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Abstract: In this paper we consider a control problem governed
by a semilinear elliptic equation with pointwise control and state
constraints. We analyze the existence of an exact penalization of
the state constraints. In particular, we prove that the first and
second order optimality conditions imply the existence of such a
penalization. Finally, we prove some extra regularity of the strict
local minima of the control problem, assuming the existence of an
exact penalization for them.
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1. Introduction

This paper deals with some optimal control problems governed by semilinear
elliptic equations, the control being distributed in the domain Ω. Pointwise
control and state constraints are considered. It is known that under a stability
assumption of the infimum of the control problem with respect to small per-
turbations of the set of feasible states, there exists an exact penalization of the
state constraints. This property was first used by Clarke (1976a) under the
name of calm. F. Bonnans and E. Casas (1995) used this property to derive the
maximum principle of state constrained optimal control problems. This notion
has been also used in an abstract framework for optimization problems; see
Burke (1991), Clarke (1976b) and Bonnans and Shapiro (2000).

An important property of this stability concept is that almost all problems
are stable. Also the existence of an exact penalization for some nonlinear pro-
gramming problems is known, under the assumption that the first and sufficient
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second order optimality conditions are satisfied. However, as far as we know,
there is no analogous result for control problems of PDE with pointwise state
constraints. We will prove it in this paper.

The plan of the paper is as follows. After introducing the control problem
and studying the existence of solutions, we define the stability concept and
establish the first properties. Since our problem is not convex, we will consider
local minima and the stability definition will be given in the neighborhoods of the
local solutions. Then, by using the sufficient second order optimality conditions
recently derived by Casas, De los Reyes and Tröltzsch (2008), we prove that
the first and second order conditions imply that the control problem is stable
and, consequently, there exists an exact penalization of the state constraints. We
finish the paper by showing that the strict local solutions of the control problems
are elements of the Sobolev space H1(Ω) provided the stability assumption is
fulfilled. The W 1,s(Ω)-regularity, with s < n/(n− 1), for the optimal controls,
which follows from the first order optimality conditions, has been known for
quite some time. Recently, Casas and Tröltzsch (2008) obtained the H1(Ω)-
regularity under the Slater assumption. Here, we replace the Slater hypothesis
by the stability assumption to achieve the same result.

2. The control problem

Let Ω be an open bounded subset of R
n, n = 2 or 3, with a Lipschitz boundary

Γ. Let us consider in Ω the following boundary value problem

{

Ay + a0(x, y) = u in Ω,
y = 0 on Γ,

(2.1)

Ay = −

n
∑

i,j=1

∂xj
(aij(x)∂xi

y(x)) , aij ∈ L∞(Ω), 1 ≤ i, j ≤ n,

∃ΛA > 0 such that
n

∑

i,j=1

aij(x)ξiξj ≥ ΛA|ξ|
2 ∀ξ ∈ R

n and for a.e. x ∈ Ω.

Let us make the following assumptions on a0.

(A1) The mapping a0 : Ω × R −→ R is a Carathéodory function of class C2

with respect to the second variable and there exists a real number p > n/2 such
that a0(·, 0) ∈ Lp(Ω), (∂a0/∂y)(x, y) ≥ 0 for almost all x ∈ Ω. Moreover, for all
M > 0 there exists a constant Ca0,M > 0 such that

∣

∣

∣

∣

∂a0

∂y
(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2a0

∂y2
(x, y)

∣

∣

∣

∣

≤ Ca0,M for a.e. x ∈ Ω and |y| ≤M,

∣

∣

∣

∣

∂2a0

∂y2
(x, y2) −

∂2a0

∂y2
(x, y1)

∣

∣

∣

∣

≤ Ca0,M |y2 − y1| for a.e. x ∈ Ω, |y1|, |y2| ≤M.
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The previous assumptions are not very restrictive, except for the one requir-
ing the monotonicity of a0 with respect to y, which is necessary for the existence
and uniqueness of the solution of (2.1). Indeed, for any u ∈ Lp(Ω) it is well
known that (2.1) has a unique solution yu ∈ H1

0 (Ω)∩C(Ω̄), depending continu-
ously on the control u; see Grisvard (1985) for the regularity results. Examples of
functions a0 fulfilling the above assumptions are a0(x, y) = θ1(x) + θ2(x) exp y
or a0(x, y) = θ1(x) + θ2(x)|y|

νy, with ν ≥ 1, θ1 ∈ Lp(Ω), 0 ≤ θ2(x) and
θ2 ∈ L∞(Ω).

Associated with the equation (2.1) we consider the following control problem

(Pδ)











min J(u) =

∫

Ω

L(x, yu(x), u(x)) dx

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω and |yu(x)| ≤ δ ∀x ∈ K.

We will make the following assumptions on the data of the control problem.

(A2) The functions α, β are given in L∞(Ω), with α ≤ β a.e. in Ω. We will
denote

Uα,β = {u ∈ L∞(Ω) : α(x) ≤ u(x) ≤ β(x) for a.e. in Ω}

Yδ = {y ∈ C(K) : |y(x)| ≤ δ ∀x ∈ K} and Uδ = {u ∈ Uα,β : yu ∈ Yδ},

where K is a nonempty compact subset of Ω̄ and δ ≥ 0 is given.

(A3) L : Ω× (R×R) −→ R is a Carathéodory function, of class C2 with respect
to the last two variables, L(·, 0, 0) ∈ L1(Ω), and for all M > 0 there exist a
constant CL,M > 0 and functions ψu,M ∈ L2(Ω) and ψy,M ∈ L1(Ω), such that

∣

∣

∣

∣

∂L

∂u
(x, y, u)

∣

∣

∣

∣

≤ ψu,M (x),

∣

∣

∣

∣

∂L

∂y
(x, y, u)

∣

∣

∣

∣

≤ ψy,M (x), ‖D2
(y,u)L(x, y, u)‖ ≤ CL,M ,

‖D2
(y,u)L(x, y2, u2) −D2

(y,u)L(x, y1, u1)‖ ≤ CL,M (|y2 − y1| + |u2 − u1|),

for a.e. x ∈ Ω and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)L denotes the

second derivative of L with respect to (y, u), i.e. the associated Hessian matrix.
As a consequence of (A3) it follows that for anyM > 0 there exists a function

ψM ∈ L1(Ω) such that

|L(x, y, u)| ≤ ψM (x) for a.e. x ∈ Ω and |y|, |u| ≤M. (2.2)

We have the following theorem concerning the existence of a solution of
problem (Pδ).

Theorem 1 There exists δ0 ≥ 0 such that (Pδ) has at least one feasible control
for every δ ≥ δ0, and there is no feasible control for δ < δ0. Moreover, if L is
convex with respect to the third variable, then (Pδ) has at least one solution for
every δ ≥ δ0.
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Proof. Using the boundedness of Uα,β in L∞(Ω), we deduce the existence of a
constant Mα,β > 0 such that

‖yu‖C(K) ≤Mα,β ∀u ∈ Uα,β . (2.3)

It is obvious that (Pδ) has no feasible control for δ < 0 and, at the same time,
all elements of Uα,β are feasible for δ ≥ Mα,β. Let δ0 be the infimum of the
values δ for which (Pδ) has feasible controls. Then 0 ≤ δ0 ≤ Mα,β and (Pδ)
has no feasible control for δ < δ0. Let us prove that there exists at least one
feasible control for (Pδ0). Let {δj}

∞
j=1 be a decreasing sequence converging to

δ0 and {uj} ⊂ Uα,β a sequence of controls such that uj is feasible for (Pδj
).

Since Uα,β is bounded, we can extract a subsequence, denoted in the same way,
converging ∗weakly in L∞(Ω) towards an element u0 ∈ Uα,β . This implies the
uniform convergence of {yuj

} to yu0 and therefore

|yu0(x)| = lim
j→∞

|yuj
(x)| ≤ lim

j→∞
δj = δ0 ∀x ∈ K,

which proves that u0 is a feasible control for (Pδ0). To conclude the proof we
must establish the existence of an optimal control of (Pδ) for all δ ≥ δ0, but this
follows by classical arguments.

3. Strongly stable problems

Since problem (Pδ) is not convex, we are interested in local solutions. Let us
fix ū ∈ Uδ and let ȳ be its associated state. The control ū is said to be a local
solution of (Pδ) in the sense of the Lq(Ω) topology, 1 ≤ q ≤ ∞, if there exists
r > 0 such that ū is the solution of the problem

(Pr,q
δ )











min J(u) =

∫

Ω

L(x, yu(x), u(x)) dx

u ∈ Uα,β , ‖u− ū‖Lq(Ω) ≤ r, |yu(x)| ≤ δ ∀x ∈ K.

By taking r = +∞ we identify (Pδ) and (P∞,q
δ ).

Since Uα,β is bounded in L∞(Ω), it is easy to check that ū is a local solution
in the sense of Lq(Ω), for some 1 ≤ q < +∞, if and only if it is also a local
solution in the sense of Lt(Ω) for every 1 ≤ t < +∞. Moreover, if ū is a local
solution in the sense of Lq(Ω), then it is a local solution in the sense of L∞(Ω)
too.

The following concept was introduced by Clarke (1976a) under the denomi-
nation of calm. We prefer to use the term stable instead of calm; see Bonnans
and Casas (1995).

Definition 1 We will say that problem (Pr,q
δ ) is strongly stable (on the right)

if there exist Cδ > 0 and εδ > 0 such that

inf (Pr,q
δ ) − inf (Pr,q

δ′ ) ≤ Cδ(δ
′ − δ) ∀δ′ ∈ [δ, δ + εδ]. (3.1)
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The next proposition states that almost all problems are stable.

Proposition 1 Let δ0 be as in Theorem 1 and Mα,β be given by (2.3). Then
for every δ ≥ δ0, except at most a set of zero Lebesgue measure contained in
[δ0,Mα,β), the problem (Pr,q

δ ) is strongly stable.

Proof. First of all let us remark that Uα,β = Uδ for every δ ≥ Mα,β, which
obviously implies strong stability for every δ ≥Mα,β and for every r > 0.

On the other hand, if we define φ : [δ0,+∞) −→ R by φ(δ) = inf (Pr,q
δ ), then

φ is a non increasing monotone function and therefore φ is differentiable at each
point except at most a set of zero Lebesgue measure. Finally, it is obvious that
differentiability of φ at δ implies strong stability of (Pr,q

δ ).

The following proposition justifies the introduction of the stability concept.

Proposition 2 Let us assume that ū is a solution of (Pr,q
δ ) and this problem

is strongly stable. Then the following statements hold.

1. (Pr′,q
δ ) is strongly stable for every 0 < r′ < r, with the same numbers Cδ > 0

and εδ > 0.
2. If q < +∞ then (Prt,t

δ ) is strongly stable, with the same numbers Cδ > 0 and
εδ > 0, for every 1 ≤ t ≤ +∞ and rt given by

rt =



























rq/t

‖β − α‖
(q−t)/t
L∞(Ω)

if 1 ≤ t < q

|Ω|
q−t
tq r if q < t < +∞

|Ω|−
1
q r if t = +∞,

where |Ω| denotes the Lebesgue measure of Ω.
3. There exists ρ0 > 0 such that for every ρ ≥ ρ0 ū is also a solution of the
problem

(Pr,q
δ,ρ)

{

min Jρ(u) = J(u) + ρ(‖yu‖C(K) − δ)+

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω, ‖u− ū‖Lq(Ω) ≤ r.

Furthermore, if ū is a strict solution of (Pr,q
δ ), it is also a strict solution of

(Pr,q
δ,ρ) if ρ > ρ0.

Proof. Let us prove the first part. Given δ′ ∈ [δ, δ + εδ] and 0 < r′ < r, it is

obvious that the set of feasible controls for (Pr′,q
δ′ ) is a subset of the corresponding

set for (Pr,q
δ′ ), therefore inf (Pr′,q

δ′ ) ≥ inf (Pr,q
δ′ ). On the other hand, ū is a

solution of (Pr′,q
δ ), so that inf (Pr,q

δ ) = J(ū) = inf (Pr′,q
δ ) for every 0 < r′ ≤ r.

Consequently, (3.1) leads to

inf (Pr′,q
δ ) − inf (Pr′,q

δ′ ) ≤ inf (Pr,q
δ ) − inf (Pr,q

δ′ ) ≤ Cδ(δ
′ − δ) ∀δ′ ∈ [δ, δ + εδ].
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Let us prove the second part. From the choice of rt we deduce that ‖u −
ū‖Lt(Ω) ≤ rt implies ‖u− ū‖Lq(Ω) ≤ r. Therefore, any feasible point for (Prt,t

δ′ )
is also feasible for (Pr,q

δ′ ) for any δ′ ∈ [δ, δ + εδ]. Hence, we have inf (Pr,q
δ′ ) ≤

inf (Prt,t
δ′ ) and also inf (Pr,q

δ ) = J(ū) = inf (Prt,t
δ ). From these properties and

(3.1) we deduce

inf (Prt,t
δ ) − inf (Prt,t

δ′ ) ≤ inf (Pr,q
δ ) − inf (Pr,q

δ′ ) ≤ Cδ(δ
′ − δ) ∀δ′ ∈ [δ, δ + εδ].

We finish by proving the third part of the proposition. Let us take Cδ and
εδ as in (3.1) and let ρ0 be defined by

ρ0 = max

{

Cδ,
J(ū) −mr

α,β

εδ

}

, (3.2)

mr
α,β = inf{J(u) : u ∈ Uα,β, ‖u− ū‖Lq(Ω) ≤ r}.

Now, let us take ρ ≥ ρ0, u ∈ Uα,β satisfying ‖u− ū‖Lq(Ω) ≤ r and let us set
δ′ = ‖yu‖C(K). If δ′ ≤ δ, then it is obvious that Jρ(ū) = J(ū) ≤ J(u) = Jρ(u).
If ū is a strict solution of (Pr,q

δ ), then the above inequality is strict for u 6= ū.
On other hand, if δ < δ′ ≤ δ + εδ, then (3.1) leads to

Jρ(u) = J(u) + ρ(δ′ − δ) ≥ inf (Pr,q
δ′ ) + Cδ(δ

′ − δ) ≥ inf (Pr,q
δ ) = J(ū) = Jρ(ū).

The first inequality is strict if ρ > ρ0. Finally let us assume that δ′ > δ + εδ,
then

Jρ(u) = J(u) + ρ(δ′ − δ) > J(u) + ρεδ ≥ J(u) + J(ū) −mr
α,β ≥ J(ū) = Jρ(ū).

The last three inequalities imply that ū is a solution of (Pr,q
δ,ρ), the solution being

strict if ū is also a strict solution of (Pr,q
δ ) and ρ > ρ0.

The previous proposition claims that a (strict) local solution of (Pδ) is also
a (strict) local solution of

(Pδ,ρ)

{

min Jρ(u) = J(u) + ρ(‖yu‖C(K) − δ)+

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω

for every ρ ≥ ρ0 (ρ > ρ0), with ρ0 given by (3.2), assuming that there exist r > 0
and q such that (Pr,q

δ ) is strongly stable and ū is a solution of this problem. In
fact, if we take r > 0 small enough, then (3.2) implies that ρ0 = Cδ. This leads
to the following result.

Corollary 1 Let us assume that ū is a (strict) solution of (Pr,q
δ ) and this

problem is strongly stable. Then ū is a (strict) local solution of problem (Pδ,ρ)
in the sense of Lq(Ω) for every ρ ≥ Cδ (ρ > Cδ), where Cδ > 0 is given by
(3.1).
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From the previous proposition we can also deduce easily the optimality con-
ditions in a qualified form for strongly stable problems. First, let us introduce
some notation. By M(K) we denote the space of real and regular Borel mea-
sures in K, which is identified with the dual of the continuous function space
C(K). M(K) is a Banach space endowed with the norm

‖µ‖K = |µ|(K) = sup

{
∫

K

z(x) dµ(x) : z ∈ C(K) and ‖z‖C(K) ≤ 1

}

, (3.3)

where |µ| is the total variation measure; see Rudin (1970).

Theorem 2 Let us assume that ū is a solution of (Pr,q
δ ). If (Pr,q

δ ) is strongly

stable, then there exist ȳ ∈ H1
0 (Ω) ∩ C(Ω̄), ϕ̄ ∈ W 1,s

0 (Ω), for every 1 ≤ s <
n/(n− 1), and µ̄ ∈M(K) such that

{

Aȳ + a0(x, ȳ) = ū in Ω,
ȳ = 0 on Γ.

(3.4)











A∗ϕ̄+
∂a0

∂y
(x, ȳ(x))ϕ̄ =

∂L

∂y
(x, ȳ, ū) + µ̄ in Ω,

ϕ̄ = 0 on Γ,

(3.5)

∫

K

(z(x) − ȳ(x))dµ̄(x) ≤ 0 ∀z ∈ Yδ, (3.6)

∫

Ω

(ϕ̄+
∂L

∂u
(x, ȳ, ū))(u − ū) dx ≥ 0 ∀u ∈ Uα,β . (3.7)

Proof. According to our assumptions, we have that the mapping control-state
G : Lp(Ω) −→ H1

0 (Ω) ∩ C(Ω̄), defined by G(u) = yu, is of class C1 and zv =
G′(u)v satisfies the equation











Azv +
∂a0

∂y
(x, yu(x))zv = v in Ω,

zv = 0 on Γ.

(3.8)

Applying the chain rule we deduce that J is of class C1 in L∞(Ω) and

J ′(u) = φu +
∂L

∂u
(x, yu, u), (3.9)

where φu ∈W 1,s
0 (Ω), 1 ≤ s < n/(n− 1), is the solution of











A∗φ+
∂a0

∂y
(x, yu(x))φ =

∂L

∂y
(x, yu, u) in Ω,

φ = 0 on Γ.

(3.10)
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Now, let us consider ρ0 given by Proposition 2 and Fρ : C(K) −→ R, with
ρ ≥ ρ0, defined by

Fρ(y) = ρ(‖y‖C(K) − δ)+. (3.11)

Fρ is convex and Lipschitz, ρ being the Lipschitz constant of Fρ. From Propo-
sition 2 we have that ū is a local solution of the problem

min Jρ(u) = J(u) + Fρ(yu)
u ∈ Uα,β ,

and then we can apply the calculus of generalized gradients, introduced by
Clarke to deduce that 0 ∈ J ′(ū) + ∂(Fρ ◦G)(ū) + ∂IUα,β

(ū), where IUα,β
is the

indicator of the convex set Uα,β

IUα,β
(u) =

{

0 if u ∈ Uα,β

+∞ otherwise.

Taking into account that ∂(Fρ ◦ G)(ū) ⊂ [G′(ū)]∗∂Fρ(ȳ), where ȳ = yū, we
deduce the existence of µ̄ ∈ ∂Fρ(ȳ), such that 0 ∈ J ′(ū)+ [G′(ū)]∗µ̄+∂IUα,β

(ū).

Now, setting ϕ̄ = φū + ψµ̄, with ψµ̄ ∈W 1,s
0 (Ω) being the solution of











A∗ψ +
∂a0

∂y
(x, ȳ(x))ψ = µ̄ in Ω,

ψ = 0 on Γ,

(3.12)

we deduce (3.4)–(3.7).

Remark 1 From the fact that µ̄ ∈ ∂Fρ(ȳ) we get that ‖µ̄‖M(K) ≤ ρ. By taking
ρ = ρ0 in the proof of the previous theorem, we have that ‖µ̄‖M(K) ≤ ρ0.

Remark 2 It is well known that (3.6) leads to the following decomposition of µ̄

µ̄ = µ̄+ − µ̄−, suppµ̄+ ⊂ K+ and suppµ̄− ⊂ K−, (3.13)

where µ̄+ and µ̄− are positive measures and

K− = {x ∈ K : ȳ(x) = −δ} and K+ = {x ∈ K : ȳ(x) = +δ}.

If we set Kδ = K−∪K+, then the support of µ̄ is included in Kδ. In particular,
if the state constraint is active at a finite set of points Kδ = {xj}

m
j=1, then

µ̄ =
m

∑

j=1

λ̄jδxj
, with λ̄j =

{

≥ 0 if ȳ(xj) = +δ
≤ 0 if ȳ(xj) = −δ,

(3.14)

where δxj
denotes the Dirac measure centered at the point xj .



Exact penalization of pointwise constraints 1139

We finish this section by proving the reciprocal result of the third claim of
Proposition 2.

Proposition 3 Let us assume that ū ∈ Uδ is a solution of problem (Pr,q
δ,ρ), then

(Pr,q
δ ) is strongly stable and Cδ can be chosen equal to ρ.

Proof. From the inequality

J(u) + ρ(‖yu‖C(K) − δ)+ ≤ J(u) + ρ(‖yu‖C(K) − δ′)+ + ρ(δ′ − δ)

for every δ′ > δ and all u ∈ Uα,β, we deduce that

inf
u∈Uα,β,‖u−ū‖Lq(Ω)≤r

J(u) + ρ(‖yu‖C(K) − δ)+

≤ inf
u∈Uα,β ,‖u−ū‖Lq(Ω)≤r

J(u) + ρ(‖yu‖C(K) − δ′)+ + ρ(δ′ − δ),

and hence

inf (Pr,q
δ ) ≤ J(ū) = inf

u∈Uα,β ,‖u−ū‖Lq(Ω)≤r
J(u) + ρ(‖yu‖C(K) − δ)+

≤ inf
u∈Uα,β,‖u−ū‖Lq(Ω)≤r

J(u) + ρ(‖yu‖C(K) − δ′)+ + ρ(δ′ − δ)

≤ inf (Pr,q
δ′ ) + ρ(δ′ − δ).

4. Second order optimality conditions

Let us start the section by defining the Lagrangian function associated to the
problem (Pδ)

L : L∞(Ω) ×M(K) −→ R, L(u, µ) = J(u) +

∫

K

yu(x) dµ(x).

The function L is of class C2 and we have the following expressions of its deriva-
tives

∂L

∂u
(u, µ)v =

∫

Ω

[

∂L

∂y
(x, yu, u)zv +

∂L

∂u
(x, yu, u)v

]

dx+

∫

K

zv dµ,

where zv ∈ H1
0 (Ω) ∩ C(Ω̄) satisfies (3.8). By using the adjoint state ϕu ∈

W 1,s
0 (Ω), solution of











A∗ϕ+
∂a0

∂y
(x, yu(x))ϕ =

∂L

∂y
(x, yu, u) + µ in Ω,

ϕ = 0 on Γ,

(4.1)
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and using (3.9) we get

∂L

∂u
(u, µ)v =

∫

Ω

[

ϕu +
∂L

∂u
(x, yu, u)

]

v dx. (4.2)

From this expression it follows that (3.7) can be written in the following way:

∂L

∂u
(ū, µ̄)(u − ū) ≥ 0 ∀u ∈ Uα,β . (4.3)

For the second derivative of L we have

∂2L

∂u2
(u, µ)v2 =

∫

Ω

[

∂L

∂y
(x, yu, u)wv +

∂2L

∂y2
(x, yu, u)z

2
v

+2
∂2L

∂y∂u
(x, yu, u)zvv +

∂2L

∂u2
(x, yu, u)v

2

]

dx+

∫

K

wv dµ,

where wv = G′′(u)v2 ∈ H1
0 (Ω) ∩ C(Ω̄) satisfies











Awv +
∂a0

∂y
(x, yu(x))wv +

∂2a0

∂y2
(x, yu(x))z2

v = 0 in Ω,

wv = 0 on Γ.

(4.4)

Using (4.1) and (4.4) in the expression of the second derivative of the Lagrangian
function we get

∂2L

∂u2
(u, µ)v2 =

∫

Ω

[

∂2L

∂y2
(x, yu, u)z

2
v + 2

∂2L

∂y∂u
(x, yu, u)zvv

+
∂2L

∂u2
(x, yu, u)v

2 − ϕu
∂2a0

∂y2
(x, yu)z2

v

]

dx. (4.5)

Let us remark that the first and second derivatives of L can be extended to
L2(Ω), the integrals being well defined for every v ∈ L2(Ω) and continuous with
respect to v in the L2(Ω) topology.

In order to write the second order optimality conditions we need to introduce
the cone of critical directions. For fixed ū ∈ Uδ and ȳ being its associated state,
we define

Cū = {v ∈ L2(Ω) : v satisfies (4.6), (4.7) and (4.8)},

v(x) =











≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),

= 0 if ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) 6= 0,

(4.6)

zv(x) =

{

≥ 0 if ȳ(x) = −δ
≤ 0 if ȳ(x) = +δ,

(4.7)

∫

K

zv(x) dµ̄(x) = 0, (4.8)
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where zv ∈ H1
0 (Ω) ∩C(Ω̄) satisfies











Azv +
∂a0

∂y
(x, ȳ)zv = v in Ω

zv = 0 on Γ.

Now we have the following result, whose proof can be found in Casas, De Los
Reyes and Tröltzsch (2008).

Theorem 3 Let ū be a feasible control of problem (Pδ), ȳ the associated state
and (ϕ̄, µ̄) ∈W 1,s

0 (Ω)×M(K), for all 1 ≤ s < n/(n− 1), satisfying (3.5)-(3.7).
Assume further that

∂2L

∂u2
(x, ȳ(x), ū(x)) ≥ ω if |ϕ̄(x) +

∂L

∂u
(x, ȳ(x), ū(x))| ≤ τ, a.e., (4.9)

∂2L

∂u2
(ū, µ̄)v2 > 0 ∀v ∈ Cū \ {0}. (4.10)

Then there exist rū > 0 and α > 0 such that the following inequality holds

J(ū) +
α

2
‖u− ū‖2

L2(Ω) ≤ J(u) if ‖u− ū‖L∞(Ω) ≤ rū and u ∈ Uδ. (4.11)

The next theorem provides a sufficient condition for the problem (Prū

δ ) to
be strongly stable.

Theorem 4 Let us assume that ū ∈ Uδ and the first order necessary optimality
conditions (3.4)-(3.7) and the second order sufficient condition (4.9)-(4.10) are
fulfilled. Then there exists r > 0 such that the problem

(Pr,∞
δ )











min J(u) =

∫

Ω

L(x, yu(x), u(x)) dx

u ∈ Uα,β, ‖u− ū‖L∞(Ω) ≤ r, |yu(x)| ≤ δ ∀x ∈ K

is strongly stable.

Proof. Let us argue by contradiction. If the statement of the theorem is not

true, then (P
1/k,∞
δ ) is not strongly stable for any k ≥ 1. Therefore, there exists

δk ∈ (δ, δ + 1/k) such that

inf (P
1/k,∞
δ ) − inf (P

1/k,∞
δk

) > k(δk − δ). (4.12)

Let uk be a feasible control for problem (P
1/k,∞
δk

) such that J(ū) − J(uk) >
k(δk − δ). Then we have that ‖uk − ū‖L∞(Ω) ≤ 1/k. Let us take

ρk = ‖uk − ū‖L2(Ω) and vk =
1

ρk
(uk − ū). (4.13)
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By taking a subsequence, denoted in the same way, we can assume

lim
k→∞

ρk = 0, ‖vk‖L2(Ω) = 1 ∀k and vk ⇀ v weakly in L2(Ω). (4.14)

The rest of the proof is divided into three steps.

Step 1. v ∈ Cū. From the definition of uk we have that

J(uk) − J(ū) + k(δk − δ) < 0. (4.15)

Dividing the above expression by ρk and passing to the limit we get

J ′(ū)v + lim sup
k→∞

k(δk − δ)

ρk
= lim

k→∞

J(ū + ρkvk) − J(ū)

ρk
+ lim sup

k→∞

k(δk − δ)

ρk
≤ 0.

Since δk > δ for every k, the above inequality implies

J ′(ū)v ≤ 0 and lim
k→∞

δk − δ

ρk
= 0. (4.16)

On the other hand, it is obvious that

vk(x) =

{

≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x).

Since the set of functions of L2(Ω) satisfying the previous sign condition is closed
and convex, it is also weakly closed, therefore v satisfies this sign condition, too.
Then, (3.7) implies

if ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) > 0 ⇒ ū(x) = α(x) ⇒ v(x) ≥ 0,

analogously

if ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) < 0 ⇒ ū(x) = β(x) ⇒ v(x) ≤ 0.

These properties lead to

∂L

∂u
(ū, µ̄)v =

∫

Ω

[

ϕ̄+
∂L

∂u
(x, ȳ, ū)

]

v dx =

∫

Ω

∣

∣

∣

∣

ϕ̄+
∂L

∂u
(x, ȳ, ū)

∣

∣

∣

∣

|v| dx. (4.17)

Using (3.13) we obtain for every k ≥ ‖µ̄‖M(K)

∫

K

(yuk
(x)− ȳ(x)) dµ̄(x) =

∫

K+

(yuk
(x)−δ) dµ̄+(x)−

∫

K−

(yuk
(x)+δ) dµ̄−(x)

≤ (δk −δ)µ̄+(K+)− (−δk +δ)µ̄−(K−) = ‖µ̄‖M(K)(δk−δ) ≤ k(δk−δ). (4.18)
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From (4.15) and (4.18) it follows that

L(uk, µ̄) − L(ū, µ̄) = J(uk) − J(ū) +

∫

K

(yuk
− ȳ) dµ̄ < 0. (4.19)

Dividing this expression by ρk and passing to the limit we deduce

∫

Ω

[

ϕ̄+
∂L

∂u
(x, ȳ, ū)

]

v dx =
∂L

∂u
(ū, µ̄)v ≤ 0.

This inequality, along with (4.17), implies that

∂L

∂u
(ū, µ̄)v =

∫

Ω

∣

∣

∣

∣

ϕ̄+
∂L

∂u
(x, ȳ, ū)

∣

∣

∣

∣

|v| dx = 0. (4.20)

This identity and the sign condition satisfied by v implies that (4.6) holds. Let
us prove (4.7) and (4.8). Since

∂L

∂u
(ū, µ̄)v = J ′(ū)v +

∫

K

zv dµ̄,

(4.16) and (4.20) lead to

∫

K

zv dµ̄ ≥ 0. (4.21)

On the other hand, using (4.16) we get

x ∈ K+ ⇒ zv(x) = lim
k→∞

yuk
(x) − ȳ(x)

ρk
≤ lim

k→∞

δk − δ

ρk
= 0,

x ∈ K− ⇒ zv(x) = lim
k→∞

yuk
(x) − ȳ(x)

ρk
≥ lim

k→∞

−δk + δ

ρk
= 0.

These inequalities and (4.21) imply (4.7) and (4.8), which concludes the proof
of v ∈ Cū.

Step 2. v = 0. Using (4.19) and making a Taylor development we get

0 > L(uk, µ̄) − L(ū, µ̄) = L(ū + ρkvk, µ̄) − L(ū, µ̄)

= ρk
∂L

∂u
(ū, µ̄)vk +

ρ2
k

2

∂2L

∂u2
(wk, µ̄)v2

k

= ρk
∂L

∂u
(ū, µ̄)vk +

ρ2
k

2

∂2L

∂u2
(ū, µ̄)v2

k +
ρ2

k

2
[
∂2L

∂u2
(wk, µ̄) −

∂2L

∂u2
(ū, µ̄)]v2

k, (4.22)

with wk = ū+ θk(uk − ū) and 0 < θk < 1. Considering the second derivative of
L given by (4.5), using the weak convergence vk ⇀ v in L2(Ω) and the strong



1144 E. CASAS

convergence zvk
→ zv in C(Ω̄), it is easy to pass to the limit and get

lim
k→∞

∫

Ω

{

2
∂2L

∂y∂u
(x, ȳ, ū)zvk

vk + [
∂2L

∂y2
(x, ȳ, ū) − ϕ̄

∂2a0

∂y2
(x, ȳ)]z2

vk

}

dx

=

∫

Ω

{

2
∂2L

∂y∂u
(x, ȳ, ū)zvv + [

∂2L

∂y2
(x, ȳ, ū) − ϕ̄

∂2a0

∂y2
(x, ȳ)]z2

v

}

dx (4.23)

and

lim
k→∞

[
∂2L

∂u2
(wk, µ̄) −

∂2L

∂u2
(ū, µ̄)]v2

k = 0. (4.24)

If we prove that

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2 dx ≤ lim inf

k→∞

(

2

ρk

∂L

∂u
(ū, µ̄)vk+

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

)

, (4.25)

then we conclude from (4.22)-(4.25) and (4.5) that ∂2L
∂u2 (ū, µ̄)v2 ≤ 0, which leads

to the desired result v = 0, owing to (4.10). Let us prove (4.25). First, let us
remark that (3.7) implies that

(ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x))(u(x) − ū(x)) ≥ 0 a.e. ∀u ∈ Uα,β,

therefore

(ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)))vk(x) ≥ 0 a.e. ∀k ≥ 1. (4.26)

Let us denote

Ωτ = {x ∈ Ω : |ϕ̄(x) +
∂L

∂u
(x, ȳ, ū)| ≤ τ}.

With the help of (4.26) we get

2

ρk

∂L

∂u
(ū, µ̄)vk +

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

≥
2

ρk

∫

Ω\Ωτ

(ϕ̄+
∂L

∂u
(x, ȳ, ū))vk +

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

≥

∫

Ω\Ωτ

[
2τ

ρk
|vk| +

∂2L

∂u2
(x, ȳ, ū)v2

k] dx+

∫

Ωτ

∂2L

∂u2
(x, ȳ, ū)v2

k dx. (4.27)

Now, from the definition of uk, ρk and vk we have

kρk|vk(x)| = k|uk(x) − ū(x)| ≤ k‖uk − ū‖L∞(Ω) ≤ 1,
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which implies 2τ
ρk
|vk(x)| ≥ 2kτv2

k(x). This inequality and (4.27) lead to

2

ρk

∂L

∂u
(ū, µ̄)vk +

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

≥

∫

Ω\Ωτ

[2kτ +
∂2L

∂u2
(x, ȳ, ū)]v2

k dx+

∫

Ωτ

∂2L

∂u2
(x, ȳ, ū)v2

k dx. (4.28)

From (A3) there follows the existence of k0 such that

2kτ +
∂2L

∂u2
(x, ȳ(x), ū(x)) ≥ 1 a.e. ∀k ≥ k0. (4.29)

Inserting this inequality into (4.28), using (4.9) and taking the lower limit we
get

lim inf
k→∞

{

2

ρk

∂L

∂u
(ū, µ̄)vk +

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

}

≥ lim inf
k→∞

∫

Ω\Ωτ

[2k0τ +
∂2L

∂u2
(x, ȳ, ū)]v2

k dx+ lim inf
k→∞

∫

Ωτ

∂2L

∂u2
(x, ȳ, ū)v2

k dx

≥

∫

Ω\Ωτ

[2k0τ +
∂2L

∂u2
(x, ȳ, ū)]v2 dx+

∫

Ωτ

∂2L

∂u2
(x, ȳ, ū)v2 dx

≥

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2 dx,

which proves (4.25).

Step 3. Final contradiction. We have proved that vk ⇀ 0 weakly in L2(Ω), then
zvk

→ 0 strongly in C(Ω̄). By using (4.22), (4.23), (4.24), (4.28), (4.29) and
(4.9) we obtain

0 < min{ω, 1} = min{ω, 1} lim
k→∞

‖vk‖
2
L2(Ω)

≤ lim inf
k→∞

{

∫

Ω\Ωτ

[2kτ +
∂2L

∂u2
(x, ȳ, ū)]v2

k dx+

∫

Ωτ

∂2L

∂u2
(x, ȳ, ū)v2

k dx

}

≤ lim inf
k→∞

{

2

ρk

∂L

∂u
(ū, µ̄)vk +

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx

}

≤ 0,

which is a contradiction.

Remark 3 If we assume that

∃ΛL > 0 such that
∂2L

∂u2
(x, y, u) ≥ ΛL ∀y, u ∈ R and for a.e. x ∈ Ω, (4.30)

then Theorem 4 holds with r = rū, where rū is given by Theorem 3. To prove
this we can follow the steps of the proof of Theorem 4 with the following changes.
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If (Prū,∞
δ ) is not strongly stable, then for any k ≥ 1 there exists δk ∈ (δ, δ+1/k)

such that inf (Prū,∞
δ )− inf (Prū,∞

δk
) > k(δk − δ). Let uk be a solution of problem

(Prū,∞
δk

). Since {uk}
∞
k=1 ⊂ Uα,β we can take a subsequence, denoted in the same

way, converging to ũ ∈ Uα,β
∗weakly in L∞(Ω). Since yuk

→ yũ in C(Ω̄) and
δk → δ it is easy to prove that ũ ∈ Uδ and ‖ũ− ū‖L∞(Ω) ≤ rū, therefore ũ is a
feasible control for (Prū,∞

δ ). Hence, using (4.11) and that ū is a feasible control
for every problem (Prū,∞

δk
) we get

J(ū) ≤ J(ũ) ≤ lim inf
k→∞

J(uk) ≤ lim sup
k→∞

J(uk) ≤ J(ū).

According to (4.11) we have that ū is the unique global solution of (Prū,∞
δ ),

therefore the above inequalities imply that ũ = ū and then the whole sequence
{uk}

∞
k=1 converges to ū ∗weakly in L∞(Ω) and yuk

→ ȳ in C(Ω̄). Moreover, from
the same inequalities we also get that J(uk) → J(ū). From these properties and
the assumption (4.30) it is easy to deduce that uk → ū strongly in L2(Ω). Now
we can continue as in the proof of Theorem 4, though some simplifications are
possible thanks to the assumption (4.30).

For some usual functions L Theorems 3 and 4 can be improved. Let us
consider the following structure assumption on the function L defining the cost
functional J .

(A4) L(x, y, u) = L0(x, y) +
Λ

2
u2, where L0 : Ω × R −→ R is a Carathéodory

function of class C2 with respect to the second variable and Λ > 0, L0(·, 0) ∈
L1(Ω), and for all M > 0 there exist a constant CL0,M > 0 and a function
ψL0,M ∈ L1(Ω) such that for a.e. x ∈ Ω and |y|, |yi| ≤M , i = 1, 2,

∣

∣

∣

∣

∂L0

∂y
(x, y)

∣

∣

∣

∣

≤ ψL0,M (x),

∣

∣

∣

∣

∂2L0

∂y2
(x, y)

∣

∣

∣

∣

≤ CL0,M ,

∣

∣

∣

∣

∂2L0

∂y2
(x, y2) −

∂2L0

∂y2
(x, y1)

∣

∣

∣

∣

≤ CL0,M (|y2 − y1|).

Under the assumption (A4), (3.4)-(3.7) and (4.9), (4.11) can be replaced by

J(ū) +
α

2
‖u− ū‖2

L2(Ω) ≤ J(u) if ‖u− ū‖L2(Ω) ≤ rū and u ∈ Uδ; (4.31)

see Casas, De Los Reyes and Tröltzsch (2008). If we use (4.31) and we argue as
in the proof of Theorem 4, then we obtain the following theorem:

Theorem 5 Under the assumptions of Theorem 4 and (A4) we have that the
problem

(Prū,2
δ )











min J(u) =

∫

Ω

L(x, yu(x), u(x)) dx

u ∈ Uα,β, ‖u− ū‖L2(Ω) ≤ rū, |yu(x)| ≤ δ ∀x ∈ K

is strongly stable.
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As an immediate consequence of (4.31), the previous theorem and Proposi-
tion 2 we have the following result:

Corollary 2 Let us assume that ū ∈ Uδ and the first order necessary opti-
mality conditions (3.4)-(3.7) and the second order sufficient condition (4.9) are
fulfilled. If, moreover, (A4) holds, then ū is a strict local solution of (Pδ,ρ) in
the sense of Lq(Ω), for any 1 ≤ q ≤ +∞ and for every ρ > Cδ, where Cδ > 0 is
given by (3.1).

5. Regularity of the local optimal controls

In this section we study the regularity of local solutions of problem (Pδ,ρ), with
ρ > 0. To carry out this analysis we will assume (A4). The next theorem
provides a first regularity result.

Theorem 6 Let ū be a local solution of problem (Pδ,ρ). Let us also assume
that (A4) holds, (ȳ, ū, ϕ̄, µ̄) satisfies the optimality system (3.4)-(3.7) and α, β ∈
W 1,s(Ω) for some s < n/(n − 1). Then, ū ∈ W 1,s(Ω). Furthermore if α, β ∈
C(Ω̄) and the function ψL0,M , introduced in (A4), belongs to Lp(Ω), with p >
n/2, then ū ∈ C(Ω̄ \Kδ).

Proof. Since ū is a local solution of (Pδ,ρ), there exist ȳ ∈ H1
0 (Ω) ∩ C(Ω̄),

ϕ̄ ∈ W 1,s
0 (Ω) for every 1 ≤ s < n/(n− 1) and µ̄ ∈M(K) such that
{

Aȳ + a0(x, ȳ) = ū in Ω,
ȳ = 0 on Γ,

(5.1)











A∗ϕ̄+
∂a0

∂y
(x, ȳ(x))ϕ̄ =

∂L0

∂y
(x, ȳ) + µ̄ in Ω,

ϕ̄ = 0 on Γ,

(5.2)

∫

K

(y − ȳ)dµ̄+ Fρ(ȳ) ≤ Fρ(y) ∀y ∈ C(K), (5.3)

∫

Ω

(ϕ̄+ Λū)(u− ū) dx ≥ 0 ∀u ∈ Uα,β , (5.4)

where Fρ : C(K) −→ R is defined by Fρ(y) = ρ(‖y‖C(K) − δ)+.
From (5.4) and assumption (A4) we get

ū(x) = Proj[α(x),β(x)]

(

−
1

Λ
ϕ̄(x)

)

= max{α(x),min{β(x),−
1

Λ
ϕ̄(x)}}. (5.5)

This identity, along with the fact that α, β, ϕ̄ ∈ W 1,s(Ω), leads to the W 1,s(Ω)-
regularity for ū.

On the other hand, from the assumption on ψL0,M and (3.5) we deduce that
ϕ̄ ∈ C(Ω̄ \Kδ). Finally, the identity (5.5) and the continuity of the functions
ϕ̄, α and β in Ω̄ \Kδ imply the continuity of ū in the same domain.
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The previous regularity result on the control ū can be improved if ȳ ∈ Yδ

and there is a finite number of points, where the state constraints are active.
More precisely, let us assume that Kδ = {xj}

m
j=1 ⊂ K. Then the structure of

the Lagrange multiplier µ̄ is given by (3.13). If we denote by ϕ̄j , 1 ≤ j ≤ m,
and ϕ̄0 the solutions of







A∗ϕ̄j +
∂a0

∂y
(x, ȳ(x))ϕ̄j = δxj

in Ω,

ϕ̄j = 0 on Γ,
(5.6)

and






A∗ϕ̄0 +
∂a0

∂y
(x, ȳ(x))ϕ̄0 =

∂L0

∂y
(x, ȳ) in Ω,

ϕ̄0 = 0 on Γ,
(5.7)

then the adjoint state associated to ū is given by

ϕ̄ = ϕ̄0 +

m
∑

j=1

λ̄j ϕ̄j . (5.8)

Now, we have the following regularity result:

Theorem 7 Let us assume that p > n in (A1) and (A4) and ψL0,M ∈ Lp(Ω).
Suppose also that ū is a local solution of problem (Pδ,ρ), α, β, aij ∈ C0,1(Ω̄), for
1 ≤ i, j ≤ n, (ȳ, ū, ϕ̄, µ̄) satisfies the optimality system (5.1)-(5.4) and Γ is of
class C1,1. If the active set consists of finitely many points, i.e. ȳ ∈ Yδ and
Kδ = {xj}

m
j=1 ⊂ K, then ū belongs to C0,1(Ω̄) and ȳ to W 2,p(Ω).

Because of the properties of aij , Γ and p > n we get that ȳ, ϕ̄0 ∈W 2,p(Ω) ⊂
C1(Ω̄). On the other hand, ϕ̄j(x) → +∞ when x→ xj , hence ϕ̄ has singularities
at the points xj where λ̄j 6= 0. Consequently, ϕ̄ cannot be Lipschitz.

Surprisingly, this does not lower the regularity of ū. Notice that (5.5) implies
that ū is identically equal to α or β in a neighborhood of xj , depending on the
sign of λ̄j . This implies the desired result; see Casas (2007) for the details.

Now the question arises if this Lipschitz property remains also valid for
an infinite number of points, where the pointwise state constraints are active.
Unfortunately, the answer is negative. In fact, the optimal control can even fail
to be continuous if Kδ is an infinite and numerable set. For a counterexample
the reader is referred to Casas and Tröltzsch (2008).

In the next theorem we will state the H1(Ω)-regularity of strict local solu-
tions ū of (Pδ,ρ). This results implies the H1(Ω)-regularity of strict local solu-
tions of (Pδ) assuming that (Pr

δ) is strongly stable for every r > 0 small enough.
Roughly speaking we can say that the stability implies the H1(Ω)-regularity of
strict local solutions of (Pδ). The same result was proved in Casas and Tröltzsch
(2008) under the Slater assumption. We have to remark that ū is assumed to
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be a local solution in the sense of the Lq(Ω)-topology, with 1 ≤ q < +∞, a
posteriori it is also a local solution in the sense of L∞(Ω). Let us remember
that if the first and second order optimality conditions are fulfilled, then ū is
a strict local solution of (Pδ,ρ) in the sense of Lq(Ω) for all 1 ≤ q ≤ +∞; see
Corollary (2).

Theorem 8 Suppose that ū is a strict local minimum of (Pδ,ρ) in the sense of
the L2(Ω) topology. We also assume that assumption (A4) holds, aij ∈ C(Ω̄) for
1 ≤ i, j ≤ n, α, β ∈ L∞(Ω)∩H1(Ω) and ψL0,M ∈ Lp(Ω) in (A4), with p > n/2.
Then ū ∈ H1(Ω).

Proof. Fix r > 0 such that ū is a strict solution of the problem (Pr,2
δ,ρ).

Now we select a sequence {xk}
∞
k=1 dense in K and consider the family of

control problems

(Qk)

{

min Jρ,k(u) = J(u) + ρ( max
1≤j≤k

|yu(xj)| − δ)+

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω, ‖u− ū‖L2(Ω) ≤ r.

Obviously, ū is a feasible control for every problem (Qk). Therefore, the
existence of a global minimum uk of (Qk) follows easily by standard arguments.
It is also easy to check that uk → ū in L2(Ω), owing to the assumption (A4)
and yuk

→ ȳ in H1
0 (Ω) ∩ C(Ω̄).

Since ū is solution of (Pr,2
δ,ρ), there exist ȳ ∈ H1

0 (Ω) ∩C(Ω̄), ϕ̄ ∈W 1,s
0 (Ω) for

every 1 ≤ s < n/(n− 1) and µ̄ ∈M(K) such that (5.1)-(5.4) hold.

Analogously, the fact that uk is a solution of (Qk) implies the existence of
yk ∈ H1

0 (Ω)∩C(Ω̄), ϕk ∈W 1,s
0 (Ω) for every 1 ≤ s < n/(n− 1) and µk ∈M(K)

such that

{

Ayk + a0(x, yk) = uk in Ω,
yk = 0 on Γ.

(5.9)







A∗ϕk +
∂a0

∂y
(x, yk(x))ϕk =

∂L0

∂y
(x, yk) + µk in Ω,

ϕk = 0 on Γ,

(5.10)

∫

K

(y − yk)dµk + Fρ,k(yk) ≤ Fρ,k(y) ∀y ∈ C(K), (5.11)

∫

Ω

(ϕk + Λuk)(u − uk) dx ≥ 0 ∀u ∈ Uα,β, (5.12)

where the function Fρ,k : C(K) −→ R is defined by

Fρ,k(y) = ρ( max
1≤j≤k

|y(xj)| − δ)+.
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From (5.11) it follows that

µk =

k
∑

j=1

λk,jδxj
,

k
∑

j=1

|λk,j | ≤ ρ and λk,j =







≥ 0 if yk(xj) ≥ +δ

≤ 0 if yk(xj) ≤ −δ

0 if |yk(xj)| < δ.

(5.13)

The rest of the proof follows identically as in Casas and Tröltzsch (2008).
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