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Abstract: This paper improves the results of and gives shorter
proofs for the analysis of state constrained optimal control problems
than presented by the authors in Bonnans and Hermant (2009b),
concerning second order optimality conditions and the well-posed-
ness of the shooting algorithm. The hypothesis for the second order
necessary conditions is weaker, and the main results are obtained
without reduction to the normal form used in that reference, and
without analysis of high order regularity results for the control. In
addition, we provide some numerical illustration. The essential tool
is the use of the “alternative optimality system”.
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1. Introduction

In these notes we give an account of some recent results on the analysis of state-
constrained optimal control problems (see the classical review by Hartl, Sethi
and Vickson, 1995) using in an essential way the approach called “alternative op-
timality system”. This approach was introduced in an informal way by Bryson,
Denham and Dreyfus (1963), Jacobson, Lele and Speyer (1971). The basic idea
is, when a state constraint is active over an interval of time, to replace it with
its time derivative of the smallest order such that the control appears. Adding
in a proper way the junction conditions, it is then possible to state a shooting
algorithm. Maurer (1979) gave a sound mathematical basis to this approach
by defining in a precise way the alternative costate, and giving the alternative
formulation of the optimality conditions, but restricting the analysis mainly to
(important) special cases such as a single control and constraint. So, many im-
portant questions remained open for a long time, such as the junction analysis
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in the general case, second order optimality conditions, and the well-posedness
of numerical algorithms, among them the shooting algorithm.

There are a number of recent paper devoted to state-constrained problems,
see Malanowski (2007) and references therein, and Malanowski and Maurer
(2001). An application to the computation of constrained spline functions is
discussed in Opfer and Oberle (1988). Let us highlight Malanowski and Maurer
(1998) where a complete theory is obtained for the first order state constraints.
High order constraints were studied in Bonnans and Hermant (2007-2009) and
Hermant (2008,2009a,b). In this paper we revisit the problem studied in Bon-
nans and Hermant (2009b), by improving some results and simplifying some
of the proofs. Part of the simplification is due to the fact that we are able to
obtain the main results without using the reduction to the normal form (see
Bonnans and Hermant, 2009b) and also without analysing high order regular-
ity results for the control. Other important points are second-order necessary
optimality conditions with weaker hypotheses than in Bonnans and Hermant
(2007,2009b), the simplification of the presentation of junction condition for
the alternative costate and linearized costate (and its relation to the jump of
the standard costate) and a detailed analysis of the difference of costs of the
associated quadratic subproblems. This last point is related to the fact that
a junction point for a given constraint causes jumps in the multipliers of the
other active constraints. This is why the case of several state constraints is es-
sentially more difficult than the case of a single one, discussed in many papers.
We provide also a more compact and self-contained presentation of the results.
The analysis allows for state constraints of order higher than two. However, the
analysis of the shooting algorithm excludes boundary arcs with such constraints,
as expected (see Remark 3).

The paper is organized as follows. Section 2 discusses some consequences of
Pontryagin’s principle and provides some results on the continuity of the control.
For the latter we rely on the fact that the control minimizes the Hamiltonian. In
this section we establish high order regularity on arcs with constant active set of
constraints. The shooting algorithm (and related questions on second-order op-
timality conditions) is presented in Section 3, using reduction of isolated contact
points and the alternative optimality system. Second-order optimality condi-
tions are presented in Section 4. The well-posedness of the shooting algorithm
is established in Section 5, assuming in particular that no boundary arc has
state constraint of order higher than two. In Section 6, we present a numerical
application of the shooting algorithm on two academic problems involving three
state constraints of order 1 and 2, respectively.

Notation. The set of integers from i to j is denoted {i:j}. The operator “ :=”
means a definition of the l.h.s. The cardinal of a set I is denoted by |I|. The
open (respectively closed) Euclidean ball of center x and radius R is denoted by
B(x, R) (respectively B̄(x, R)).
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For the value of functions of time only, as say y, we denote yt the value
at time t and the one of its ith component is denoted yi,t. If u and y depend
on time, and h is a function of (t, u, y), we denote by hi,y(t, ut, yt) the partial
derivative w.r.t y of its ith component. When necessary for clarity we denote
partial derivatives say like Dth(t, ut, yt).

The Sobolev space Wm,s(0, T, IRn), where m is a positive integer and s ∈
[1,∞], is the set of functions in Ls(0, T, IRn), whose weak time derivatives also
belong to Ls(0, T, IRn). Elements of W 1,s(0, T, IRn) are Hölder (respectively
Lipschitz) functions of time for s ∈ [1,∞) (respectively s = ∞).

The space of functions of [0, T ] → IRn with bounded variations is denoted
BV (0, T, IRn). The measure associated with η ∈ BV (0, T ) is denoted dη. El-
ements of BV (0, T, IRn) have for all time t ∈ [0, T ], left and right limits (right
limit for t = 0, left limit for t = T ). If a function of time, say η, has left or right
limits at time t, the latter are denoted η−

t and η+
t , respectively. The convex

combinations of the latter are denoted ησ
t := ση+

t + (1 − σ)η−
t , for σ ∈ [0, 1],

and the jump at time t of η is [ηt] := η+
t − η−

t .
By IRn∗ we denote the dual of IRn, identified with the space of n dimensional

horizontal vectors.

2. Pontryagin’s principle

2.1. Statement

In this section we study optimal control problems with state constraints, of the
following type:















Min

∫ T

0

ℓ(ut, yt)dt + φ(yT );

ẏt = f(ut, yt); t ∈ (0, T ); y0 = y0;
g(yt) ≤ 0; t ∈ [0, T ],

(1)

with ℓ : IRm × IRn → IR, f : IRm × IRn → IRn, g : IRn → IRr, r ≥ 1, y0 ∈ IRn

given. All data f , g, ℓ, φ are of class C∞, and f is Lipschitz. Denote the control
and state spaces by

U := L∞(0, T, IRm); Y := W 1,∞(0, T, IRn). (2)

For a given u ∈ U , the state equation (i.e., the differential equation in the
second row of (1)) has a unique solution y(u) ∈ Y. The generalized Hamiltonian
function H : IR × IRm × IRn × IRn∗ → IR is

H(α, u, y, p) := α ℓ(u, y) + pf(u, y). (3)

Definition 1 We say that (ū, ȳ) ∈ U ×Y is a generalized Pontryagin extremal
if there exists ᾱ ≥ 0 and η̄ ∈ BV (0, T, IRr), with (ᾱ, dη̄) 6= 0, and a costate
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p̄ ∈ BV (0, T, IRn∗), such that a.e. t ∈ (0, T ):

˙̄yt = f(ūt, ȳt) a.e. in [0, T ], (4)

−dp̄t = Hy(ᾱ, ūt, ȳt, p̄t)dt +

r
∑

i=1

g′i(ȳt)dη̄i,t on [0, T ], (5)

ūt ∈ argmin
w

H(ᾱ, w, ȳt, p̄t), a.a. on ]0, T [, (6)

and in addition

gi(ȳt) ≤ 0; dη̄i,t ≥ 0; t ∈ [0, T ];

∫ T

0

gi(ȳt)dη̄i,t = 0, i ∈ {1 : r}, (7)

ȳ(0) = y0; p̄T = ᾱφ′(ȳT ). (8)

We can rewrite the costate equation (5), with final condition in (8), in integral
form:

p̄t = ᾱφ′(ȳt)+

∫ T

t

Hy(ᾱ, ūs, ȳs, p̄s)ds+

r
∑

i=1

∫ T

t

g′i(ȳs)dη̄i,s, for all t ∈ [0, T ]. (9)

The following is well-known, see Section 5.2 in Ioffe (1979).

Theorem 1 Let ū ∈ U be an optimal control and ȳ be the associated state for
problem (1). Then (ū, ȳ) is a generalized Pontryagin extremal.

2.2. Continuity of the control

The total derivative of a function of the state, say g(y), is by the definition the
function IRm × IRn → IRr whose expression is

g(1)(u, y) := g′(y)f(u, y). (10)

Along a trajectory (u, y) (i.e., a solution of the state equation), g(1)(ut, yt) is
equal to d

dt
g(yt). In a similar way we can define higher order derivatives. These

formal expressions are the sum of all partial derivatives multiplied by the cor-
responding derivative of the variable, understood as formal variables (and not
true time derivatives) except for y whose derivative is replaced by f(u, y). De-
noting the partial derivatives by subscripts, we obtain for instance the mapping
IRm × IRm × IRn → IRr

g(2)(u, u̇, y) = g(1)
u (u, y)u̇ + g(1)

y (u, y)f(u, y). (11)

As long as the total derivatives do no depend on u (respectively the derivatives
of u), we may denote them as g(i)(y) (respectively g(i)(u, y)).



Optimal control problems with several state constraints 1025

Definition 2 (i) For i ∈ {1 : r}, the order of the state constraint gi(y) is the
smallest positive integer qi such that

g
(k)
i,u (u, y) = 0, for all (u, y) ∈ IRm × IRn and 0 ≤ k < qi. (12)

Then g
(k)
i (u, y) does not depend on the derivatives of u for k ≤ qi.

(ii) We say that the state constraint i is regular along a trajectory (ū, ȳ) ∈ U×Y,

such that ū is continuous, if g
(qi)
i,u (ūt, ȳt) 6= 0, for all t ∈ [0, T ].

For a state constraint gi of order qi, and k ∈ {1 : (qi − 1)}, we may write

g
(k)
i (y) instead of g

(k)
i (u, y), and we have

g
(k+1)
i (u, y) = g

(k)
i,y (y)f(u, y); g

(k+1)
i,u (u, y) = g

(k)
i,y (y)fu(u, y). (13)

For instance, if qi ≥ 2, then skipping arguments of g and f :
{

g
(2)
i (u, y) = g

(1)
i,y f = g′′i (f, f) + g′ifyf ;

g
(2)
i,u (u, y) = g

(1)
i,y fu = (g′′i f + g′ify) fu.

(14)

The set I(t) of active state constraints at time t ∈ [0, T ] is defined by

I(t) := {i ∈ {1 : r}; gi(ȳ(t)) = 0}. (15)

Define the set of state constraints of order κ, and those active at time t along
the trajectory (ū, ȳ) by:

Iκ := {1 ≤ i ≤ r; qi = κ}; Iκ(t) := {i ∈ Iκ; gi(ȳt) = 0}. (16)

For control variables with left and right limits at every time, a strong Legendre-
Clebsch type condition, along the direction of jump of the control, is as follows:

{

For some α > 0: α|[ūt]|
2 ≤ Huu(ūσ

t , ȳt, p̄
σ
t )([ūt], [ūt]),

for all σ ∈ [0, 1], t ∈ [0, T ].
(17)

If the control is continuous, the hypothesis of linear independence w.r.t. the
control of first-order state constraints is as follows:

{g
(1)
i,u(ūt, ȳt)}i∈I1(t) is of rank |I1(t)|, for all t ∈ [0, T ]. (18)

We recall that, being of bounded variation, p̄ has left and right limits.

Theorem 2 Let (ū, ȳ) be a Pontryagin extremal for problem (P ).
(i) Let R > ‖ū‖∞. If H(·, ȳt, p̄

±
t ) has, for all t ∈ [0, T ], a unique minimum over

B̄(0, R), and if (17) holds, then ū is continuous.
(ii) If ū is continuous and (18) hold, then the components of η̄ associated with
first order state constraint are continuous, and Huu(ūt, ȳt, p̄t±) is a continuous
function of time.
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Proof. (i) By assumption, H(u, ȳt, p̄
±
t ) has a unique point of minimum at time

t at the point ũt ∈ B̄(0, R). Then ũ = ū a.e. and we may take ū = ũ. When,
say, t ↑ τ , ũt has at least one cluster point a. It is easy to check that H(·, ȳt, p̄

−
t )

attains its minimum on B̄(0, R) at the point a, implying the existence of left
and right limits for ū at time τ . By the costate equation (5), p̄ has at most
countably many jumps, of type

[p̄t] = p̄+
t − p̄−t = −

r
∑

i=1

νig
′
i(ȳt), with νi := [η̄i,t] ≥ 0. (19)

We have that

0 = Hu(ū+
t , ȳt, p̄

+
t ) − Hu(ū−

t , ȳt, p̄
−
t )

=

∫ 1

0

(Huu(ūσ
t , ȳt, p̄

σ
t )[ūt] + [p̄t]fu(ūσ

t , ȳt)) dσ.
(20)

Using (19) and observing that g′ifu = g
(1)
i,u = 0 if qi > 1, we obtain that

∫ 1

0

Huu(ūσ
t , ȳt, p̄

σ
t )[ūt]dσ =

∑

i∈I1

∫ 1

0

νig
(1)
i,u (ūσ

t , ȳt)dσ. (21)

Taking the scalar product of both sides of (21) by [ūt], we get using hypothesis
(17) that

α|[ūt]|
2 ≤

∑

i∈I1

∫ 1

0

νig
(1)
i,u(ūσ, ȳt)[ūt]dσ =

∑

i∈I1

νi

[

g
(1)
i (ūt, ȳt)

]

. (22)

If νi > 0, then gi(ȳt) = 0, and hence [g
(1)
i (ūt, ȳt)] ≤ 0, since t is a local maxi-

mum of gi(ȳt). Therefore, the right-hand side in (22) is nonpositive, implying
[ūt] = 0. Point (i) follows.
(ii) Since [ūt] = 0, the right-hand side of (21) (with ūσ

t = ūt) is zero. We
conclude with (18) that the components of η̄ associated with first order state
constraint are continuous. In addition, as g′i(y)fu(y, u) is identically zero when-
ever qi > 1, it follows that Huu(ūt, ȳt, p̄t±) is a continuous function of time.

Remark 1 We note that Theorem 2 improves the related statements in Bon-
nans and Hermant (2009b) and Maurer (1979) by using a weak hypothesis (17).
In the sequel, if (ū, ȳ) is a Pontryagin extremal and ū is continuous, we will say
that (ū, ȳ) is a continuous Pontryagin extremal (this, of course, does not imply
the continuity of the multiplier η̄ or of the costate p̄).

2.3. Smoothness on each arc

If 0 ≤ a < b ≤ T , we say that (a, b) is an arc of the Pontryagin extremal
(ū, ȳ, p̄, η̄) if (a, b) is a maximal interval of [0, T ], over which the set of active
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constraints I(t) is constant. Let qi be the order of the ith state constraint, set
q := (q1, . . . , qr), and define G(u, y) : IRm × IRn → IRr by

Gi(u, y) := g
(qi)
i (u, y), i ∈ {1 : r}. (23)

The hypothesis of linear independence of gradients of active constraints w.r.t.
the control is

{Gi,u(ūt, ȳt)}i∈I(t) is of full rank, for all t ∈ [0, T ]. (24)

We also need a strong Legendre-Clebsch condition along the kernel of active
constraints:

{

For some α > 0, for all t ∈ [0, T ], v ∈ IRm :
α|v|2 ≤ Huu(ūt, ȳt, p̄t)(v, v), if Gi,u(ūt, ȳt)v = 0, for all i ∈ I(t).

(25)

We introduce, like in Maurer (1979), the alternative multipliers ηi,k, where i ∈
{1 : r} and k ∈ {1 : qi}, and η̄q:

ηi,1
t := −η̄i,t; ηi,k

t :=

∫ T

t

ηi,k−1
s ds; η̄q

i := ηi,qi . (26)

The alternative costate (of order q) is defined as

p̄q
t := p̄t −

r
∑

i=1

qi
∑

j=1

ηi,j
t g

(j−1)
i,y (ȳt) (27)

and the corresponding alternative Hamiltonian Hq : IRm × IRn × IRn∗ × IRr∗ is

Hq(u, y, pq, ηq) := ℓ(u, y) + pqf(u, y) + ηqG(u, y). (28)

This derivation of the alternative multipliers and the following proposition are
due to Maurer (1979):

− ˙̄pq
t = Hq

y(ūt, ȳt, p̄
q, η̄q), t ∈ (0, T ). (29)

H(u, ȳt, p̄t) = Hq(u, ȳt, p̄
q, η̄q), for all u ∈ IRm. (30)

Proposition 1 Let (ū, ȳ, p̄, η̄) be a continuous Pontryagin extremal satisfying
(24)-(25). Then ū and η̄q are of class C∞ over any arc (and therefore so are p̄t

and η̄t).

Proof. Let us denote by I∗ the set of active constraints over an arc (a, b), and
let GI∗(u, y) := (Gi(u, y))i∈I∗ . The two algebraic equations

{

Hq
u(ūt, ȳt, p̄

q
t , η̄

q
t ) = 0,

GI∗(ūt, ȳt) = 0,
(31)
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hold over (a, b), and their Jacobian w.r.t. the algebraic variables (u, η̄q) is

JacI(t) :=

(

Huu(ūt, ȳt, p̄t) (GI∗,u(ūt, ȳt))
⊤

GI∗,u(ūt, ȳt) 0

)

, (32)

which, by (24)-(25), is invertible. By hypothesis, ū is continuous, and since

0 = Hq
u(ūt, ȳt, p̄

q
t , η̄

q
t ) = Hu(ūt, ȳt, p̄

q
t ) + η̄q

t GI∗,u(ūt, ȳt), (33)

(24) implies that η̄q is a continuous function of (ūt, ȳt, p̄
q
t ). Since the algebraic

variables ū and η̄q are continuous, the implicit function theorem implies that
they are (locally in time) functions of class C∞ of (ȳt, p̄

q
t ), so that (ȳ, p̄q) is on

(a, b) solution of a differential equation with C∞ data. The conclusion follows.

3. The shooting algorithm

3.1. Formulation

We say that τ ∈ [0, T ] is a junction point if I(t) is not constant for t close to
τ . The set of junction points is closed, and therefore, has a finite cardinal iff
each junction point is an isolated junction point. We note that τ is an isolated
junction point (i.e., is not a limit point of the set of junction points) iff there are
two arcs of the form (a, τ) and (τ, b). All junction points are isolated iff there
are finitely many junction points, and iff there are finitely many arcs.

We say that τ ∈ [0, T ] is a contact point for constraint i ∈ {1 : r} if i ∈ I(τ).
If, in addition, i 6∈ I(t) for t 6= τ , close to τ , then we say that τ is an isolated
contact point or a touch point. If the measure η̄ has a nonzero (zero) jump
at the junction time τ , we say that τ is an essential (non essential) junction
point. The alternative optimality system allows also for proving the following
important result.

Lemma 1 Let (ū, ȳ, p̄, η̄) be a continuous Pontryagin extremal satisfying (24)-
(25). Let τ ∈ (0, T ) be an isolated touch point associated with just a first order
state constraint. Then τ is a non essential touch point.

Proof. Let i0 be the index of the first order state constraint. Since (24) implies
(18), we already know by theorem 2(ii) that [η̄i0,τ ] = 0, and hence, [η̄q

i0,τ ] = 0.
Remember that (ȳ, p̄q) is the solution of the state equation and (29). For t close
to, and different from τ , the index set I(t) is a constant I∗. By the arguments of
the proof of proposition 1, it follows that (ūt, η̄

q
t ) is a smooth function of (ȳ, p̄q).

Therefore, (ū, ȳ, p̄q, η̄q) is of class C∞ for t close to τ , implying [η̄τ ] = 0, as was
to be proved.

For y ∈ IRn, consider the vector

Γ(y) :=
(

g1(y) · · · g
(q1−1)
1 (y) · · · gr(y) · · · g

(qr−1)
r (y)

)⊤

. (34)
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Proposition 2 Let (ū, ȳ) be a trajectory satisfying (24). Then, for all t ∈
[0, T ], the restriction of Γ′(ȳt) to the active constraints at time t has full rank,
equal to

∑

i∈I(t) qi.

The proof is based on the following lemma, due to Maurer (1979). Set
qmax := maxi qi.

Lemma 2 Let the trajectory (u, y) be such that u is of class C∞ over (a, b) ⊂
[0, T ]. For k ∈ {1 : (qmax − 1)}, define the mappings Ak : (a, b) → IRn×m by:

{

A0(t) := fu(ut, yt)

Ak(t) := fy(ut, yt)Ak−1(t) − Ȧk−1(t), 1 ≤ k ≤ qmax − 1.
(35)

Then, for all t ∈ (a, b) and i = 1, . . . , r, we have:







g
(j)
i,y (yt)Ak(t) = 0 for k, j ≥ 0, k + j ≤ qi − 2,

g
(j)
i,y (yt)Aqi−j−1(t) = g

(qi)
i,u (ut, yt) for 0 ≤ j ≤ qi − 1.

(36)

Proof. We first show that for all j = 0, . . . , qi − 1, the following assertion

g
(j)
i,y (yt)Ak(t) = 0 ∀ t ∈ (a, b) (37)

implies that

g
(j+1)
i,y (ut, yt)Ak(t) = g

(j)
i,y (yt)Ak+1(t) ∀ t ∈ (a, b). (38)

Indeed, since for j ≤ qi

g
(j)
i,y (u, y) = g

(j−1)
i,yy (y)f(u, y) + g

(j−1)
i,y (y)fy(u, y), (39)

by derivation of (37) w.r.t. time, we get

0 = g
(j)
i,yy(yt)f(ut, yt)Ak(t) + g

(j)
i,y (yt)Ȧk(t)

= g
(j)
i,yy(yt)f(ut, yt)Ak(t) + g

(j)
i,y (fy(ut, yt)Ak(t) − Ak+1(t))

= g
(j+1)
i,y (ut, yt)Ak(t) − g

(j)
i,y (yt)Ak+1(t).

This gives (38). Also, g
(j)
i,u(ut, yt) = g

(j−1)
i,y (yt)fu(ut, yt) = g

(j−1)
i,y (yt)A0(t) for

j = 1, . . . , qi. Since g
(j)
i,u = 0 for j ≤ qi − 1, it follows that g

(j)
i,y (yt)A0(t) = 0, for

j = 0, . . . , qi−2. By (38), we deduce that g
(j)
i,y (yt)A1(t) = 0 for j = 0, . . . , qi−3.

By induction, this proves the first equation in (36). Since g
(qi−2)
i,y (yt)A0(t) =

0 = g
(qi−3)
i,y (yt)A1(t) = · · · = gi,y(yt)Aqi−2(t), by (38) we obtain g

(qi)
i,u (yt) =

g
(qi−1)
i,y (yt)A0(t) = g

(qi−2)
i,y (yt)A1(t) = · · · = gi,y(yt)Aqi−1(t), which proves the

second equation in (36).
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Proof (Proof of Proposition 2). Given M(λ) :=
∑

i∈I(t)

∑qi−1
j=1 λi,jg

(j)
i,y (ȳt) such

that M(λ) = 0, we have to prove that λ = 0. By the definition of the state

order, M(λ)fu(ūt, ȳt) =
∑

i∈I(t) λi,qi−1g
(qi)
i,u (ȳt), which, in view of (24), implies

λi,qi−1 = 0, for i ∈ I(t). So, for k = 1 the following relation holds:

λi,j = 0, when max(0, qi − k) ≤ j ≤ qi − 1, for i ∈ I(t). (40)

Let it hold for some k ∈ {1 : qmax}. Set Ik(t) := {i ∈ I(t); qi > k}. Then

M(λ) =
∑

i∈Ik(t)

∑qi−1−k

j=1 λi,jg
(j)
i,y (ȳt). Let Ak−1 be defined by (35) with (u, y) =

(ū, ȳ). In view of (36), we have

M(λ)Ak−1 =
∑

i∈Ik(t)

λi,qi−1−kg
(qi)
i,u (ȳt) = 0, (41)

implying in view of (24) that λi,qi−1−k = 0 when qi > k. Therefore, the result
follows by induction.

When setting the alternative formulation, we observe that we may add an
arbitrary constant to each component of η. Similarly, when defining the alterna-
tive multipliers we may add arbitrary integration constants. This will result in
a difference of an arbitrary polynomial of degree qi − 1 for a state constraint of
order qi. When [0, T ] is the union of finitely many arcs, we may choose different
polynomials on each arc. By Proposition 1, (ūt, ȳt, p̄

q
t , η̄

q
t ) is of class C∞ over

each arc. In the context of shooting algorithms, it is convenient to choose these
constants so that the multipliers associated with nonactive constraints are equal
to zero, i.e.

ηi,j
t = 0, if i 6∈ I(t), j ∈ {1 : qi}. (42)

Let us set νi
τ := [η̄i,τ ] ≥ 0. By (19) and (27), the jumps of the original and

alternative costate are related by


























[p̄q
τ ] = [p̄τ ] −

∑

i∈I(τ)

qi
∑

j=1

[ηi,j
τ ]g

(j−1)
i,y (ȳτ )

= −
∑

i∈I(τ)



(νi
τ + [ηi,1

τ ])g′i(ȳτ ) +

qi
∑

j=2

[ηi,j
τ ]g

(j−1)
i,y (ȳτ )



 .

(43)

If (24) holds, this uniquely determines coefficients νi,j
τ such that

[p̄q(τ)] = −
∑

i∈I(τ)

qi
∑

j=1

νi,j
τ g

(j−1)
i,y (ȳτ ), (44)

with
{

νi,1
τ = νi

τ + [ηi,1
τ ], i ∈ I(τ),

νi,j
τ = [ηi,j

τ ], i ∈ I(τ), j ∈ [2 : qi].
(45)
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In the sequel we assume that there are finitely many arcs. Let N i
b, N i

to denote,
respectively, the number of boundary arcs and touch points of the state con-

straint of index i ∈ {1 : r}. Denote by Ii
b := ∪

Ni
b

k=1[τ
i,k
en , τ i,k

ex ] the closure of the
union of boundary arcs of each constraint, for i ∈ {1 : r}, and

T i
en := {τ i,1

en < · · · < τ
i,Ni

b
en }, T i

ex := {τ i,1
ex < · · · < τ

i,Ni
b

ex }, (46)

and similarly denote the sets of touch and junction points of constraint i by

T i
to := {τ i,1

to < · · · < τ
i,Ni

to

to }; T i := T i
en ∪ T i

ex ∪ T i
to. (47)

The set of junction points is T := ∪r
i=1T

i. The alternative formulation includes
the following relations on each arc:

˙̄yt = f(ūt, ȳt) on [0, T ] ; ȳ0 = y0, (48)

− ˙̄pq
t = Hq

y (ūt, ȳt, p̄
q
t , η̄

q
t ) on [0, T ] \ T , (49)

0 = Hq
u(ūt, ȳt, p̄

q
t , η̄

q
t ) on [0, T ] \ T , (50)

Gi(ūt, ȳt) = 0 on Ii
b, i ∈ {1 : r}, (51)

η̄qi

i,t = 0 on [0, T ] \ Ii
b, i ∈ {1 : r}. (52)

Assuming, for simplicity, that the state constraints are not active at time T , we
have the final condition for the costate

p̄q
T = φ′(ȳT ). (53)

In view of the definition of orders of state constraints, and since a constraint
reaches a maximum at a touch point, we have the following junction conditions:

g
(j)
i (ȳτ ) = 0 if τ ∈ T i

en, j ∈ {0 : (qi − 1)}, (54)

gi(ȳτ ) = 0 if τ ∈ T i
to. (55)

It remains to state the junction conditions for the costate. We will assume that
each junction time is a junction time for a single constraint. As done in the
literature (see Maurer, 1979), we fix the integration constants [ηi,j ] such that
p̄q is continuous at exit points, and at an entry (respectively touch) point has
a jump involving only the derivatives (respectively the first derivative) of the
entering state constraint, i.e.:

[p̄q
τ ] = 0, for all τ ∈ T i

ex, i ∈ {1 : r}, (56)

[p̄q
τ ] = −

qi
∑

j=1

νi,j
τ g

(j−1)
i,y (ȳτ ), for all τ ∈ T i

en, i ∈ {1 : r}, (57)

[p̄q
τ ] = −νi,1

τ g′i(ȳτ ), for all τ ∈ T i
to, i ∈ {1 : r}. (58)

Note that, for a touch point τ ∈ T i
to, we have that η̄q

i,t = 0 for t 6= τ close to τ .
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Relations (48)-(58) can be interpreted as the optimality conditions for the
problem of minimizing the cost function under conditions (48), (51) and (54)-
(55), with fixed junction times. Remember that, under standard assumptions,
by Lemma 1, touch points associated with first order state constraints are non
essential; therefore we can ignore them in the formulation of the shooting algo-
rithm. The previous discussion suggests adding the equalities allowing to find
these junction times:

Gi(ū
−
τ , ȳτ ) = 0, if τ ∈ T i

en, i ∈ {1 : r}, (59)

Gi(ū
+
τ , ȳτ ) = 0, if τ ∈ T i

ex, i ∈ {1 : r}, (60)

g
(1)
i (ȳτ ) = 0, if τ ∈ T i

to and qi ≥ 2, i ∈ {1 : r}. (61)

We call (48)-(61) the shooting equations. A solution of these equations is called
a shooting extremal. We will establish in Section 5 that the shooting equations
are, under proper assumptions, the optimality system of a well-posed quadratic
problem.

Note that these equations involve algebraic variables, in the terminology of
differential algebraic systems, i.e., functions of time whose derivative does not
appear in the equations. The algebraic variables here are the control and al-
ternative Lagrange multiplier associated with the state constraint. But these
variables are to be viewed as functions of the differential variables (state and
alternative costate, since the implicit function theorem applies to the “algebraic”
equations (50)-(51), see the discussion in the proof of Proposition 1). In partic-
ular, there is no need for an explicit expression of the algebraic variables as the
functions of the differential ones.

Proposition 3 Let (ū, ȳ, p̄, η̄) be a continuous Pontryagin extremal with finite-
ly many junction points. If (24) holds, and ū is continuous, then the following
relations hold:

{

(i) 0 = νi
τ + [ηi,1

τ ], i ∈ I(τ), τ ∈ Tex

(ii) 0 = [ηi,j
τ ], i ∈ I(τ), j ∈ [2 : qi], τ ∈ Tex.

(62)















(i) νi,1
τ = νi

τ + [ηi,1
τ ], τ ∈ T i

en,
(ii) νi,j

τ = [ηi,j
τ ], τ ∈ T i

en, j ∈ [2 : qi],
(iii) 0 = νi

τ + [ηi,1
τ ], i ∈ I(τ), τ ∈ Ten\T

i
en,

(iv) 0 = [ηi,j
τ ], i ∈ I(τ), j ∈ [2 : qi], τ ∈ Ten.

(63)







(i) νi,1
τ = νi

τ , τ ∈ T i
to,

(ii) 0 = νi
τ + [ηi,1

τ ], i ∈ I(τ), τ ∈ Tto\T
i

to,
(iii) 0 = [ηi,j

τ ], i ∈ I(τ), j ∈ [2 : qi], τ ∈ Tto.
(64)

Proof. These relations are simple consequences of (43)-(45), (42) and (56)-(58).
For (64)(i), use the fact that, if τ ∈ T i

to, then [ηi,1
τ ] = 0 by (52).
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3.2. Reduction of isolated contact points

If τ is a contact point for constraint i, then gi(ȳt)) attains a local maximum at
τ , and hence (if these values are well-defined) ġ(ȳτ ) = 0 and g̈(ȳτ ) ≤ 0. We say
that a touch point τ is reducible if g̈(ȳτ ) is continuous at time τ , and g̈(ȳτ ) < 0.

Let τ ∈ (0, T ) be a touch point of a feasible trajectory (ū, ȳ); set for y ∈ Y:

γ(y) := max{gi(yt), t ∈ [τ − ε, τ + ε]}, (65)

where ε > 0 is so small that

[τ − ε, τ + ε] ⊂ [0, T ] and gi(ȳt) < 0, for all t 6= τ , |t − τ | ≤ ε. (66)

Let us see how to compute a Taylor expansion of γ(·) in the space W 2,∞(0, T )
(the one we need for state constraints of the order of at least two), in the vicin-
ity of a C2 function (which will apply to optimal trajectories with continuous
control).

Lemma 3 Let x be a C2 function: [a, b] → IR, having a unique maximum at
some θ ∈ (a, b), and such that ẍθ < 0. If y is close enough to x in X :=
W 2,∞(a, b), then it has over [a, b] a unique maximum τ(y), and we have

τ(y) − τ(x) = −ẏτ(x)/ẍτ(x) + o(‖y − x‖X), (67)

max(y) = yτ(y) = yτ(x) −
1
2

(ẏτ(x))
2

ẍτ(x)
+ o(‖y − x‖2

X). (68)

Proof. There exists ε1 > 0 such that, for y close enough to x in X , we have

ÿt < 1
2 ẍθ < 0, for a.a. t ∈ [θ − ε1, θ − ε1], (69)

and y has over [a, b] a unique maximum τ(y) that belongs to [θ−ε1, θ−ε1]. When
y → x in X , max(y) converges to max(x) = xθ, and hence, τ(y) → τ(x) = θ.
Set τ̂ (y) := τ(y) − τ(x). Since

−ẏτ(x) = ẏτ(y) − ẏτ(x) =

∫ τ(y)

τ(x)

ÿsds = τ̂ (y)ẍθ + O(τ̂ (y)‖y − x‖X) (70)

and ẍθ 6= 0, relation (67) follows. Since x is of class C2 and ẋθ = 0, we have

xτ(y) = xτ(x) + 1
2 ẍτ(x)(τ(y) − τ(x))2 + o((τ(y) − τ(x))2), (71)

and since |ÿ − ẍ| → 0 uniformly, by a second-order Taylor expansion, we get:

(y − x)τ(y) = (y − x)τ(x) + ẏτ(x)(τ(y) − τ(x)) + o(‖y − x‖2
X). (72)

Note that in the above expression we could neglect the second order term,
which is of order o(‖y − x‖2

X . Summing (71) and (71), and using (67), we get
the conclusion.
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For reducible touch points (defined in Section 3.2), associated with state
constraint i of order qi > 1, by the above lemma, we can replace locally (in
time) the state constraint by the corresponding (scalar) “reduced” constraint,
whose maximum over time is nonpositive. Set, for ε > 0 small enough, and
y ∈ Y:

µi,τ (y) := max
t∈[τ−ε,τ+ε]

gi(y). (73)

If z is the solution of the linearized state equation

ż = f ′(ūt, ȳt)(vt, zt) on [0, T ]; z0 = 0, (74)

since g′i(ȳt)fu(ūt, ȳt) = 0, we have, as qi > 1,

d

dt
[g′i(ȳt)zt] = g′′i (ȳt)(f(ūt, ȳt), zt) + g′i(ȳt)fy(ūt, ȳt)zt = g

(1)
i,y (ȳt)zt. (75)

It follows from Lemma 3 that we have the Taylor expansion

µi,τ (ȳ + z) = µi,τ
[

gi(ȳ) + g′i(ȳ)z + 1
2g′′i (ȳ)(z, z)2 + o(‖z‖2

∞)
]

= gi(ȳτ ) + g′i(ȳτ )zτ+

1
2 [g′′i (ȳτ )(zτ , zτ )2 − (g

(1)
i,y (ȳτ )zτ )2/g̈i(ȳτ )] + o(‖z‖2

∞).

(76)

4. Second-order optimality conditions

4.1. Main result

For s ∈ [2,∞], set Vs := Ls(0, T, IRm) and Zs := W 1,s(0, T ; IRn). Consider the
tangent quadratic cost function J : V2 ×Z2 → IR:

J (v, z) :=

∫ T

0

H(u,y)2(ūt, ȳt, p̄t)(vt, zt)
2dt + φ′′(ȳT )(zT , zT )

+
r
∑

i=1





∫ T

0

g′′i (ȳt)(zt, zt)dη̄i,t −
∑

τ∈T i
to

[η̄i,τ ]
(g

(1)
i,y (ȳτ )zτ )2

g
(2)
i (ūτ , ȳτ )



 .
(77)

Note that the contribution of touch points to this quadratic cost coincides with
the second order term of the Taylor expansion (76). Consider also the linearized
state constraints

g′i(ȳt)zt ≤ 0 on Ii
b, and g′i(ȳt)zt = 0 on supp(dη̄i), i ∈ {1 : r} (78)

g′i(ȳτ )zτ ≤ 0 for all τ ∈ T i
to, i ∈ {1 : r}, (79)

g′i(ȳτ )zτ = 0 if νi
τ > 0, for all τ ∈ T i

to, i ∈ {1 : r}. (80)

Consider also the relation stronger than (78)

g′i(ȳt)zt = 0 on Ii
b, i ∈ {1 : r}. (81)
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For s ∈ [2,∞], we call critical cone (in Vs) the set

Cs(ū, ȳ) := {(v, z) ∈ Vs ×Zs; (74) and (78)-(80) hold} , (82)

and strict critical cone the set

CS
s (ū, ȳ) := {(v, z) ∈ Vs ×Zs; (74) and (79)-(81) hold} . (83)

Obviously CS
s (ū, ȳ) ⊂ Cs(ū, ȳ), for all s ∈ [2,∞]. We will say that strict com-

plementarity holds on boundary arcs if the support of dη̄ contains all boundary
arcs. In that case, (78) and (81) coincide, and CS

s (ū, ȳ) = Cs(ū, ȳ). We set, for
u ∈ U and y = y(u):

J(u) :=

∫ T

0

ℓ(ut, yt)dt + φ(yT ). (84)

Consider the following relations:

J (v, z) ≥ 0, for all (v, z) ∈ CS
2 (ū, ȳ). (85)

For some β > 0 : J (v, z) ≥ β‖v‖2
2, for all (v, z) ∈ C2(ū, ȳ). (86)

For some α > 0: Huu(ūt, ȳt, p̄t±)(v, v) ≥ α|v|2, for all v ∈ IRm. (87)

Obviously (86) implies (85). Applying Pontryagin’s priciple to the problem of
minimizing J (v, z) over C2(ū, ȳ), we see that (86) implies also (87).

We say that (ū, ȳ) is a local solution of (1) satisfying the (local) quadratic
growth condition if, for all ε1 > 0, there exists ε2 > 0 such that

J(u) ≥ J(ū)+ 1
2 (β−ε1)‖u− ū‖2

2, if ‖u − ū‖∞ ≤ ε2, u feasible for (1). (88)

Theorem 3 Let (ū, ȳ) be a continuous Pontryagin extremal satisfying (24),
whose all touch points for state constraints of order greater than one are re-
ducible. Then
(i) (Second-order necessary condition): if ū is a local solution of (1), then (85)
holds.
(ii) (Second-order sufficient condition): assume, in addition, that (86) holds.
Then, (ū, ȳ) satisfies the local quadratic growth condition (88).

We need a couple of preliminary lemmas. Let

|qNb| :=

r
∑

i=1

qiN
i
b, |Nto| :=

r
∑

i=1

N i
to. (89)

Denote the neighborhood of the boundary arcs, for ε > 0, by

Ii,ε
b := ∪

Ni
b

k=1[τ
i,k
en − ε, τ i,k

ex + ε], i ∈ {1 : r}. (90)
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Here we take ε ≥ 0 so small that Ii,ε
b ⊂ [0, T ], for all i ∈ {1 : r}. By ϕ|Ib

, we
denote the restriction to Ib of function ϕ defined over [0, T ]. For all v ∈ V , let
z(v) ∈ Z denote the solution of the linearized state equation (74).

For s ∈ [2,∞], set Ŵ ε
s :=

∏r

i=1 W qi,s(Ii,ε
b ) and define the operators Âε :

Vs → Ŵ ε
s , Aε : Vs → Ŵ ε

s × IR|Nto|, and A : Vs → Ŵ 0
s × IR|qNb| × IR|Nto| by

Âε
iv := G′

i(ūt, ȳt)(vt, zt(v)); t ∈ Ii,ε
b , i ∈ {1 : r}, (91)

Aεv := (Âε
1v, . . . , Âε

rv); g′i(ȳ)z(v)(T i
to), i ∈ {1 : r}, (92)

Av :=
(

Â0
i (v), g

{0:(qi−1)}
i,y (ȳ)z(v)(T i

en), g′i(ȳ)z(v)(T i
to), i ∈ {1 : r}

)

. (93)

Lemma 4 Let (ū, ȳ) be a continuous trajectory satisfying the state constraints
of (1), with finitely many junction points. If (24) holds, then A and Aε, for
ε ≥ 0 small enough, and s ∈ [2,∞], are onto.

Proof. We skip this proof whose arguments are classical, see, e.g., Lemma 4.3
in Bonnans and Hermant (2009b).

The cone of radial critical directions CR
s (ū, ȳ), for s ∈ [2,∞], is (note that

the radiality condition deals with boundary arcs only):

CR
s (ū, ȳ) :=

{

(v, z) ∈ Cs(ū, ȳ); for some ν > 0 and ε > 0 :

gi(ȳ) + νg′i(ȳ)z ≤ 0 on Ii,ε
b , i ∈ {1 : r}

}

. (94)

We set

CR,S
s (ū, ȳ) := CR

s (ū, ȳ) ∩ CS
s (ū, ȳ), s ∈ [2,∞]. (95)

Lemma 5 Under the assumptions of Lemma 4, the set CR,S
∞ (ū, ȳ) is a dense

subset, in the L2 norm, of CS
2 (ū, ȳ).

Proof. a) We claim that CS
∞(ū, ȳ) is a dense subset, in the L2 norm, of CS

2 (ū, ȳ).
Indeed, let (v̂, ẑ) ∈ CS

2 (ū, ȳ). For M > 0, define the truncation of v̂ as

vM
t := max(−M, min(M, v̂t)), for all t ∈ [0, T ]. (96)

Then vM → v̂ in L2. Denote by v̂M the projection of vM onto CS
2 (ū,ȳ). Since

projections in Hilbert spaces are nonexpansive, v̂M → v̂ in L2. In view of the
expression (83) of the strict critical cone, v̂M is solution of the problem

min
v∈V2

1
2

∫ T

0

|vt − vM
t |2dt; (74) and (79)-(81) holding. (97)

This is a strongly convex linear optimal control problem with state constraints.
Since A is onto, the solution v̂M is characterized by the optimality condition
v̂M

t = vM
t −pM

t fu(ūt, ȳt), where the costate pM is the solution of a certain adjoint
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equation that we do not need write, and belongs to BV (0, T, IRn∗). Therefore
v̂M ∈ CS

∞(ū, ȳ). The claim follows.

b) We claim that there exists α̂ > 0 such that, for ε > 0 small enough, the
operator Aε : V2 → Ŵ 0

2 × IR|Nto| has a right pseudo inverse Aε,† such that

AεAε,†w = w, ‖Aε,†w‖ ≤ α̂−1‖w‖ε, for all w ∈ Ŵ ε
2 × IR|Nto|. (98)

Since, for ε > 0, by Lemma 4, Aε is onto, there exists αε > 0 such that Im(Aε)
contains αεBε, where Bε denotes the unit ball in Ŵ ε

2 . Fix ε0 > 0. For ε ∈ (0, ε0)
and v ∈ U , Aεv is the restriction of Aε0v to Ŵ ε

2 . There is an obvious imbedding
aε from W qi,2(Ii,ε

b ) into W qi,2(Ii,ε0

b ), by taking the derivative of order qi equal

to zero over Ii,ε0

b \ Ii,ε
b , and ‖aε‖ is uniformly bounded by some constant â.

So, taking Aε,† := Aε0,† ◦ aε, we obtain a right pseudo inverse with constant
α̂ := αε0

â.

c) We claim that CR,S
∞ (ū, ȳ) is a dense subset, in the L2 norm, of CS

∞(ū, ȳ).
Indeed, let (v̂, ẑ) ∈ CS

∞(ū, ȳ), and set

bε :=
(

(Âε
1v, . . . , Âε

rv); 0 × g′i(ȳ)z(v)(T i
to), i ∈ {1 : r}

)

. (99)

Consider the projection problem

min
v∈V2

1
2

∫ T

0

|vt|
2dt; Aεv = bε. (100)

In view of step b), its unique solution denoted v̂ε has an L2 norm of order ‖bε‖,
(norm of Ŵ ε

2 × IR|Nto|). Since ‖bε‖ → 0 when ε ↓ 0, we have that v̂ε → 0
in V2. Similarly to step a), v̂ε satisfies v̂ε

t = −pε
tfu(ūt, ȳt), where the costate

pε is solution of the equation with r.h.s. accounting for the state constraints
corresponding to the constraints of (100), and is bounded as a function of time.
The constraints of (100) are such that v̂ − v̂ε ∈ CR,S

∞ (ū, ȳ). Our claim follows.

d) We conclude by combining steps a) and c).

We recall that a continuous quadratic form Q defined over a Hilbert space
X is a Legendre form (see, e.g., Bonnans and Shapiro, 2000, Ioffe, 1979), if it
is weakly lower semi-continuous, and satisfies the following property: If vk ⇀ v
(weak convergence) in X , and Q(vk) → Q(v), then vn → v strongly.

Proof (Proof of Theorem 3). (i) Second-order necessary condition. Denote by
y(u) the state associated with control u. We remind that the function µi,τ was
defined in (73). The reduced problem (see Section 3.2.3 in Bonnans and Shapiro,
2000) is

Min
u∈U

J(u); gi(y(u)) ≤ 0 on Ii,ε
b ; µi,τ (y(u)) ≤ 0, for all τ ∈ T i

to, i ∈ {1 : r}.

(101)



1038 J.F. BONNANS, A. HERMANT

For u close to ū in U , we have that u is feasible for (1) iff it is feasible for
(101). It follows that ū is a local solution of (101), whose associated Lagrange
multipliers of the reduced problem are the restriction of a Lagrange multiplier for
the original formulation. The critical cones of various types coincide for the two
problems. The Lagrangian function, associated with the reduced formulation
(101), using notation (73), is

L(u, η) := J(u) +
r
∑

i=1

∫

Ii,ε

b

g(yt(u))dηi,t +
r
∑

i=1

∑

τ∈T i
to

[ηi,τ ]µi,τ (y(u)). (102)

In view of (76), J (v, z(v)) is the second order term in the Taylor expansion
w.r.t. u of L(ū, η̄). Since by Lemma 4 the derivative of constraints is onto,
problem (101) is qualified. The standard second-order necessary conditions (see
Section 3.2.2 in Bonnans and Shapiro, 2000) and the fact that the “σ-term”
appearing in it vanishes for radial critical directions (see Remark 3.47 in the
same reference), imply that

D2L(ū, η̄)(v, v) = J (v, z) ≥ 0, for any (v, z) ∈ CR
∞(ū, ȳ). (103)

Since z = z(v) when (v, z) ∈ C2(ū, ȳ) and (v, z(v)) → J (v, z(v)) is continuous
in the L2 norm, we conclude with Lemma 5.

(ii) Second-order sufficient condition. Let (86) hold, but not (88). Then, there
exists a feasible sequence (uk, yk) such that uk 6= ū, uk → ū in U and

J(uk) ≤ J(ū) + o(‖uk − ū‖2
2). (104)

Let σk := ‖uk − ū‖2, (vk, zk) := σ−1
k (uk − ū, yk − ȳ). Then, ‖vk‖2

2 = 1,
and extracting, if necessary, a subsequence, we may assume that vk ⇀ v̄ in
L2(0, T, IRm), where by “⇀” we denote weak convergence. Let zk (respectively
z̄) denote the solution of the linearized state equation (74) with vk (respectively
v = v̄). In view of the classical estimate

‖yk − ȳ − σkzk‖∞ = O(σ2
k), (105)

we have that zk ⇀ z̄ in H1(0, T, IRn). Using (104) we deduce that

0 ≥ lim sup
k

J(uk) − J(ū)

σk

= DJ(ū)v̄. (106)

We easily obtain g′(ȳt)z̄t ≤ 0 if g(ȳt) = 0 and
∫ T

0
g′(ȳt)z̄tdη̄t ≤ 0. Since

0 =

∫ T

0

Hu(ūt, ȳt, p̄t)dt = DJ(ū)v̄ +

∫ T

0

g′(ȳt)z̄tdη̄t, (107)

we deduce that DJ(ū)v̄ = 0 =
∫ T

0 g′(ȳt)z̄tdη̄t. It follows that (v̄, z̄) ∈ C2(ū, ȳ),
and since DuL(ū, η̄) = 0, using (105) we obtain
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lim sup
k

J (vk, zk) = lim sup
k

L(uk, η̄) − L(ū, η̄)
1
2σ2

k

≤ lim sup
k

J(uk) − J(ū)
1
2σ2

k

. (108)

In view of (104), and since by (87) J (vk, zk) is weakly l.s.c., we deduce that
J (v̄, z̄) ≤ lim infk J (vk, zk) ≤ 0. As (v̄, z̄) ∈ C2(ū, ȳ), (86) implies (v̄, z̄) = 0,
so that J (v̄, z̄) = limk J (vk, zk). By (87), J is a Legendre form, and hence,
vk → v̄ strongly in L2(0, T, IRm), which is impossible since v̄ = 0 and vk is of
unit norm.

Remark 2 (i) An improvement w.r.t. Bonnans and Hermant (2009a) is that we
do not need the hypothesis below (which will, however, be essential for checking
the well-posedness of the shooting algorithm):

g
(qi+1)
i (ū−

τen
, ȳτ ) 6= 0, g

(qi+1)
i (ū+

τex
, ȳτ ) 6= 0, for all τen ∈ T i

en, τex ∈ T i
ex.

(109)

(ii) Another improvement in the necessary conditions is that we have relaxed
the hypothesis of strict complementarity on boundary arcs used in Bonnans and
Hermant (2009a). However, we had to work with a subset of the critical cone.
Proving that J (v, z) ≥ 0 for all critical direction, without strict complementar-
ity, is an interesting open problem.

(iii) For nonessential touch points τ ∈ T i
to we can avoid the reducibility condi-

tion; see Bonnans and Hermant (2007, 2009a).

4.2. The alternative tangent quadratic problems

For the study of the well-posedness of the shooting algorithm, i.e., the fact
that the Jacobian at the solution is invertible (which ensures the convergence of
Newton’s method, and the stability of the solution under a small perturbation)
we will need the alternative tangent quadratic cost function:

Jq(v, z) :=

∫ T

0

Hq

(u,y)2(ūt, ȳt, p̄
q
t , η̄

q
t )(vt, zt)

2dt + φ′′(ȳT )(zT , zT )

+

r
∑

i=1

∑

τ∈T i

qi
∑

j=1

νi,j
τ g

(j−1)
i,yy (ȳτ )(zτ )2 −

r
∑

i=1

∑

τ∈T i
to

[η̄i,τ ]
(g

(1)
i,y (ȳτ )zτ )2

g
(2)
i (ūτ , ȳτ )

,
(110)

and the set of constraints:

żt = f ′(ūt, ȳt)(vt, zt) on [0, T ]; z0 = 0, (111)

g
(j)
i,y (ȳτ )zτ = 0 j ∈ {0 : (qi − 1)}, τ ∈ T i

en, i ∈ {1 : r}, (112)

DGi(ūt, ȳt)(vt, zt) = 0 t ∈ Ii
b, i ∈ {1 : r}, (113)

g′i(ȳτ )zτ = 0 τ ∈ T i
to, i ∈ {1 : r}. (114)
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Let the alternative tangent linear quadratic problem (PQq) be defined by:

(PQq) min
(v,z)∈V×Z

1
2Jq(v, z) subject to (111)-(114). (115)

We denote
{

νTen
=
(

νi,j
τ , τ ∈ T i

en, 1 ≤ i ≤ r, 1 ≤ j ≤ qi

)

.
νTto

=
(

νi
τ , τ ∈ T i

to, 1 ≤ i ≤ r
)

.
(116)

Lemma 6 Let (ū, ȳ) be a Pontryagin extremal, with ū continuous, satisfying
(24)-(25), with classical and alternative multipliers (p̄, η̄) and (p̄q, η̄q, νTen

, νTto
).

Then the quadratic cost functions J and Jq, defined respectively in (77) and
(110), are equal to each other over the space of linearized trajectories (v, z) ∈
V × Z satisfying the linearized state equation (74).

Proof. Let (v, z) ∈ V × Z satisfy (74). Denote the difference of quadratic costs
as ∆ := J (v, z) − Jq(v, z). We observe that the terms corresponding to the
touch points and to the final time vanish. Writing

dη̄t = η̄0
t dt +

∑

τ∈T

[η̄τ ]δτ (117)

where η̄0
t is the density of η̄ over each arc (well defined in view of Proposition

1), and using (27), we may write ∆ as a sum over the components of the state
constraint: ∆ =

∑r

i=1 ∆i, where

∆i :=

qi
∑

j=1

∫ T

0

g
(j−1)
i,y (ȳt)f

′′(ūt, ȳt)(vt, zt)
2ηi,j

t dt +

∫ T

0

g′′i (ȳt)(zt, zt)η
0
t dt

−

∫ T

0

D2g(qi)(ūt, ȳt)(vt, zt)
2ηi,qi

t dt +
∑

τ∈T

νi
τg′′i (ȳτ )(zτ , zτ )(118)

−
∑

τ∈T i
en

qi
∑

j=1

νi,j
τ g

(j−1)
i,yy (ȳτ )(zτ , zτ ).

So, it suffices to check that ∆i = 0. Since g
(j)
i (ūt, ȳt) = g

(j−1)
i,y (ȳt)f(ūt, ȳt), for

j = 1 to qi, we have that

D2g
(j)
i (ūt, ȳt)(vt, zt)

2 = g
(j−1)
i,yyy (f(ūt, ȳt), zt, zt)

+ 2g
(j−1)
i,yy (z, f ′(ūt, ȳt)(vt, zt)) + g

(j−1)
i,y f ′′(ūt, ȳt)(vt, zt)

2.
(119)

In addition, by the linearized state equation (74), we have, for all j ∈ {1 : qi}:

d

dt

[

g
(j−1)
i,yy (ȳt)(zt, zt)

]

= g
(j−1)
i,yyy (ȳt)(f(ūt, ȳt), zt, zt)

+2g
(j−1)
i,yy (ȳt)(z, f ′(ūt, ȳt)(vt, zt)),
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which gives by (119), for j ∈ {1 : qi}:

d

dt

[

g
(j−1)
i,yy (ȳt)(zt, zt)

]

= D2g
(j)
i (ūt, ȳt)(vt, zt)

2 − g
(j−1)
i,y (ȳt)f

′′(ūt, ȳt)(vt, zt)
2.

(120)

Since g
(j−1)
i,u (ūt, ȳt) ≡ 0 for j ∈ {1 : qi}, we have

g
(j−1)
i,yy (ȳt)(zt, zt) = D2g

(j−1)
i (ūt, ȳt)(vt, zt)

2, j ∈ {1 : qi}. (121)

Multiplying (120) by ηi,j , integrating over [0, T ], integrating by parts the left-
hand side (recall that η̇i,j = −ηi,j−1), and using (121) we obtain, for j ∈ {1 : qi}:

∫ T

0

D2g
(j−1)
i (ūt, ȳt)(vt, zt)

2ηi,j−1
t dt −

∑

τ∈T

[ηi,j
τ ]g

(j−1)
i,yy (ȳτ )(zτ , zτ )

=

∫ T

0

D2g
(j)
i (ūt, ȳt)(vt, zt)

2ηi,j
t dt −

∫ T

0

g
(j−1)
i,y (ȳτ )f ′′(ūt, ȳt)(vt, zt)

2ηi,j
t dt.

Adding the above equalities for j ∈ {1 : qi}, we get after simplification by the

terms
∫ T

0
D2g

(j)
i (ūt, ȳt)(vt, zt)

2ηi,jdt for j ∈ {1 : (qi − 1)} that:

∫ T

0

g′′i (ȳt)(zt, zt)η
0
t dt −

∑

τ∈T

qi
∑

j=1

[ηi,j
τ ]g

(j−1)
i,yy (ȳτ )(zτ , zτ ) =

∫ T

0

D2g
(qi)
i (ūt, ȳt)(vt, zt)

2ηi,qi

t dt −

qi
∑

j=1

∫ T

0

g
(j−1)
i,y (ȳτ )f ′′(ūt, ȳt)(vt, zt)

2ηi,j
t dt.

Substituting into (118) gives:

∆i =
∑

τ∈T



νi
τg′′i (ȳτ )(zτ , zτ ) +

qi
∑

j=1

(

([ηi,j
τ ] − νi,j

τ )g
(j−1)
i,yy f ′′(ūt, ȳt)(vt, zt)

)



 ,

implying ∆i = 0 in view of (45), as was to be proved.

Note that the proof of Lemma 6 is similar to the one given for a scalar
state constraint in Bonnans and Hermant (2007), combined with the junction
conditions on the classical and alternative costate.

5. Well-posedness of the shooting algorithm

We recall that the shooting equations were defined as (48)-(61). We will now
check that, under suitable assumptions, the shooting equations have an invert-
ible Jacobian. Therefore, using Newton’s method, we can (provided the starting
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point is close enough to the solution) compute its solution with a very high ac-
curacy. In this sense the algorithm is well-posed.

We consider a Pontryagin extremal (ū, ȳ, p̄, η̄) with finitely many junction
points, and the associated alternative costate p̄q and multiplier η̄q. We denote,
e.g., by gi(ū, ȳ)(T i

en), the vector in IRNi
b of components gi(ūτ , ȳτ ), for τ ∈ T i

en.

By g
(0:qi−1)
i,y (y)z(T i

en) we denote the vector in IRqNi
b of components g

(j)
i,y (ȳτ )zτ ,

0 ≤ j ≤ qi − 1, τ ∈ T i
en (ordered in a convenient way).

As the vector of shooting parameters we choose

θ := (p0, νTen
, νTto

, Ten, Tex, Tto). (122)

Here, p0 is the initial value of the adjoint equation, νTen
and νTto

are the mul-
tipliers associated with the entry and touch conditions, respectively, defined in
(116), and Ten, Tex, and Tto are the junction times. These parameters define
uniquely the variables (u, y, pq, ηq) as the solution of (48)-(52) (without the bars
on variables) as well as the junction conditions for the costate (56)-(58).

With the above notations, the shooting mapping F is defined over a neigh-
borhood in Θ of shooting parameters, associated with a regular Pontryagin
extremal, into Θ, by:

θ =



















p⊤0
νTen

νTto

Ten

Tex

Tto



















7→





















pq
T − φ′(yT )

g
{0:(qi−1)}
i (y(T i

en)), i ∈ {1 : r}

gi(y(T i
to)), i ∈ {1 : r}

Gi(u(T i−
en ), y(T i

en)), i ∈ {1 : r}

Gi(u(T i+
ex ), y(T i

ex)), i ∈ {1 : r}

g
(1)
i (y(T i

to)), i ∈ {1 : r}





















. (123)

By definition, a zero of the shooting mapping F provides a trajectory (u, y) that
is a shooting extremal.

Let (ū, ȳ, p̄, η̄) be a Pontryagin extremal such that ū is continuous, and for
which there are finitely many junction points, and such that touch points as-
sociated with state constraints of order qi > 1 are reducible. The associated
shooting vector θ̄, element of the vector space Θ, satisfies F(θ̄) = 0. It is easily
checked that, in a neighborhood Θ0 of θ̄, the shooting mapping F is well-defined
and of class C∞. Its directional derivative M := DF(θ̄)ω in a direction

ω := (π0, γTen
, γTto

, σTen
, σTex

, σTto
) ∈ Θ, (124)

can be split into M =

(

MQ

MT

)

given by :

MQ :=







πT − φ′′(ȳT )zT

g
[0:(qi−1)]
i,y (ȳ)z(T i

en), i ∈ {1 : r}

g′i(ȳ)z(T i
to), i ∈ {1 : r}






(125)
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MT :=







G′
i(ū, ȳ)(v, z)(T i−

en ) + σT i
en

g(qi+1)(ū; ȳ)|t=T i−
en

G′
i(ū, ȳ)(v, z)(T i+

ex ) + σT i
ex

g(qi+1)(ū, ȳ)|t=T i+
ex

g
(1)
i,y (ȳ)z(T i

to) + σT i
to

g(2)(ū, ȳ)|t=T i
to






. (126)

In this expression, (v, z, π, ζ) represent the linearized control, state, costate and
state constraint multiplier, which are the solutions of the following equations,
where the arguments (ū, ȳ, p̄q, η̄q) and t are omitted:

ż = fyz + fuv on [0, T ] ; z0 = 0, (127)

−π̇ = Hq
yyz + Hq

yuv + πfy + ζGy on [0, T ] \ T (128)

0 = Hq
uyz + Hq

uuv + πfu + ζGu a.e. on [0, T ] (129)

0 = G′
i(ūt, ȳt)(v, z) a.e. on Ii

b, i ∈ {1 : r} (130)

0 = ζi on [0, T ] \ Ii
b, i ∈ {1 : r}. (131)

The linearization of jump conditions on the costate being not obvious, we
derive them in the following lemma:

Lemma 7 The jump conditions on the linearized costate π are given by, for all
i ∈ {1 : r}:

− [πτ ] =

qi
∑

j=1

(

νi,j
τ z⊤τ g

(j−1)
i,yy (ȳτ ) − γi,j

τ g
(j−1)
i,y (ȳτ )

)

+στ

qi−1
∑

j=1

νi,j
τ g

(j)
i,y (ȳτ ), τ ∈ T i

en,

(132)

− [πτ ] = 0, τ ∈ T i
ex, (133)

− [πτ ] = νi
τz⊤τ g′′i (ȳτ ) + γi

τg′i(ȳτ ) + στνi
τg

(1)
i,y (ȳτ ), τ ∈ T i

to. (134)

Proof. a) We first recall the formula for the sensitivity of a jump of an au-
tonomous piecewise smooth differential system w.r.t. the jump time. Consider
the system

ẋt = Fi(xt), t ∈ [0, T ]; [xτ ] = Φ(x−
τ ), (135)

where τ ∈ (0, T ) is the switching time, i = 1 for the first arc (t < τ) and i = 2
for the second arc (t > τ). Let [F (xτ )] := F2(x

+
τ )−F1(x

−
τ ). If τ is changed into

τ + ε with say ε > 0, we denote by y the new solution and by χ the derivative
w.r.t. τ , we obtain

y−
τ+ε = x−

τ + εF1(x
−
τ ) + o(ε)

Φ(y−
τ+ε) = Φ(x−

τ ) + εΦ′(x−
τ )F1(x

−
τ ) + o(ε)

y+
τ+ε = x−

τ + εF1(x
−
τ ) + Φ(x−

τ ) + εΦ′(x−
τ )F1(x

−
τ ) + o(ε)

= x+
τ + ε (F1(x

−
τ ) + Φ′(x−

τ )F1(x
−
τ )) + o(ε)

[yτ+ε] = [xτ ] + εΦ′(x−
τ )F1(x

−
τ ) + o(ε).

(136)
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Having in mind that the jump in χ remains at time τ , it follows that

[χτ ] = Φ′(x−
τ )F1(x

−
τ ) − [F (xτ )]. (137)

b) Derivation of (132). We linearize (57), taking into account the contribution
of the different components of the shooting variables. In this way we obtain
that the jump of π at τ ∈ T i

en is given by:

−[πτ ] =

qi
∑

j=1

νi,j
τ z⊤τ g

(j−1)
i,yy (ȳτ ) +

qi
∑

j=1

γi,j
τ g

(j−1)
i,y (ȳτ ) − στ∆τ , (138)

where ∆τ is the sensitivity coefficient on junction time. In view of (137) the
latter is the difference of the derivative of the r.h.s. of (58) w.r.t. τ , and of the
influence of the jump of the dynamics in the [p̄q

τ ] (we skip the arguments of f):

∆τ = −

qi
∑

j=1

νi,j
τ g

(j−1)
i,yy (ȳτ )f + [Hq

y (ūτ , ȳτ , p̄q
τ , η̄q

τ )]

= −

qi
∑

j=1

νi,j
τ

(

g
(j−1)
i,yy (ȳτ )f + g

(j−1)
i,y (ȳτ )fy

)

+ [ηi,qi ]Gi,y(ūτ , ȳτ )

= −

qi
∑

j=1

νi,j
τ g

(j)
i,y (ūτ , ȳτ ) + [ηi,qi ]Gi,y(ūτ , ȳτ ).

Since νi,qi
τ = [ηi,qi ], by (63)(ii), we obtain (132).

c) Derivation of (133): immediate consequence of step a) since the jump is zero.

d) Derivation of (134). We easily obtain

− [πτ ] = νi
τz⊤τ g′′i (ȳτ ) + γi

τg′i(ȳτ ) − στ∆τ , τ ∈ T i
to, (139)

where again ∆τ is the sensitivity coefficient on junction time, and by (137), we
have

∆τ = −νi
τg′′i (ȳτ )f(ūτ , ȳτ ) − [Hq

y ], (140)

and since [Hq
y ]=−νi

τg′i(ȳτ )fy(ūτ , ȳτ ) and g
(1)
i,y =g′′i f +g′ify, the result follows.

Corollary 1 Let (ū, ȳ) be a shooting extremal, with ū continuous, satisfying
(24)-(25). Assume that the second-order sufficient conditions (87)-(86) hold.
Then there exists α > 0, such that

Q(v) := Jq(v, z(v)) ≥ α‖v‖2
2, ∀v ∈ KerA. (141)

Proof. This is a consequence of Theorem 3 combined with Lemma 6.



Optimal control problems with several state constraints 1045

The nontangential conditions (of appropriate order) at junction points are
defined as

(i) g
(qi+1)
i (ū, ȳ)|t=τ− 6= 0, for all τ ∈ T i

en and i ∈ {1 : r}, (142)

(ii) g
(qi+1)
i (ū, ȳ)|t=τ+ 6= 0, for all τ ∈ T i

ex and i ∈ {1 : r}, (143)

(iii) g
(2)
i (ū, ȳ)|t=τ 6= 0, for all τ ∈ T i

to and i ∈ {1 : r}. (144)

Consider the linear equation with unknown ω parameterized as in (124):

DF(θ̄)ω = δ, δ := (aT , bTen
, bTto

, cTen
, cTex

, cTto
). (145)

We will see that ω is closely related to the solutions of the quadratic optimal
control problem (in which cTto

appears, but not cTen
and cTex

):

(Pδ)















Min
v∈V

1
2Jq(v, z) + aT · zT +

r
∑

i=1

∑

τ∈T i
to

cτνi
τ

g
(1)
i,y (ȳτ )zτ

g
(2)
i (ūτ , ȳτ )

,

subject to (74) and Av = (0∏r
i=1

L2(Ii
b
), bTen

, bTto
)⊤.

Here is our main result:

Theorem 4 Let (ū, ȳ) be a shooting extremal with ū continuous, satisfying (24)-
(25). Denote by θ̄ ∈ Θ the corresponding vector of shooting parameters. Assume
that: (i) The second-order sufficient conditions (87)-(86) hold. (ii) The nontan-
gential conditions (142)-(144) hold.

Then the Jacobian DF(θ̄) of the shooting mapping is invertible, and the
(unique) solution ω of (145) is as follows. With the notations of Lemma 4,
denote by (vδ, wδ) with wδ = (ζδ, λδ,Ten

, λδ,Tto
) the unique solution in V ×W of

the first-order optimality system of the problem (Pδ).

Then: π0 = πδ
0, where πδ is the solution on [0, T ]\T of (128) with (vδ, ζδ, zδ),

final and jump conditions of πδ being given by:

πδ
T = (zδ

T )⊤φ′′(ȳT ) + a⊤
T , (146)

−
[

πδ
τ

]

=

qi
∑

j=1

νi,j
τ (zδ

τ )⊤g
(j−1)
i,yy (ȳτ ) +

qi
∑

j=1

λi,j
δ,τg

(j−1)
i,y (ȳτ ), τ ∈ T i

en, (147)

−
[

πδ
τ

]

= 0, τ ∈ T i
ex, (148)

−
[

πδ
τ

]

= νi
τ (zδ

τ )⊤g′′i (ȳτ ) + λδ,τg′i(ȳτ )

+νi
τg

(1)
i,y (ȳτ )

cτ − g
(1)
i,y (ȳτ )zδ

τ

g
(2)
i (ūτ , ȳτ )

, τ ∈ T i
to.

(149)
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The variations of junction times are given by

στ =
cτ − g

(1)
i,y (ȳτ )zδ

τ

g
(2)
i (ūτ , ȳτ )

, τ ∈ T i
to, (150)

στ =
cτ − G′

i(ūτ , ȳτ )(vδ,+
τ ), zδ

τ )
d
dt

Gi(×ū, ȳ)|t=τ+

, τ ∈ T i
ex, (151)

στ =
cτ − G′

i(ūτ , ȳτ )(vδ,−
τ , zδ

τ )
d
dt

Gi(ū, ȳ)|t=τ−

, τ ∈ T i
en, (152)

and the following relations hold:

γτ = λδ,τ , τ ∈ Tto, (153)

γ1
τ = λ1

δ,τ , γj
τ = λj

δ,τ − νi,j−1
τ στ , j ∈ [2 : qi], τ ∈ T i

en. (154)

Note that, since the functions of time (vδ, ζδ, zδ, π
δ) satisfy (127)-(131), by

Proposition 1, they are of class C∞ on [0, T ]\T , and vδ has limits when t → τ−

and t → τ+, for τ in, respectively, Ten and Tex. Therefore, (151)-(152) make
sense.

Proof. Let δ ∈ Θ. By Theorem 3 and Lemma 4, the first-order optimality
system of (Pδ) has a unique solution and multipliers. One can easily check that
(127)-(131) and (146)-(149) with

{

g
(j)
i,y (ȳτ )zδ

τ = bj
τ , τ ∈ T i

en, i ∈ {1 : r}, j ∈ {1 : (qi − 1)},

g′i(ȳτ )zδ
τ = bτ , τ ∈ T i

to, i ∈ {1 : r},
(155)

constitute the first-order optimality system of (Pδ), with λδ,Ten
and λδ,Tto

multi-
pliers associated with (155). Denote by (vδ, zδ, πδ, ζδ, λδ,Ten

, λδ,Tto
) the solution.

Define σT by (150)-(152). Let γTen
and γTto

be related to λδ,Ten
and λδ,Tto

by
(153)-(154). Using (150) and (154) in, respectively, (149) and (147), we find that
the system of equations (127)-(131), (132)-(134), (146), (155) and (150)-(152)
has a unique solution

(vδ, zδ, πδ, ζδ, γTen
, γTto

, σT ). (156)

With Lemma 7, this implies that DF(θ̄)ω = δ iff π0 = πδ
0 and the remaining

components of ω are determined by (150)-(154), as was to be proved.

Remark 3 In view of the analysis of junction conditions in Bonnans and Her-
mant (2009b) and Maurer (1979), conditions (142)-(143) are typically not sat-
isfied for boundary arcs of order greater than two. In that case the shooting
algorithm is ill-posed, since the variations of corresponding times cannot be re-
covered as in (151)-(152). In fact, it is generally believed that boundary arcs
of order greater than two are ill-posed. See on this subject Robbins (1980) and
Milyutin (2000).
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6. Numerical application: collision avoidance

We present here a numerical application of the shooting algorithm for two aca-
demic problems involving three state constraints. The latter model the problem
of obstacle avoidance for two vehicles, assimilated to material points, with a
constraint of keeping a minimum distance between them. The goal is to go
from given initial positions to final ones by minimizing a compromise between
the final time and the energy spent by the control. It is convenient in the ex-
amples to denote as e.g. y(t) the dependence w.r.t. t. The problems under
consideration are, for the first order dynamics

(P1)















min

∫ tf

0

(

1 + µ

4
∑

i=1

u2
i

)

dt

ẏi = ui, i = 1, . . . , 4, y(0) = y0, y(tf ) = yf , g(y) ≤ 0,

and for the second order dynamics

(P2)























min

∫ tf

0

(

1 + µ

4
∑

i=1

u2
i

)

dt

ẏi = yi+4, ẏi+4 = ui, i = 1, . . . , 4, y(0) = y0, y(tf ) = yf ,

g(y) ≤ 0,

with µ > 0. The Cartesian coordinates of the two vehicles in the plane are
given respectively by (y1, y2) and (y3, y4). The state constraint g has three
components: obstacles avoidance (the obstacles are modelled by two parabolas)

g1(y) := −y1−b(y2−c)2−a ≤ 0, g2(y) := y3−b(y4+c)2−a ≤ 0, (157)

where a, b > 0 and c are given parameters, and a minimum distance constraint
between the two vehicles:

g3(y) := ρ2
min − ((y1 − y3)

2 + (y2 − y4)
2) ≤ 0, (158)

with ρmin > 0. The final time tf is free. Note that by the well-known change of
time s := t/tf , we recover the case of a fixed final time. Due to the constraint on
the final state, the final condition in the shooting algorithm p(tf )−φ′(y(tf )) = 0
is replaced by the condition y(tf ) − yf = 0.

Remark 4 For the problems under consideration, the structure of the trajec-
tory and initial values for the unknowns variables were guessed, making, if
necessary, several tries. Methods that automatically determine the structure
are presented in Bonnans and Hermant (2009b) and Hermant (2009b) (when
there is, however, only one constraint and one control).
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6.1. First order state constraints

We solve problem (P1) using the shooting algorithm for the parameters

µ = 0.5, a = 0.3, b = 0.7, c = −1, ρmin = 1, (159)

and initial and final conditions given by

y0 = (−1, −4, 0.5, −4.5)⊤, yf = (−0.5, 4, 1, 4)⊤.

Each component of the state constraint is active on a single boundary arc. The
structure of the trajectory, composed by seven arcs, is given more precisely in
Table 1, where the junction times are given at the beginning of arcs, and jump
parameters are given at entry times.

Table 1. Structure of problem (P1).

Arc 1 2 3 4 5 6 7
Active(s) constraint(s) no 1 1, 3 3 2, 3 2 no

Junction time 0 2.82 2.95 3.07 5.49 5.62 5.71
Jump parameter - 0.42 0.12 - 0.47 - -

The solution is plotted in Fig. 1. The initial costate and final time are

p0 =









−0.2412
−1.0041
0.0040
−0.9662









,

tf = 8.3605,

and the junction times and jump parameters are given in Table 1.
The three components of the alternative state constraint multiplier η1

i , i = 1
to 3, are plotted along their respective boundary arcs. We check that the latter
are decreasing, and hence the condition η̇ = −η̇1 ≥ 0 of the minimum principle is
satisfied. The trajectories of the two vehicles in the plane and the two obstacles
given by (157), as well as the distance

d :=
√

(y1 − y3)2 + (y2 − y4)2 (160)

between the two vehicles, are plotted in Fig. 2.

6.2. Second order state constraints

We solve problem (P2) using the shooting algorithm for parameters given by
(159) and initial and final conditions as follows:

y0 = (−1, −4, 0.5, −4.5, −0.6, 0.8, −0.5, 0.85)⊤,

yf = (−0.5, 4, 1, 4, 0, 1, 0, 1)⊤.
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Figure 1. State, alternative costate, control, and alternative state constraint
multiplier η1 on boundary arcs in function of time for problem (P1).
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Figure 2. Trajectories and obstacles in the plane and distance between the two
vehicles in function of time for problem (P1).
.



1050 J.F. BONNANS, A. HERMANT

Each of the two first state constraints are active at a single touch point, while the
third is active at two touch points. The structure of the trajectory, composed
by five arcs separated by four touch points (t.p.), is given more precisely in
Table 2. We check that the jumps parameters of the costate at touch points are
nonnegative.

Table 2. Structure of problem (P2).

Arc/t.p. 1 t.p. 2 t.p. 3 t.p. 4 t.p. 5
Active constraint no 1 no 3 no 3 no 2 no

Junction time - 2.82 - 2.93 - 3.93 - 4.06 -
Jump parameter - 4.09 - 0.96 - 0.83 - 3.75 -

The solution is plotted in Fig. 3. The initial costate and final time are

p0 =

























−0.8916
−0.0574
−0.5752
−0.1773
−1.4389
−0.2531
−0.9448
−0.4735

























,

tf = 6.4730,

and the values of junction times and jump parameters are given in Table 2.
The trajectories of the two vehicles in the plane and the two obstacles given

by (157), as well as the distance (160) between the two vehicles, are plotted in
Fig. 4. A zoom is needed on the latter to see the two isolated contact points of
the third constraint, given by (158).
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