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1. Introduction

In this paper we study a class of differential games for two players in infinite
time horizon, with dynamics

ẋ = G(x, u1, u2). (1.1)

Here x ∈ IRn is the state of the system, u1, u2 ∈ IRm are the controls imple-
mented by the two players, while the upper dot denotes a derivative w.r.t. time.
The goal of each player is to maximize his own payoff functional, exponentially
discounted in time:

Ji
.
=

∫ ∞

0

e−ρtLi(x(t), u1(t), u2(t)) dt i = 1, 2. (1.2)

To simplify the analysis, we assume that the inputs of the two players can be
decoupled, namely

G(x, u1, u2) = G1(x, u1) +G2(x, u2),

Li(x, u1, u2) = Li1(x, u1) + Li2(x, u2). (1.3)
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In the special case of zero-sum games with L1 ≡ −L2, an extensive mathematical
theory is now available (Bardi and Capuzzo-Dolcetta, 1997; Friedman, 1971;
Isaacs, 1965). For these problems, much insight can be gained by the analysis
of the value function, characterized as the unique viscosity solution to a scalar
Hamilton-Jacobi equation.

The theory of non-zero-sum games, on the other hand, is far less developed.
We remark that, in this case, not even the concept of solution is straightfor-
ward. Various possibilities arise, depending on the degree of cooperation and
on the information available to the players. Motivated by the classical work of
Nash (1951) on non-cooperative equilibrium solutions, we adopt here a similar
concept:

Definition 1 A pair of feedback controls x 7→ (u∗1(x), u
∗
2(x)) provides a non-

cooperative equilibrium solution to the differential game (1.1)-(1.2) if the fol-
lowing holds:

(i) The control u∗1(·) is an optimal feedback, in connection with the optimization
problem for the first player:

maximize

∫ ∞

0

e−ρtL1(x, u1, u
∗
2(x)) dt , subject to ẋ = G(x, u1, u

∗
2(x)) .

(ii) The control u∗2(·) is an optimal feedback, in connection with the optimization
problem for the second player:

maximize

∫ ∞

0

e−ρtL2(x, u
∗
1(x), u2) dt , subject to ẋ = G(x, u∗1(x), u2) .

As shown in the last chapter of Friedman (1971), under suitable regularity
conditions the corresponding value functions for the two players satisfy a system
of Hamilton-Jacobi equations:

ρVi = H(i)(x,∇V1,∇V2) . (1.4)

Unfortunately, systems of this form are hard to study, because they are highly
non-linear; moreover they are given in implicit form, i.e. solved for the functions
Vi rather than for their derivatives.

The goal of the present paper is to develop a new approach to the analysis of
these systems, based on a homotopy method. The original problem (1.1)-(1.2)
will be embedded in a family of problems, depending on a parameter θ ∈ [0, 1].
More precisely, we consider games, whose dynamics is described by

ẋ = G1(x, u1, θ) + θG2(x, u2, θ) . (1.5)

The payoff functionals are also allowed to depend on θ:

Ji =

∫ ∞

0

e−ρt
(
Li1(x, u1, θ) + Li2(x, u2, θ)

)
dt i = 1, 2 . (1.6)
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Here θ is regarded as the strength of the second player. When θ = 0, this player
cannot influence in any way the evolution of the system. His optimal strategy
is thus the myopic one:

u2 = u
(0)
2 (x) = argmax

ω
L22(x, ω, 0) .

In this case, the non-cooperative game reduces to an optimal control problem
for the first player:

maximize

∫ ∞

0

e−ρt
(
L11(x, u1, 0) + L12(x, u

(0)
2 (x(t)), 0)

)
dt , (1.7)

for a system with dynamics

ẋ = G1(x, u1, 0). (1.8)

As soon as the optimal feedback control u
(0)
1 (x) for the first player is found, this

determines in turn the trajectories of the system, and hence the value function
for the second player.

When the parameter θ becomes strictly positive, we have a genuine differen-
tial game. Our main interest is to understand how the solution of the optimal
control problem for θ = 0 can provide useful information about the solutions to
the differential game for θ > 0. In rather general terms, we ask the following

Questions: Let Ω ⊂ IRn be a compact domain with smooth boundary. Assume
that, when θ = 0, the optimal control problem (1.7)-(1.8) for the first player

admits an optimal feedback x 7→ u
(0)
1 (x), which makes Ω positively invariant for

the flow

ẋ = G1(x, u
(0)
1 (x), 0) . (1.9)

Call V
(0)
1 , V

(0)
2 the corresponding value functions for the two players.

In the above setting, does the differential game (1.5)-(1.6) admit a Nash

equilibrium solution in feedback form: u
(θ)
1 , u

(θ)
2 : Ω 7→ IRm, for θ > 0 sufficiently

small ? Is this solution unique ? Do the corresponding value functions V
(θ)
1 , V

(θ)
2

converge to V
(0)
1 , V

(0)
2 as θ → 0 ?

We expect that the existence question should have a positive answer, if the

optimal feedbacks u
(0)
1 , u

(0)
2 are both continuous and if the flow (1.9) is strictly

inward pointing at each boundary point x ∈ ∂Ω.
In the present paper we examine a basic one-dimensional case. Namely, we

fix a compact interval I = [a, b] ⊂ IR and assume that, when θ = 0, the optimal
solution to the control problem (1.7)-(1.8) determines a smooth dynamics

ẋ = G1(x, u
∗
1(x), 0)

having a unique, asymptotically stable equilibrium point x̄ in the interior of I.
For θ > 0 small, our analysis indicates that the differential game (1.5)-(1.6)
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can have one, or else infinitely many Nash equilibrium solutions, all with stable
dynamics. To determine which one of these two cases actually occurs, it suffices
to check the sign of a specific function, computed at the equilibrium point x̄,
for θ = 0.

The remainder of the paper is organized as follows. Section 2 contains a
review of the optimal control problem in infinite time horizon, and examines the
singularity of the H-J equation at a stationary point x̄, where ẋ=G(x, u∗(x))=0.
In Section 3 we consider the system of equations corresponding to a differential
game, and observe that it can be equivalently written as a Pfaffian system. The
graph of a solution can be constructed as the concatenation of trajectories of
a particular vector field in IR3. After this preliminary material, in Section 4
we consider a parameter-dependent game, and set up the framework for the
bifurcation problem, as the parameter θ increases from zero to strictly positive
values. In Section 5 we explain the two possible bifurcations that can generically
occur, as the parameter θ becomes positive. The discussion is here kept at an
informal level. A rigorous mathematical analysis of the bifurcation problem can
be found in the companion paper Bressan (2009).

The last two sections contain two examples. The first is a simple linear-
quadratic game, where the value functions and the optimal controls can be
computed explicitly. In this case, one can directly check the existence and
multiplicity of solutions to the differential game for θ > 0. We remark that, when
multiple solutions exist, one of these solutions corresponds to affine feedback
controls and quadratic value functions. All the other ones have fully non-linear
structure.

Our second example is a nonlinear “sticky price" model, involving a pro-
ducer and a group of consumers. We assume that a fraction θ ∈ [0, 1] of all
consumers join together and implement a long-term strategy, while the remain-
ing fraction 1−θ consists of individual consumers, who adopt a myopic strategy.
Equivalently, one can assume the presence of one large consumer accounting for
a fraction θ of the entire market. The case θ = 0 yields an optimal control
problem for the producer. As the parameter θ increases form zero to positive
values, a detailed analysis shows that the differential game has infinitely many
equilibrium solutions in feedback form, all leading to an asymptotically stable
dynamics.

Some classes of non-cooperative games in one space dimension were stud-
ied in Bressan and Priuli (2006), Cardaliaguet and Plaskacz (2003) and Priuli
(2007). These results, although very particular, provide a glimpse of the com-
plexities of the problem. Non-cooperative games with finite horizon and termi-
nal cost were also studied in Bressan and Shen (2004a). In the one-dimensional
case, some conditions were derived for the system to be hyperbolic. If this
happens, one can differentiate the basic equations and obtain a system of con-
servation laws for the spatial derivatives of the value functions. In turn, un-
der suitable assumptions, this system can be uniquely solved using the theory
of hyperbolic conservation laws (Bressan, 2000; Serre, 2000). In the general
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multidimensional case, however, as observed in Bressan and Shen (2004b), the
system is generically not hyperbolic. As a consequence, the Cauchy problem is
ill posed. In other words, a small change in the terminal payoff function can
entail large changes in the value functions and in the strategies adopted by the
players. Of course, this renders the mathematical model unsuitable for practical
applications. For this specific reason, we consider here only the infinite horizon
problem. In this case, the value functions are not obtained by solving a Cauchy
problem, and the lack of hyperbolicity is not an a-priori obstruction toward the
construction of solutions.

The special case of games with linear dynamics and quadratic cost functions
has attracted considerable attention in the literature (Basar and Olsder, 1995;
Olsder, 2001; Vaisbord and Zhukovskii, 1989). In this case, the system of PDEs
always admits a solution, whose components are quadratic polynomials. How-
ever, because of the possible ill-posedness of the underlying PDEs, the practical
validity of these results needs a careful justification. For applications of game
theory to economic modeling, more in general, we refer to Aubin (1979) and
Dockner et al. (2000).

We believe that the present homotopy approach can provide a useful tool in
the study of noncooperative differential games, which otherwise remain difficult
to analyze. As shown in one of the examples, a model with players of different
strength can also have a meaningful economic interpretation.

2. Review of the optimal control problem

We first consider a problem of optimal control, with infinite horizon and an
exponential discount factor:

maximize: J(u)
.
=

∫ ∞

0

e−ρtL(x(t), u(t)) dt . (2.1)

The state of the system is here described by the one-dimensional variable x,
whose evolution satisfies

ẋ = g(x, u) (2.2)

with initial condition

x(0) = y . (2.3)

We assume that the functions L, g are smooth, while the control u ∈ L∞ ([0,∞[)
can be any bounded measurable function. Call V (y) the value function, i.e. the
supremum of all payoffs J(u) in (2.1), which are attainable starting from the
initial state y. It is well known that V (·) satisfies the Hamilton-Jacobi equation

ρV (x) = H(x, V ′(x)) , (2.4)
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where the Hamiltonian function is

H(x, ξ) = max
ω

{
ξ · g(x, ω) + L(x, ω)

}
, (2.5)

see, for example Bardi and Capuzzo-Dolcetta (1997) or Bressan and Piccoli
(2007). By differentiating (2.4) w.r.t. x we obtain a nonlinear O.D.E. for the
derivative ξ = V ′, namely

ρξ = Hx(x, ξ) +Hξ(x, ξ)ξ
′ . (2.6)

In connection with (2.5), call

u∗(x, ξ) = argmax
ω

{
ξ · g(x, ω) + L(x, ω)

}
(2.7)

the value of the optimal feedback control. From the identity

H(x, ξ) = ξ · g(x, u∗(x, ξ)) + L(x, u∗(x, ξ)),

differentiating w.r.t. ξ and recalling (2.7) one obtains

Hξ(x, ξ) = g(x, u∗(x, ξ)) +
(
ξ · gu + Lu

)∂u∗
∂ξ

= g(x, u∗(x, ξ)) . (2.8)

When the derivative of the value function ξ = V ′ is known, one can use (2.7)
to compute the optimal feedback control u∗. In turn, this yields a dynamical
system which, with slight abuse of notation, we write as

ẋ = g(x, ξ(x))
.
= g

(
x, u∗(x, ξ(x))

)
. (2.9)

Under a suitable regularity condition, all trajectories of (2.9) will be optimal.
Next, we seek a stationary solution x(t) ≡ x̄ of the feedback equation (2.9).

Calling ξ̄ = ξ(x̄) = V ′(x̄), the couple (x̄, ξ̄) can be determined by solving a
system of two equations. The first is (2.6), the second is g(x, ξ) = Hξ(x, ξ) = 0.
This yields the system

{
0 = Hξ(x, ξ) ,

ρξ = Hx(x, ξ) .
(2.10)

To ensure that this stationary solution is stable, we need to check that at
the point x = x̄ the solution ξ = ξ(x) of (2.6) satisfies

d

dx
g(x, ξ(x)) = gx + gξ ξ

′ = Hxξ +Hξξ ξ
′ < 0 . (2.11)

Differentiating (2.6) we find

ρξ′ = Hxx + 2Hxξ ξ
′ +Hξξ(ξ

′)2 +Hξξ
′′ . (2.12)
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At the stationary point Hξ = 0, hence

Hξξ(ξ
′)2 + (2Hxξ − ρ)ξ′ +Hxx = 0 . (2.13)

Assuming that

∆
.
= (2Hxξ − ρ)2 − 4HxxHξξ ≥ 0 ,

we find

ξ′± =
ρ− 2Hxξ

2Hξξ
±

√
∆

2Hξξ
. (2.14)

Hence

Hxξ +Hξξ ξ
′ =

1

2

(
ρ±

√
∆
)
,

and a stable solution exists, provided that ρ2 < ∆. Notice that this condition
is equivalent to

(Hxξ − ρ)Hxξ −HxxHξξ > 0 . (2.15)

Denoting with an upper dot the derivative w.r.t. time, from the equations (2.9),
(2.6) we obtain

{
ẋ = Hξ(x, ξ) ,

ξ̇ = ρξ −Hx(x, ξ) .
(2.16)

At the equilibrium point (x̄, ξ̄), the corresponding matrix of partial derivatives
is

(
Hxξ Hξξ

−Hxx ρ−Hxξ

)
. (2.17)

The eigenvalues of this matrix are

λ± =
ρ

2
±
√
ρ2

4
+ (Hxξ − ρ)Hxξ −HxxHξξ . (2.18)

Assuming that the stability condition (2.15) holds, from (2.18) we see that these
eigenvalues are real and distinct, satisfying

λ− < 0 < λ+ , |λ−| < λ+ . (2.19)

The stationary point (x̄, ξ̄) is thus a hyperbolic (saddle) point for the O.D.E.
(2.16).
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The corresponding eigenvectors r± of the matrix in (2.17) can be written as

r− =

(
1
ξ′−

)
, r+ =

(
1
ξ′+

)
, (2.20)

where the coefficients ξ′± are the roots of the equation (2.13), computed at
(2.14).

The derivative of the value function x 7→ ξ(x)
.
= V ′(x) thus satisfies

ξ(x̄) = ξ̄ , ξ′(x̄) = ξ′− .

Remark 1 For each x, consider the control û(x) such that

Hξ(x, û(x)) = g(x, û(x)) = 0.

Choose the function x 7→ ξ̂(x) so that û(x) = u∗(x, ξ̂(x)). Call

V̂ (x) =
1

ρ
L(x, û(x)) =

1

ρ
H(x, ξ̂(x))

the corresponding payoff function. Since V (x) ≥ V̂ (x) for all x, while at the

stationary point V (x̄) = V̂ (x̄), it follows that V ′(x̄) = V̂ ′(x̄). Recalling that
Hξ = g, at the point x̄ we have

ξ̄ = V̂ ′(x̄) =
d

dx

1

ρ
H(x, ξ̂(x))

∣∣∣∣
x=x̄

=
1

ρ
Hx(x̄, ξ̄) . (2.21)

This provides another interpretation of the second equation in (2.10).

3. The differential game

We consider a non-cooperative differential game in one space dimension, with
infinite horizon, exponentially discounted in time. Let x ∈ IR describe the
one-dimensional state of the system, which evolves according to

ẋ = G(x, u1, u2) = G1(x, u1) +G2(x, u2) . (3.1)

Here u1, u2 are the controls implemented by the two players. Let the payoff
functionals for the two players be

Ji
.
=

∫ ∞

0

e−ρtLi

(
x(t), u1(t), u2(t)

)
dt i = 1, 2 . (3.2)

We assume that the functions Li can be decomposed as

Li(x, u1, u2) = Li1(x, u1) + Li2(x, u2) . (3.3)
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Hence, for ξ1 ∈ IR, the function

u∗1(x, ξ1) = argmax
ω

{
ξ1 ·G(x, ω, u2) + L1(x, ω, u2)

}

= argmax
ω

{
ξ1 ·G1(x, ω) + L11(x, ω)

}
(3.4)

does not depend on u2. Similarly, for ξ2 ∈ IR the function

u∗2(x, ξ2) = argmax
ω

{
ξ2 ·G(x, u1, ω) + L2(x, u1, ω)

}

= argmax
ω

{
ξ2 ·G2(x, ω) + L22(x, ω)

}
(3.5)

does not depend on u1.
Let V1(x) , V2(x) be the value functions for a Nash equilibrium solution.

Assuming sufficient regularity, these will satisfy the system of ODEs

ρVi = V ′
i ·G(x, u∗1(x, V

′
1 ), u∗2(x, V

′
2 )) + Li(x, u

∗
1(x, V

′
1 ), u∗2(x, V

′
2 ))

i = 1, 2 , (3.6)

where the u∗i are defined in (3.4)-(3.5). We write (3) in the form

ρVi = H(i)(x, V ′
1 , V

′
2) (3.7)

where

H(i)(x, ξ1, ξ2) = ξi ·G(x, u∗1(x, ξ1), u
∗
2(x, ξ2))+Li(x, u

∗
1(x, ξ1), u

∗
2(x, ξ2)). (3.8)

By a slight abuse of notation, we also write

H(i)(x, ξ1, ξ2) = ξi ·G(x, ξ1, ξ2) + Li(x, ξ1, ξ2). (3.9)

Differentiating (3.7) w.r.t. x one obtains

ρξ1 = H(1)
x +H

(1)
ξ1

ξ′1 +H
(1)
ξ2

ξ′2 , ρξ2 = H(2)
x +H

(2)
ξ1

ξ′1 +H
(2)
ξ2

ξ′2 . (3.10)

Observing that

H
(1)
ξ1

= H
(2)
ξ2

= G, (3.11)

the above system can be written in matrix form as

 G H

(1)
ξ2

H
(2)
ξ1

G



(
ξ′1

ξ′2

)
=

(
ρξ1 −H

(1)
x

ρξ2 −H
(2)
x

)
. (3.12)

The system (3.12) can be written in standard form, i.e. solved for the derivatives

ξ′1, ξ
′
2, if and only if the determinant of the matrix of coefficients

(
H

(i)
ξj

)
is non-

zero, namely

G2 −H
(1)
ξ1
H

(2)
ξ2

6= 0. (3.13)
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In this connection, the sign of the product H
(1)
ξ2

·H(2)
ξ1

plays a crucial role. If this
sign is always negative, then the matrix will certainly be invertible. We thus
expect to find several global solutions to the system (3.12). On the other hand,
if the sign is positive, there will be singular points, where the matrix is not
invertible. This poses restrictions on global solutions, which must pass through
these points.

An alternative way to write the equations (3.12) is as follows. Consider the
two differential forms

ω1
.
=
(
H

(1)
x − ρξ1

)
dx+Gdξ1 +H

(1)
ξ2

dξ2 ,

ω2
.
=
(
H

(2)
x − ρξ2

)
dx+H

(2)
ξ1

dξ1 +Gdξ2 .

(3.14)

A solution to the equations (3.12) is a curve, whose tangent vector lies in the
kernel of both forms ω1 and ω2, at each point. The graph of this solution can
thus be constructed by piecing together trajectories of the ODE on IR3

d

ds




x

ξ1

ξ2


 = ω1∧ω2 =




G2 −H
(1)
ξ2
H

(2)
ξ1(

H
(2)
x − ρξ2

)
H

(1)
ξ2

−
(
H

(1)
x − ρξ1

)
G

(
H

(1)
x − ρξ1

)
H

(2)
ξ1

−
(
H

(2)
x − ρξ2

)
G



. (3.15)

When the derivatives of the value function ξi = V ′
i have been determined,

one can use (3.4)-(3.5) to compute the optimal feedback controls u∗i . In turn,
this yields a dynamical system which, with slight abuse of notation, we write as

ẋ = G(x, ξ1(x), ξ2(x))
.
= G

(
x, u∗1(x, ξ1(x)), u

∗
2(x, ξ2(x))

)
. (3.16)

4. A parameter-dependent game

In this section we consider a family of non-cooperative differential games, de-
pending on a parameter θ. We assume that the evolution of the system is
described by

ẋ = G(x, u1, u2, θ) = G1(x, u1, θ) + θ G2(x, u2, θ) , (4.1)

while the payoff functionals take the form

Ji
.
=

∫ ∞

0

e−ρtLi

(
x(t), u1(t), u2(t), θ

)
dt i = 1, 2 . (4.2)

As before, we assume that the functions Li can be split as

Li(x, u1, u2, θ) = Li1(x, u1, θ) + Li2(x, u2, θ) .
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Notice that in the present case not only the functions Gi, Li depend on the
additional parameter θ but, more importantly, the factor θ multiplies G2 in
(4.1). As a consequence, in the special case θ = 0, the second player cannot
affect in any way the evolution of the state x.

For ξ1, ξ2 ∈ IRn, call

u∗1(x, ξ1, θ) = argmax
ω

{
ξ1 ·G1(x, ω, θ) + L11(x, ω, θ)

}
, (4.3)

u∗2(x, ξ2, θ) = argmax
ω

{
ξ2 · θ G2(x, ω, θ) + L22(x, ω, θ)

}
, (4.4)

the optimal feedback controls of the two players. When θ = 0, the evolution
equation (4.1) reduces to

ẋ = H
(1)
ξ1

= H
(2)
ξ2

= G = G1(x, u1, 0). (4.5)

Since the second player now cannot affect the evolution of the system, his best
choice is the myopic strategy:

u†(x)
.
= u∗2(x, ξ2, 0) = argmax

ω
L22(x, ω, 0), (4.6)

depending only on the current state of the system. In particular, we now have

H(1)(x, ξ1, ξ2, 0) = ξ1 ·G1

(
x, u∗1(x, ξ1, 0), 0

)
+ L1

(
x, u∗1(x, ξ1, 0), u†2(x), 0

)
,

(4.7)

H(2)(x, ξ1, ξ2, 0) = ξ2 ·G1

(
x, u∗1(x, ξ1, 0), 0

)
+ L2

(
x, u∗1(x, ξ1, 0), u†2(x), 0

)
.

(4.8)

The system (3.10) can thus be solved in two steps. Since H(1) is independent
of ξ2, one can first solve the scalar equation

ρξ1 = H(1)
x +Gξ′1 (4.9)

and determine the derivative ξ1 = V ′
1 of the value function for the first player.

Then solve

ρξ2 = H(2)
x +H

(2)
ξ1

ξ′1 +Gξ′2 , (4.10)

determining the derivative ξ2 = V ′
2 of the value function for the second player.

Our main goal is to understand how the picture changes for small θ > 0.
The differential forms ω1, ω2 in (3.14) and the vector field v = ω1 ∧ω2 in (3.15)
all depend on the parameter θ. We thus focus on the orbits of the vector field
v, describing how they change as θ becomes positive. The problem will be
somewhat reformulated in the next section, where we analyze the two possible
types of bifurcation, near an equilibrium point.
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Here we observe that, if the maxima in (4.3)-(4.4) are always attained
at points ω = u∗i , where the Hessian is a non-degenerate (strictly negative)
quadratic form, then ∂u∗2/∂ξ2 = O(1) · θ. Here and in the sequel, the Lan-
dau symbol O(1) denotes a quantity which remains uniformly bounded as the
variables range in bounded sets. This implies

∂G

∂ξ2
=

∂

∂ξ2
(G1 + θ G2) = θ

∂G

∂u2

∂u∗2
∂ξ2

= O(1) · θ2. (4.11)

For the applications we have in mind, the payoff function L12 has the form

L12(x, ξ2, θ) = (1 − θ)L12(x, u
†
2(x)) + θ L12(x, u

∗
2(x, ξ2, θ)) . (4.12)

An economic model leading to this assumption will be discussed in Example 2,
in the last section of this paper. In turn, (4.12) implies

∂L12

∂ξ2
= O(1) · θ2 . (4.13)

5. Bifurcation analysis

Assume that, when θ = 0, the optimal control problem for the first player

maximize:

∫ ∞

0

e−ρtL1(x, u1, u
†
2(x), 0) dt , (5.1)

subject to

ẋ = G1(x, u1), (5.2)

admits a smooth optimal feedback x 7→ u∗1(x). Moreover, assume that the
corresponding dynamics

ẋ = G1(x, u
∗
1(x)) (5.3)

has a unique asymptotically stable equilibrium point. Namely, there exists
x̄ ∈ IR such that

G(x̄, u∗1(x̄)) = 0,
d

dx
G(x̄, u∗1(x̄)) < 0 . (5.4)

We shall study the existence and uniqueness of Nash equilibrium solutions in
feedback form, for the differential game (4.1)-(4.2) with θ > 0 small.

Recall that, in the parameter dependent case, the hamiltonian functions are

H(i)(x, ξ1, ξ2, θ) = ξi·[G1(x, ξ1, θ) + θ G2(x, ξ2, θ)]+Li1(x, ξ1, θ)+L12(x, ξ2, θ) .

(5.5)
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We begin by writing the parameter-dependent system

 G H

(1)
ξ2

H
(2)
ξ1

G



(
ξ′1

ξ′2

)
=

(
ρξ1 −H

(1)
x

ρξ2 −H
(2)
x

)
(5.6)

in a more convenient form. Renaming the variables (ξ1, ξ2) = (y, z), we can
write (5.6) as

(
G θ2α

β G

)(
y′

z′

)
=

(
φ

ψ

)
. (5.7)

Here all functions G,α, β, φ, ψ are smooth functions of x, y, z, θ, while θ ≥ 0. If
the determinant of the matrix does not vanish, the system (5.7) is equivalent to

(
y′

z′

)
=

1

G2 − θ2αβ

(
G −θα
−β G

)(
φ

ψ

)
. (5.8)

Notice that for θ = 0 the functions G,φ do not depend on the variable z.
According to (4.11), (4.13), their partial derivatives w.r.t. z satisfy

(A1) As θ → 0, one has

‖Gz(x, y, z, θ)‖C1 = O(1) · θ2, ‖φz(x, y, z, θ)‖C1 = O(1) · θ2. (5.9)

Recalling the analysis in Section 2, by the assumption (5.4), for θ = 0 the
ODE

{
ẋ = G(x, y)

ẏ = φ(x, y)
(5.10)

has an equilibrium point of saddle type, at some point P
.
= (x̄, ȳ). At this point,

the corresponding Jacobian matrix
(
Gx Gy

φx φy

)
(5.11)

has two real distinct eigenvalues: λ− < 0 < λ+, with |λ−| < λ+ . An explicit
computation yields

λ± =
φy +Gx ±

√
(φy −Gx)2 + 4φxGy

2
. (5.12)

To find the slopes of the stable and unstable manifolds through P we differen-
tiate the equation Gy′ = φ, obtaining

Gxy
′ +Gy(y′)2 +Gy′′ = φx + φyy

′. (5.13)
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Solving for y′, since G = 0, one finds

y′± =
φy −Gx ±

√
(φy −Gx)2 + 4Gyφx

2Gy
. (5.14)

This could also be derived by observing that the eigenvectors r−, r+ of the
Jacobian matrix (5.11) satisfy

r±
.
=

(
1
y′±

)
, y′± =

λ± −Gx

Gy
.

The eigenvalue λ− < 0 corresponds to the stable branch:

d

dx
G(x, y(x)) = Gx +Gyy

′
− = λ− < 0. (5.15)

Differentiating (5.13) once again, we obtain

Gxxy
′ + 2Gxy(y

′)2 + 2Gxy
′′ +Gyy(y′)2 + 3Gyy

′y′′ +Gy′′′ = φxx + 2φxyy
′

+φyy(y′)2 + φyy
′′. (5.16)

At the point P = (x̄, ȳ) where G = 0, we thus have

[
2Gx+3Gyy

′−φy

]
y′′ = φxx+2φxyy

′+φyy(y
′)2−Gxxy

′−2Gxy(y
′)2−Gyy(y

′)2.

(5.17)

Since y′ = y′− is already known, the equation (5.17) can be solved for second
derivative y′′. Indeed, recalling (5.15), the coefficient of y′′ can be written as

3(Gx +Gyy
′) − (φy +Gx) =

φy +Gx − 3
√

(φy −Gx)2 + 4Gyφx

2
< 0.

Always in the case θ = 0, let

y = y(x) (5.18)

be the equation of the smooth stable manifold for the equation (5.10). The
corresponding equation for the component z in (5.7) takes the form

G(x, y(x))z′ = ψ(x, y(x), z) − β(x, y(x), z)y′(x) . (5.19)

We assume that, always for θ = 0, the value function V2 for the second player
is also smooth. To have a bounded solution of (5.19) through the point x = x̄,
where G = 0, the right hand side must also vanish at this point. In other words,
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there should be a value z̄ = V ′
2(x̄) such that, calling y′− the lower root in (5.14),

at the point (x, y, z, θ) = (x̄, ȳ, z̄, 0), the following equations hold,





G = 0,
φ = 0,

βy′− − ψ = 0.
(5.20)

Recalling that H
(1)
ξ1

= H
(2)
ξ2

= G, by (5.4) we deduce

βzy
′
−−ψz = H

(2)
ξ1ξ2

d

dx
ξ1(x)−

(
ρξ2−H(2)

x

)
ξ2

=
∂G1

∂ξ1

dξ1
dx

−ρ+∂G1

∂x
< 0 . (5.21)

Differentiating (5.19) one more time, we obtain

(Gx +Gyy
′)z′+Gz′′ = ψx +ψyy

′+ψzz
′− (βx +βyy

′ +βzz
′)y′−βy′′. (5.22)

At the singular point one has G(x̄, ȳ) = 0. Since the value y′′(x̄) is already
known from (5.17), we can now solve (5.22) for the derivative z′(x̄),

(Gx +Gyy
′
− + βzy

′
− − ψz)z

′ = ψx + ψyy
′ − (βx + βyy

′)y′ − βy′′. (5.23)

By (5.15) and (5.21), the factor on the left hand side of (5.23) is strictly negative.
Therefore, when θ = 0, the implicit O.D.E. (5.19) has a regular solution passing
through the point (x̄, ȳ, z̄), with slope y′(x̄) = y′− given at (5.14) and z′(x̄)
computed by (5.23).

The previous analysis motivates the following assumptions.

(A2) There exists a point P
.
= (x̄, ȳ, z̄) such that, when θ = 0,

G(x̄, ȳ) = φ(x̄, ȳ) = 0 , Gy(x̄, ȳ) 6= 0 , (5.24)

and at P the matrix
(
Gx Gy

φx φy

)
(5.25)

has two real distinct eigenvalues: λ− < 0 < λ+ with |λ−| < λ+ . Moreover,
calling Σ−

.
= {(x, y) ; y = y′−x} the stable eigenspace corresponding to the

eigenvalue λ−, at P one has

βy′− − ψ = 0, (5.26)

together with

βzξ
′
− − ψz < 0 . (5.27)
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Notice that the shorter notation used in (5.24) is meaningful, because when
θ = 0, the functions G,φ do not depend on η. It is important to observe that
the assumption (5.27) is always satisfied by the system (5.6), because of (5.21).

Finally, we make an assumption of global nature:

(A3) When θ = 0, the stable solution x 7→ W 0(x)
.
= (y0(x), z0(x)) passing

through P = (x̄, ȳ, z̄) is well defined on a neighborhood of the compact interval
I
.
= [a, b] containing x̄ in the interior, and

G(x, y0(x)) > 0 if a ≤ x < x̄ ,

G(x, y0(x)) < 0 if x̄ < x ≤ b .
(5.28)

The structure of solutions to the system (5.7) for θ > 0 depends in a crucial
way on the sign of the quantities α, β. Indeed, we have the following alternatives.

Theorem 1 Let the implicit ODE (5.7) satisfy the assumptions (A1)–(A3).
(i) When θ = 0, assume that at the point P = (x̄, ȳ, z̄) one has αβ < 0.

Then for each θ > 0 small enough the system (5.7) has infinitely many smooth
solutions defined on the interval I = [a, b], close to the reference solution (y0, z0).

(ii) On the other hand, if αβ > 0, then, under a generic transversality condi-
tion, for each θ > 0 small enough the system (5.7) has a unique smooth solution
(yθ, zθ) : I 7→ IR2. As θ → 0, this solution approaches (y0, z0), uniformly on I.

All of the above solutions determine a stable dynamics.

A proof of the above results, including a precise statement of the transversal-
ity condition, can be found in Bressan (2009). As a motivation, here we observe
that, if αβ < 0, then for θ > 0 the implicit ODE (5.7) can be rewritten in the
standard form (5.8). Given a solution x 7→ (y(x), z(x)) defined on the interval
I, one can thus construct infinitely many nearby solutions, by slightly changing
the initial data at x = x̄.

To analyze the case where αβ > 0, we write (5.7) as a Pfaffian system
{
ω1

.
= − φdx+Gdy + θ2αdz = 0 ,

ω2
.
= − ψ dx+ β dy +Gdz = 0 .

(5.29)

The graph of a solution to (5.7) can then be obtained by suitably concatenating
trajectories of the vector field

v = ω1 ∧ ω2 =




G2 − θ2αβ

Gφ − θ2αψ

Gψ − βφ


 . (5.30)

It αβ > 0, then the first component of v vanishes along the two surfaces

Σ±
θ

.
=
{
(x, y, z) ; G = ±θ

√
αβ
}
.
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Hence, either v = 0 ∈ IR3, or else v is vertical. The only way to connect
trajectories of the vector field v forming the graph of a smooth function x 7→
W θ(x) = (yθ(x), zθ(x)) is to cross the surfaces Σ±

θ somewhere along the two
curves where v vanishes, namely

γ±θ
.
=

{
(x, y, z) ; G = ± θ

√
αβ , φ = ± θ

√
α

β
ψ

}
. (5.31)

One thus needs to study the stable and unstable manifolds through points on the
curves γ±θ . Under a generic transversality assumption, one obtains the existence
of a unique heteroclinic orbit connecting a point p− ∈ γ−θ to a point p+ ∈ γ+

θ

(see Fig. 1).

+

γ
θ

+

γ
θ

p

p+

Σ

Σ
θ

θ

Figure 1. A unique heteroclinic orbit connects a pair of points p−, p+, on the
lines γ±θ

In a second step, one needs to check that this local solution can be extended
to the entire interval I, remaining close to the reference solution W 0. This is
achieved by showing that this extension remains close to the singular solution
W̃ θ(x) = (ỹθ(x), z̃θ(x)) of the intermediate problem

{
G(x, y, z̄, θ)y′ = φ(x, y, z̄, θ) ,

β(x, y, z, θ)y′ +G(x, y, z̄, θ)z′ = ψ(x, y, z, θ) ,
(5.32)

passing through the point (x̄θ , ξ̄θ, η̄θ), where the corresponding equations (5.20)
hold. Notice that in (5.32) we set z = z̄ in the argument of G,φ. Hence the
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first equation can be solved independently of the second one. As θ → 0, one
then shows that the solution (ỹθ, z̃θ) of (5.32) approaches the solution (y0, z0)
of (5.7), corresponding to θ = 0.

In connection with the original system (5.6), the above results show that
for θ > 0 the differential game (4.1)-(4.2) has one or infinitely many Nash
equilibrium solutions in feedback form, depending on the sign of the product

H
(1)
ξ2

·H(2)
ξ1

, at the point (x, ξ, η, θ) = (x̄, ξ̄, η̄, 0). This will be illustrated by two
examples, in the next two sections.

6. A linear-quadratic game

Consider the parameter dependent, linear-quadratic game

ẋ = G(x, u, v, θ)
.
= − x+ u+ θv. (6.1)

The payoff functions are

Ju .
=

∫ ∞

0

e−ρt
[
ax− u2

2

]
dt , (6.2)

Jv .
=

∫ ∞

0

e−ρt
[
bx− v2

2

]
dt . (6.3)

We assume ρ > 0, while a, b 6= 0. Call U(x), V (x) the value functions for the
two players, and set ξ=U ′, η=V ′. The optimal controls are then computed as

u∗(x, ξ) = argmax
ω

(
ξ · u− u2

2

)
= ξ , (6.4)

v∗(x, η, θ) = argmax
ω

(
θη · v − v2

2

)
= θη . (6.5)

The value functions U, V can be found by solving a system of Hamilton-
Jacobi equations, depending on the parameter θ,

{
ρU = H(x, U ′, V ′, θ) ,

ρV = K(x, U ′, V ′, θ) .
(6.6)

Here

H(x, ξ, η) = ξ ·
(
− x+ u∗(x, ξ) + θ v∗(x, η, θ)

)
+

(
ax− (u∗(x, ξ))2

2

)

=
ξ2

2
+ (a− ξ)x+ θ2ξη ,

(6.7)

K(x, ξ, η) = η ·
(
− x+ u∗(x, ξ) + θ v∗(x, η, θ)

)
+

(
bx− (v∗(x, η, θ))2

2

)

= ξη + (b− η)x +
θ2η2

2
.

(6.8)
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Notice that

Hξ = Kη = − x+ ξ + θ2η
.
= G(x, ξ, η, θ) . (6.9)

Differentiating (6.6) we obtain the system

{
ρξ = Hx +Hξ ξ

′ +Hη η
′ ,

ρη = Kx +Kξ ξ
′ +Kη η

′ .
(6.10)

More explicitly,
(
ξ + θ2η − x θ2ξ

η ξ + θ2η − x

)(
ξ′

η′

)
=

(
(1 + ρ)ξ − a

(1 + ρ)η − b

)
. (6.11)

We consider first the case of θ = 0, so that (6.11) reduces to

{
ρξ = (a− ξ) + (ξ − x) ξ′ ,

ρη = (b− η) + η ξ′ + (ξ − x) η′ .
(6.12)

The stationary solution with ẋ = ξ − x = 0 is found to be

x̄ = ξ(x̄) =
a

1 + ρ
. (6.13)

Substituting in (6.12) the linear functions

ξ = Ax +B η = Cx +D ,

we obtain
{

ρ(Ax +B) = (a−Ax −B) + (Ax +B − x)A ,

ρ(Cx +D) = (b− Cx−D) + (Cx +D)A+ (Ax+B − x) C ,
(6.14)

A2 − (2 + ρ)A = 0 , B(1 + ρ−A) = a ,

(2 + ρ− 2A)C = 0 , (1 + ρ−A)D = b +BC .

We thus have two solutions. The first one is

A = 0, B =
a

1 + ρ
, C = 0, D =

b

1 + ρ
,

corresponding to the stable dynamics

ẋ = x̄− x .

The second one is

A = 2 + ρ , B = −a , C = 0 , D = −b,
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corresponding to the unstable dynamics

ẋ = (1 + ρ)(x − x̄) .

Next, we study the bifurcation occurring for θ > 0, in a neighborhood of the
singular point

(x̄, ξ̄, η̄) =

(
a

1 + ρ
,

a

1 + ρ
,

b

1 + ρ

)
.

Comparing (6.11) with (5.7) we see that

G = ξ + θ2η − x , α = ξ , β = η ,

φ = (1 + ρ)ξ − a , ψ = (1 + ρ)η − b .

One can easily check that the assumption (5.9) holds, and that the conditions
(5.15) and (5.27) are satisfied, with ξ′− = 0. To see which case in Theorem
actually occurs, for θ = 0 at the singular point (x̄, ξ̄, η̄), we compute

α · β = ξη =
ab

(1 + ρ)2
, Gx +

ψ

β
Gξ = ρ− b

η
= − 1 .

We thus have two cases.

CASE 1: If ab > 0, then for each θ > 0 small there exists a unique solu-
tion (ξθ, ηθ) of the implicit ODE (6.11) close to the stable solution (ξ0, η0) ≡(

a
1+ρ ,

b
1+ρ

)
.

CASE 2: If ab < 0, then for each θ > 0 small, there exist infinitely many
solutions x 7→ (ξθ, ηθ) close to the stable solution (ξ0, η0).

In both of the above cases, the couple of constant functions

ξθ(x) ≡ ξ̄ =
a

1 + ρ
, ηθ(x) ≡ η̄ =

b

1 + ρ
, (6.15)

provides a solution to (6.11) also for θ > 0. The corresponding dynamics

ẋ =
a+ θ2b

1 + ρ
− x

admits the point x̄θ = a+θ2b
1+ρ as the unique globally stable equilibrium.

However, a major difference must be pointed out. Let I ⊂ IR be a com-
pact interval containing the point x̄ = α

1+ρ in its interior. Then, as in (5.30),
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the graph of any solution of (6.11) defined on the entire interval I must be a
concatenation of trajectories for the vector field

vθ =




(ξ + θ2η − x)2 − θ2ξη

[b− (1 + ρ)η] θ2ξ − [a− (1 + ρ)ξ] (ξ + θ2η − x)

[a− (1 + ρ)ξ] η − [b− (1 + ρ)η] (ξ + θ2η − x)


 . (6.16)

We observe that, along the surfaces

Γ± =
{

(x, ξ, η)|, ; x = (ξ + θ2η) ± θ
√
ξη
}
,

the first component of vθ vanishes. Therefore, the graph of any regular solution
of (6.11) globally defined on I and close to the solution (ξ0, η0) must cross the
surfaces Γ± at points P±, where the vector field vθ vanishes. This can happen
only at the points

P± = (x̄±, ξ̄, η̄) , x̄± =
a+ θ2b

1 + ρ
± θ

√
ab

1 + ρ
.

The only trajectory of vθ connecting these points P−, P+ corresponds to the
constant solution (6.15).

On the other hand, if ab < 0, then for θ > 0 the determinant of the coefficient
matrix in (6.11) is uniformly positive definite as (ξ, η) range in a neighborhood
of ( a

1+ρ ,
b

1+ρ). Hence we can rewrite the implicit ODE (6.11) in the standard
form

(
ξ′

η′

)
=

1

(ξ + θ2η − x)2 − θ2ξη

(
ξ + θ2η − x −θ2ξ

−η ξ + θ2η − x

)(
φ

ψ

)
.

(6.17)

Since all coefficients are locally smooth, by slightly changing the initial data,
say at x = x̄, we can construct infinitely many other solutions, globally defined
on the interval I.

7. A nonlinear sticky price game

Let p(t) denote the price of a good at time t. We assume that this good can be
produced by one of the players, at rate a(t), and consumed by the other player
at rate b(t). In a very simplified model, the variation of the price in time can
be described by the differential equation

ṗ = (b − a)p . (7.1)

Here the functions t 7→ a(t) and t 7→ b(t) represent the controls implemented
by the two players. According to (7.1), the price increases when consumption
is larger than production, and decreases otherwise.
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In addition, we consider the exponentially discounted payoffs

Jprod =

∫ ∞

0

e−βt
[
p(t) · b(t) − c

(
a(t)

)]
dt , (7.2)

Jcons =

∫ ∞

0

e−βt
[
φ(b(t)) − p(t)b(t)

]
dt . (7.3)

The payoff for the producer is given by the profit generated by sales, minus
the cost c(a) of producing the good at rate a. The payoff for the consumer is
measured by a utility function φ(b), minus the price paid to buy the good. For
the sake of definiteness, throughout the following we choose

c(a) =
a2

2
, φ(b) = 2

√
b . (7.4)

As a preliminary we observe that, if the consumer adopts the myopic stra-
tegy:

b†(p)
.
= argmax

b

{
φ(b) − p b

}
=

1

p2
, (7.5)

then the differential game would reduce to an optimal control problem for the
producer. Namely:

maximize: Jprod .
=

∫ ∞

0

e−ρt

[
1

p(t)
− a2(t)

2

]
dt , (7.6)

where the evolution of the price is governed by the ODE

ṗ =
1

p
− p a . (7.7)

We now want to study an intermediate situation, where a fraction θ ∈ [0, 1] of
all consumers join forces and play strategically, while the remaining ones still be-
have myopically. Equivalently, we may also think of one large consumer, whose
actions are motivated by a long-term strategy, and several small consumers who
simply maximize their instantaneous payoff.

Denoting by b(·) the control implemented by the single large consumer, and
by Jcons his expected payoff, we obtain the system

ṗ =
[
θb+ (1 − θ)b† − a

]
p =

[
θb+

1 − θ

p2
− a

]
p (7.8)

with payoff functionals

Jprod =

∫ ∞

0

e−ρt

[
θp b+

1 − θ

p
− a2

2

]
dt , (7.9)
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Jcons =

∫ ∞

0

e−ρt
[
2
√
b− p b

]
dt . (7.10)

To derive the corresponding system of Hamilton-Jacobi equations, we first com-
pute the optimal feedback controls. Assuming ξ < 0 and θη < 1, we find

a∗(p, ξ, θ) = argmax
a

{
ξ ·
(
θb+

1 − θ

p2
− a
)
p+

(
θpb +

1 − θ

p
− a2

2

)}
= −pξ ,

(7.11)

b∗(p, η, θ) = argmax
a

{
η ·
(
θb+

1 − θ

p2
− a
)
p+

(
2
√
b− p b

)}
=

1

(1 − θη)2p2
.

(7.12)

The corresponding Hamiltonian functions for the producer and for the single
large consumer are computed as

H(p, ξ, η, θ)=p ξ

[
1 − θ

p2
+

θ

(1 − θη)2p2
+ pξ

]
+p

[
1 − θ

p2
+

θ

(1 − θη)2p2

]
− (pξ)2

2

=
ξ + 1

p

[
(1 − θ) +

θ

(1 − θη)2

]
+
p2ξ2

2
(7.13)

K(p, ξ, η, θ) = p η

[
1 − θ

p2
+

θ

(1 − θη)2p2
+ pξ

]
+

2

(1 − θη)p
− p

(1 − θη)2p2

=
1

p

[
(1 − θ)η +

1

1 − θη

]
+ p2ξη . (7.14)

The Hamilton-Jacobi system of equations takes the form




ξp2 +
1

p
+

θ2η2

(1 − θη)2p

2(ξ + 1)θ2

(1 − θη)3p

ηp2 ξp2 +
1

p
+

θ2η2

(1 − θη)2p







ξ′

η′




=




ρξ − ξ2p+
ξ + 1

p2

[
(1 − θ) +

θ

(1 − θη)2

]

ρη − 2ξηp+
1

p2

[
(1 − θ)η +

1

1 − θη

]


 . (7.15)

After renaming the variables x
.
= p, y = ξ, z = η, the system (7.15) has the

same form as (5.7), with

G = Hξ = ξp2 +
1

p
+

θ2η2

(1 − θη)2p
, θ2α =

2(ξ + 1)θ2

(1 − θη)3p
, β = ηp2 , (7.16)
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φ = ρξ − ξ2p+
ξ + 1

p2

[
(1 − θ) +

θ

(1 − θη)2

]
,

ψ = ρη − 2ξηp+
1

p2

[
(1 − θ)η +

1

1 − θη

]
. (7.17)

When θ = 0, the Hamiltonian function (7) reduces to

H(p, ξ) =
ξ + 1

p
+
p2ξ2

2
, (7.18)

and the system (2.16) takes the form





ṗ = Hξ =
1

p
+ ξp2 ,

ξ̇ = ρξ −Hp = − 1 + ξ

p2
+ ξ2p .

(7.19)

The coordinates (p̄, ξ̄) of a stationary point are found by solving

ξ = − 1

p3
, p3 − ρp2 = 2 . (7.20)

To check the stability of the stationary solution, according to (2.11) we need
to establish the inequality

Hpξ +Hξξξ
′ < 0 . (7.21)

Toward this goal, recalling (7.18), we compute

Hpp = ξ2 +
2(1 + ξ)

p3
, Hpξ = 2ξp− 1

p2
, Hξξ = p2 . (7.22)

By differentiating the equation

ξ′ =
ρξ −Hp

Hξ
=

(
1 + ξ

p2
+ ρξ − ξ2p

)
p

1 + p3ξ
(7.23)

we obtain

ρξ′ = Hpp + 2Hpξξ
′ +Hξξ(ξ

′)2 +Hξξ
′′

= ξ2 +
2(1 + ξ)

p3
+ 2

(
2ξp− 1

p2

)
ξ′ + p2(ξ′)2 +

(
1

p
+ ξp2

)
ξ′′ .

(7.24)

By (7.20) one has

ξ = −p−3, ρ = p− 2

p2
. (7.25)
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Hence

p2(ξ′)2 + 2

(
2ξp− 1

p2
− ρ

2

)
ξ′ + ξ2 +

2(1 + ξ)

p3
= 0,

p2(ξ′)2 −
(

6

p2
+ ρ

)
ξ′ +

2

p3
− 1

p6
= 0. (7.26)

Using (7.25) we compute the discriminant

∆
.
=

(
6

p2
+ ρ

)2

− 4

(
2

p
− 1

p4

)
=

20

p4
+ p2 > 0 .

Choosing the smaller root in (7.26), we find

ξ′− =

(
4
p2 + p

)
−
√

20
p4 + p2

2p2
. (7.27)

Inserting this in (7.21) and using (7.22) we get

Hpξ +Hξξξ
′ = − 3

p2
+

(
2

p2
+
p

2

)
− 1

2

√
20

p4
+ p2 < 0.

This establishes the existence of a locally stable solution.

To apply Theorem 1, we first need to compute the value η̄ such that

βξ′− − ψ = ηp2 ξ′− −
(
ρη − 2ξηp+

1

p2
(η + 1)

)
= 0.

Using (7.27) we find

η̄ =
1

p2
·
(
p2ξ′− − ρ+ 2ξp− 1

p2

)−1

< 0 . (7.28)

We now check the sign of the product αβ, when θ = 0, at the equilibrium point
(p̄, ξ̄, η̄). Recalling (7.16)-(7.17), we find

α · β =
2(ξ + 1)

p
· ηp2 =

2(p3 − 1)η

p2
< 0 , (7.29)

because η̄ < 0 and p̄ > 21/3, by (7.28) and (7.20). Therefore, the first alternative
in Theorem 1 applies. For θ > 0 the differential game admits infinitely many
Nash equilibrium solutions, all leading to a stable dynamics.
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