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Abstract: On the occasion of (more than) 50 years of optimal
control theory, this paper deals with the development of the maxi-
mum principle of optimal control during the early times of the Cold
War, when mathematicians in the US and the USSR made every en-
deavor to solve minimum time interception problems, which later on
became prototypes of the first optimal control problems. The paper
is a short survey on the history of optimal control, a sequence of inge-
nious ideas and regrets of missed opportunities. The conclusions of
the paper are extracted from the second author’s monograph on the
development of optimal control theory from its commencements un-
til it became an independent discipline in mathematics. The present
paper also includes secondary literature published thereafter.
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1. The Maximum Principle, a creation of the Cold War

and the germ of a new mathematical discipline

After 50 years of optimal control, it is time to look back on the early days of
optimal control. Immediately after World War II, with the beginning of the Cold
War, the two superpowers, US and USSR, increased their efforts in making use
of mathematicians and their mathematical theories in defense analyses, since
mathematics had been recognized as useful during World War II. Therefore it
is not astonishing that mathematicians in East and West almost simultaneously
began to develop solution methods for problems which later became known as
problems of optimal control such as, for example, minimum time interception
problems for fighter aircraft.
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974 H.J. PESCH, M.PLAIL

Initially, engineers attempted to tackle such problems. Due to the increased
speed of aircraft, nonlinear terms no longer could be neglected. Linearisation
then was not the preferred method. Engineers confined themselves to simplified
models and achieved improvements step by step.

Angelo Miele (1950) achieved a solution for a special case. He investigated
control problems with a bounded control firstly for aircraft, later for rockets
in a series of papers from 1950 on. For special cases, he was able to derive
the Euler-Lagrange equation as a first, instead of a second order differential
equation, which determines the solution in the phase plane. By means of Green’s
Theorem, Miele resolved the difficulty that the vanishing Legendre as well as
the Weierstrass function did not allow a distinction between a maximum or
a minimum. Such a behaviour became later known as the singular case in
the evaluation of the maximum principle.1 Miele’s solution for a simplified
flight path optimization problem (with the flight path angle as control variable)
exhibits an early example for a bang—singular—bang switching structure (in
terms of aerospace engineering: vertical zoom climb—a climb along a singular
subarc—vertical dive).2

Nearly parallel to Miele’s works, efforts were made also in the USSR con-
cerning dynamic optimization, particularly in rocket launching. As early as
1946, Okhotsimsky solved the specific problem of a vertically ascending rocket
to achieve a given final altitude with a minimum initial mass.3 His solution con-
sists of a motion with maximum admissible thrust, an ascent with an optimal
relation between velocity and altitude, and finally a phase with thrust turned
off.4

For obvious reasons, problems of the calculus of variations were restated
at that time and used for control problems. However, optimal control theory
was not a direct continuation of the classical calculus of variations. The arising
differential equations were not yet solvable. However, the development of digital
computers from the end of World War II on, yielded hope that the numerical
problems would be overcome in the near future. For more details concerning
the early attempts to use the calculus of variations and increasingly detailed
models for the solution of optimization problems in rocket technology, see Plail
(1998), pp. 110ff.

Independently, new inspirations also came from nonlinear control theory.
The global comparison of competing functions by means of digital computers
was an isolated procedure. By the use of dynamic programming the elaborate
comparison could be reduced a bit.

1For more details, see Plail (1998), pp. 102ff, and Miele’s later references concerning tra-
jectories for rockets cited therein.

2The notions “bang” and “singular” will be explained later; see footnotes 21 and 27.
3This problem was posed by Hamel in 1927, in distinction from the Goddard’s earlier

problem from 1919 of reaching a maximum altitude for a given initial mass.
4In 1957 Okhotsimsky and Eneyev investigated the optimal launch of the first Sputnik

satellite.
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Mathematicians have attempted to treat optimal control problems with a
certain delay. They pursued new ideas. When the connections and differences
of their theories and methods to the classical calculus of variations became
clear,5 one began to develop a unitary theory of optimal control taking into
account its new characteristics. A new mathematical discipline was born.

The elaboration of the following outline of the early history of optimal control
theory is based on the comprehensive monograph of Plail (1998) on the history
of the theory of optimal control from its commencements until it became an
independent discipline in mathematics. Since this book is written in German,
it may not be widely known (an English translation is intended).

Most of the other literature concerning the historical development of optimal
control theory so far are either short notes on specific aspects or autobiographical
notes from scientists, who were involved in the development. For more references
to secondary literature, see the book of Plail (1998). New secondary literature
not incorporated in this book is now taken into account, too.

Arthur E. Bryson Jr. (1996), also one of the pioneers of optimal control,
gave a survey of, mainly, the US contributions to optimal control from 1950
to 1985, particularly from the viewpoint of an aerospace engineer. This paper
also includes some of the early developments of numerical methods of optimal
control as well as the treatment of inequality constraints from the 1960s to the
1980s.

In 2005 Krotov and Kurzhanski gave — as they said — a subjectively
flavoured retrospective to control theory from the aerospace perspective with
special focus on eastern authors. They also mention the early Russian achieve-
ments in the development of numerical methods, as well as especially significant
attainments after 1970 in developing new variational methods for nonsmooth or
degenerate problems and in control synthesis under uncertainties.

The tongue-in-cheek article of Sussmann and Willems (1997) on “300 years
of optimal control” from Johann Bernoulli’s brachistochrone problem of 1696
to the maximum principle of the 1950s describes, in a unique instructive way,
a fictitious development of optimal control theory out of the development of
the calculus of variations by constantly asking “what if”. This enlightens the
connections between those closely related fields.

2. The Maximum Principle in the US: captured by the

calculus of variations and hidden by secrecy

A first formulation and the distinction between controls and states.

After the end of World War II, the RAND corporation (Research ANd Devel-
opment) was set up by the United States Army Air Forces at Santa Monica,
California, as a nonprofit think tank focusing on global policy issues to offer

5See Berkovitz (1961) for one of the first papers on that.
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Figure 1. The mathematicians at RAND: Magnus R. Hestenes, Rufus P. Isaacs,
and Richard E. Bellman

research and analysis to the United States armed forces.6 Around the turn
of the decades in 1950 and thereafter, RAND simultaneously employed three
great mathematicians of special interest, partly at the same time: Magnus
R. Hestenes (1906–1991), Rufus P. Isaacs (1914–1981), and Richard E. Bell-
man (1920–1984).7 We firstly turn towards Hestenes.

Around 1950, Hestenes simultaneously wrote his two famous RAND research
memoranda No. 100 and 102; see Hestenes (1949, 1950). In these reports,
Hestenes developed a guideline for the numerical computation of minimum
time trajectories for aircraft in the advent of digital computers. In particular,
Hestenes’ memorandum RM-100 includes an early formulation of what later be-
came known as the maximum principle: the optimal control vector ah (angle of
attack and bank angle) has to be chosen in such a way that it maximizes the
Hamiltonian H along a minimizing curve C0. In his report, we already find the
clear formalism of optimal control problems with its separation into state and
control variables.

The starting point was a concrete optimal control problem from aerospace
engineering: in Hestenes’ notation, the equations of motion are given by

d

dt
(m~v) = ~T + ~L+ ~D + ~W ,

dw

dt
= Ẇ (v, T, h) ,

where the lift vector ~L and the drag vector ~D are known functions of the angle
of attack α and the bank angle β. The weight vector ~W has the length w. The
thrust vector T is represented as a function of velocity v = |~v| and altitude h.

6For more information on RAND, see Plail (1998), pp. 53ff.
7Hestenes has worked for RAND in 1948–1952, Isaacs in 1948–1954/55, and Bellman tem-

porarily in 1948 and 1949, and as salaried employee in 1952-1965.
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Then the trajectory is completely determined by the initial values of the position
vector ~r, the velocity vector ~v and the norm w of ~W , as well as by the values
of α(t) and β(t) along the path.

The task consists of determining the functions α(t) and β(t), t1 ≤ t ≤ t2,
in such a way that the flight time t2 is minimized with respect to all paths
which have prescribed initial and terminal conditions for ~r(t1), ~v(t1), w(t1),
~r(t2), ~v(t2), and w(t2).

In general formulation: consider a class of functions and a set of parameters

ah(t) and bρ (h = 1, . . . ,m; ρ = 1, . . . , r)

as well as a class of arcs

qi(t) (t1 ≤ t ≤ t2; i = 1, . . . , n)

which are related to each other by8

q′i = Q̇i(t, q, a)

and the terminal conditions

t1 = T1(b) , qi(t1) = Qi 1(b) ,

t2 = T2(b) , qi(t2) = Qi 2(b) .

The quantities ah, bρ, and qi are to be determined in such way that the functional

I = g(b) +

∫ t2

t1

L(t, q, a) dt

is minimized. This type of optimal control problem was called Type A by
Hestenes. It was not consistent with the usual formulation of problems of the
calculus of variations at that time, as formulated, e. g., by Bolza (1904).

Already in 1941, Hestenes mentioned a paper of Marston Morse (1931) 9 as
a reference for the introduction of parameters ah in the calculus of variations
and their transformation via a′h(x) = 0 into the Bolza form; see Plail (1998),
p. 83.10

The Bolza form was called Type B by Hestenes and was opposed to Type A:
consider a class of numbers, respectively functions

bρ , xj(t) (t1 ≤ t ≤ t2; ρ = 1, . . . , r; j = 1, . . . , p) ,

8Here and in the following, Q(·), respectively Q̇(·, ·, ·) denote the given boundary conditions
at the initial and terminal point, which may depend on the design parameters bρ, respectively
the vector field defining the right hand side of the state equations.

9M. Morse as well as G. C. Evans, both former AMS presidents, initiated the foundation
of the War Preparedness Committee of the American Mathematical Society (AMS) and the
Mathematical Association of America (MAA). More on the importance and the role of applied
mathematics during World War II can be found in Plail (1998), pp. 50ff.

10Also Rufus P. Isaacs (1950) distinguished between navigation (control) and kinetic (state)
variables; see also Breitner (2005), p. 532. Later Rudolf E. Kálmán as well introduced the
concept of state and control variables; see Bryson (1996), p. 27.
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where only those curves are of interest, which satisfy the system of differential
equations

φi(t, x, x
′) = 0 (i = 1, . . . , n < ρ)

and the terminal conditions

t1 = t1(b) , xi(t1) = Xi 1(b) ,

t2 = t2(b) , xi(t2) = Xi 2(b) .

The function to be minimized has the form

I = g(b) +

∫ t2

t1

f(t, x, x′) dt .

One can easily transform Type A into Type B by letting xn+h(t) =
∫ t

t1
ah(τ) dτ

and vice versa by φn+h(t, x, x′) = ah; see Hestenes (1950), pp. 5ff, respectively
Plail (1998), pp. 81ff.

Hestenes then applied the known results of the calculus of variations for
Type A on Type B under the usual assumptions of variational calculus such as
variations belonging to open sets and state functions being piecewise continuous.

Denoting the Lagrange multipliers by pi(t) and introducing the function

H(t, q, p, a) := piQ̇i − L ,

Hestenes obtained the first necessary condition: on a minimizing curve C0, there
must hold

q′i = Hpi
, p′i = −Hqi

, Hah
= 0 ,

hence also
d

dt
H = Ht .

Moreover, the final values of C0 have to satisfy certain transversality conditions,
which are omitted here.

The second necessary condition derives from Weierstrass’ necessary condi-
tion: along the curve C0, the inequality

H(t, q, p, A) ≤ H(t, q, p, a)

must hold for every admissible elements (t, q, A), where a denotes a (locally)
optimal control. This is a first formulation of a maximum principle, in which
the variables were clearly distinguished, and which later were denoted as state,
adjoint, and control variables.11

11Here, Gamkrelidze is mistaken in his historical review (1999), p. 439, on the discovery
of the maximum principle. He attributes the first appearance of the adjoint system and the
Hamiltonian lift of the initial families of vector fields on the state space to its cotangent
bundle, the phase space of the problem, to the early works of the group around Pontryagin.
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The third necessary condition was the one of Clebsch (Legendre): at each
element (t, q, p, a) of C0, the inequality

Hah ak
πh πk ≤ 0

must hold for arbitrary real numbers π⋄.
Since both control variables appear nonlinearly in the equations of motion,

Hestenes’ trajectory optimization problem (Type A) can easily be interpreted
as a Bolza problem of the calculus of variations.

Moreover, Hestenes also investigated optimal control problems with addi-
tional constraints in the form of

φσ(t, q, a) = 0 , respectively φσ(t, q, a) ≥ 0 (σ = 1, . . . , l ≤ m) ;

see Hestenes (1950), pp. 29ff.
Six years before the works at the Steklov Institute in Moscow began, the

achievement of introducing a formulation that later became known as the general
control problem was adduced by Hestenes in his Report RM-100. This often has
been credited with Pontryagin (see Section 3). Hestenes’ report was considered
to be hardly distributed outside RAND. However, there existed many contacts
between staff members of RAND engaged in optimal control and those “optimiz-
ers” outside RAND. Therefore, the content of RM-100 cannot be discarded as a
flower that was hidden in the shade [as “Schattengewächs” (nightshade plant);
see Plail (1998), p. 84].12

Hestenes was a descendant of Oskar Bolza (1857–1942) and Gilbert Ames
Bliss (1876–1951) from the famous Chicago School on the Calculus of Variations.
Bolza, a student of Felix Christian Klein (1849–1925) and Karl Theodor Wilhelm
Weierstrass (1815–1897), had attended Weierstrass’ famous 1879 lecture course
on the calculus of variations. This course might have had a lasting effect on
the direction that Bolza’s mathematical interests have taken and that he has
passed on to his descendants. In this tradition, Hestenes’ derivation of his
maximum principle fully relied on Weierstrass’ necessary condition (and the
Euler-Lagrange equation), in which the control functions are assumed to be
continuous and to have values in an open control domain. These assumptions
were natural for Hestenes’ illustrative example of minimum time interception,
but have obfuscated the potential of this principle.

Further concerns dealt with the fact that, as for example in aerospace engi-
neering, the admissible controls cannot be assumed to lie always in open sets.

12The different circulation of Hestenes’ RM-100 compared to Isaacs’ RM-257, 1391, 1399,
1411, and 1486, the latter are all cited, e. g., in Breitner (2005), may have been caused by the
fact that Hestenes’ memorandum contains instructions for engineers while Isaacs’ memoranda
were considered to be cryptic. On this: Wendell H. Fleming, a colleague of Isaacs at RAND,
on the occasion of the bestowal of the Isaacs Award by the International Society of Dynamic
Games in July 2006: One criticism made of Isaacs’ work was that it was not mathematically

rigorous. He worked in the spirit of such great applied mathematicians as Laplace, producing

dramatically new ideas which are fundamentally correct without rigorous mathematical proofs;
see www-sop.inria.fr/coprin/Congress/ISDG06/Abstract/FlemingIsaacs.pdf.
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The optimal controls may also run partly along the boundaries of those sets.
This kind of problems were solved with short delay in the USSR, independently
from early efforts of optimal trajectories on closed sets by Bolza (1909), p. 392,
and Valentine (1937).13

3. The Maximum Principle in the USSR: liberated from

the calculus of variations

A genius and his co-workers, first proofs, cooperations and conflicts,

honors and priority arguments. Lev Semyonovich Pontryagin (1908–1988),
already a leading mathematician on the field of topology due to his book Topo-
logical Groups published in 1938, decided to change his research interests rad-
ically towards applied mathematics around 1952. He was additionally assured
by the fact that new serendipities in topology by the French mathematicians
Leray, Serre and Cartan came to the fore.14 In addition, he also was forced
by M. V. Keldysh, director of the department of applied mathematics of the
Steklov Institute, and by the organisation of the communist party at the in-
stitute to change his research direction.15 According to Pontryagin (1978),
E. F. Mishchenko played a decisive role in this volte-face. They became close
friends by this time.16 Contact was then made with colonel Dobrohotov, a pro-
fessor of the military academy of aviation.17 In 1955, Pontryagin’s group got
together with members of the airforce.18 Like in the US, minimum time inter-

13The results of Bolza (1909) for problems with domain restrictions go even back to Weier-
strass’ famous lecture in summer 1879. See also Bliss and Underhill (1914). Note that Miele’s
approach mentioned earlier, although tailored for solving a specific problem only, exceeds the
method of domain restrictions by unilateral variations as it was common in the calculus of
variations.

14See also Gamkrelidze’s historical review on Pontryagin’s work on topological dual-
ity (2000).

15See Pontryagin (1978) and Boltyanskii (1994), p. 8. Gamkrelidze (2000), p. 2447, mentions
Pontryagin’s wish to have professional contacts with a potentially wider group of colleagues
for giving up topology and devoting himself completely to applied problems of mathematics.

16Mishchenko, a student of P. S. Aleksandrov, who was the founder of the Moscow school
of topology, under whom also Pontryagin began his scientific career, describes in his historical
review of 2003, how he got under the influence of Pontryagin. In particular, he points out that
Pontryagin was, indeed, the driving force towards applied mathematics, and he followed him

into that interesting world , into which Pontryagin implicated also Boltyanskii and Gamkre-
lidze. Mishchenko cited Pontryagin from his autobiography (1998): I could not answer the

question of what it was all needed for, the things that I was doing. The most vivid imagi-

nation could not lead me to believe that homological dimension theory would ever be of any

practical use. . . . I believe that if not all, then at least many mathematicians should turn

to the original sources in their works, that is, to the application of mathematics. This is

necessary both to justify its existence and to inject a fresh stream into research. Mishchenko
later became Pontryagin’s close collaborator in the fields of singular perturbed equations and
(stochastic) differential games.

17See Boltyanskii (1994), p. 8.
18Letter of Yuri S. Ledyaev from the Steklov Institute to the first author from May 5, 1995.

Gamkrelidze (1999), p. 437, mentioned two Air Force colonels visiting the Steklov Institute in
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Figure 2. The mathematicians at Steklov: Lev Semyonovich Pontryagin,
Vladimir Grigor’evich Boltyanskii, and Revaz Valerianovich Gamkrelidze

ception problems were tabled to Pontryagin’s group; see Plail (1998), pp. 175ff.
Already prepared since 1952 by a seminar on oscillation theory and auto-

matic control that was conducted by Pontryagin and M. A. Aizerman, a promi-
nent specialist in automatic control,19 it was immediately clear that a time
optimal control problem was at hand there. In that seminar, firstly A. A. An-
dronov’s book on the theory of oscillations20 was studied.

However, to strengthen the applications also engineers were invited. Partic-
ularly, A. A. Fel’dbaum and A. J. Lerner focused the attention to the impor-
tance of optimal processes of linear systems for automatic control.21 Pontryagin
quickly noticed that Fel’dbaum’s method had to be generalized in order to solve
the problems posed by the military. First results were published by Pontryagin
and his co-workers Vladimir Grigor’evich Boltyanskii (born April 26, 1925) and
Revaz Valerianovich Gamkrelidze (born Feb. 4, 1927) in 1956. According to
Plail (1998), pp. 117ff., based on his conversation with Gamkrelidze on May 26,

the early spring of 1955. They proposed a fifth-order system of ordinary differential equations
related to aircraft maneuvers with three control variables two of which entered the equations
linearly and were bounded (see also Gamkrelidze, 2009, in this issue).

19See Aizerman (1958).
20See Andronov, Vitt, and Khaikin (1949). The second author of this book, A. A. Vitt, had

been sent to GULag where he died. His name was forcefully removed from the first edition,
but restored in the second and later editions. The GULag was the government agency that
administered the penal labor camps of the Soviet Union. GULag is the Russian acronym
for The Chief Administration of Corrective Labor Camps and Colonies of the NKVD, the
so-called People’s Commissariat for Internal Affairs, the leading secret police organization
of the Soviet Union that played a major role in its system of political repression.

21In 1949 and 1955, Fel’dbaum investigated control systems of second order where the
absolute value of the control has to stay on its extremum, but must change its sign once.
Such a behaviour of the optimal control was later called bang-bang. Lerner (1952) generalized
Fel’dbaum’s results to higher order systems with several constrained coordinates, to some
extent with suboptimal solutions only. For more on the evolving optimization in control
theory in the USSR, see Plail (1998), pp. 163ff., and Krotov and Kurzhanski (2005).
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1994,22 the first important step was done by Pontryagin “during three sleepless
nights”23 by introducing the co-vector function ψ, which is uniquely determined
except for a non-zero factor and satisfies the adjoint system

ψ̇i = −
n∑

α=1

ψα

∂fα

∂xi
(x, u) .

The new method was immediately tested to be successful by means of the
problems of the Bushaw-Fel’dbaum type,

..
x = u, respectively

..
x+x = u,

and |u| ≤ 1.24 The last inequality determines the so-called admissible set of
the control values.

The early form of the maximum principle of 1956 presents itself in the fol-
lowing form: given the equations of motion

ẋi = f i(x1, . . . , xn, u1, . . . , ur) = f i(x, u)

and two points ξ0, ξ1 in the phase space x1, . . . , xn, a admissible control vector u
is to be chosen25 in such way that the phase point passes from the position ξ0
to ξ1 in minimum time.

In 1956, Pontryagin and his co-workers wrote: Hence, we have obtained the
special case of the following general principle, which we call maximum principle
(the principle has been proven by us so far only in a series of special cases): the
function

H(x, ψ, u) = ψα f
α(x, u)

shall have a maximum with respect to u for arbitrary, fixed x and ψ, if the
vector u changes in the closed domain Ω̄. We denote the maximum by M(x, ψ).
If the 2n-dimensional vector (x, ψ) is a solution of the Hamiltonian system

ẋi = f i(x, u) =
∂H

∂ψi

, i = 1, . . . , n ,

ψ̇i = −
∂fα

∂xi
ψα = −

∂H

∂xi
,

and if the piecewise continuous vector u(t) fulfills, at any time, the condition

H(x(t), ψ(t), u(t)) = M(x(t), ψ(t)) > 0 ,

then u(t) is an optimal control and x(t) is the associated, in the small, optimal

22This was reported similarly by Gamkrelidze at the Banach Center Conference on 50 Years
of Optimal Control, Będlewo, Poland, on Sept. 15, 2008, too (Gamkrelidze, 2009, in this issue).

23See Gamkrelidze (1999), p. 439, and Gamkrelidze (2009), in this issue.
24See Bushaw (1952) and Fel’dbaum (1949, 1955).
25The letter u stands for the Russian word for control: upravlenie; see Gamkrelidze (1999),

p. 438, and Gamkrelidze (2009), in this issue.
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trajectory of the equations of motion.26,27 (Later on, Boltyanskii has shown
that the maximum principle is only a necessary condition in the general case;
according to Gamkrelidze, 1999, p. 447, it took approximately a year before a
full proof of the maximum principle was found.)

After those first steps by Pontryagin, the subsequent work has been di-
vided between Gamkrelidze and Boltyanskii. Gamkrelidze considered the sec-
ond variation and achieved results equivalent to Legendre’s condition. According
to Gamkrelidze,28 Pontryagin made a further important step. He formulated
Gamkrelidze’s local maximum principle as a global (sufficient) maximum prin-
ciple with respect to all admissible controls. This condition then contains no
pre-conditions for the controls. The controls can take values in an arbitrary
Hausdorff space and the control functions can be extended to measurable func-
tions.29 Gamkrelidze proved the maximum principle to be a necessary and
sufficient condition in the linear case (1957, 1958), while Boltyanskii proved
it to be “only” a necessary condition in the general case. He published the
proof firstly separately (1958), later on together with Pontryagin and Gamkre-
lidze (1960). Boltyanskii’s proof was very intricate and required substantial
knowledge of the Lebesgue integral, of differential equations with measurable
right hand sides, as well as of the weak compactness property of the sphere in
the space of linear continuous functionals. In particular, Boltyanskii introduced
needle variations, i. e. variations which are anywhere zero except for a small in-
terval where they can take arbitrary values, as well as the separability concept of
cones created by disturbances of the trajectories.30 Later Pontryagin detected

26Translated from Boltyanskii, Gamkrelidze, Pontryagin (1956) by J. H. Jones for the Tech-
nical Library, Space Technology Laboratories, Inc.

27Bang-bang and/or singular optimal controls, as mentioned in the footnotes 2 and 21, can
particularly occur if the Hamiltonian depends linearly on the control variable. In this case,
isolated zeros of the so-called switching function, which is given by the factor in front of the
(scalar) control u, determine switches between bang-bang control arcs with control values
on the boundary of the admissible set (see footnote 21), whereas non-isolated zeros lead to
singular control arcs (see footnote 2).

28based on the second author’s conversation with Gamkrelidze on May 26, 1994, and on
Gamkrelidze’s talk on Sept. 15, 2008, at the Banach Center Conference on 50 Years of Optimal
Control, Będlewo, Poland (Gamkrelidze, 2009, in this issue). See also Gamkrelidze’s historical
reviews on the discovery of the maximum principle (1999), p. 443.

29The advantages of the method of Pontryagin’s group were later clearly highlighted in their
book (1967), pp. 7ff.

30Boltyanskii’s proof greatly influenced the later development of the modern theory of ex-
tremum problems by A. Ya. Dubovitskii and A. A. Milyutin (1965) from the mid 1960s till the
end of the 1980s. They have elaborated the relations between the calculus of variations and
optimal control theory from the viewpoint of modern mathematics. In particular, they de-
veloped stationarity conditions for smooth problems with equality and inequality constraints
yielding both Lagrange multiplier rules and the well-known Euler-Lagrange equations of the
classical calculus of variations, which can be combined into the maximum principle. They also
investigated state constrained problems as well as mixed state-control constrained problems
under certain regularity assumptions yielding generalized maximum principles. Additionally,
they considered mixed constraints without those regularity assumptions, known to exhibit
severe difficulties because of the lack of regularity of the Lagrange multipliers. These prob-
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that Boltyanskii’s variations have already been introduced by Edward James
McShane (1904–1989) for intrinsic mathematical reasons. By means of these
variations, McShane (1939) was able to prove a Lagrange multiplier rule in the
calculus of variations for the Weierstrass condition in which he could abstain
from the distinction between normal and abnormal curves. He could not suspect
how important this would become later in the theory of optimal control.

Prior to the appearance of this paper, the Weierstrass condition could only
be established under the assumption that the Euler equations satisfy a condition
called normality. This condition is not verifiable a priori. In the aforementioned
paper, McShane established the Weierstrass condition without assuming nor-
mality. The proof was novel: firstly, because of constructing a convex cone
generated by first-order approximations to the end points of perturbations of
the optimal trajectory and, secondly, because of showing that optimality im-
plies that this cone and a certain ray can be separated by a hyperplane. Mc-
Shane (1978) wrote: The research of the Chicago School on the calculus of
variations was a part of pure mathematics and, in contrast, the development
in optimal control emerged from practical applications. In pure mathematics,
questions have been answered that nobody has posed ; see Plail (1998), p. 17.

The research efforts at the Steklov Institute led to a series of publications,
some of which have been already mentioned, e. g., Boltyanskii (1958), Gamkre-
lidze (1957–1960),31 Pontryagin (1959, 1960), and together in 1960 (Boltyanskii,
Gamkrelidze and Pontryagin, 1960) some of which were promptly translated
into English, and culminated in the famous book of Pontryagin, Boltyanskii,
Gamkrelidze and Mishchenko (1961), which is a standard work of optimal con-
trol theory until today. This book has accounted for the broadening of sepa-
ration theorems in proofs of optimal control, nonlinear programming, and ab-
stract optimization theory. In 1962, Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko received the Lenin prize for their work.32, 33

lems lead to families of maximum principles. See Dmitruk (1993) for more details and the
associated references therein.
Also in Mordukhovich’s books (2006) on variational analysis, being the subsumption of the
classical variational calculus, of optimal control theory and mathematical programming, ex-
tensive comments on the early and later history of extremum problems can be found in Chap-
ters 6.5.1, 15, 21–26 of Vol. II.

31In his book of 1960, Gamkrelidze discovered a new proof of the maximum principle not
based on needle variations but on chattering controls.

32In his historical review (2003), Mishchenko describes both the outstanding contribution of
the summit of the development of the Pontryagin-Gamkrelidze-Boltyanskii mathematical the-

ory of optimal control (in the chronological order of the early stages) and his joint paper with
Pontryagin on the study of singularly perturbed differential equations exhibiting periodic mo-
tions containing alternating portions of slow phase variations and rapid, almost instantaneous
ones, called relaxation oscillations. Their approximate computation draw the attention of
Pontryagin and Mishchenko, in particular the study of bifurcations in neigborhoods of points
where there is a jump. Their 1955 paper (Mishchenko and Pontryagin, 1955) was attached to
the nomination for the Lenin Prize as suggested by Kolmogorov.

33N. N. Krasovskii, another participant of the famous Pontryagin-Aizerman seminar —
see the acknowledgment in Krasovskii (1957b), developed, in a series of papers from 1957
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In addition, Pontryagin also got the opportunity to present the results of his
group on international conferences. For example, at the International Congress
of Mathematicians in Edinburgh in August 1958, shortly after he had been
elected a member of the Russian Academy of Sciences. At this time, the proof
of the maximum principle was already completely elaborated. This conference
was followed by the first congress of the International Federation of Automatic
Control in 1960 in Moscow, where also the relations between the maximum
principle and the calculus of variations were discussed.

Both Boltyanskii and Gamkrelidze coincide in their statements as to the
authorship inasmuch as the comparable conditions of the calculus of variations
were not known during the development phase of the maximum principle, al-
though Bliss’ monograph of 1946 existed in a Russian translation from 1950.

At that time, scientific publications became soon mutually known; see Plail
(1998), pp. 182ff, for more details. In particular, McShane’s needle variations
could have encroached upon the proof of the maximum principle. According to
Boltyanskii,34 he came across McShane’s ideas a few weeks after the decisive
ideas for his proof. Boltyanskii claimed the version of the maximum principle as
a necessary condition to be his own contribution and described how Pontryagin
hampered his publication. He said Pontryagin intended to publish the results
under the name of four authors. After Boltyanskii refused to do so, he was
allowed to publish his results in 1958 but said that he had to appreciate Pon-
tryagin’s contribution disproportionally. Moreover, he had to refer to McShane’s
needle variations and to call the principle Pontryagin’s maximum principle.35

This priority argument may be based on the fact that Pontryagin wanted
to head for a globally sufficient condition after Gamkrelidze’s proof of a lo-
cally sufficient condition, and not to a necessary condition as it turned out to
be after Boltyanskii’s proof. Boltyanskii may have felt very uncomfortable to
write in his monograph (1969), p. 5: The maximum principle was articulated
as hypothesis by Pontryagin. Herewith he gave the decisive impetus for the de-
velopment of the theory of optimal processes. Therefore the theorem in question

onwards, a distinctive approach for the solution of optimal programming controls by means of
functional analytical methods. For the linear case, he embedded the optimal control problem
into a well-elaborated momentum problem and revealed the minimum property of trajectories
of the adjoint system in the maximum principle. In particular, Krasovskii pointed the way
to the missing information for the boundary conditions in the maximum principle; compare
Berdyshev et al. (2004). Results on linear control systems can also be found in the western
literature; see Plail’s elaboration (1998), pp. 149–151, 161, 162, on the works of R. Bellman,
I. Glicksberg, and O. Gross, and, in particular, of J. P. La Salle.

34See Boltyanskii (1994).
35According to Boltyanskii, Rozonoér (1959) was encouraged to publish a tripartite work on

the maximum principle in Avtomatika i Telemekhanika, in order to disseminate the knowledge
of the maximum principle in engineering circles and to contribute thereby to the honour of
Pontryagin as discoverer of the maximum principle. Felix Chernousko called the authors’
attention to the fact that Rozonoér gave a correct proof of the maximum principle for the
nonlinear case, though for the simpler case of unprescribed final points, hence not so general
as Boltyanskii’s (talk with the second author on Jan. 26, 1994).
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and the closely related statements are called Pontryagin’s maximum principle in
the entire world — and rightly so. Nevertheless, Boltyanskii felt suppressed and
betrayed of the international recognition of his achievements. After the end of
the USSR, Boltyanskii was able to extend his fight for the deserved recognition
of his work. Hence the role of Pontryagin is differently described by Boltyanskii
and Gamkrelidze, both under the influence of strong personal motivations.36

For more on this, see Plail (1998), pp. 186ff.
Pontryagin received many honours for his work. He was elected member of

the Academy of Sciences in 1939, and became a full member in 1959. In 1941 he
was one of the first recipients of the Stalin prize (later called the State Prize).
He was honoured in 1970 by being elected Vice-President of the International
Mathematical Union.

4. Regretted and claimed “missed opportunities”

Going back to the antiquity of the development of the maximum principle, one
inevitably comes across with Carathéodory’s work. Variational problems with
implicit ordinary differential equations as side conditions have already been in-
vestigated intensively by Constantin Carathéodory (1873–1950) in 1926; see also
his book of 1935, pp. 347ff. In these publications, one can find both the identifi-
cation of the degrees of freedom for the optimization by a separate notation (in
Carathéodory’s work by different arrays of indices),37 and a representation of
Weierstrass’ necessary conditions via the Hamiltonian.38 Carathéodory clearly
pointed to the fact that all necessary conditions of the calculus of variations
can be expressed via the Hamiltonian. Hence, the Hamiltonian formalism plays
an important role on Carathéodory’s famous “Royal Road of the Calculus of
Variations”.39

A few years later Lawrence M. Graves (1932, 1933) developed equivalent re-
sults for Volterra integral equations that are known to comprehend initial value
problems for explicit ordinary differential equations. Graves distinguished the
state variables and the degrees of freedom by different letters.40 Both results

36Compare Boltyanskii (1994) and Gamkrelidze (1999, 2000).
37See Carathéodory (1926), p. 203, formula (15) or Carathéodory (1935), p. 352, for-

mula (425.1).
38See Carathéodory (1926), pp. 207ff., formulae (24, 29, 30), respectively pp. 221ff., formu-

lae (66, 72, 73) or Carathéodory (1935), p. 358, formula (431.7).
39For more details, in particular on the impact of Carathéodory’s work on optimal control,

see Pesch and Bulirsch (1994).
40In 1978, William T. Reid claimed that the earliest place in the literature of the calculus

of variations and optimal control theory wherein one finds a “Weierstrass condition” or “ex-

tremum principle” for a problem of Lagrange or Bolza type in “control formulation” is a 1933

paper by L. M. Graves.

Reid as well as the mathematicians at RAND and the Pontryagin group overlooked, respec-
tively did not recognize Carathéodory’s earlier works. W. H. Fleming in Breitner (2005),
p. 540: In the context of calculus of variations, both dynamic programming and a principle

of optimality are implicit in Carathéodory’s earlier work, which Bellman overlooked.
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have been accomplished prior to Hestenes. However, neither the different roles
of the functions, that later were labeled as state, respectively control, variables
were clearly characterized nor a local maximum principle solely with respect to
the controls was stated, and not at all the global maximum principle of Pontrya-
gin’s group. Nevertheless, Carathéodory’s and Graves’ form of the Weierstrass
condition can both be considered as precursors of the maximum principle.

Simultaneously with the treatment of optimal control problems, the first
differential games were established at RAND, too. Indeed, problems of optimal
control can be regarded as a special case of differential games, today preferably
denoted as dynamic games. Undoubtedly, Isaacs is a precursor in this field.

Isaacs was particularly working on continuous pursuit-evasion games in the
early 1950s. Here, two players try to optimize a given payoff-function subject
to a given dynamical system described by ordinary differential equations, the
one player by minimizing, the other by maximizing it. That is a two-sided
optimal control problem or, seen from the other point of view, an optimal control
problem is a one-player differential game.41

Also in the early 1950s, Richard Bellman worked at RAND on multi-stage
decision problems, such as optimal allocation and bottle-neck problems. Ex-
tending Bellman’s principle of optimality, it is possible to derive a form of a
maximum principle; see, e. g., Plail (1998), pp. 118ff and 216.42

In the middle of the 1960s, relations between the calculus of variations, the
maximum principle and the dynamic programming were clearly recognized and
described. Therefore, it is not astonishing that Hestenes, Bellman, as well as
Isaacs have regretted their “missed opportunities”.43

Bellman (1984) wrote: I should have seen the application of dynamic pro-
gramming to control theory several years before. I should have, but I did not.
One of Bellman’s achievements is his criticism of the calculus of variations be-
cause of the impossibility of solving the resulting two-point boundary-value
problems for nonlinear differential equations at that time. Moreover, he wrote:
The tool we used was the calculus of variations. What we found was that very

Here the authors do not agree. Dynamic programming is solely Bellman’s contribution whereas
the principle of optimality can already be found in Jacob Bernoulli’s reply of 1697 to his
brother’s Johann posed challenge of 1696 for the curve of quickest descend; see Pesch and
Bulirsch (1994).

41A large collection of early papers on dynamic games including Isaacs’ famous RAND
reports RM-257, 1391, 1399, 1411, and 1486 can by found in Breitner (2005). For more on
the history of differential games, in particular to the homicidal chauffeur game, we refer to
Patsko and Turova (2008).

42Note that the so-called Bellman equation, also known as Hamilton-Jacobi-Bellman equa-
tion, on which Bellman’s principle of dynamic programming is based, is due to Carathéodory
(1935), p. 349; see also Pesch and Bulirsch (1994).

43During the historical session at the Banach Center Conference on 50 Years of Optimal
Control organized by Alexander Ioffe, Kazimierz Malanowski and Fredi Tröltzsch in Będlewo,
Poland, on Sept. 15, 2008, Revaz Valerianovich Gamkrelidze said: My life was a series of

missed opportunities, but one opportunity, I have not missed, was to have met Pontryagin.

This was a part of some longer discussions about “missed opportunities”.
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simple problems required great ingenuity. A small change in the problem caused
a great change in the solution. . . . As soon as we turn to the numerical solu-
tion of two-point boundary-value problems for nonlinear differential equations
the circumstances change abruptly.

Also Isaacs later complained with respect to his “tenet of transition” [see
Isaacs (1951, 1965)]: Once I felt that here was the heart of the subject . . . Later
I felt that it . . . was a mere truism. Thus in (my book) “Differential Games” it is
mentioned only by title. This I regret. I had no idea, that Pontryagin’s principle
and Bellman’s maximal principle (a special case of the tenet, appearing little
later in the RAND seminars) would enjoy such widespread citation. See Isaacs
(1973), p. 20. Indeed, even Isaacs’ tenet represents a minimaximum principle.44

However, he had the greatness to understand: The history of mathematics has
often shown parallel evolution when time was ripe.45

Both looked back at their “missed opportunities”. However, Hestenes claimed
that he had seen the significance of the Weierstrass condition already in his
report RM-100: It turns out that I had formulated what is now known as the
general optimal control problem. I wrote it up as a RAND report and it was
widely circulated among engineers. I had intended to rewrite the results for
publication elsewhere and did so about 15 years later.46 As a reason for the
delay, he mentioned his workload as chairman at the University of Southern
California and his duties at the Institute for Numerical Analysis.

More important are Hestenes’ meritoriousnesses. Hestenes indeed expressed
Weierstrass’ necessary condition as a maximum principle for the Hamiltonian.
Herewith he had observed the importance of Weierstrass’ condition for the the-
ory of optimal control. However, he did not try to unhinge that condition from
the environment of the calculus of variations and to generalize it. There is no
evidence for a proof of a general form of the maximum principle.

Additionally, Hestenes brought certain problems of the calculus of variations
into a form by introducing control variables, which was more appropriate for
control problems. His model for the determination of “paths of least time” for
aircraft already consisted of all components for a realistic three-dimensional
flight path optimization problem that even included a control-state-variable in-
equality constraint. All this was buried in a RAND report and did not attract
attention, so Boltyanskii (1994).47 Hestenes’ achievement for the standardiza-
tion of control problems must therefore not be underestimated; see Plail (1998),
p. 188.

44Compare the reference to Fleming in footnote 12.
45cited in Breitner (2005), p. 542, from Isaacs (1975).
46Hestenes in a letter to Saunders MacLane, printed in MacLane (1988).
47This has also been affirmed by Isaacs concerning his RAND reports; see Breitner (2005),

p. 540. Compare, however, also footnote 12 concerning the varying number of copies of the
RAND memoranda.
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5. Conclusions

Around the turn of the decades in 1950, Magnus R. Hestenes made the first
decisive steps at the US RAND corporation with a new innovative formulation
for Bolza type problems perfectly suited for the new class of problems that were
under parallel investigations in East and West. This class later became known
as optimal control problems. He has definitely introduced different notations
for the state and the control variables, which must not be underestimated.
Therewith, he was able to formulate a first maximum principle. Standing in
the tradition of the famous Chicago School on the Calculus of Variations, he,
however, was captured by the too strong assumptions which were common in
variational calculus at that time.

In a parallel, probably independent development at RAND, Rufus P. Isaacs
and Richard E. Bellman have obtained results where a maximum principle was
hidden, too, without recognizing the consequences and the interconnections be-
tween their research fully. None of these three RAND fellows gave a rigorous
proof for a general maximum principle at that time.

As recently as in the mid 1950s, a group around Lev S. Pontryagin at the
USSR Steklov Institute made the crucial steps. Starting from the scratch, they
could break new grounds. Pontryagin had the first ideas, gave the impetus
and the guidelines that his co-workers Revaz V. Gamkrelidze and Vladimir
G. Boltyanskii had to fill. They succeeded in doing the first proofs for a general
maximum principle in the linear, respectively nonlinear case. These achieve-
ments have enabled new theoretical and practical methods for the solution of
a class of problems which was called optimal processes, respectively optimal
control problems. Herewith a new field in mathematics was born which is still
growing (in particular with respect to constraints in form of partial differential
equations) despite its accomplished theoretical maturity and its potential for
solving problems of enormous complexity and of utmost practical importance
today (in particular with respect to constraints in form of ordinary differential
equations).

Nevertheless, one also has to appreciate Carathéodory’s work as well as
the contributions of Graves which flashed on the approach of a new field in
mathematics. The time seemed to be ripe, however World War II has then
stopped any further research in this direction. Nevertheless, it seems to be
remarkable that neither Hestenes nor Bellmann nor the Pontryagin group ever
made a reference to Carathéodory’s book from 1935, respectively his publication
from 1926.
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