Analysis
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Figure 4. Overrepresentation maps showing step by step how GCA works: (a)
map before ordering, horizontal lines are grade regression for columns, vertical
for rows; (b) rows are ordered; (c) columns are ordered; (d) final ordering with
cell values shown.

is no different – it bases on optimal permutations of data ordered earlier by
GCA to aggregate the most similar rows or similar columns together. Resulting
clusters can be only non-overlapping and the number of required clusters must
be specified by an analyst. Grade clustering algorithm splits a series or rows
into specified number of clusters trying to maximize both strength and regularity
of dependence of a new table, which would be obtained by aggregation inside
clusters. The respective aggregated probabilities in this table arose from sums
of component probabilities in initial, optimally ordered table, and number of
rows in the aggregated table equals the desired number of clusters.

Exactly the same procedure as with rows goes with columns, as they can
be separately clustered. However, rows and columns in the initial table may be
aggregated simultaneously, therefore GCCA is a two-way clustering method (as
it allows to simultaneously cluster rows and columns). Clustering of only rows
or of only columns is called single clustering, whereas clustering of both rows
and columns is called double clustering. Comparison of both methods can be
found in Ciok (2000), and because double clustering bases on the sequence of
two single clusterings, cluster determination is common to both methods.
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As Fig. 5 shows, GCCA forms clusters only of adjacent rows (columns) in
the GCA optimal permutations (Ciok, 2004). GCA permutes the rows and
columns of data table in such a way that they are ordered according to the val-
ues of respective grade regression functions. When optimal ordering is found by
GCA it is possible to aggregate adjacent objects and adjacent variables (GCCA
forms clusters by further discretization of grade regression functions) and there-
fore to set a priori number of clusters consisting of objects (or variables) with
distributions as similar as possible.
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(a)           (b) 

Figure 5. Overrepresentation maps: (a) ordered by GCA; (b) rows divided
into 3 clusters separated one from another by two black horizontal lines.

GCCA maximizes the grade correlation coefficient of the aggregated table
(therefore according to terminology used in Ciok, 2004, clustering by GCCA is
of the optimization type). It can be characterized as a nonhierarchical method
generating non-overlapping clusters. It slightly resembles the k-means method,
because this coefficient expresses within-cluster diversity as well as differences
among clusters; however, the diversity measure being used is the main difference
between both methods. How optimal clusters are set is fully described in Ciok
et al (1995), Kowalczyk, Pleszczyńska and Ruland (2004) and Ciok (2004).

Clustering methods may be also categorized according to what kind of input
data they need. Many of them are designed for one sort of input data, but GCCA
is applicable to any kind, as long as they can be transformed into probability
table; however in case of values of nominal data they should be previously turned
into respective separate “dummy” variables and, as in case of GCA, zero sums
of rows or columns are not allowed.

Let us stress that the number of clusters is set a priori by the analyst and
there is no obvious way on deciding on what number of clusters should be
applied. In case of empirical data it depends on the goal of aggregation.
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2.4. Detection and analysis of outliers in data

Last but not least, grade data analysis enables finding objects or variables highly
departing from main trend in data, and to separate these objects (or variables)
into different sub-tables. Then both the sub-table following main trend and
the outlying sub-table are analyzed (Szczesny 1999, 2000). This feature distin-
guishes grade data analysis from classical analyses in supposing that outlying
objects could be treated as another table, which may be governed by a different
trend.

The main concept of regularity in grade methods is that when table belongs
to the family of tables called TP2 (totally positively dependent of order two)
it guarantees highly regular monotone trend between row variable and column
variable. Such a highly regular table is, for example, a discretized binormal
table. In case of empirical data, if ordering of any probability table by GCA
increases its ρ∗, then this table at the same time becomes closer to TP2 table.
Outlier detection consists in looking for rows (or columns) which do not fol-
low the monotone trend introduced by GCA, and then moving these rows (or
columns) to a separate sub-table called OUT (outliers sub-table). Not excluded
rows form a sub-table called FIT, which has equal or higher ρ∗ than the original
table, and usually is more regular.

During outlier detection (performed after ordering the table with GCA)
rows and columns are looked for in the same way, basing on concentration in-
dex ar ∈ [−1, 1] and on maximal concentration index armax ∈ [0, 1]. Index
ar measures departure between two univariate distributions, while armax mea-
sures upper-bound departure between them. They are calculated for all pairs
of rows and/or all pairs of columns. To obtain armax for a given pair of rows
(i, j), columns are permuted until the respective ar reaches its maximum. Thus
ar(i, j) ≤ armax(i, j) with equality holding for all pairs (i, j) if and only if
the table belongs to TP2. The closer a table is to a TP2, the more similar
is the set of ar(j : i) to the set of armax(j : i). Therefore, the distance of a
table P from TP2 can be evaluated from two scatterplots of points, for rows:
{(ar(j : i, row(P )), armax(j : i, row(P ))), i = 1, . . . , m, j = i+1, . . . , m}, and for
columns: {(ar(j : i, col(P )), armax(j : i, col(P ))), i = 1, . . . , k, j = i + 1, . . . , k}.

The measure is based on a subset of points in a scatterplot, which corre-
spond to a particular row of table P with m rows and k columns. A subset
corresponding to a row contains m− 1 points. Euclidean distance from the line
ar = armax is calculated for every point. The expectation of all distances in a
particular subset is denoted AvgDistrow:

AvgDistrow (i ;P) =

i−1
∑

s=1

armax(i : s ; row(P)) − ar(i : s ; row(P))

(m − 1 )
√

2
+

m
∑

s=i+1

armax(s : i; row(P)) − ar(s : i ; row(P))

(m − 1)
√

2
, i = 1, . . . , m .
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For columns, the respective measure is called AvgDistcol :

AvgDistcol(j ;P) =

j
∑

t=1

armax(j : t ; col(P)) − ar(j : t ; col(P))

(k − 1 )
√

2
+

j
∑

t=j+1

armax(t : j; col(P)) − ar(t : j ; col(P))

(k − 1)
√

2
, j = 1, . . . , k

Rows with highest values of AvgDist (and therefore departing from the main
trend) are excluded to sub-table OUT, while the rest of rows remain in sub-table
FIT. There is no easy way to deduct how many rows should be treated as outliers
and an analyst has to subjectively decide what threshold to set. Fig. 6 shows a
simple example with nine objects – here rows “2161” and “1558” have the highest
AvgDist values and will be considered outliers.
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Figure 6. (a) An exemplary overrepresentation map of data ordered by GCA;
(b) plot of AvgDistrow values, the leftmost rows entitled “2161” and “1558” have
the highest values and are outliers, while rows “1148”, “259” and “118” do not
diverge from the main trend.
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2.5. Summary

A typical grade exploration analysis consists of all points mentioned above.
First, we transform input data into a probability table. Then, GCA is applied
to the table and optimal permutations of rows and columns are found. The pair
of permutations corresponding to the highest ρ∗ is then chosen. Third, GCCA
is applied to ordered table to find the desired number of row (and/or column)
clusters.

Afterwards outliers are detected and moved to the sub-table called OUT,
while the remaining objects form the sub-table called FIT. Both sub-tables are
then independently analyzed by following the procedure applied to the original
table (i.e. GCA and GCCA are applied) and results are interpreted. Usually
interpretation of FIT sub-table confirms main conclusions from the whole table,
while interpretation of OUT sub-table brings new and important information.

In the next section we will illustrate grade exploration concepts by analyzing
data from a real economic survey. Besides, it is worth to note that in years
2000-2007 grade data analysis was applied to real datasets from many fields of
sciences: analysis of NMR medical images (Grzegorek, 2005, 2007); text mining
and word clustering (Jarochowska and Ciesielski, 2006); assessing quality of e-
learning materials (Stasiecka, Płodzień and Stemposz, 2006); questionnaire data
(Pleszczyńska, 2007).

3. GCA applied to selected data from the European Eco-

nomic Survey 2005

3.1. European Economic Survey 2005 (EES’2005)

In EES’2005 (http://www.eurochambres.be) 1352 Polish companies from the ser-
vicing sector took part. Each of them answered six pairs of questions about the
present and future situation concerning six economic factors: business confi-
dence, total turnover, domestic and export sales, employment and investment.
Only three pairs : domestic sales, employment and investment are analyzed
here, just to give a short review of the method and results. The corresponding
questions are shown in Table 1.

All these questions have coded answers: for “decrease(d)” (“pessimistic”) the
code is “1”, for “not change(d)” (“neutral”) the code is “2” and for “increase(d)”
(“optimistic”) the code is “3”. The data matrix contains values of these coded
answers (columns) for particular companies (rows).

3.2. Creating data matrix and its preliminary visualization

As stated before, in the grade framework input data should be a two-dimensional
table with non-negative values and positive sums of rows and columns. A part
of data matrix for some companies is shown in Table 2. Six variables are taken
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Table 1. Questionnaire of the European Economic Survey 2005 (6 questions out
of 12).

1. Compared with 2003 revenue from
domestic sales in 2004 has: increased/not changed/decreased

2. We expect that revenue from
domestic sales in 2005 will: increase/not change/decrease

3. Compared with 2003, the size of our
workforce in 2004 has: increased/not changed/decreased

4. We expect that during 2005 the size
of ourworkforce will: increase/not change/decrease

5. Compared with 2003, our
level of investment in 2004 has: increased/not changed/decreased

6. We expect that during 2005 our
level of investment will: increase/ not change/decrease

Table 2. The beginning and the end of the considered part of the EES’2005
data matrix (with the preliminary ordering of companies and variables).

Company employ- employ- invest- invest- sales- sales-

No. 04 05 04 05 04 05

1 3 2 1 2 2 1

2 1 3 1 1 1 3

3 3 2 1 3 3 2

4 2 1 2 2 1 1

5 2 1 2 1 2 3

: : : : : : :

1352 2 1 3 2 1 3

into account, corresponding to respective rows of Table 1. There are no missing
data in the considered part of EES’2005 questionnaire.

After applying GCA to this preliminary data matrix we get suitable GCA
permutations of rows (companies) and of columns (variables - economic factors);
it means that columns and rows are simultaneously ordered to detect main trend,
as illustrated in Table 3.

Table 3 shows the beginning and the end of the post-GCA data matrix, rep-
resenting the opposite extreme subsets of companies. Both subsets consist of
companies for which there is no balance between company’s “output” (domestic
sales) and company’s “input” (employment and investment). At the begin-
ning there are companies with optimistic actual situation and also optimistic
prospects for domestic sales, accompanied by pessimism in investment and em-
ployment observed in 2004 (but expecting to get better in 2005). At the end,
domestic sales 2004 and domestic sales 2005 are pessimistic, as contrasted with
positive efforts in investment and employment realized in 2004 and expected to
be realized in 2005.
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Table 3. Data from questionnaire with rows and columns ordered by GCA
(beginning and end of the post-GCA matrix).

GCA company sales sales invest employ invest employ

rank No. -04 -05 -05 -05 -04 -04

1 1143 3 3 3 1 1 1

2 894 3 3 1 1 1 1

3 717 3 3 3 1 1 1

4 1304 3 3 2 2 1 1

: : : : : : : :

: : : : : : : :

1350 1200 1 1 2 3 3 3

1351 754 1 1 3 3 3 3

1352 1104 1 1 2 3 3 3

Adjacent companies have similar profiles. These profiles gradually change in
the post-GCA data matrix from optimism in domestic sales (for 2004 and 2005)
accompanied by pessimism in employment and investment in 2004, to a reverse
situation, passing through intermediate stages. Similarity of adjacent rows and
columns enables uniting adjacent records and adjacent variables into clusters.
Thus, the completed Table 3 will show the so called main trend of monotone
relationship between companies and variables.

Data from the survey are visualized by means of two overrepresentation
maps : one with raw data ordered in the preliminary way and another one with
rows and columns ordered by GCA. When we confront these two maps, we see
how different orderings of rows and columns are, and that the cells are scattered
more randomly in the unordered map (Fig. 7).
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Figure 7. Overrepresentation maps for raw data (left) and data ordered by GCA
(right). Note different orderings of columns in both maps. Orderings of rows
are also different, what can be seen in the related data matrices.
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The map with raw data is rather unreadable, whereas the map sorted by
GCA gives us a more clear view, arranging together similar rows and columns.
As introduced in Section 2.1, overrepresentation map consists of rectangles, col-
ored in one of five grades ranging from white to black, that picture the overrep-
resentation or underrepresentation of the answer given by a particular company
to a particular economic factor. The interpretation is as follows: the color for
the i-th company and j-th economic factor is white or light gray when the fac-
tor’s value is relatively small (strong or weak underrepresentation), middle-gray
in the intermediate cases (fair representation), and dark gray or black when
it is relatively large (strong or weak overrepresentation). “Fair representation”
takes place when the coded answer in particular cell is equal (or almost equal)
to the product of the means of this particular column and this particular row
and finally divided by the mean of the whole matrix. Overrepresentation or
underrepresentation in each cell is established with respect to the fair represen-
tation for this cell. The related scale is shown in Fig. 7 at the right-hand side
of each map.

The widths of columns show the contribution of particular variable (eco-
nomic factor in 2004 or in 2005) in the whole data matrix. When the column
is wide, the contribution of variable is big (i.e. generally optimistic). Narrow
columns indicate relatively small (pessimistic) contribution of the particular
variable. For better understanding (Fig. 8), mean values of columns are shown
underneath the map, useful in recognizing the smallest and the greatest con-
tribution of variables in data matrix. In our case the most pessimistic variable
with the smallest mean (2.13) is employment 2004, and the greatest value 2.47
occurs in domestic sales 2005. But the gap between minimal and maximal
contribution is rather small.

Analogously, the height of each row (company) shows its contribution to the
whole matrix – the higher is the row, the more optimistic are the company’s
answers (more precisely the sum of coded answers is larger).

The most important aspect of the overrepresentation map is the possibility
of arbitrary segmentation of records into clusters by horizontal lines (visible on
the map). After examining different numbers of possible clusters we found that
24 are most useful for interpretation (Fig. 8). In the middle of the map there is a
strip of 207 rows with fair representation in each cell; all answers in a particular
record are identical, they differ only in the height of the row (the height of the
row is the smallest when there are only answers “1” and the largest when there
are only answers “3”). This phenomenon will be shortly discussed in Section 3.6.

The next step of our analysis is selecting companies fitting the main trend of
the whole data matrix (visible as a saddle surface, where the dark rectangles are
lying possibly close to a decreasing curve from the upper left to the lower right
corner) in contrast to companies, which decidedly differ from others and disturb
the main structure. Elimination of the outlying companies from the whole data
set yields a more regular matrix (better matching the main tendency) and helps
us in practical interpretation of data fitting the main trend.
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Figure 8. Overrepresentation map with 24 clusters for records and 3 clusters for
variables (completed by mean values). The first records from cluster 1 and the
last records from cluster 24 are shown in Table 3 and 16 records from cluster
5 (close to the mark visible as a stroke shorter than lines between clusters) are
shown in Table 4.

It is interesting to see whether the main trend in Fig. 8 is sufficiently regular.
A glimpse at Figs. 7 (right) and 8 shows that this matrix is not too regular.
Let us start with an example indicating 16 records belonging to the 5-th cluster
in Fig. 8 (from 233-rd to 248-th) by a mark (a stroke shorter than the lines
between clusters).

A perfectly regular structure (trend), as shown in Fig. 4, is a rare occurrence.
We usually have many records, which do not fit and disturb this structure. Six
of them are presented in Table 4. They are visible even in Fig. 8, where the
difference between them and the adjacent clusters, fitting regular structure, is
visible. According to the regular structure, in the 5-th cluster domestic sales
2004 and domestic sales 2005 should be dark grey or black (Fig. 8), having
values close to 3 (Table 4). But when we look at the map and the table we see
that the order and regularity are disturbed. In cluster 5 in the domestic sales
2004 column a white line is visible, which is also mirrored in the Table 4 by 1’s.

3.3. Dividing records into two parts: fitting the main structure and
diverging from it

Cell colors in Fig. 9 present the grade of deviation from the main structure for
the pairs of companies. If the rectangle is dark, the pair of companies differs
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Table 4. Sixteen records from cluster 5 including six (grayed) not fitting the
main trend.

GCA sales- sales- invest- employ- invest- employ-

rank 04 05 05 05 04 04

233 3 3 3 3 2 2

234 3 3 3 3 2 2

235 3 3 3 3 2 2

236 1 2 2 1 1 1

237 1 2 2 1 1 1

238 1 2 2 1 1 1

239 2 2 3 2 2 1

240 2 2 3 2 2 1

241 2 2 3 2 2 1

242 2 2 3 2 2 1

243 1 3 3 3 1 1

244 1 3 3 3 1 1

245 1 2 2 3 1 2

246 3 2 1 1 2 2

247 3 3 3 1 3 2

248 3 3 2 3 2 2
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Figure 9. (left) Map indicating companies outlying from the main structure and
(right) graph of AvgDist values with companies reordered according to their
departure from the main structure, the higher is the AvgDist value the stronger
is departure (right).

strongly from the main trend, and if the rectangle is light – pairs of companies
fit the main structure.

If we want to carry out deeper analysis we have to calculate the values of a
statistic AvgDist (Section 2.4), which evaluates departure of any row from the
main structure. Thanks to this statistic we are able to segment records into
two groups – the group called FIT and the group called OUT. We execute the
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division by separating records with small values of AvgDist (FIT population on
the left part of the graph – Fig. 9) and records with big values of AvgDist (OUT
population on the right part of the graph). After such partition we can analyze
each group individually. Before this we apply GCA to FIT and OUT to find
new structures (trends). New overrepresentation maps are shown in Fig. 10;
the first refers to FIT (885 rows) and the second to OUT (467 rows). We see
that differences between FIT and OUT are large. On FIT map big separate
clusters concentrating quite similar records are visible, while in OUT map the
clusters are less homogeneous. The arrangement of variables in FIT and OUT
is different, in OUT map the arrangement of variables was changed, while in
FIT map the arrangement is the same as the original one. Beneath the maps
(Fig. 10) mean values are shown, indicating the contribution of variables in FIT
and OUT. In both FIT and OUT map the smallest mean is employment 2004
and the highest is domestic sales 2005, similarly like in the whole data matrix
from Fig. 8.

By interpreting the mean values, shown in Fig. 10, we can learn a lot about
data. For example, when we compare sums of mean values for 2004 and 2005
(the middle table in Table 5) we can say that generally situation in servicing
sector in 2005 is seen more optimistically (higher values) than in 2004 (lower
values). Mean values for FIT for 2004 and 2005 are respectively bigger than
mean values for OUT for 2004 and 2005. This suggests that companies in FIT
better manage present situation than those in OUT and have better prospects
for the future.
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Figure 10. Overrepresentation maps: FIT (left) and OUT (right) - both after
performing GCA completed by total means vectors (under the maps). Note
different arrangements of variables.



Grade analysis of economic climate survey data 803

Table 5. Tables of mean values for FIT and OUT. The upper table presents
mean values for all variables for FIT and OUT; the middle table refers to mean
values for years 2004 and 2005; the lower table shows the total mean values.

sales- employ- invest- employ- sales- invest-

04 04 04 05 05 05

FIT 2.49 2.26 2.39 2.39 2.59 2.55

OUT 1.96 1.89 2.10 2.08 2.25 2.22

2004 2005

FIT 7.14 7.53

OUT 5.95 6.55

FIT 2.445

OUT 2.083

3.4. Set of records fitting the main trend (FIT)

As shown in Fig. 10, FIT overrepresentation map has a more consistent structure
and regularity than OUT map. For a more concise analysis we have to divide
the whole FIT map into clusters. We usually choose this partition, which gives
visualization with possibly good interpretation. The chosen number of clusters
in our case was 14, as shown in Fig. 11. The obtained clustering is still not
very regular (outlying records in clusters 2, 5 and 13 are indicated in Fig. 11 by
marks) but extremely homogeneous inside each cluster.
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Figure 11. FIT overrepresentation maps without clustering (left) and with 14
clusters (right).

Now we calculate mean values for particular clusters, so as to get deeper
understanding of the whole FIT data matrix. The mean values are shown on
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the map of Fig. 12. We analyze the first and the last clusters characterized by
very interesting properties.

The description of cluster 1 is: variables as domestic sales in 2004, domestic
sales in 2005 and investment in 2005 have the highest values – each above 2 –
meaning that they are estimated much more optimistically than such variables
as: employment in 2005, investment in 2004 and employment in 2004, whose
values fluctuate close to 1. We see that cluster mean values in the first cluster
tend to decrease from the left (2.79) to the right (1.11), what is in accordance
with the main trend in FIT.

2.79 2.71 2.44 1.88 1.45 1.11

2.85 2.9 2.48 2.03 2.06 1.7

2.91 2.78 2.63 2.78 2 1.91

3 2.64 2.47 2 2.64 2
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s
a

le
s
-0

4

s
a

le
s
-0

5

in
v
e

s
t-

0
5

e
m

p
lo

y
-0

5

in
v
e

s
t-

0
4

e
m

p
lo

y
-0

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 12. Clusters in FIT with mean answers inscribed into each cluster cell.

When we look at the pairs of variables in the first cluster we can compare the
mean answers of particular companies. Domestic sales in 2004 and domestic
sales in 2005 have the values of 2.79 and 2.71 – which we interpret as the
situation in 2004 and the forecast for 2005 being practically the same. The
next pair of variables: employment in 2004 and employment in 2005 makes
interpretation more complex, because the respective values are 1.11 and 1.88,
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meaning that businessmen might think about employment in the future much
more optimistically than it was in 2004. The most interesting pair of variables
are investment in 2004 and investment in 2005. There is a very big difference
between year 2004 and forecast for 2005, the two values being, respectively, 1.45
and 2.44, which can be interpreted that companies in the first cluster have hopes
for better profitable conditions in 2005 than in 2004.

Let us analyze cluster 14: the situation here is that the mean values for
domestic sales in 2004 and domestic sales in 2005 are still nearly equal but
with one essential difference: the values are very low, what we can interpret as
a pessimistic view (a reversal of the first cluster where the values were high).
Two pairs of variable values are different – employment and investment. The
assessment of employment in 2004 is much more optimistic than the forecast for
2005 (2.32 compared to 1.97) and the same can be said about investment (2.14
and 1.93).

The structure between clusters 1 and 14 is nearly regular. In the matrix
of aggregated clusters the post-GCA ordering of variables is the same as in
FIT before aggregation and the ordering of row clusters is similar as in FIT.
Yet, some cells in particular clusters disturb regularity, having high values of
AvgDist. The most outlying clusters in FIT are numbered 7 and 9 (mean 2.83
for employment in 2004 for cluster 7 is much bigger and 2.26 for investment
2005 in cluster 9 is much smaller than expected). As we can see each cluster
in FIT has its specific feature. But even when we have only basic information
about variables we can easily see the main tendency and anomaly of the whole
data matrix. See, e.g., cluster 8: means of all variables have all the value 2.59.
All the answers were the same and this cluster can be interpreted as follows:
businessmen marked answers automatically and without reflection (because it is
rather rare for every question to be answered identically). However, we do not
know whether these answers are based upon reliable information; so it could be
safer to exclude them from further analyses.

The next step in our analysis is to construct the rank correlation table
(Fig. 13), to compare outcomes of grade analysis with outcomes of a more
standard method.

As we can see all correlations are positive. The rank correlations table for
FIT is very regular (almost Robinsonian), which corresponds to the regularity
of trend in FIT. Variables close in the map have stronger correlation than more
distanced variables. The strongest positive dependence is between domestic
sales in 2004 and domestic sales in 2005 (value 0.67), next between investment
in 2005 and domestic sales in 2005 (0.59) and between investment in 2004
and employment in 2004 (0.51). So if domestic sales are high in 2004, the
businessmen seem to believe that the domestic sales in 2005 will be high too,
and there is a very similar case with correlation between domestic sales in 2005
and investment in 2005. And the next high correlation – employment in 2004
and investment in 2004, tells that increase of employment in 2004 mirrored the
increase of investments in 2004.
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Figure 13. The rank correlation table for FIT (variables ordered according to
the main trend).

The correlation matrix gives us only the most basic insight into the data
structure in FIT. Without further data exploration its usefulness is very re-
stricted. The more thorough and subtle information can be obtained only for
particular clusters of companies (Fig. 12).

3.5. Data outlying from the main structure (OUT)

Analogous analysis can be performed on data outlying from the main structure.
The first step is clustering. In our case we execute segmentation into 10 clusters,
so there will be 24 clusters together (14 in FIT and 10 in OUT). This will make it
possible to compare such two stage clustering with the initial clustering shown
previously in Fig. 8.

When we look at OUT map we see that in columns the arrangement of
variables has changed in comparison with FIT. On the left side are economic
factors from 2004 and on the right side are economic factors from 2005. As
we can see OUT group contains companies, whose answers from 2004 were
significantly different from answers from 2005. By analyzing the first cluster
(Fig. 14) we can say that variables of domestic sales in 2004, employment in 2004
and investment in 2004 reflect the optimistic view, while variables employment
in 2005, domestic sales in 2005 and investment in 2005 tend to reflect the
pessimistic view.

The analysis performed shows that the forecasts in the first cluster of OUT
are rather pessimistic and mean answers for 2004 are optimistic, in contrast
to the tendency in FIT population. This, though, is not surprising, as cases
outlying from the main trend usually have more or less different properties than
data in the whole matrix.
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Figure 14. OUT overrepresentation maps without clustering (left) and with 10
clusters (right).
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Figure 15. OUT overrepresentation map with 10 clusters and mean values in
each cluster.

This analysis shows that forecasts for the Polish companies in the servicing
sector belonging to the first OUT cluster are not optimistic. But we also should
remember that this data matrix of OUT contains just cases outlying from the
main trend, which can have very different properties than whole data from the
questionnaire.
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The aim of each grade data analysis is to find the main tendency of data and
to find variable or variables, which most strongly influence the order of other
variables. In our case, both in FIT and OUT, we find the most important and
the strongest variable – domestic sales 2004, which influences the respective
orders (in FIT and in OUT) of other variables.

The further research will explore other aspects of this data matrix.

3.6. Psychometrical remarks on the survey

Interpretation of the answers to the survey would be incomplete without cau-
tious analysis of the instrument itself. There are some points, which may play
important role during interpretation of the dataset.

The first problematic point is the meaning of terms used in questions. So,
“increase”, “decrease” and “no change” might be understood quite differently in a
small family business and in a big company employing 1000 workers. Employing
additional 5 persons in big company could be interpreted as an increase, or as
no change (5 workers is only 0.5% of 1000 workers, so the increase is extremely
small).

The second issue is: on what data were the answers based? We do not
know whether the data were sound, e.g. taken from accounting department, or
were just an “impression” without detailed analysis. The survey gives no direct
recommendation that the answer has to be based on actual data. Cluster filled
with 207 identical answers for every question might be a sign that sometimes
person was basing on imaginary data or gave “automatic” answers, without
deeper involvement.

The last issue is that any company is expected to be strong, dynamic and
developing. In case of a company facing decrease in employment and in level of
investment there is a possibility of intentional manipulation, resulting in giving
answers that hide the undesired truth. In other words some people might have
given answers more optimistic than they should have provided. Presenting a
company – even in an anonymous survey – as strong and developing might be a
part of company’s marketing strategy and may explain why there are so many
optimistic forecasts. The answers are generally strongly optimistic, that is why
mean answers in columns for the whole matrix are so high (over 2). However
Poland in year 2004 has joined the European Union and it can also be one
of possible explanations why in this year companies gave so many optimistic
forecasts.

4. Conclusions

GCA with posterior clustering has helped to find some especially interesting
groups of records in Survey 2005 (e.g. clusters 1 and 14 of FIT cases, and clusters
1 and 10 of OUT cases) and cluster 8 in FIT, which probably has disrupted the
revealed structure of data and thus made the interpretation of results rather
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difficult. There is however a psychometric reservation that the Survey itself has
weaknesses.

It is very important to stress here that our aim was to explore data, not
to test hypothesis or make a synthesis. We hoped to find some non-trivial
trends in data by separating rows into regular FIT sub-table and outlying the
trend OUT sub-table. It seems that servicing companies in FIT better manage
present situation than companies in OUT and overall have better prospects for
the future. Of course connecting this categorization with external information
on each company (for example about its profile or size) would help to point
which branches of servicing companies were doing badly or well. However, we
hope to do it in future work that will provide more information on profiles
of developing, collapsing and stagnant Polish companies, and also will cover
remaining economic factors from the original matrix and additional information
on company – provinces, number of employers, lines of business. Regrettably,
to both introduce grade framework to a reader and to analyze data we have had
to concentrate on the simpler version of data set.

Grade exploration of data supplements traditional methods. It is still pos-
sible to construct or use some existing indices that forecast general trend of
servicing trade, but such information gives only general view on condition of
the whole branch. Grade exploration allows for quickly grasping general trend
in data, and then to cluster companies with similar profiles. It is thus possible
to find isolated companies which, for instance, assess forecasts much worse than
their actual condition. And as an exploration method grade data exploration
does not test any hypothesis, but gives some hints what to test or to verify.
Grade exploration allows for extracting a more regular sub-table of original
table, free from disturbing objects, and to form another sub-table of outlying
objects that may help in gaining insight into the structure of analyzed data.
The data obtained by grade analysis might be then a basis for classical methods
used, for example, by the Central Statistical Office or the National Bank.
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