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1. Introduction

In this paper we consider functionals F(Σ) defined on the class of all closed
connected subsets of Rn and the corresponding minimization problems

min
{
F(Σ) : Σ closed connected subset of Rn

}
. (1)

Due to the fact that the class of closed connected sets has good compactness
properties with respect to the Hausdorff convergence, mild coercivity assump-
tions on F give the existence of minimizers for problem (1). We are interested in
finding “first order” necessary optimality conditions satisfied by the minimizers
Σ of (1).

The case we consider is the average distance functional

F(Σ) :=

∫

Rn

dist (x, Σ) dµ(x) + λH1(Σ), (2)

∗Submitted: January 2009; Accepted: December 2009
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where µ is a given finite nonnegative Borel measure over Rn with compact
support, and the penalization term λH1(Σ) with λ > 0 is added to give a
suitable coercivity to F and to prevent minimizing sequences to spread over
all the space. A simple and standard argument involving Blaschke and Gołąb
theorems gives the existence of minimizers of F . Of particular interest for us
will be situations when µ is a uniform measure over some open set Ω ⊂ Rn, i.e.
µ = Ln Ω.

The average distance term in (2) comes from mass transport theory and de-
scribes, for instance, the total transportation cost to move a mass µ of residents
to a public transport network Σ. This last is the unknown of the problem and
has to be designed in order to minimize F , also taking into account the construc-
tion costs, which here are taken as proportional to H1(Σ). The minimization
problem (1), as well as some qualitative properties of its minimizers, have been
studied in several recent papers (see e.g. Buttazzo, Oudet and Stepanov, 2002;
Buttazzo and Santambrogio, 2007; Buttazzo and Stepanov, 2003, 2004; Paolini
and Stepanov, 2004; Santambrogio and Tilli, 2004; Stepanov, 2006) to which
we refer the interested reader. Our goal is to find “first order” conditions of
differential character satisfied by the minimizers of (2). Such conditions will
open the way to defining a natural notion of stationary (or critical) points of
(2). The main difficulty, which is quite common in shape optimization prob-
lems, is that the domain of definition of this functional (i.e. the class of closed
connected subsets of Rn) does not possess any natural differentiable structure,
and the usual “first variation” argument has to be intended in a suitable way.

In the last section we consider a similar case arising from the theory of elliptic
equations:

F(Σ) :=

∫

Ω

uΣ(x)f(x) dx + λH1(Σ), (3)

where Ω ⊂ R2 is a given bounded open subset, f is a given L2(Ω) function, and
uΣ is the unique solution of the PDE

{
−∆u = f in Ω \ Σ,

u = 0 on ∂Ω ∪ Σ.

One has to remark that while a lot of properties are known for minimizers of the
average distance functional (see Buttazzo, Oudet and Stepanov, 2002; Buttazzo
and Stepanov, 2003; Paolini and Stepanov, 2004; Stepanov, 2006), like partial
regularity, absence of loops, topological properties (finite number of branching
points, each of which is a regular tripod), no such property has been studied for
minimizers of (3).

2. The Euler equation for the average distance functional

For a compact set Σ ⊂ Rn we denote by πΣ the projection map to Σ (i.e. such
that πΣ(x) ∈ Σ is one of the nearest points in Σ to x ∈ Rn). This map is
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uniquely defined everywhere, except for the ridge set RΣ, which is defined as
the set of all x ∈ Rn for which the minimum distance to Σ is attained at more
than one point. It is well known that RΣ is the set of non differentiability points
of the distance function to Σ (that is, of the map x ∈ Rn 7→ dist (x, Σ)), and
since the latter map is semiconcave, this set is an (Hn−1, n−1)-rectifiable Borel
set (see Proposition 3.7 in Mantegazza and Mennucci, 2003).

We will denote by Br(x) ⊂ Rn the open ball with radius r > 0 and center
x ∈ Rn. The line segment with endpoints A and B will be denoted by AB, the
arc of a curve with the same endpoints will be denoted by ÃB (usually in this
paper we will deal with arcs of a circle).

To begin with, we estimate the ascending local slope of (2) defined by

|F ′|(Σ) := lim sup
dH(Σ′,Σ)→0

(F(Σ′) −F(Σ))+

dH(Σ′, Σ)
,

where dH stands for Hausdorff distance between sets. The following simple
assertion is valid:

Proposition 2.1 If µ(RΣ) = 0, there holds |F ′|(Σ) ≥ λ.

Proof. Let x ∈ Σ be such that µ((πΣ)−1({x})) = 0 (all but a countable number
of points of Σ have this property). Let then Σε := Σ ∪ Iε, where Iε stands for
the line segment of length ε > 0, with one of the endpoints x and such that
πΣ(Iε) = x. Then, dH(Σε, Σ) = ε and H1(Σε) = H1(Σ)+ε. On the other hand,
denoting

Gε := {z ∈ Rn : dist (z, Σ) ≥ dist (z, Iε)},

we have that
∫

Rn

dist (x, Σ) dµ(x) ≥
∫

Rn

dist (x, Σε) dµ(x)

≥
∫

Rn

dist (x, Σ) dµ(x) − εµ(Gε).

Thus,

|F ′|(Σ) ≥ lim sup
dH(Σε,Σ)→0

(F(Σε) −F(Σ))+

dH(Σε, Σ)
≥ lim

ε→0+

(λε − εµ(Gε))
+

ε
,

and to conclude the proof it suffices to consider that µ(Gε) = o(1), because
Gε ց {x} as ε → 0+.

The above proposition in fact means that for the functional (2) no set Σ (not
even a minimizer) is stationary in the strong sense, i.e. is such that

F(Σ′) = F(Σ) + o(dH(Σ, Σ′))
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as Σ′ → Σ in Hausdorff distance. Therefore, in search for the natural notion of
stationary points of F we have to restrict the set of admissible variations of Σ.
For this purpose, let φε:R

n → Rn be a one parameter group of diffeomorphisms
satisfying

φε(x) = x + εX(x) + o(ε), (4)

as ε → 0, where X ∈ C∞
0 (Rn;Rn). We will write Euler equation for the

functional (2) by considering admissible variations of the type Σε := φε(Σ).
We recall the notion of generalized mean curvature (from Bouchitté, But-

tazzo and Fragalà, 1997). The generalized mean curvature HΣ of a countably
(Hk, k)-rectifiable set Σ ⊂ Rn (or, in terms of the above reference, of the mea-
sure Hk Σ) is the vector-valued distribution defined by the relationship

〈X, HΣ〉 := −
∫

Σ

div Σ X dHk

for all X ∈ C∞
0 (Rn,Rn), where div Σ stands for the tangential divergence op-

erator (i.e. projection of the divergence to the approximate tangent space of Σ
at Hk-a.e. point of Σ). We have then the following result:

Theorem 2.1 Let µ be a Borel measure such that

µ(E) = 0 whenever Hn−1(E) < +∞.

Then, for all X ∈ C∞
0 (Rn;Rn) there holds

∂

∂ε
F(Σε)

∣∣∣
ε=0

=

∫

Rn

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dµ − λ〈HΣ, X〉

=

∫

Rn

〈
X(πΣ(x)),∇dist (x, Σ)

〉
dµ − λ〈HΣ, X〉.

(5)

In particular, if Σ is a minimizer of F , then

∫

Rn

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dµ = λ〈HΣ, X〉 (6)

for all X ∈ C∞
0 (Rn;Rn).

Proof. First of all, we perform the variation for the first term. We adopt the
method of calculation of the derivative of the distance function with respect to
the variation of the set, used in Lemma 4.5 of Ambrosio and Mantegazza (1998).
Clearly, for z := φε(π

Σ(x)) one has

dist (x, Σ) = |πΣ(x) − x|,
dist (x, Σε) ≤ |z − x|.
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From (4) we get, for ε → 0,

|z − x|2 =
〈
πΣ(x) − x + εX(πΣ(x)), πΣ(x) − x + εX(πΣ(x))

〉
+ o(ε)

= |πΣ(x) − x|2 + 2
〈
πΣ(x) − x, εX(πΣ(x))

〉
+ o(ε)

= |πΣ(x) − x|2
(

1 + 2

〈
πΣ(x) − x

|πΣ(x) − x|2 , εX(πΣ(x))

〉
+ o(ε)

)
.

Then

dist (x, Σε) − dist (x, Σ) ≤ |z − x| − |πΣ(x) − x|

= ε

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
+ o(ε),

and we deduce

lim sup
ε→0

1

ε
(dist (x, Σε) − dist (x, Σ)) ≤

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
. (7)

On the other hand, consider a sequence εν → 0+ for ν → ∞. The set of points
x ∈ Rn, for which both πΣ(x) and πΣεν (x) are singletons for any ν ∈ N, is of
full measure µ in Rn (the complement is a countable union of ridge sets RΣν

and RΣ which are all (Hn−1, n− 1)-rectifiable, hence µ-negligible). For all such
x, since φε is invertible for all sufficiently small ε, let ζ := φ−1

εν
(πΣεν (x)), so that

dist (x, Σεν
) = |φεν

(ζ) − x|,
dist (x, Σ) ≤ |ζ − x|.

Again we have

|φεν
(ζ) − x| − |ζ − x|

= |ζ − x|
(√

1 + 2

〈
ζ − x

|ζ − x|2 , ενX(ζ)

〉
+ o(εν) − 1

)

= εν

〈
ζ − x

|ζ − x| , X(ζ)

〉
+ o(εν).

Therefore,

dist (x, Σεν
) − dist (x, Σ) ≥ εν

〈
ζ − x

|ζ − x| , X(ζ)

〉
+ o(εν).

Passing to the limit as ν → ∞, we get

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
≤ lim inf

ν→∞
1

εν
(dist (x, Σεν

) − dist (x, Σ)) . (8)
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Combining (7) with (8), we get for µ-a.e. x ∈ Rn,

lim
ν→∞

1

εν
(dist (x, Σεν

) − dist (x, Σ)) =

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
,

so that, by Lebesgue dominated convergence theorem,

lim
ν→∞

1

εν

∫

Ω

(dist (x, Σεν
) − dist (x, Σ)) dµ

=

∫

Ω

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
dµ.

Since the sequence εν is arbitrary, one has

lim
ε→0+

1

ε

∫

Ω

(dist (x, Σε) − dist (x, Σ)) dµ

=

∫

Ω

〈
πΣ(x) − x

|πΣ(x) − x| , X(πΣ(x))

〉
dµ.

Finally, we observe that according to the Theorem 7.31 of Ambrosio, Fusco and
Pallara (2000) there holds

d

dε
Hk(Σε)

∣∣∣
ε=0

=

∫

Σ

divΣ X dHk = −〈HΣ, X〉,

which concludes the proof.

Remark 2.1 The assumptions of the above theorem are satisfied, in particular,
when µ ≪ Ln.

We are in a position to give the following definition.

Definition 2.1 A closed connected set Σ ⊂ Rn will be called stationary for the
functional F , if (6) holds.

Clearly, every stationary point depends on the problem data, which in this
case is the measure µ. To emphasize this dependence, we will further sometimes
say for stationary points for the functional F that they are stationary with
respect to µ. In the most important particular case we will be interested in, µ
is a uniform measure over some open Ω ⊂ Rn (i.e. µ = Ln Ω) with Σ ⊂ Ω.
In such a situation we will be speaking of stationary points with respect to the
set Ω.

3. Examples of regular stationary points

We will first show that, in sharp contrast with minimizers, stationary points
may contain closed loops (i.e. homeomorphic images of S1).
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Proposition 3.1 Let µ := L2 B1(0). There exists r < 1 such that the cir-
cumference ∂Br(0) is a stationary point for functional (2) if and only if λ < 1

2 .
Nevertheless, no circumference is a minimizer of (2), since minimizers cannot
contain closed loops.

Proof. We set Σ := ∂Br(0) and impose (6). We choose X to be normal to Σ
without loss of generality, since the normal part only plays a role in (6). If
we write the integral term in polar coordinates, the integrand depends only on
the angle. Setting A = Br(0) and B = B1(0)\Br(0), and letting ν(x) be the
outward unit normal to ∂Br(0), we get

∫

Ω

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx =

∫

A

〈X(πΣ(x)), ν(πΣ(x))〉 dx

−
∫

B

〈X(πΣ(x)), ν(πΣ(x))〉 dx,

and we can compute

∫

A

〈X(πΣ(x)), ν(πΣ(x))〉 dx =

∫ r

0

∫ 2π

0

|X(θ)| ρ dρdθ

=
1

2
r2

∫ 2π

0

|X(θ)|dθ,

and similarly for the integral over B. Moreover,

〈X, HΣ〉 = −
∫

∂Br(0)

|HΣ(x)|〈X(x), ν(x)〉dH1(x) = −1

r

∫ 2π

0

|X(θ)|rdθ.

So the Euler equation reads

(
r2 − 1

2
+ λ

)∫ 2π

0

|X(θ)|dθ = 0. (9)

This equation is identically satisfied, if and only if λ < 1/2, for r =
√

1/2 − λ
(of course, λ = 1/2 would also suit for (9), but it corresponds to a degenerate
case, when the circumference reduces to a point).

To show that minimizers of (2) cannot contain closed loops, and hence the
above stationary points are not minimizers, we may act as in the proof of absence
of loops in minimizers of average distance functionals with length constraint
(see e.g. Paolini and Stepanov, 2004; Buttazzo, Oudet and Stepanov, 2002, or
Buttazzo and Stepanov, 2003). In fact, suppose that Σ is a minimizer containing
a closed loop. Then, there is a set of positive length C ⊂ Σ, such that for every
x ∈ C and for every ε > 0 there is a closed connected subset Dε ⊂ Σ such that
x ∈ Dε, diamDε = ε (hence H1(Dε) ≥ ε) and Σε := Σ \ Dε is connected. We
may suppose without loss of generality that µ((πΣ)−1({x})) = 0 for all x ∈ C
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(since the set of atoms of the latter measure is clearly at most countable). One
has then by triangle inequality

∫

Rn

dist (x, Σε) dµ(x) ≤
∫

Rn

dist (x, Σ) dµ(x) + εµ((πΣ)−1(Dε)),

and hence

F(Σε) ≤ F(Σ) + εµ((πΣ)−1(Dε)) − λε.

Minding that Dε ց {x} as ε → 0+, we get

µ((πΣ)−1(Dε)) → µ((πΣ)−1({x})) = 0,

and thus

F(Σε) ≤ F(Σ) + o(ε) − λε

as ε → 0+, which means that F(Σε) < F(Σ) for small ε > 0, concluding the
proof.

Let us now consider another example of a stationary point for (2) given by
Fig. 1, where the radii of the semicircles are equal to

√
λ. Here, as well as

in all the other figures, the arrows starting at the endpoints of Σ indicate the
directions of −HΣ in these points.

Proposition 3.2 There exists a line segment which is stationary for the region
Ω shown in Fig. 1.

Proof. In the example of Fig. 1, points belonging to regions A and B are pro-
jected on the line segment Σ along the perpendicular, and it is clear that the
symmetry of the domain yields

∫

A

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx +

∫

B

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = 0

for any vector field X ∈ C∞
0 (Rn;Rn).

Set X1 := 〈X, e1〉 and X2 := 〈X, e2〉, where e1, e2 stand for the base vectors
in R2. Let us compute the contribution of the right unit semicircle:

∫

D

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −

∫ √
λ

0

∫ π/2

−π/2

X1(F ) cos θρdρdθ

= −2X1(F )

∫ √
λ

0

ρdρ

= −λX1(F ).

In the same way, the contribution of semicircle C is given by
∫

C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = λX1(E).
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Figure 1. Construction of the proof of Proposition 3.2

Therefore,

∫

Ω

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −λX1(F ) + λX1(E).

On the other hand, at the endpoints E and F of the segment, the distribu-
tional curvature is given by δEe1, −δFe1 where δx stands for the Dirac mass
concentrated at the point x (see Bouchitté, Buttazzo and Fragalà, 1997), while
at all the other points of the segment the curvature is zero. Thus, the curva-
ture term of the Euler equation reduces to λ(X1(F )−X1(E)), and hence (6) is
satisfied.

We now show an example of a set which is never stationary (i.e. it is not
stationary for any ambient set Ω).

Proposition 3.3 The line Σ made of two segments (not reduced to a single
segment), is not stationary for any open set Ω ⊂ R2.

Proof. Let P be the common vertex of the two segments (with the aperture
2ϕ < π), R be a point on one of the two edges, with z := |P − R|. Let,
moreover, S be a point on the normal to the same segment passing through R,
with y := |S−R| located in the region B in Fig. 2. Since the whole polygonal line
Σ, and hence P , is in the interior of Ω, it is clear that the rectangle B := PRST
(with sidelengths z and y), is all contained in Ω for all sufficiently small y and
z. Let finally Q be a point of the intersection of the line passing through S and
R, with the bisector of the angle formed by the two segments of Σ (see Fig. 2).
Choose now a regular vector field X , compactly supported in the open segment
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Figure 2. Construction of the proof of Proposition 3.3

PR, and normal to it, pointing towards the region B in Fig. 2. It is clear that
there is no contribution from the curvature term in the Euler equation, since
the curvature of the line segment is zero outside its endpoints. So it remains to
check the integral term. Since |Q − R| = z tan ϕ, an easy computation in the
suitable coordinate system yields

∫

B

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −

∫

B

|X(πΣ(x))| dx

= −y

∫ z

0

|X(ζ)|dζ

and ∫

A

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx =

∫

A

|X(πΣ(x))| dx

= z tan ϕ

∫ z

0

|X(ζ)|dζ.

Notice that z can be chosen small enough, such that the sum of the above terms
is strictly negative, while

∫

Ω

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx ≤

∫

A

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

+

∫

B

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx,

that is, for sufficiently small z the equation (6) is not satisfied.
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It is worth emphasizing that it is still quite easy to find a measure µ such
that the given polygonal line is stationary with respect to µ.

4. Examples of irregular stationary points

In this section we will show that there exist Ω and Σ stationary in Ω such that
Σ has angular points.

From now on, we will consider sets Σ made of two arcs of circumference with
a common end point O. We will refer to such sets simply as curved corners. We
will say that a curved corner is convex, if it is a convex curve (i.e. it intersects
every line in at most two points).

Proposition 4.1 There exists a convex curved corner Σ stationary with respect
to some open Ω ⊂ R2.

Proof. Let λ > 0 be fixed. Our construction is that shown in Fig. 3. Namely,
the set Σ is made by two arcs, Q̃O and P̃O, of circumferences with the same
radius R and with centers C1 and C2, respectively. The points P and Q are
chosen in such a way that both belong to the line v containing the centers of
the circumferences. We denote by 2ϕ ∈ [0, π] the angle between the normals
in O to the respective arcs, pointing away from v. Then α = π/2 − ϕ is the
angle between v and the ray C1O (and also, by symmetry, between v and the
ray C2O). We also assume the unit coordinate vectors e1 and e2 to be directed
as in Fig. 3.

Now let

b :=
√

R2 + 2λ − R,

f(θ) :=

√

2R2 + 2λ −
(

R cosα

cos θ

)2

, θ ∈ [0, α],

r :=
√

2λ.

Notice that r > b. Moreover, fix a k ∈ (0, R(1 − cosα)) and an h > 0 such that

−
∫ k

−k

(∫ 0

−h

y(z2 + y2)−1/2dy

)
dz = λ. (10)

Consider now the region bounded by Σ and the segment PQ. It is divided
symmetrically in two regions, A and B, by the line u passing through O per-
pendicular to v. Let C indicate the region identified by the arc Q̃O, the ray
C1O, the ray C1Q and the curve defined by the equation ρ = f(θ) in polar
coordinates with center C1 and the angle θ counted counterclockwise increasing
from 0 to α. Define D to be the region symmetric to C with respect to u. Let
E and G be equal rectangles with an edge on v of length k, centered in P and
Q, respectively, with another edge of length h, and belonging to the half space
bounded by v and not containing O. Finally, let F stand for the circular sector
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Figure 3. Construction of the proof of Proposition 4.1

with center O and with the radius r bounded by the normals to Q̃O and P̃O as
in Fig. 3.

Define now Ω := A∪B ∪C ∪D∪E ∪F ∪G. We will show that Σ is optimal
with respect to such Ω. Let ν be the outward normal to Q̃O. Points in B and
C are projected on Σ to the arc Q̃O, and since f(α) = R + b and f(θ) > R + b
for θ ∈ [0, α), we have

∫

C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −

∫ α

0

∫ f(θ)

R

〈X(θ), ν(θ)〉ρdρdθ

= −
∫ α

0

∫ f(θ)

R+b

〈X(θ), ν(θ)〉ρdρdθ

−
∫ α

0

∫ R+b

R

〈X(θ), ν(θ)〉ρdρdθ,

but, by the definition of b and f ,
∫ α

0

∫ R+b

R

〈X(θ), ν(θ)〉ρdρdθ =

(
1

2
(R + b2) − 1

2
R2

)∫ α

0

〈X(θ), ν(θ)〉dθ

= λ

∫ α

0

〈X(θ), ν(θ)〉dθ,

∫ f(θ)

R+b

ρdρ =
1

2
(f(θ))2 − 1

2
(R + b)2 =

1

2
R2 − 1

2

(
R cosα

cos θ

)2

.
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For the computation of the integral in the region B, it is easily seen that

B =

{
(ρ, θ): 0 ≤ θ ≤ α ,

R cosα

cos θ
≤ ρ ≤ R

}
, (11)

so it follows that
∫

B

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx =

∫ α

0

〈X(θ), ν(θ)〉
∫ R

R cos α

cos θ

ρdρdθ

=
1

2

∫ α

0

〈X(θ), ν(θ)〉
(

R2 −
(

R cosα

cos θ

)2
)

dθ.

Hence, one obtains
∫

B∪C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −λ

∫ α

0

〈X(θ), ν(θ)〉dθ. (12)

Now consider the curvature term of the Euler equation. Let HΣ(Q̃O) in-

dicate the nonatomic part of the curvature of the arc Q̃O, i.e. the part not
involving the contribution of endpoints. The term 〈HΣ(Q̃O), X〉 is clearly equal
to

−
∫ α

0

〈X(θ), ν(θ)〉dθ.

We end up with
∫

B∪C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx − λ〈HΣ(Q̃O), X〉 = 0 . (13)

By symmetry, the integral over region A ∪ D can be computed in polar
coordinates with respect to C2 and v, with angle θ′ counted clockwise increasing
from 0 to α, and has exactly the same form. Reasoning in the same way, one
sees the analogy between the terms 〈HΣ(P̃O), X〉 and 〈HΣ(Q̃O), X〉. It follows
that

∫

A∪D

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx − λ〈HΣ(P̃O), X〉 = 0. (14)

Let us now compute the integrals over E and G. These two regions are
disjoint thanks to the choice of k. By (10) we get

∫

E

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|
〉

dx

= −X2(P )

∫ k

−k

(∫ 0

−h

y(z2 + y2)−1/2dy

)
dz

= λX2(P ).

(15)
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Analogously, the integral over G is given by
∫

G

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = λX2(Q). (16)

For the integral over F , we consider polar coordinates referred to the center O
with the angle θ measured counterclockwise starting from the direction parallel
to the ray C1Q, so that

πΣ(x) − x

|πΣ(x) − x| = −(cos θ, sin θ), x ∈ F.

Then, since in F the minimum distance from Σ is always attained in the point
O, we get

∫

F

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|
〉

dx

= −
∫ π

2
+ϕ

π

2
−ϕ

∫ r

0

〈X(O), (cos θ, sin θ)〉ρdρdθ

= −X2(O)

∫ π

2
+ϕ

π

2
−ϕ

∫ r

0

sin θρdρdθ

= −X2(O)r2 sin ϕ = −2λX2(O) sin ϕ .

(17)

Finally consider the curvature terms at the endpoints P and Q. We have,
respectively

〈HΣ(P ), X〉 = X2(P ), 〈HΣ(Q), X〉 = X2(Q). (18)

For the point O, we have

HΣ(O) = −2 cosα δOe2,

yielding

〈HΣ(O), X〉 = −2 sinϕX2(O). (19)

Since Ω = A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G and

〈HΣ, X〉 = 〈HΣ(Q̃O), X〉 + 〈HΣ(P̃O), X〉 + 〈HΣ(P ), X〉
+〈HΣ(O), X〉 + 〈HΣ(Q), X〉,

by combining (13), (14), (15), (16), (17), (18) and (19) we see that the Euler
equation (6) is identically satisfied.

Next we will show that, for a convex domain Ω, if the amplitude of the corner
is not too large, then a set composed of two arcs of a circle is not stationary.

We first introduce the notation similar to that used in the proof of Propo-
sition 4.1, but for a generic curved corner Σ made by two arcs, Q̃O and P̃O,
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of circumferences with different radii R1 and R2, and with centers C1 and C2,
respectively. Again, 2ϕ ∈ [0, π] is the angle between the normals in O, which
bound the set of points (we will call the bisector ray of the latter angle u) in
R2, having O as the unique point of minimum distance to Σ. Let v′ be a ray
starting at C1 forming the angle α ≤ π/2 − ϕ with the ray C1O. We assume

that α is sufficiently small, so that v′ meets Q̃O in some point M . In this way
the rays v′, C1O and the arc Q̃O form a sector of area αR2

1/2. We also assume
the unit coordinate vectors e1 and e2 to be directed as in Figs. 4 and 5.

Fix α small enough, such that v′ meets the continuation of u. Consider the
ridge set RΣ of Σ (i.e. the set of points of equal distance from the two arcs).
Note that there exists a segment OZ with Z ∈ v′, which intersects RΣ only
in O (this assertion is implied by the fact that RΣ is a regular curve tangent

in O to u). Denote by W the curvilinear triangle bounded by M̃O, ZO and

ZM . Clearly, it contains the set of points T having the projection to Σ on M̃O.
Moreover, they are all projected on M̃O from the same side (i.e. either from
outside of the circle BR1

(C1) as in Fig. 4, or from the inner part of the circle
BR1

(C1) as in Fig. 5). It is important to observe that there are no points with
such a property outside of W . We denote by C the set of points having the
projection to Σ on M̃O, but from the different side with respect to T .

In this section we will consider a vector field X supported in a small neigh-
borhood of a subset of M̃O (in polar coordinates with respect to C1 and v′,
the points of the support are contained in the set with angular coordinate
θ ∈ [θ0, α]). We assume that X be vanishing in O and have restriction to

M̃O directed towards the outward normal ν to the circle BR1
(C1). Thus, in

the first member of (6) the only nonzero terms are the integrals in the regions

T and C and the curvature term restricted to M̃O.

Proposition 4.2 A non convex curved corner is not stationary, for any Ω ⊂
R2.

Proof. Let Σ be a non convex curved corner. In this case, one of the centers
belongs to one of the rays bounding the cone of points, for which the projection
on Σ coincides with O (let it be C1). So, the region C is inside the sector

bounded by the arc Q̃O (see Fig. 4). If β is the angle formed by OZ and OC1,
it is easily seen that one can choose the point Z so that β ∈ (π/2, π). In polar
coordinates with respect to C1 and v′ for small α one has, then,

W =

{
(ρ, θ): 0 < θ < α, R1 < ρ <

R1 sin β

sin(β + α − θ)

}
(20)

(observe that sinβ/ sin(β +α− θ) > 1 since β ∈ (π/2, π), and α− θ > 0 is small
enough). We obtain also

−λ〈HΣ, X〉 = λ

∫ α

θ0

〈X(θ), ν(θ)〉dθ = λ

∫ α

θ0

|X(θ)|dθ.
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Figure 4. Construction of the proof of Proposition 4.2

Moreover, thanks to (20), we have
∣∣∣∣
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

∣∣∣∣ ≤
∫

W

∣∣∣∣
〈

X(πΣ(x)),
πΣ(x) − x

|πΣ(x) − x|

〉∣∣∣∣ dx

=
1

2

∫ α

θ0

|X(θ)|
(

R2
1 sin2 β

sin2(β + α − θ)
− R2

1

)
dθ.

But, for θ → α, with β fixed, we get

R2
1 sin2 β

sin2(β + α − θ)
− R2

1 = o(1),

implying that
∣∣∣∣
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

∣∣∣∣ ≤ o

(∫ α

θ0

|X(θ)| dθ

)
.

Therefore, it is clear that, for θ0 close enough to α, the Euler equation (6) is
never satisfied for Σ. In fact, since

∫

C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
≥ 0,

we have that
∫

Ω

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
− λ〈HΣ, X〉

≥
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
− λ〈HΣ, X〉.
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Hence, for θ0 → α one has

∫

Ω

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
− λ〈HΣ, X〉 ≥ λ

∫ α

θ0

|X(θ)| dθ

−o

(∫ α

θ0

|X(θ)| dθ

)
,

that is, the right hand side of the above inequality is always strictly positive
once θ0 is sufficiently close to α.

Finally, we show that the condition for a curved corner to be stationary with
respect to a convex Ω is even more restrictive.

Proposition 4.3 Let Ω be convex. A curved corner is not stationary with
respect to Ω if

4λ

b2
1 + b2

2

≥ h(ϕ), (21)

where bi :=
√

R2
i + 2λ − Ri, i = 1, 2,

h(ϕ) :=
1

sin ϕ

∫ ϕ

0

cos(ϕ − θ)

cos2 θ
dθ.

In particular, there are no curved corners of amplitude less than or equal to 2γ,
where γ ∈ (0, π/2) is the angle that satisfies

∫ γ

0

cos(γ − θ)

cos2 θ
dθ = sin γ,

so γ ≃ 54◦.

Proof. If the curved corner is not convex, we refer to the previous Proposi-
tion 4.2. Otherwise, let β be the angle between OZ and OC1. This time,
β < ϕ, so that once α is sufficiently small, one has β + α < π/2 (see Fig. 5). In
polar coordinates with respect to C1 and v′, we have

W =

{
(ρ, θ): 0 < θ < α,

R1 sin β

sin(β + α − θ)
< ρ < R1

}
. (22)

Notice that α−θ > 0 is small and the bound on β gives sin β/ sin(β+α−θ) < 1.
The curvature term in the Euler equation (6) is given by

−λ〈HΣ, X〉 = λ

∫ α

θ0

〈X(θ), ν(θ)〉dθ = λ

∫ α

θ0

|X(θ)| dθ. (23)
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Figure 5. Construction of the proof of Proposition 4.3

Using (22), we get
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx ≤

∫

W

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

=

∫ α

θ0

|X(θ)|
2

(
R2

1 −
R2

1 sin2 β

sin2(β + α − θ)

)
dθ,

and again for θ → α, with β fixed, we have

R2
1 −

R2
1 sin2 β

sin2(β + α − θ)
= o(1),

and hence
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx ≤ o

(∫ α

θ0

|X(θ)|dθ

)
. (24)

Notice that C contains a region formed by v′, the ray C1O, the arc M̃O and
some arc concentric to M̃O, but of bigger radius. We express the subset of the



Stationary configurations for the average distance functional 1125

boundary of Ω bounding C in polar coordinates (ρ, θ) with respect to C1 and
v′ by the equation ρ = b1 + R1 + g1(θ), where g1(θ) → 0 as θ → α, and b1 is the
distance between O and the intersection between ∂Ω and the ray C1O, which
we denote by S. Then

∫

C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|
〉

dx = −
∫ α

θ0

∫ R1+b1+g1(θ)

R1

|X(θ)|ρdρdθ

= −1

2

∫ α

θ0

|X(θ)|
(
2R1b1 + b2

1 + g1(θ)
2 + 2(R1 + b1)g1(θ)

)
dθ

= −1

2
(2R1b1 + b2

1)

∫ α

θ0

|X(θ)|dθ

−1

2

∫ α

θ0

|X(θ)|
(
g1(θ)

2 + 2(R1 + b1)g1(θ)
)
dθ.

(25)

Suppose now that the Euler equation (6) holds, that is,
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

+

∫

C

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = λ〈HΣ, X〉.

(26)

Combining (23), (24) and (25) in the above relationship, by comparison of the
first order terms with respect to

∫ α

θ0
|X(θ)| dθ as θ0 → α, we obtain that

b1 =
√

R2
1 + 2λ − R1. (27)

Moreover, by this choice of b1 we have

−1

2
(2R1b1 + b2

1)

∫ α

θ0

|X(θ)|dθ = λ〈HΣ, X〉.

From (26) and (25), we conclude that
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

−1

2

∫ α

θ0

|X(θ)|
(
g1(θ)

2 + 2(R1 + b1)g1(θ)
)
dθ = 0;

but since
∫

T

〈
X(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx > 0,

there follows
∫ α

θ0

|X(θ)|
(
g1(θ)

2 + 2(R1 + b1)g1(θ)
)
dθ > 0.
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Considering that X has an arbitrary support in [θ0, α], this means that

g1(θ)
2 + 2(R1 + b1)g1(θ) > 0

and implies g1(θ) > 0 for all θ ∈ [θ0, α], whenever α is small enough (since
otherwise g1(θ) < −R1−b1, which contradicts the fact that g should be vanishing
as θ → α). Hence, the part of ∂Ω corresponding to the angular coordinate θ ∈
[θ0, α] is, for small α, more distant from C1 than the arc σ of the circumference
with center C1 passing through S, thus satisfying the equation ρ(θ) = R1 + b1.
Thanks to convexity of Ω, we have then that any ray starting in S, directed
inside the cone of points with projection to Σ in O, and belonging to a support
line to ∂Ω in S, forms an angle not greater than π/2 with the segment SO (mind
that the angle of π/2 corresponds to the case when the ray is tangent to σ).
As a consequence, the part of Ω, which lies in the angle (of value ϕ) bounded
by u and the ray OS, is contained in the triangle V1, formed by u, OS and the
tangent in S to σ.

Now fix a new vector field X̂, compactly supported in a small neighborhood
of O and such that X̂(O) is directed along u. One has

HΣ(O) = δO(τQ + τP ),

where τQ and τP are the unit vectors tangent in O to the arcs P̃O and Q̃O,
respectively, and directed towards P and Q respectively. Since

〈X̂, δOτQ〉 = 〈X̂, δOτP 〉 = −|X̂(O)| sin ϕ,

we get

−λ〈X̂, HΣ(O)〉 = 2λ|X̂(O)| sin ϕ. (28)

Now compute the contribution given by triangle V1 to the first term of the Euler
equation (6). For this purpose, we use polar coordinates with respect to O and
the ray OS, with θ ∈ [0, ϕ]. It is clear that

V =

{
(ρ, θ): 0 ≤ θ ≤ ϕ, 0 < ρ ≤ b

cos θ

}
. (29)

Therefore,
∫

V1

〈
X̂(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx

= −|X̂(O)|
∫ ϕ

0

cos(ϕ − θ)

∫ b1
cos θ

0

ρdρdθ

= −1

2
b2
1|X̂(O)|

∫ ϕ

0

cos(ϕ − θ)

cos2 θ
dθ

= −1

2
b2
1|X̂(O)|h(ϕ) sin ϕ.

(30)
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Reasoning in the same way with arc P̃O, instead of the arc P̃Q, we obtain the
analogous triangle V2, with

∫

V2

〈
X̂(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx = −1

2
b2
2|X̂(O)|h(ϕ) sin ϕ, (31)

where b2 :=
√

R2
2 + 2λ− R2. But, since Ω is convex, and one of the sides of V1

(respectively V2) is in the support line to Ω, we have

(πΣ)−1(O) ∩ Ω ⊂ V1 ∪ V2. (32)

Let us write the Euler equation (6) with respect to the vector field X̂. Letting
Γ := (Σ\{O}) ∩ supp X̂, thanks to (28) we get

∫

(πΣ)−1(O)

〈
X̂(πΣ(x)),

πΣ(x) − x

|πΣ(x) − x|

〉
dx + 2λ|X̂(O)| sin ϕ + cΓ = 0,

where by cΓ we denoted the sum of all the terms in the Euler equation, which in-
volve integrals over Γ. Minding the strict inclusion (32), and using (30) and (31),
we obtain

−1

2
(b2

1 + b2
2)|X̂(O)|h(ϕ) sin ϕ + 2λ|X̂(O)| sin ϕ + cΓ < 0. (33)

Since cΓ contains only integral terms, we have that cΓ can be made arbitrarily
small by choosing a sufficiently small support of X̂ , and hence (33) may be
satisfied only if

4λ

b2
1 + b2

2

< h(ϕ), (34)

or, in other words, when h(ϕ) is as in the statement being proven, then the
Euler equation is not satisfied. Finally, to prove the second claim, it remains to
observe that 4λ/(b2

1 + b2
2) > 1, and hence, with h(ϕ) ≤ 1, the respective curved

corner is not stationary.

5. The compliance case

In this section we consider the case of a functional arising from the theory of
elliptic equations:

F(Σ) :=

∫

Ω

uΣ(x)f(x) dx + λH1(Σ). (35)

Here Ω ⊂ R2 is a given bounded open subset, f is a given function, and uΣ is
the unique solution of the PDE

{
−∆u = f in Ω \ Σ,
u = 0 on ∂Ω ∪ Σ.
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An integration by parts in the PDE above gives that the compliance term∫
Ω

uΣf dx, appearing in the functional F , can be expressed in an equivalent
way:

∫

Ω

uΣ(x)f(x) dx = max
{∫

Ω

(
2fu − |∇u|2

)
dx : u ∈ W 1,2

0 (Ω \ Σ)
}

.

For simplicity we assume that f ∈ W 1,2(R2) and that Ω has a Lipschitz bound-
ary. In fact, we could also consider the case of a p-Laplace operator, and the
similarity with the average distance functional consists in the fact (shown in
Buttazzo and Santambrogio, 2007) that as p → +∞ the p-compliance prob-
lem converges to the one with the average distance functional. Here we limit
ourselves to the case of p = 2. Also for simplicity we have taken the Dirichlet
condition u = 0 on ∂Ω; all the arguments can be repeated for the Neumann
case ∂u

∂ν = 0 on ∂Ω.
The existence of a solution to the minimum problem

min
{
F(Σ) : Σ closed connected subset of Ω

}

follows by an application of the Šverák compactness theorem (see Buttazzo
and Santambrogio, 2007). Here we are interested, as before, in the first order
necessary conditions of optimality.

Following Theorem 5.3.2 of Henrot and Pierre (2005), if φε is a one parameter
group of diffeomorphisms satisfying (4), setting Σε := φε(Σ), u := uΣ and
uε = uΣε

, we have as ε → 0 that uε−u
ε → u′ in L2(Ω), where u′ satisfies the

PDE
{

−∆u′ = 0 in Ω \ Σ,
u′ = 0 on ∂Ω, u′ = −∇u · X on Σ.

Note that the boundary conditions in the above equation are understood in the
weak sense, i.e. u′+∇u ·X ∈ W 1,2

0 (R2). Therefore, the first variation argument
applied to the functional F gives

∂

∂ε
F(Σε)

∣∣∣
ε=0

=

∫

Ω

u′f dx − λ〈HΣ, X〉.

Suppose now that Ω = Ω+ ∪ Ω− with Σ ⊂ ∂Ω+ ∩ ∂Ω−. Then, if Σ, ∂Ω and
f provide sufficient regularity for u and u′ so that the Green formula can be
applied, we have

∫

Ω+

u′f dx = −
∫

Ω+

u′∆u dx =

∫

Ω+

∇u′∇u dx −
∫

∂Ω+

u′ ∂u

∂n
dH1

=

∫

Ω+

∇u′∇u dx +

∫

Σ

∇u · X ∂u

∂n
dH1

−
∫

∂Ω+\(∂Ω∪Σ)

u′ ∂u

∂n
dH1,
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where n stands for the external normal to Ω+. But∫

Ω+

∇u′∇u dx = −
∫

Ω+

u∆u′ dx +

∫

∂Ω+

u′ ∂u

∂n
dH1

= −
∫

∂Ω+\(∂Ω∪Σ)

u
∂u′

∂n
dH1.

Thus,
∫

Ω+

u′f dx =

∫

Σ

∇u+ · X ∂u+

∂n
dH1

−
∫

∂Ω+\(∂Ω∪Σ)

(
u

∂u′

∂n
+ u′ ∂u

∂n

)
dH1,

(36)

where ∇u+ stands for the trace on Σ of the gradient of u restricted to Ω+,

and ∂u+

∂n stands for the trace of the respective normal derivative. Analogously,
minding that the external normal to Ω− over ∂Ω+∩∂Ω− is given by −n, we get

∫

Ω−

u′f dx = −
∫

Σ

∇u− · X ∂u−

∂n
dH1

+

∫

∂Ω+\(∂Ω∪Σ)

(
u

∂u′

∂n
+ u′ ∂u

∂n

)
dH1,

(37)

where ∇u− stands for the trace on Σ of the gradient of u restricted to Ω−, and
∂u−

∂n stands for the trace of the respective normal derivative. From (36) and (37)
we obtain∫

Ω

u′f dx =

∫

Σ

∇u+ · X ∂u+

∂n
dH1 −

∫

Σ

∇u− · X ∂u−

∂n
dH1.

Recalling that

∇u± =
∂u±

∂n
n,

since the tangential derivatives of u± over Σ vanish (because u± = u = 0 on Σ),
we get

∫

Ω

u′f dx =

∫

Σ

((
∂u+

∂n

)2

−
(

∂u−

∂n

)2
)

X · n dH1.

Hence,

∂

∂ε
F(Σε)

∣∣∣
ε=0

=

∫

Σ

((
∂u+

∂n

)2

−
(

∂u−

∂n

)2
)

X · n dH1 − λ〈HΣ, X〉.

Since this holds for every vector field X , we deduce the Euler equation that
must hold for every minimizer of F :

(
∂u+

∂n

)2

−
(

∂u−

∂n

)2

= λ〈HΣ, n〉.
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