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1. Introduction

The discovery of Maximum Principle (MP) by L.S. Pontryagin and his stu-
dents V.G. Boltyanskii and R.V. Gamkrelidze in 1956–58 (see a description in
Gamkrelidze, 1999, and the preceding history in Sussmann and Willems, 1997,
and in Pesch and Plail, 2009), and especially the publication of the book by
Pontryagin, Boltyanskii, Gamkrelidze and Mischchenko (1961), gave a powerful
impetus to an explosive development of the theory both of the optimal con-
trol itself, and of extremum problems in general. An intriguing thing was that,
although the optimal control problems generalize the problems of classical cal-
culus of variations (CCV), the proposed method of their analysis seemed quite
different from the methods of CCV, and the relation between them was not
clear. The common opinion was that the authors created a "new calculus of
variations".

Since the original proof proposed in Pontryagin et al. (1961) was quite
uneasy both in its ideas and technique (at least requiring the university level
of mathematical background, and unaccessible for those having just engineering
level of mathematical education), a large number of attempts were made to
simplify the proof. On the other hand, many attempts were made to generalize
the MP to broader classes of optimal control problems.
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Not pretending to review the entire wealth of papers devoted to investigation
and development of MP, which is hardly a realizable task, we consider here its
central, to our opinion, line elaborated by Abram Yakovlevich Dubovitskii and
Alexei Alexeevich Milyutin during the 1960s and later years (mentioning just a
few papers of other authors, closely related to this line).

In their works, the following results were obtained:

a) A general approach to deriving necessary optimality conditions of the
first order in a very broad class of abstract extremum problems with constraints
(the so-called Dubovitskii–Milyutin scheme), which results in a stationarity con-
dition, called the (abstract) Euler–Lagrange equation. In particular, for smooth
problems with constraints of equality and inequality type, this condition read-
ily yields the Lagrange multipliers rule, and for problems of CCV it yields the
classical Euler–Lagrange (EL) equation. This scheme turned out to be universal
and, because of its simplicity and transparency, very popular.

b) To analyze the optimality of a given process, they proposed to consider a
family of associated smooth problems, in each of which one should write out the
corresponding stationarity condition (EL equation), and then in a sense "press"
all these conditions into one mutual condition, the MP.

Thus, the basis of all necessary conditions of optimality is the stationarity
condition — the Euler–Lagrange equation, while the MP is obtained as a result
(squeezing extract) of a family of these equations. In this sense, the relation
between MP and CCV was restored and clarified.

c) The above approach was applied in Dubovitskii and Milyutin (1965) to a
more general class of optimal control problems, those including state constraints
Φ(x, t) ≤ 0, which made it possible to obtain a generalization of Pontryagin’s
Maximum Principle.1 Its formulation was essentially new, because the adjoint
equation involved a measure in the right hand side.

d) Almost simultaneously with the state constraints, Dubovitskii and Mi-
lyutin considered also the mixed state-control constraints ϕ(x, u, t) ≤ 0 and
g(x, u, t) = 0 under the assumption of their regularity, and also obtained the
corresponding generalization of Pontryagin MP.

e) Finally, they also considered the general case of mixed constraints, without
the regularity assumption. However, this turned out to be a much more difficult
problem than all the preceding ones. Suffice to say that up till now (by 2009),
as far as we know, apart from Dubovitskii and Milyutin, only very few authors
have had the courage to consider such problems: Ter-Krikorov (1976), Dyukalov
(1977), Chukanov (1977, 1990), Yakubovich and Matveev (1994), probably no
one else.

1In earlier works of Gamkrelidze, based on another approach, only partial result was ob-
tained. In particular, the sign of the jump of the costate variable at junction points was not
specified; see Pontryagin et al. (1961).
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The matter is that the Lagrange multipliers at the mixed constraints are
linear functionals on the space L∞ , and it is well known that the space L∗

∞
of

such functionals is "very bad": its elements can contain singular components,
which do not admit conventional description in terms of functions.

Nevertheless, even for such problems, Dubovitskii and Milyutin, after sev-
eral years of intensive study, and using a very nontrivial technique, obtained a
generalization of MP. However, the result was quite unexpected: it turned out
that, for a given optimal process, there is a family of "partial" MPs, partially
ordered in their "power", which does not reduce to a usual "common" (the most
powerful) MP. The last one can exist only as an exception, in some specific
cases. This multiplicity (or uncertainty) is a "price" for the nonregular mixed
constraints.

It is worth noting that this uncertainty does not concern the so-called local
maximum principle (or Euler–Lagrange equation), which is the condition of
stationarity in the class of uniformly small variations.

Due to the works of Dubovitskii and Milyutin one can say that the question
of obtaining first order optimality conditions (MP) in optimal control problems
with ODEs is now completely solved. What remains to do for those problems
is to study the MP itself, i.e. to analyze its conditions and relations between
them, to specify it in different particular cases, etc., thus transforming it from
the goal of investigation into a working tool, and apply it to concrete problems.

(Note that both authors themselves were extremely skillful in the usage of
MP in various problems: in "deciphering" its conditions and extracting nontriv-
ial information.)

f) In the process of studying the extremum problems, both by Dubovitskii
and Milyutin, and by many other authors, the fundamental role of convex struc-
tures for the theory of extremum was revealed, which led to a rapid development
of the convex analysis (the name was proposed by the book of Rockafellar, 1970),
that earlier had been usually considered as just a special branch of geometry,
and since that time have been "promoted" to be the base of optimization theory.

From the very beginning of their research, Dubovitskii and Milyutin discov-
ered and repeatedly used convex structures. They made an essential contribu-
tion to convex analysis, including the famous theorem on nonintersection of the
convex cones, the theorem on the subdifferential of the maximum of convex func-
tions, the formulas for the subdifferential of max x(t) in the space C[0, 1] and
vraimax u(t) in the space L∞[0, 1], the notion of upper convex approximation
of a function at a point, etc.

Let us now pass to deeper details.
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2. General abstract problem with equality and inequality

constraints

In a Banach space X consider the problem

f0(x) −→ min, fi(x) ≤ 0, i = 1, ..., k, g(x) = 0, (1)

with scalar functions fi : X → IR, and an operator g : X → Y mapping to a
Banach space Y. Let be given an open set O ⊂ X, and a point x0 ∈ O analyzed
for a local minimum. Suppose that

(a) all fi are Lipschitzian in O and have directional derivatives f ′

i(x0, x̄)
for any x̄ ∈ X, that are sublinear functions in x̄;

(b) the operator g has a strict derivative at x0 , whose image g′(x0)X is a
closed subspace in Y .

Without loss of generality assume that f0(x0) = 0. Introduce the set of active
indices I = { i ≥ 0 | fi(x0) = 0 }. Note that automatically 0 ∈ I. Consider first
the main, nondegenerate case, when g′(x0)X = Y (the Lyusternik condition).

The Dubovitskii–Milyutin scheme for the analysis of problem (1) consists in
the following two steps (and two theorems).

Theorem 1 If x0 is a local minimum, then there can be no x̄ such that

f ′

i(x0, x̄) < 0 for all i ∈ I, (2)

g′(x0) x̄ = 0. (3)

Proof. Suppose such an x̄ does exist. By the Lyusternik theorem it is tangent to
the level set g(x) = 0 at x0 , i.e. there is a correction vector x̃ε with ||x̃ε|| = o(ε)
as ε → 0, such that the corrected point xε = x0 + εx̄ + x̃ε satisfies g(xε) = 0.
Then, (2) implies that for small ε > 0

fi(xε) = εf ′

i(x0, x̄) + o(ε) ≤ −cε, ∀ i ∈ I,

where c > 0 is some constant. Thus, the point xε satisfies all equality and
inequality constraints, and gives a smaller value of the cost, a contradiction
with local minimality of x0.

The system (2), (3) is the intersection of a finite number of open convex
cones f ′

i(x0, x̄) < 0 and the subspace g′(x0) x̄ = 0. This situation is a particular
case of a general one considered in the following

Theorem 2 Let Ω1, . . . , Ωm be nonempty open convex cones, and H be a
nonempty convex cone. Then Ω1

⋂

. . .
⋂

Ωm

⋂

H = ∅ ⇐⇒ there exists a
collection pi ∈ Ω∗

i , i = 1, . . . ,m, and q ∈ H∗ (from the dual cones), not all
zero, such that

p1 + . . . + pm + q = 0. (4)
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The authors called the last relation the Euler equation, but perhaps, as we
will soon see, a more proper name for it would be the (abstract) Euler–Lagrange
equation.

Thus, analyzing a local minimum in Problem (1), we made two steps: 1)
we passed to conical approximations of the cost and constraints (more precisely,
of the sublevel sets of the cost and inequality constraints and of the level set of
equality constraint), that should not intersect, and 2) rewrote equivalently the
nonintersection of these cones in the primal space as some equation in the dual
space.

The advantage of writing equation (4) in dual variables is that, for Ωi =
{ x̄ | f ′

i(x0, x̄) < 0}, if it is nonempty, one has pi = −αi x
∗

i , where αi ≥ 0
and x∗i ∈ ∂f ′

i(x0, ·); in the smooth case simply pi = −αi f
′

i(x0); and for
H = ker g′(x0) with surjective g′(x0) one has q = −y∗ g′(x0) with some y∗ ∈ Y ∗,
so we obtain

∑

i∈I

αi x
∗

i + y∗ g′(x0) = 0

(the stationarity condition). These αi, y
∗ are Lagrange multipliers.

Summing up we get the following

Theorem 3 Let x0 be a local minimum in Problem (1). Then there exists
a collection (α0, ..., αk, x

∗

0, ..., x
∗

k, y
∗) , where all αi ≥ 0, x∗i ∈ ∂f ′

i(x0, ·) and
y∗ ∈ Y ∗, such that the following conditions hold:

(i) nontriviality:
k
∑

i=0

αi + ‖y∗‖ > 0;

(ii) complementary slackness: αi fi(x0) = 0, i = 1, ..., k;

(iii) Euler–Lagrange equation:
k
∑

i=0

αi x
∗

i + y∗g′(x0) = 0.

(In the degenerate case, when g′(x0)X 6= Y, these conditions obviously hold
with all αi = 0 and some y∗ 6= 0. The case when some Ωi0 = ∅, is also trivial
with αi0 = 1 and x∗i0 = 0. )

In case of smooth functions one gets the "classical" Lagrange multipliers
rule:

k
∑

i=0

αi f
′

i(x0) + y∗g′(x0) = 0 . (5)

Saying here "classical" we mean that this condition is a natural generaliza-
tion of the classical Lagrange multipliers rule for problems on conditional ex-
tremum (with equality constraints) in the finite-dimensional spaces to smooth
problems with equality and inequality constraints in spaces of infinite dimension.
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Unfortunately and really strange, equation (5) was not explicitly written in
Dubovitskii and Milyutin (1965), though, as we just have seen, for smooth prob-
lems it immediately follows from the Dubovitskii–Milyutin scheme. Formally,
the Lagrange multipliers rule for problems with both equality and inequality
constraints, but only in IRn, was first published (two years later) in Mangasar-
ian and Fromovitz (1967).

Remark 1 An important feature of Problem (1) is that it admits only a fi-
nite number of inequality constraints, but arbitrary number, even infinite, of
equality constraints that are considered as one united equality constraint. In
view of this, inequality constraints can be studied separately and independently
one from another and arbitrarily added to the problem (it is even possible to
create a "catalog" of inequality constraints), whereas any collection of equality
constraints should be studied as a joint unit that can not be split into separate
constraints (so, creation of a "catalog" of equality constraints is a much more
difficult task because of combinatorial obstacles).

Note also that inequality constraints and the cost come similarly into the
necessary conditions (except for the complementary slackness, which is just a
formal notation for eliminating the inactive constraints), unlike the equality con-
straint. Moreover, Assumption a) is the same for the inequality constraints and
the cost, while Assumption b) for the equality constraint is quite different. For
these reasons, the inequality constraints and the cost are denoted by the same
letter f (with corresponding indices), while the equality constraint is denoted
by another letter g.

Remark 2 The Dubovitskii–Milyutin scheme works also (and, in fact, was orig-
inally developed) for a more abstract problem of the form

f0(x) → min, x ∈ Qi , i = 1, . . . ,m, x ∈M,

where all the sets Qi have nonempty interior and are considered as "inequality
constraints", while M is considered as an "equality constraint". Here we do not
dwell on this case, referring the reader to the original paper of Dubovitskii and
Milyutin (1965) or to the book of Girsanov (1970).

For problems of CCV, the Dubovitskii–Milyutin scheme, complemented with
a standard technique like the DuBois-Reymond lemma, gives the classical EL
equation, which is a first order necessary condition for a weak minimum.

3. Canonical optimal control problem of the Pontryagin

type

On a time interval ∆ = [t0, t1] (a priori non-fixed), consider a control system

ẋ = f(t, x, u), u ∈ U, (6)
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where x(t) ∈ ACn(∆), u(t) ∈ Lr
∞

(∆) , and denote for brevity the vector of
endpoint values p = (t0, x(t0), t1, x(t1)).

Among all trajectories of system (6) satisfying the endpoint constraints

F (p) ≤ 0, K(p) = 0 (7)

(of arbitrary finite dimensions), minimize the cost functional

J = F0(p) → min . (8)

All the functions F0 , F, K are assumed to be smooth, f be smooth in t, x and

continuous in u, the set U ⊂ IRr be arbitrary.
As we see, the cost (8) and constraints (7) are in the Mayer form. They

are called the endpoint block of the problem. Relations (6) that include all the
pointwise constraints, are called the control system.

To make the problem statement more precise, one should also indicate the
domains of the admissible variables:

p ∈ P , (t, x, u) ∈ Q , (9)

where P ⊂ IR2n+2 and Q ⊂ IR1+n+r are open sets. These inclusions are not
constraints, they are a kind of "lebensraum", domain of the problem, usually
not directly indicated, but just implied. The explicit addition of inclusions (9)
in the statement of canonical problem was proposed by A.Ya. Dubovitskii.

This class of problems, on the one hand, is quite general — it includes, e.g.
both the time-optimal problem and problems with integral cost and integral
constraints (the integral terms can be reduced to endpoint terms by introducing
additional state variables), and on the other hand, it is very convenient for
theoretical studies.

Maximum principle for the canonical problem of Pontryagin type

Introduce the endpoint Lagrange function

l(p) = α0 F0 + αF + β K,

where α0 ∈ IR, α ∈ IRd(F ), β ∈ IRd(K), and the Pontryagin function

H(ψx, t, x, u) = ψx f(t, x, u),

where ψx ∈ IRn is the adjoint vector for the state x. (For any vector a we use the
notation d(a) = dim a proposed by Dubovitskii and Milyutin as a convenient
tool for saving letters.)

If a process (x0(t), u0(t)) defined on ∆0 = [t00, t
0
1] provides a strong minimum,

then there exists a number α0 , vectors α, β, and Lipschitzian functions ψx(t),
ψt(t) (adjoint, or costate variables) such that the following conditions hold:
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a) nonnegativity α0 ≥ 0, α ≥ 0;

b) nontriviality α0 + |α| + |β| > 0;

c) complementary slackness αi Fi(p
0) = 0, i = 1, . . . , d(F ),

d) adjoint (costate) equations

−ψ̇x(t) = Hx(t, x0(t), u0(t)),

−ψ̇t(t) = Ht(t, x
0(t), u0(t));

e) transversality

ψx(t0) = lx0
(p0), ψx(t1) = −lx1

(p0);

ψt(t0) = lt0(p
0), ψt(t1) = −lt1(p

0),

f) "energy evolution law"

H(t, x0(t), u0(t)) + ψt(t) = 0 for almost all t ∈ ∆0,

g) maximality

H(t, x0(t), u) + ψt(t) ≤ 0 for all t ∈ ∆0, u ∈ U.

The two last conditions yield: for almost all t ∈ ∆0

H(t, x0(t), u0(t)) = max
u∈U

H(t, x0(t), u),

the maximality condition in the standard form.

Introduce the Hamiltonian

H(t, ψx, x) = max
u∈U

H(t, ψx, x, u).

This one and the Pontryagin function are two different functions, coinciding
only along the optimal trajectory. They even have different sets of arguments.
(The Hamiltonian does not involve the control !) In classical mechanics, H
is the total energy of the system. In autonomous problems ψt = const , so
H = const , and ψx can be simply denoted by ψ .

Following in fact Milyutin (1990a), condition f) is called here "energy evolu-
tion law", because together with the adjoint equation for ψt it gives the equation
Ḣ = Ht , which in classical mechanics describes the evolution of the energy of
the system. The adjoint equation for ψx describes the evolution of the impulse
of the system.

Remark 3 Notation ψx and ψt , where x and t do not indicate the derivatives,
but are just subscripts, were proposed by Dubovitskii and Milyutin. Though
seem unusual, they are actually very convenient, especially in problems with
many state variables. Moreover, if the problem admits a smooth Bellman func-
tion V (x, t), then ψx(t) = Vx(x0(t), t) and ψt(t) = Vt(x

0(t), t), so the subscripts
indeed turn into the derivatives.
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By analogy with the concept of extremals in CCV, Dubovitskii and Milyutin
proposed the concept of Pontryagin extremals, those satisfying all the pointwise
conditions of MP regardless the endpoint ones. Milyutin (1990c) showed that
these extremals are invariant w.r.t. a broad class of reformulations of the problem
(see also Milyutin and Osmolovskii, 1998 (Part 1, Ch.5)). The optimal process
should be found among the Pontryagin extremals (and afterwards, the endpoint
and transversality conditions should be taken into account).

Moreover, Milyutin showed that, for problems of CCV, the whole theory of
sufficient conditions of a strong minimum, based on the construction of a field
of extremals, can be as well developed with the use of Pontryagin extremals (see
Milyutin and Osmolovskii, 1998 (Part 1, Ch.4)). An interesting and still open
question is whether it is possible to develop a similar theory for optimal control
problems.

Note that MP is also invariant w.r.t. reformulations of the problem, whereas
the Euler–Lagrange equation is not.

Remark 4 Recall that the principle of stationary action (less strictly, of mini-
mal action) in the classical mechanics says that the mechanical or physical sys-
tem moves along extremals of some functional (called action). Milyutin (1990a)
proposed to strengthen this principle: the motion should go along Pontryagin
extremals of the corresponding functional of action. At least, to his knowledge,
there were no counterexamples.

4. Classes of variations in optimal control problems

Most part of necessary optimality conditions in extremum problems are obtained
by varying the given point, and the result essentially depends on the chosen class
of variations. In optimal control, the following classes of variations have been
known and used up till now:

a) uniformly small variations: ||u − u0||∞ → 0, appeared in CCV; in the
abstract problem they correspond to the local minimality w.r.t. the norm of the
given Banach space;

b) needle-type variations (or pack of needles), introduced by Weierstrass,
and used also by McShane, Graves, Boltyansky, and many others;

c) sliding mode variations;

d) v−change of time.

The two first classes are widely known, so we turn to the two last classes.

c) Sliding mode variations consist in passing from the initial control
system ẋ = f(x, u, t) to its extension (relaxation) of the form

ẋ =

N
∑

i=0

αi(t) f(x, ui, t), αi(t) ≥ 0,

N
∑

i=0

αi(t) = 1, (10)
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where u0(t) is the optimal control. System (10) was introduced by Gamkrelidze
(1962) for proving the existence of optimal trajectory. As a tool for proving
MP it was first used by Dubovitskii and Milyutin (1965) (for a problem of the
so-called Lyapunov type, as brought to the authors’ attention by V.I. Arkin).
The idea here is briefly as follows.

Let (x0(t), u0(t)) be an optimal process. Fix arbitrary functions u1(t), . . . ,
uN (t) ∈ U and consider system (10). For α0(t) = (1, 0, . . . , 0) its solution is the
optimal x0(t). Now, let the vector-function α = (α0, α1 . . . , αN ) be uniformly

sufficiently close to α0 , and let α(n) weak−∗
−→ α in such a way that each its

component α
(n)
i (t) = 0 or 1. Then the corresponding solution x(n)(t) of system

(10) is also a solution of the initial system for the combined ("mixed") control

u(n)(t) =
∑

α
(n)
i (t)ui(t), and the latter can be "far" from u0(t) only on a set of

a small measure, which tends to zero if ||α− α0||∞ → 0 (hence ||x− x0||C → 0
too). We thus obtain a kind of needle variations in the initial system. Note that
the extended system (10) is smooth (even linear) w.r.t. controls αi , so it is very
convenient for study.

The main obstacle in this approach is that the approximating trajectory
x(n)(t) may not satisfy the terminal constraints, and so, one should find con-
ditions under which it is possible to satisfy them. This is rather a nontrivial
question. However, it can be settled, e.g. in the case when all individual con-
trols ui(t) ∈ int U, i = 0, 1, . . . , N, they are also variable together with αi ,
and the linear approximation of system (10) is controllable (see the details in
Milyutin, Dmitruk, Osmolovskii, 2004, and Dmitruk, 2007).

d) v−change of time. Instead of the original time t ∈ [t0, t1] introduce a
new time τ ∈ [τ0, τ1] (usually, on a fixed interval), and consider the old time as
an additional state variable t(τ) subject to

dt

dτ
= v(τ), (11)

where v(τ) ≥ 0 is a new control, and so

dx

dτ
= v(τ) f(t, x, u), u ∈ U. (12)

Thus, now the state variables are x(τ), t(τ), and the controls are u(τ), v(τ).
Let (x0(t), u0(t)) be an optimal process in the initial problem. Obviously,

any (measurable bounded) function v0(τ) ≥ 0 generates a function t0(τ) and
the corresponding process in the new problem

x̃0(τ) = x0(t0(τ)), ũ0(τ) = u0(t0(τ)).

On the other hand, any process in the τ -problem generates a unique process
in the t−problem; this is due to the specific form of the new control system:
both equations for t and x contain the factor v(τ) ≥ 0, so when t(τ) does not
increase, x(τ) stays constant.
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What is the advantage of this passage to the new problem? Take as v0(τ) any
piecewise constant nonnegative function. Define the set M0 = { τ | v0(τ) = 0}.
It is a union of a finite number of intervals ∆1 , . . . ,∆m . Outside M0 we have
a one-to-one correspondence between t and τ, whereas each interval ∆k ⊂ M0

is mapped into a single point t0(∆k) = tk . On each interval ∆k let us set
ũ0(τ) = uk , where uk ∈ U are arbitrary fixed values. The choice of these values
does not impact the trajectory x̃0(τ) and hence x0(t). But this is so only for
v0(τ) !

Now, let us slightly vary it, i.e. take a piecewise constant v(τ) ≥ 0 close to
v0(τ), having the same intervals of constancy. Then, according to (11), we get
a new function t(τ), for which t(∆k) is not a single point but a small interval,
on which u(t) = uk .

Thus, small variations of v0(τ) in the τ−problem generate needle variations
of u0(t) in the t−problem! Note that, since the control ũ0(τ) in the τ−problem
is not varied, only the control v(τ) remains variable, which smoothly (even
linearly) comes into the control system and the constraint (v ≥ 0). For a fixed
u = ũ0(τ), the system

dx

dτ
= v(τ) f(t, x, ũ0),

dt

dτ
= v(τ),

is smooth in t, x, v regardless of the sign of v(τ), and therefore, it can be varied
by the standard technique of the theory of ODEs. The sign of v is taken into
account only by an independent constraint v ≥ 0, which is also given by a
smooth function.

So, the v−change of time makes it possible to obtain needle variations of
the control in the original problem by passing to a smooth control system, thus
avoiding the "damnation" of nonnegativity of the needle width, that inevitably
appears in the usual construction of the needles and essentially harms the appli-
cation of standard technique of ODEs and the calculus (see e.g. a recent book by
Arutyunov, Magaril-Ilyaev and Tikhomirov, 2006). For details, see Dubovitskii
and Milyutin (1965), Girsanov (1970), Milyutin, Dmitruk, Osmolovskii (2004).

An interesting fact is that the class of v−variations turned out to be richer
than the class of sliding variations. If a process is stationary in all associated
problems obtained by v−variations, then it is also stationary in all associated
problems obtained by sliding mode variations. On the other hand, Dubovitskii
and Milyutin (1981) provide an example where a process is stationary with
respect to all sliding variations, but is not stationary with respect to some
v−variations.

5. Scheme of obtaining the Maximum Principle

For a given optimal process, one should construct a family of associated smooth
problems parametrized by an index θ, in each of which the corresponding process
is a local minimum. In each of these associated problems one should write out
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the "standard" first order necessary condition for a local minimum — the Euler–
Lagrange equation (stationarity condition), the family of which should then be
"pressed" into one mutual condition. How to do this?

For each index θ, the stationarity condition gives a nonempty setMθ = {λθ }
of normalized collections of Lagrange multipliers. It turned out to be a compact
set w.r.t. an appropriate topology.

The set of indices should have an ordering making it a net, i.e. for any two
indices there should exist a third one greater than both of these. Moreover, if
θ′ ≺ θ′′, then Mθ′

⊃ Mθ′′

, which implies that the family of compacta Mθ is a
centered (i.e. Alexandrov type) system: any finite number of these compacta
do intersect. Therefore, its total intersection

⋂

θ M
θ is nonempty. Any element

λ (a collection of Lagrange multipliers) of this intersection gives the desired
"pressed" optimality condition. By definition, this condition is a Maximum
Principle, see Milyutin (1970).

For example, the proof of MP for the canonical problem of Pontryagin type
can be carried out by using the above piecewise constant v−changes of time,
which lead to a family of smooth finite-dimensional associated problems, in each
of which one should use just the standard Lagrange multipliers rule(!). As the
index θ, one can take here the collection of values (tk, uk) (i.e., the parameters
of the corresponding pack of needle variations) with its natural ordering by
inclusion (one index follows another if the first collection of values includes
the second one). For the sliding mode variations, the index θ is the set of all
corresponding base controls {u1(t), . . . , uN (t)}, again with its natural ordering
by inclusion; see Dubovitskii and Milyutin (1981), Milyutin (2001), Milyutin,
Dmitruk, Osmolovskii (2004).

6. Pontryagin minimum

To what type of minimum the MP corresponds? Usually, MP is stated as a
necessary condition for a strong minimum, which is a minimum on the set of
admissible processes (x, u) satisfying the additional restriction ||x − x0||C < ε
for some ε > 0. However, the analysis of the proof of MP allows to weaken the
notion of minimum (and so, to strengthen the assertion of MP). Dubovitskii
and Milyutin proposed the following notion. (For simplicity, here we give it for
problems on a fixed time interval ∆ = [t0, t1].)

Definition 1 A process (x0(t), u0(t)) provides the Pontryagin minimum if for
any number N, there exists an ε > 0 such that, for any admissible process
(x(t), u(t)) satisfying the restrictions

|x(t)− x̂(t)| < ε, |u(t)− û(t)| ≤ N on ∆, and

∫

∆

|u(t)− û(t)| dt < ε,

one has J(x, u) ≥ J(x0, u0).
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In other words, for any N the process (x0, u0) provides a local minimum
w.r.t. the norm ‖x‖C + ‖u‖1 in the problem with the additional restriction
||u− û||∞ ≤ N.

This type of minimum includes both the uniformly small and needle varia-
tions of the control, and so, it occupies an intermediate position between the
classical weak and strong minima. The relation between different types of min-
ima is as follows:

global =⇒ strong =⇒ Pontryagin =⇒ weak.

One can also introduce the corresponding convergence: a sequence uk(t)
converges in the Pontryagin sense to u0(t), if

||uk − u0||1 → 0 and ||uk − u0||∞ ≤ O(1).

An interesting fact is that this convergence does not correspond to any topol-
ogy in L∞(∆) of the Frechet–Uryson type (when the closure of a set can be
obtained by sequences): if one constructs the closure operator corresponding
to the Pontryagin convergence, then it would not satisfy the axioms of Kura-
towski: the double closure would not always coincide with the simple closure.
(A good exercise for students — to find an example of such a set.)

In spite of this "negative" fact, the Pontryagin minimum has that advantage
against the weak minimum, that it is invariant with respect to a broad class of
transformations (reformulations) of the problem, whereas the weak minimum is
not (Milyutin, 1990c). This corresponds to the invariance of MP. Note that
the Euler–Lagrange equation (necessary condition for the weak minimum) does
not enjoy such a broad invariance.

Moreover, Dubovitskii and Milyutin discovered that MP is a necessary and
sufficient condition (i.e., criterion!) for the stationarity of the given process in
the class of all variations of the Pontryagin type.

On the other hand, unlike the strong minimum, which does not require
restrictions on the control and hence does not allow to estimate the increment
of the cost (or the Lagrange function) by using its expansion at the given process,
the Pontryagin minimum requires some, though mild, control restrictions, which
make it possible to use such expansions.

The practice of research performed up till now shows that the concept of
Pontryagin minimum is a convenient and effective working tool. It admits a
rich theory not only of the first, but also of higher order optimality conditions;
see e.g. Osmolovskii (1988, 1993, 1995), Milyutin and Osmolovskii (1998), V.A.
Dubovitskii (1982), Dmitruk (1987, 1999), Dykhta (1994) and references therein.
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7. Problems with state constraints

As was shown by Dubovitskii and Milyutin (1965), for problems with state
constraints Φ(t, x(t)) ≤ 0 only adjoint equations in MP are modified; they are
now

ψ̇x = −Hx + µ̇Φx ,

ψ̇t = −Ht + µ̇Φt ,

where µ̇ is the generalized derivative of a nondecreasing function µ(t). These
equations can be also written as equalities between measures:

dψx = −Hx dt+ Φx dµ ,

dψt = −Ht dt+ Φt dµ ,

or, in the integral form,

ψx(t) − ψx(t0) = −

∫ t

t0

Hx dτ +

∫ t

t0

Φx dµ(τ),

ψt(t) − ψt(t0) = −

∫ t

t0

Ht dτ +

∫ t

t0

Φt dµ(τ),

where dµ ∈ C∗[t0, t1], and the last integrals in both formulas are taken in the
Riemann–Stiltjes sense.

The corresponding measure satisfies the complementary slackness

Φ (t, x0(t)) dµ(t) ≡ 0 ,

which means that on any interior interval, where Φ (t, x0(t)) < 0, the measure
vanishes: dµ(t) = 0.

When it appeared, the MP with these new adjoint equations seemed rather
unusual, especially for engineers, but actually the formulation of this result is
quite natural: since the function Φ(t, x(t)) ∈ C[t0, t1], then its Lagrange mul-
tiplier should be nothing else but a measure dµ ∈ C∗[t0, t1]. However, this
"obvious" observation appeared only after a deep mathematical understand-
ing of the essence of the problem, and, of course, the proof of MP (based on
v−change of time) was not obvious at all. (Later, another proof, based, in fact,
on sliding variations, was given in Ioffe and Tikhomirov, 1974).

State constraints often appear in applied optimal control problems. However,
solution of such problems is rather difficult, because of a nonstandard form of
the adjoint equation, in which almost nothing is known about the measure. Here
we give a simple example, where state constraints are added to a well known
classical problem.
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Example: isoperimetric problem

For x ∈ IR2, u ∈ IR2, and a fixed time interval [0, T ] consider the problem:

ẋ = u, x(0) = x(T ), |u| ≤ 1,

J =

∫ T

0

(−x1u2 + x2u1) dt =

∫ T

0

(Px, u) dt → max,

where P is the matrix of rotation in 90◦. This is the classical isoperimetric
Dido’s problem in the optimal control setting. Here T is the upper bound of
the length of the rope, J is the oriented square within the rope times 2.

Here H = ψu + 1
2 (Px, u), ψ̇ = 1

2 Pu, hence ψ = 1
2 Px − Pa with some

a ∈ IR2, and so H = (P (x− a), u), and since it should attain its maximum over
the unit ball |u| ≤ 1, we get

u =
P (x− a)

|P (x− a)|
= P

x− a

|x− a|
.

Moreover, since the problem is time-independent, max H = |P (x − a)| = |x −
a| = const = r ≥ 0, hence, excluding the trivial case r = 0, we have a uniform
motion along a circumference of radius r centered at an arbitrary point a ∈ IR2

with velocity u = P (x−a)/r . Since the problem is invariant w.r.t. translations,
we can set a = 0. Condition x(0) = x(T ) yield 2πr k = T, where k is the number
of rotations, so r = T/(2πk) , and we obtain a countable set of extremals. By
a simple calculation we find that the optimal extremal has just one rotation:
k = 1.

(By the way, compare the above with the statement and solution of this prob-
lem in CCV — square root, singularities at the boundary, etc. A verification
question: where is the square root now?)

All the above is well known (see, e.g., Ioffe and Tikhomirov, 1974). Now,
consider the same problem in the presence of state constraints, say, as was
proposed by Dubovitskii and Milyutin, in the form of a triangle. If the length of
the rope is within appropriate bounds, the rope, obviously, should partially lie on
the sides of the triangle (the boundary subarcs), whereas the subarcs lying inside
the triangle should obviously be pieces of circumferences. What is not obvious
is that these circumferences must have the same radius ! This immediately
follows from the MP, because on any interior subarc we still have the same
adjoint equation ψ̇ = 1

2 Pu, hence, as before, H = (P (x − a), u), but now the
point a depends on the given subarc. Since the condition H = const = r is still
valid on the whole interval [0, T ], any interior subarc is a piece of circumference
of the same radius r around its own center a.

Moreover, the measure has no jumps (atoms) at the junction points. To
show this, let the triangle be given by inequalities (ai , x) ≤ bi , i = 1, 2, 3 with
all ai 6= 0 and, say, bi > 0. Here the adjoint equation is
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ψ̇ =
1

2
Pu +

∑

µ̇i ai .

Suppose that (a1 , x(t)) = b1 on an interval I1 = [t1 , s1] (boundary subarc)
and (a1 , x(t)) < b1 in a right neighborhood O+(s1) (interior subarc). Then
u(t) = const = u1 ⊥ a1 on I1, and since H = (ψ + 1

2 Px)u ≡ r, we get
ψ + 1

2 Px = ru1 on I1 . Differentiating this, we obtain Pu1 + µ̇1 a1 = 0, whence
µ̇1 on I1 is uniquely determined. If the jump ∆µ1(s1) > 0, then the jump of
ψ + 1

2 Px is ∆ψ(s1) = ∆µ1(s1) a1 , which implies that in O+(s1) the maximum
of H(x, u) over |u| ≤ 1 is attained at some u(t) such that (a1, u(t)) > 0, whence
(a1, x(t)) > b1 , a violation of the state constraint. (Note that here the sign of
∆ψ is important !)

Thus, the boundary and interior subarcs are joined tangentially, and hence,
the total trajectory is determined uniquely (modulo number of rotations).

Another generalization is when the control constraint |u| ≤ 1 is replaced by
u ∈ U, where U is a convex compact set containing the origin in its interior.
Introduce its support function ϕ(z) = max (z, U). Since H = (P (x − a), u)
attains its maximum over u ∈ U, we immediately have ϕ(P (x−a)) = const = r,
whence P (x− a) ∈ r · ∂U0, where U0 is the polar of U, and therefore, (x− a) ∈
−r ·P (∂U0), u ∈ ∂ϕ(P (x− a)). As before, the motion is determined uniquely
(modulo number of rotations).

Again, one can add state constraints to this problem. Then, like before, the
interior subarcs are pieces of the boundary of U0 with different "centers" a, but
with the same "radius" (homothety coefficient) r, and the measure still has no
jumps.

Measure in the adjoint equations

As is well known, any nondecreasing function µ(t) is the sum of three com-
ponents:

µ = µa + µs + µd ,

which are absolute continuous, singular, and a jump functions, respectively.
When analyzing the MP, it is very desirable to have an a priori information
about the two last components, since they are in a sense less convenient than
the first one. In some cases these components are simply absent. Milyutin
(1990b) revealed, in particular, the following cases.

Condition for the absence of jump component. Let at some point
(t, x), the convex hull of the velocity set f(t, x, U) have a smooth boundary, and
the time derivative of the state constraint

dΦ

dt
= Φx(t, x) f(t, x, u) + Φt(t, x)

can be both negative and positive for different u ∈ U. Then, the measure µ
cannot have a jump at this point.
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Condition for the absence of singular component. Let the control
system have the form

ẋ = u, ẏ = Y (t, x, u), Φ(t, x) ≤ 0

(which corresponds to CCV with a state constraint). Let along a given ex-
tremal the control u0(t) be piecewise continuous, the strengthened Legendre
condition hold, and (Φx , Φt) 6= (0, 0). Then the measure µ cannot have a
singular component.

(Other results concerning properties of the measure are obtained, e.g., in
Maurer, 1979, and Malanowski, 2003).

Remark 5 The above formulated MP is a nontrivial optimality condition only
under the assumption that the endpoints of the optimal trajectory do not lie
on the boundary of state constraint. Otherwise, the measure may have atoms
at the endpoints, while all other multipliers vanish, which is a trivial result. To
guarantee the nontriviality of MP in this special case, one should impose some
regularity conditions on the joint behavior of the endpoint and state constraints
with the control system; see Dubovitskii and Dubovitskii (1987, 1988, 1995),
Matveev (1987), Arutyunov and Aseev (1997).

Junction of different regimes

An important issue in determining optimal processes is the question: how
can consecutive subarcs presenting regimes of different kind be joined? The
first example of nontrivial junction was proposed by Fuller (1961):

∫ T

0

x2 dt → min, ẍ = u, |u| ≤ 1,

(x(0), ẋ(0)) 6= (0, 0) are given, and T is sufficiently large. Here the optimal
trajectory should likely be zero after some T0 > 0, which is a singular regime.
The first part of trajectory, on [0, T0], is a nonsingular (bang-bang) regime, and
it turns out that the junction between these regimes can occur only through a
countable number of switchings, except for the case when the initial conditions lie
on a specific line in IR2. Such a phenomenon is called chattering regime. (By the
way, this example justifies the choice of control space u ∈ L∞ in optimal control
problems, instead of piecewise controls.) A further study of this phenomenon is
given in Zelikin and Borisov (1994).

Note, however, that here the control u is scalar. What is the analog of
this chattering phenomenon for a multidimensional control, when u ∈ U with a
strictly convex compact set U ⊂ IRr ? In this case, the optimal control generi-
cally has no switchings, but can have points of discontinuity of the second kind.
Milyutin proposed to take this as the definition of multidimensional chattering.
(In the one-dimensional case, discontinuity of the second kind reduces to an in-
finite number of switchings.) Milyutin (1993), Milyutin and Chukanov (1993),
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Chukanov and Milyutin (1994), and Chukanov (1993a, 1993b) investigated this
phenomenon more thoroughly and described the typical behavior of extremals.
See also the related papers by Chukanov (1977) and Milyutin (1990e, 1994)
concerning one-dimensional case.

For problems with state constraints the typical regimes are boundary and
interior ones, and the junctions between them are not always trivial. In his
doctoral dissertation, Milyutin (1966) proposed the following

Example

∫ T

0

y dt → min,
d3y

dt3
= u, y ≥ 0,

∫ T

0

u2 dt ≤ 1,

(y, ẏ, ÿ) at 0 and T are given. Here, except the case of special endpoint condi-
tions, the junction of interior and boundary regimes occurs through a countable
number of jumps of the measure corresponding to the state constraint y ≥ 0,
while the control is continuous. (Later, this example was independently given
also by Robbins, 1980).

In Dikusar and Milyutin (1989, Ch.3), and Milyutin (2000), Milyutin studied
this phenomenon more thoroughly. He proposed the notion of depth (sometimes
called order) of the state constraint, which is the number of its differentiations
until the control appears explicitly, and, analyzing linear control systems with
linear state constraints, discovered that, if the depth is 1, the measure usually
(but not always) has no jumps; if the depth is 2, the measure can have only a
finite number of jumps, and if the depth is 3 and greater, the measure typically
has a countable number of jumps. An interesting fact is that the jumps can
occur not only at the entry and exit points, but also at intermediate points of
boundary intervals; a corresponding example is proposed in Milyutin (1990b).

8. Nonsmooth functionals

Since the general Dubovitskii–Milyutin scheme admits only a finite number
of inequality constraints, the constraint Φ(t, x(t)) ≤ 0, t ∈ ∆ = [t0, t1], is
represented by the nonsmooth functional max

t∈∆
Φ(t, x(t)) ≤ 0, and the constraint

ϕ(t, x(t), u(t)) ≤ 0 by the functional vraimax
t∈∆

ϕ(t, x(t), u(t)) ≤ 0. Both these

functionals are Lipschitz continuous and have sublinear directional derivatives.
Recall that, for any v ∈ L∞(∆),

vraimax
t∈∆

v(t) = min { b : v(t) ≤ b a.e. on ∆} .

The following results were obtained in Dubovitskii and Milyutin (1965).

a) Consider the functional F : C(∆) → IR,

F (x) = max
t∈∆

Φ(t, x(t)).
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Denote F (x0) = a and introduce the set (nonempty and closed)

M0 = {t ∈ ∆ | Φ(t, x0(t)) = a }.

Theorem 4 The derivative of F along any direction x̄(t) is

F ′(x0, x̄) = max
t∈M0

(

Φ′

x(t, x0(t)) x̄(t)
)

;

it is a sublinear functional in x̄, which subdifferential consists of all linear func-
tionals l ∈ C∗(∆) of the form

l(x̄) =

∫

∆

Φ′

x(t, x0(t)) x̄(t) dµ(t),

where dµ is a normalized nonnegative Radon measure on M0.

b) Consider the functional P : L∞(∆) → IR,

P (v) = vraimax
t∈∆

v(t).

Denote P (v0) = a, and for any δ > 0 introduce the set (obviously, of positive
measure)

Mδ = {t ∈ ∆ | v0(t) ≥ a− δ}.

Theorem 5 For any v̄(t) ∈ L∞(∆), the directional derivative of P is

P ′(v0, v̄) = lim
δ→+0

vraimax
t∈Mδ

v̄(t) ,

it is a sublinear functional in v̄, which subdifferential consists of all functionals
λ ∈ L∗

∞
(∆) satisfying the following three conditions:

(i) λ is supported on Mδ for any δ > 0,
(ii) λ ≥ 0,
(iii) λ(1) = 1, where 1(t) ≡ 1 on ∆.

Condition (i) does not mean that λ is supported on the intersection of all
Mδ(!). The set M0 =

⋂

δ>0

Mδ can have zero measure, and then a functional

λ ∈ L∗

∞
supported on M0 is identically zero, whereas λ satisfying (i) can be

nonzero (a purely singular functional).

Recall here the classical

Iosida–Hewitt theorem. Any functional l ∈ L∗

∞
is the sum l = la + ls of

an absolute continuous functional la ∈ L1 and a singular functional ls supported
on each set of some sequence {En} with mesEn → 0.
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c) Consider now the functional G : C(∆) × L∞(∆) → IR,

G(x, u) = vraimax
t∈∆

ϕ(t, x(t), u(t)).

As before, denote G(x0, u0) = a, and introduce the sets

Mδ = {t ∈ ∆ | ϕ(t, x0(t), u0(t)) ≥ a− δ }.

Theorem 5 readily yields the following result. (To shorten the formulas, we use
the notation w = (x, u) and similar to it.) For any w̄ = (x̄, ū)

G′(w0, w̄) = lim
δ→+0

vraimax
t∈Mδ

〈ϕ′

w(t, w0(t)), w̄(t)〉,

and its subdifferential consists of all linear functionals l of the form

l(w̄) = λ (ϕ′

w(t, w0(t)) w̄),

where the functional λ ∈ L∗

∞
(∆) satisfies the above properties (i) − (iii).

9. Problems with mixed constraints

Considering the mixed constraints

ϕi(t, x, u) ≤ 0, i = 1, . . . , d(ϕ), gj(t, x, u) = 0, j = 1, . . . , d(g), (13)

one should distinguish two essentially different cases of regular and nonregular
constraints.

According to Dubovitskii and Milyutin, constraints (13) are regular if for
any point (t, x, u) ∈ Q satisfying these constraints, the gradients in u

ϕ′

iu(t, x, u), i ∈ I(t, x, u), g′ju(t, x, u), j = 1, . . . , d(g),

where I(t, x, u) = {i | ϕi(t, x, u) = 0} is the set of active indices for inequality
ϕ ≤ 0 at the given point, are positive-linear independent, i.e., there are no
coefficients

ai ≥ 0, i ∈ I(t, x, u), and bj , j = 1, . . . , d(g),

which are not all zero, such that

∑

i∈I

ai ϕ
′

iu(t, x, u) +

d(g)
∑

j=1

bj g
′

ju(t, x, u) = 0.

(Here the word "positive" relates to ϕ′

iu , while the word "linear" to g′ju.)

An equivalent requirement: the gradients g′ju(t, x, u) are linear independent,
and ∃ ū ∈ IRr such that

ϕ′

iu(t, x, u) ū < 0, ∀ i ∈ I, and g′ju(t, x, u) ū = 0, ∀ j

(the so-called Mangasarian–Fromovitz condition).
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Since the functions ϕi(t, x(t), u(t)) and gj(t, x(t), u(t)) belong to L∞(∆),
then, a priori, the corresponding Lagrange multipliers ki , mj ∈ L∗

∞
(∆).

However, for the regular mixed constraints they all are elements of L1(∆), and
this is a crucial fact that essentially simplifies the formulation and proof of
MP for problems with regular mixed constraints as compared with that in the
general case.

Theorem 6 (on the absence of singular components). Let r−vector functions
Ai(t), Bj(t) with L∞ components be positive-linear independent uniformly on
∆, and let functionals ki , mj ∈ L∗

∞
(∆), where all ki ≥ 0, be such that

∑

ki Ai(t) +
∑

mj Bj(t) = λ(t) ∈ Lr
1(∆)

(i.e. the left hand linear functional on Lr
∞

(∆) belongs to Lr
1(∆)). Then all

ki, mj actually belong to L1(∆), i.e., they have no singular components.

This fact was discovered by Dubovitskii and Milyutin in the end of the 1960s,
but was not explicitly published. The proof can be found in Dmitruk (1990),
and Milyutin, Dmitruk, Osmolovskii (2004).

Theorem 6 should be applied to Ai(t) = ϕ′

iu and Bj(t) = g′ju calculated

along the process (x0(t), u0(t)).

Canonical problem C with smooth regular mixed constraints

J = F0(p) −→ min,

F (p) ≤ 0, K(p) = 0,

ẋ = f(t, x, u),

g(t, x, u) = 0, ϕ(t, x, u) ≤ 0,

Φ(t, x) ≤ 0;

p ∈ P , (t, x, u) ∈ Q (open sets).

As before, here p = (t0, x(t0), t1, x(t1)), the interval ∆ = [t0, t1] is a priori
nonfixed. We assume that f , g, ϕ and Φ are smooth in t, x, u. Note that here the
inclusion constraint u ∈ U is not allowed, and the state constraint Φ(t, x) ≤ 0
cannot be considered as a special case of the mixed constraint ϕ(t, x, u) ≤ 0,
because of regularity assumption.

In order to formulate the corresponding MP, we need, as before, the endpoint
Lagrange function l(p) = α0F0(p)+αF (p)+ (β,K(p)), the Pontryagin function
H = (ψx , f(t, x, u)), and also the "extended" Pontryagin function

H(t, x, u, v) = (ψx, f) − (k, ϕ) − (m, g) − (µ̇,Φ),

where the multipliers k, m and µ are of dimensions d(ϕ), d(g) and d(Φ), res-
pectively.
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Maximum Principle for Problem C

Let a process (x0(t), u0(t)), t ∈ ∆0 = [t00, t
0
1] provide a Pontryagin min-

imum in Problem C. Then there exist a collection of numbers α = (α0, . . . ,

αd(F )) ≥ 0, a vector β ∈ IRd(K), functions of bounded variation ψx , ψt , non-
decreasing functions µs(t), s = 1, . . . , d(Φ) (generating measures dµs(t)), a
vector-function k(t) ≥ 0 from L∞(∆) and a vector-function m ∈ L∞(∆), such
that the following conditions hold:

a) nontriviality

|α| + |β| +
∑

s

|µs(t1) − µs(t0)| +

∫

∆0

|k(t)| dt > 0,

b) complementary slackness

αν Fν(p0) = 0, ν = 1, . . . , d(F ),

dµs(t)Φs(t, x
0(t)) ≡ 0, on ∆0 ∀ s,

ki(t)ϕi(t, x
0(t), u0(t)) = 0 a.e. on ∆0 ∀ i,

c) adjoint equations

−ψ̇x = Hx = ψx fx − k ϕx −mgx − µ̇Φx ,

−ψ̇t = Ht = ψx ft − k ϕt −mgt − µ̇Φt

(here, again, µ̇ is the generalized derivative of the function µ(t)),

d) transversality

ψx(t0) = lx0
(p0), ψx(t1) = −lx1

(p0),

ψt(t0) = lt0(p
0), ψt(t1) = −lt1(p

0),

e) stationarity in u:

Hu = ψx fu − k ϕu −mgu = 0 (14)

f) "energy evolution law"

H(t, x0(t), u0(t)) + ψt(t) = 0 for a.a. t ∈ ∆0,

g) maximality: for all t ∈ ∆0 and all u ∈ C(t)

H(t, x0(t), u) + ψt(t) ≤ 0,

where C(t) = { u | (t, x0(t), u) ∈ Q, ϕ(t, x0(t), u) ≤ 0, g(t, x0(t), u) = 0 },

i.e., C(t) is the set of control values admissible to comparison with u0(t) at time
t for the optimal trajectory x0(t).
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The two last conditions yield: for a.a. t ∈ ∆0

max
u∈C(t)

H(t, x0(t), u) = H(t, x0(t), u0(t)).

The proof can be made by using either v−variations (Milyutin, 1990d), or
sliding mode variations (Dmitruk, 1990; Milyutin, Dmitruk, Osmolovskii, 2004).

Remark 6 The presence of state and mixed constraints provides for broad pos-
sibilities to reformulate the problem, much broader than in CCV ! For example,
the so-called minimax problem with the nonsmooth cost

J = max
t∈∆

Φ(t, x(t)) → min

can be easily reformulated as a smooth problem with a state constraint:

J = z(0) → min, ż = 0, Φ(t, x(t)) ≤ z.

Similarly, a problem with the cost

J = vraimax
t∈∆

ϕ(t, x(t), u(t)) → min

can be easily reformulated as a problem with a mixed constraint:

J = z(0) → min, ż = 0, ϕ(t, x(t), u(t)) ≤ z.

Another example: a problem with the nonsmooth cost

J =

∫ T

0

|L(t, x, u) | dt → min

can be reduced to a standard "smooth" problem:

J =

∫ T

0

v(t) dt → min, (v is a new control),

±L(t, x(t), u(t)) ≤ v(t) (regular mixed constraints).

Reformulations of problems essentially extend the area of MP. This idea
has not yet been properly exploited.

One more example is the problem of S. Ulam on matching the segments.
Given two segments of the same length in a plane, it is required to move one of
them onto the position of another in such a way that its endpoints describe a
minimal total path.

Dubovitskii (1976) , V.A. Dubovitskii (1985), and Milyutin in Dikusar and
Milyutin (1989, Ch.2) stated this problem as a time-optimal control problem
for the system

ẋ = u, ẏ = v, (x− y)(u− v) = 0, |u| + |v| ≤ 1,
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where x ∈ IR2 and y ∈ IR2 are the endpoints of the moving segment, x(0), y(0)
and x(T ), y(T ) are given. The mixed constraints here are regular. This problem
can be considered as the problem about geodesics on the surface |x−y| = 1 in IR4

with the Finsler metric ρ(dx, dy) = |dx|+|dy|. It was shown that any Pontryagin
extremal in this problem is a combination of a finite number of elementary
motions — translations, rotations, etc, and all the possible combinations were
described.

General problem D with regular mixed constraints

Recall that problem C does not contain the inclusion constraint (because
it would prevent to obtain the stationarity condition (14)). In order to allow
it in the problem, Dubovitskii and Milyutin proposed to consider two control
vectors:

u ∈ L∞(∆, IRru) and v ∈ L∞(∆, IRrv ).

(We use u and v instead of the authors’ original notation u1 and u2.)
Let the time interval ∆ = [t0, t1] be fixed. The problem is:

J = F0(p) −→ min,

F (p) ≤ 0, K(p) = 0,

ẋ = f(t, x, u, v),

g(t, x, u, v) = 0, ϕ(t, x, u, v) ≤ 0, (15)

Φ(t, x) ≤ 0,

v(t) ∈ V (t) a.e.,

where V (t) is a measurable set-valued mapping ∆ → IRrv ,

p = (x(t0), x(t1)) ∈ P , (t, x, u, v) ∈ Q .

All the data functions are smooth in x, u, and just continuous in t, v but v
is subject to the inclusion constraint.

The assumption on regularity of mixed constraints is meant here with respect
only to the "smooth" control u : at any point (t, x, u, v) ∈ Q satisfying (15),
the gradients ϕ′

iu, i ∈ I(t, x, u, v) and g′ju, j = 1, . . . , d(g) are positive-linear
independent.

Maximum Principle for Problem D

Let a process (x0(t), u0(t), v0(t)) provide a Pontryagin minimum. Then
there exist a collection of numbers α = (α0, . . . , αd(F )) ≥ 0, a vector β ∈

IRd(K), an n−vector function of bounded variation ψx(t), nondecreasing func-
tions µs(t), s = 1, . . . , d(Φ) (generating measures dµs(t)), a vector-function
k(t) ≥ 0 from L∞(∆) of dimension d(ϕ), and a vector-function m(t) ∈ L∞(∆)
of dimension d(g), such that the following conditions hold:
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a) nontriviality,

b) complementary slackness,

c) adjoint equation

−ψ̇x = Hx = ψx fx − k ϕx −mgx − µ̇Φx ,

d) transversality for ψx,

e) stationarity in u:

Hu = ψx fu − k ϕu −mgu = 0,

g) maximality: for almost all t ∈ ∆

max
(u,v)∈C(t)

H(t, x0(t), u, v) = H(t, x0(t), u0(t), v0(t)),

where C(t) = { (u, v) ∈ IRru+rv | (t, x0(t), u, v) ∈ Q,

ϕ(t, x0(t), u, v) ≤ 0, g(t, x0(t), u, v) = 0, v ∈ V (t) }.

If V (t) ≡ V (constant), and all data functions are smooth in t, then the time
interval can be variable, and again, the costate variable ψt = −H satisfies the
adjoint equation −ψ̇t = Ht and the transversality conditions.

Remark 7 An interesting question is whether the equation −ψ̇t = Ht follows
from the other conditions of MP. Milyutin (1990a) showed that if the gradi-
ents in u of the mixed constraints are linearly independent, then the answer is
positive, and if those gradients are just positive-linearly independent (as in the
general regular case), the answer is negative; he gave corresponding examples.

Remark 8 Numerical methods for problems with state and mixed constraints
based on the MP were proposed in Smoljakov (1968), Afanasjev (1990), Ilyu-
tovich (1993), Dikusar (1990), Dikusar and Milyutin (1989), and in papers by
J.F. Bonnans, A. Hermant, H. Maurer, H.J. Oberle, H.J. Pesch, and others.

10. General problem G with nonregular mixed constraints

As was already said, the problems with nonregular mixed constraints are much
more difficult than problems with regular ones. Here we give just a very brief
look at these problems and the corresponding results obtained by Dubovitskii
and Milyutin. More details can be found in Dubovitskii and Milyutin (1968,
1969, 1971, 1981), Dubovitskii (1975), and Milyutin (2001).

Consider the following problem on a fixed interval ∆ = [t0, t1] with p =
(x(t0), x(t1)) :
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J = F0(p) −→ min,

F (p) ≤ 0, K(p) = 0,

ẋ = f(t, x, u),

g(t, x, u) = 0, ϕ(t, x, u) ≤ 0,

p ∈ P , (t, x, u) ∈ Q .

The pure state constraint Φ(t, x) ≤ 0 is included here as a particular case of
the mixed inequality constraint. The matrix g′u is assumed to have a full rank
on the surface g(t, x, u) = 0.

In the study of this problem, the following notion proposed by Dubovitskii
and Milyutin is useful.

Closure with respect to measure. For any set E ⊂ IR define clmM
as the set of all points t ∈ IR such that ∀ ε > 0 the set Bε(t) ∩M has a positive
measure. Obviously, this is a closed set contained in the usual closure of M.
(We do not use the authors’ notation because of typesetting problems.)

Obviously, this definition can be given in any finite-dimensional space.

The importance of this notion is justified e.g. by the fact that, if a functional
l ∈ L∗

∞
(∆) is supported on a measurable set E ⊂ ∆, then its restriction l|C to

the space C(∆) is supported on clmE.

Similarly, for any set F ⊂ IR1+r considered as the graph of a set-valued
mapping IR → IRr, define clmg F as the set of all points (t, u) such that ∀ ε > 0
the projection of Bε(t, u) ∩ F on t has a positive measure.

Given a measurable function u : IR → IRr, let us denote by clmg u the set-
valued mapping, whose graph is the mes-closure of graph u, so that (clmg u)(t) ⊂
IRr is its value at t.

Theorem 7 (Dubovitskii and Milyutin, 1981). Let F : IR → IRr be a set-
valued mapping with a closed graph. Then there exists a measurable selection
f(t) ∈ F (t) such that clmg f = clmgF.

Definition 2 A triple (t, x, u) ∈ Q is called a phase point of the mixed con-

straints if ∃ a ∈ IRd(ϕ), a ≥ 0, and b ∈ IRd(g) such that
∑

ai = 1 and

aϕ′

u(t, x, u) + b g′u(t, x, u) = 0, a ϕ(t, x, u) = 0,

i.e. the positive–linear independence fails to hold.

The term phase point is explained by the fact that near such a point the
mixed constraints are much like a state (i.e. phase) constraint. The correspond-
ing vector s = aϕ′

x + b g′x is called a phase jump.
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Note that the set of all phase points is determined only by the mixed con-
straints and does not depend on the control system nor the endpoint block of
the problem.

Denote by S(t, x, u) = { s } the set of all phase jumps at a given point. Ob-
viously, it is a compact set, maybe empty. If the mixed constraints are regular,
S(t, x, u) is empty for any point. For any set A ⊂ IRr denote S(t, x, U) =
⋃

u∈U S(t, x, u).

Note that nonregular mixed constraints are not exotic; a simple example is
ϕ(x, u) = x2 +u2−1 ≤ 0. Here (x, u) = ± (1, 0) are phase points with the phase
jump s = ±2 respectively.

Conditions of weak stationarity in the nonregular problem G

Here, as before, we construct the endpoint Lagrange function l(p)=α0F0(p)+
αF (p) + (β,K(p)), the Pontryagin function H = (ψ, f(t, x, u)), and the "ex-
tended" Pontryagin function, which is now

H(t, x, u, v) = (ψ, f) − (k, ϕ) − (m, g).

The process (x0, u0) is stationary in the class of all uniformly small varia-

tions iff the following conditions hold: ∃α = (α0, . . . , αd(F )) ≥ 0, β ∈ IRd(K),
integrable functions k(t) ≥ 0, m(t) of dimensions d(ϕ), d(g) respectively, a
measure dν ∈ C∗(∆), dν ≥ 0, a "jump function" s ∈ L∞(∆, dν) of dimension
n (measurable and bounded with respect to dν), and a function of bounded
variation ψ(t), such that

a) α and k(t) satisfy the corresponding complementary slackness,

b) ψ satisfies the transversality conditions,

c) |α| + |β| +

∫

∆

|k(t)| dt +

∫

∆

dν > 0 (normalization),

d) s(t) ∈ convS(t, x0(t), (clmg u0)(t)) a.e. on ∆ with respect to dν,

e) − ψ̇x = Hx − s(t)
dν

dt
(costate equation),

or, equivalently,

−dψ = Hx dt− s(t) dν (an equality between measures),

f) Hu = 0 (stationarity in u).

Let us give some remarks. Since the set-valued mapping clmg u0 has a
compact graph, the set M0 of all t, where S(t, x0(t), (clmg u0)(t)) 6= ∅, is closed.
If the measure dν of its complement is positive, condition d) would fail to hold.
Hence, dν is supported on M0 , and actually, s ∈ L∞(M0 , dν). Equation e) is
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essential on M0 , while outside M0 it holds in a truncated form with dν = 0 :
−ψ̇x = Hx .

These conditions of weak stationarity were obtained in Dubovitskii and Mi-
lyutin (1968, 1971) (see also Milyutin, 2001, Ch.3) and called the local maximum
principle. (Note that the term is a bit confusing, because no maximality condi-
tion is here.) They can be also called Euler–Lagrange equation, since they play
the role similar to that of EL equation in CCV.

The proof is essentially based on the following generalization of the Dubovit-
skii–Milyutin theorem on nonintersecting cones; see Dubovitskii and Milyutin
(1971, 1981), Dubovitskii (1975), and Milyutin (2001).

Three storey theorem

Let Y, X, Z be Banach spaces, Y ∗ = X and X∗ = Z. (So, Y is a first storey,
X a second storey, and Z a third storey).

In the space X let be given nonempty convex cones Ω1 , . . . ,Ωm , Ωm+1, first
m of which are open. Suppose ∀ i there is a convex cone Hi ⊂ Ω∗

i ∩Y such that

(x, y) ≥ 0 ∀ y ∈ Hi =⇒ x ∈ Ωi .

(Such a cone Hi is called thick on Ωi , and in general it is not unique.)
Fix any points x0

i ∈ Ωi , i = 1, . . . ,m from the open cones.

Theorem 8 Ω1 ∩ . . . ∩ Ωm ∩ Ωm+1 = ∅ ⇐⇒ ∀ ε > 0 ∃hi ∈ Hi , i =
1, . . . ,m+ 1, such that

(x0
1 , h1) + . . . + (x0

m , hm) = 1 (normalization),

and

||h1 + . . . + hm + hm+1 || ≤ ε

(Euler–Lagrange equation with ε−accuracy).

In optimal control we have Y = L1 , X = L∞ , Z = L∗

∞
, and this

theorem allows for avoiding singular Lagrange multipliers from L∗

∞
by taking

approximate solutions to the EL equation with multipliers from L1 and then by
passing to a limit, in which one should use the so-called

Biting lemma. Let ϕn(t) ∈ L1(∆) be a bounded sequence: ||ϕn||1 ≤ const.
Then there is a subsequence nk → ∞ and measurable sets Ek ⊂ ∆ such that
mesEk → 0 and the sequence of functions

ϕnk
(t) =

{

ϕnk
(t), t /∈ Ek,

0, t ∈ Ek,

is uniformly integrable, and so, it is a weakly precompact family in L1(∆).
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This lemma (and its various versions) was proved by many authors, and it
is not clear where this was done for the first time. I.V. Evstigneev gave me a
number of references, the earliest ones being Kadec and Pelczynski (1961/62)
and Gaposhkin (1972). In the first one the formulation was not explicitly given
and the proof was hidden in the proof of another result. Dubovitskii and Mi-
lyutin (1971) gave a proof not being aware of that paper. The biting lemma is
now very popular among the specialists in probability and stochastics. More
about this lemma see in Saadoune and Valadier (1995).

Maximum principle for the nonregular problem G

Definition 3 A set-valued mapping t 7→ Z(t) with convex images and a com-
pact graph is called associated with an admissible process (x0(t), u0(t)), if ∀ t ∈ ∆

S(t, x0(t), (clmg u0)(t)) ⊂ [a, b]Z(t)

for some 0 < a ≤ b (i.e., Z(t) majorates essentially the phase jumps of all points
that are "stuck" to the graph of the reference process).

Let a process (x0(t), u0(t)) provide a Pontryagin minimum. Then, for any
associated mapping Z(t) there exist a collection of Lagrange multipliers includ-
ing a measure dν ∈ C∗(∆), dν ≥ 0, and a "jump function" s(t) ∈ Z(t) a.e. in
dν, such that the adjoint equation

ψ̇x = −Hx + k(t)ϕx +m(t) gx + s(t)
dν

dt

holds, and for any "test" control function u(t) that satisfies the conditions

(t, x0(t), u(t)) ∈ Q , ϕ(t, x0(t), u(t)) ≤ 0, g(t, x0(t), u(t)) = 0 a.e. on ∆,

and generates phase jumps majorated by Z(t):

S(t, x0(t), (clmg u)(t)) ⊂ [a′, b′]Z(t), with some 0 < a′ ≤ b′,

the maximality condition holds:

H(t, x0(t), u(t)) ≤ H(t, x0(t), u0(t)) for almost all t ∈ ∆.

The other conditions of MP are the same as earlier. If the data functions
are smooth in t, the state jumps should be defined in IRn+1, and the costate
function ψt = −H should satisfy the corresponding adjoint equation.

In some "good" cases (but not always) the maximality condition can be
written in a convenient pointwise form.

This is the formulation of MP corresponding to sliding mode variations.
(The formulation of MP corresponding to v−variations is more complicated.)



952 A.V. DMITRUK

Thus, the adjoint equation and maximality condition depend here on the
choice of associated mapping Z(t). Note that the larger Z(t), the broader the
class of compared u(t) in maximality condition, but more uncertain s(t) in
the adjoint equation. So, we come to a quite unexpected fact that there is
a family of "partial" MPs (each of which corresponds to the stationarity in a
certain associated problem), without a "common" MP (that would guarantee
the stationarity in all associated problems). This family can be partially ordered,
so that there is an "hierarchy" of partial MPs. However, the above "pressing"
procedure cannot be perfectly accomplished in the case of nonregular mixed
constraints. These results obviously require further and more in-depth analysis.

Remark 9 Like the regular problem C, problem G can be also generalized to
involve the inclusion constraint. To this end, one should again consider two
control vectors u and v, etc. The details can be found in Dubovitskii and
Milyutin (1981), Dubovitskii (1975), and Milyutin (2001).

Remark 10 Some examples of the usage of the "nonregular" MP are given in
Milyutin and Dubovitskii (1981), Dubovitskii and Milyutin (1985) and Milyutin
(2001, Ch.2). One more example (given as an answer to a question of F. Clarke)
is the construction of a problem with a Hölder continuous differential inclusion
whose extremals have a discontinuous costate function (Milyutin, 1999). It
was made by constructing first an optimal control problem with a smooth non-
regular mixed constraint, whose associated measure has a jump, and then by
reformulating this constraint as a differential inclusion.

The nonregular MP has also practical applications. Dikusar and Shilov
(1970), Klumov and Merkulov (1984), Dikusar in Dikusar and Milyutin (1989,
Ch.3), and Dikusar (1990) used it for numerical solution and investigation of
some problems of aerospace navigation.

Remark 11 Chukanov (1990) showed that the Dubovitskii–Milyutin scheme
of obtaining MP can be extended from control systems with ODEs defined on a
time interval to a very general control system governed by integral equations of
the second kind defined on an arbitrary metric compact set with a measure and
subjected to state and nonregular mixed constraints. This class includes both
ODE systems, systems with delays, with intermediate constraints, and some
PDE systems (e.g. heating equation). Using the sliding mode variations, he
obtained an MP for such problems.
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