
Control and Cybernetics

vol. 38 (2009) No. 4A

Incompressible Maxwell-Boussinesq approximation:

Existence, uniqueness and shape sensitivity∗

by

Luisa Consiglieri1, Šárka Nečasová2 and Jan Sokolowski3

1Mathematics Dep/FCUL and CMAF, University of Lisbon
1749-016 Lisboa, Portugal

2Mathematical Institute of the Academy of Sciences
Žitná 25, 11567 Prague 1, Czech Republic

3Institut Elie Cartan, Laboratoire de Mathématiques,
Université Henri Poincaré Nancy I

B.P. 239, 54506 Vandouevre les Nancy Cedex, France

Abstract: We prove the existence and uniqueness of weak solu-
tions to the variational formulation of the Maxwell-Boussinesq ap-
proximation problem. Some further regularity in W 1,2+δ, δ > 0, is
obtained for the weak solutions. The shape sensitivity analysis by
the boundary variations technique is performed for the weak solu-
tions. As a result, the existence of the strong material derivatives
for the weak solutions of the problem is shown. The result can be
used to establish the shape differentiability for a broad class of shape
functionals for the models of Fourier-Navier-Stokes flows under the
electromagnetic field.
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1. Introduction

The problem of magnetohydrodynamic flows has been studied by several authors
(see Druet, 2009; Duvaut and Lions, 1972; Gerbeau and Le Bris, 1997, 1999;
Hömberg and Sokolowski, 2003; Meir, 1994; Meir and Schmidt, 2001; Sermange
and Temam, 1983) and it goes back to the work of Ladyzhenskaya and Solon-
nikov. At that time the coupled system did not include thermal effects. The full
complete problem including the heat transfer seems to be more realistic and not
many authors dealt with it. The full Navier-Stokes-Fourier-Maxwell problem
was only partially studied in the works of Alekseev (2006), Meir (1994), Meir
and Schmidt (2001), where the principal coefficients are assumed constant. On
the other hand, in Druet (2009) the coefficients are only temperature dependent,
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and the force term is either globally bounded (truncated) or the thermal expan-
sion coefficient is sufficiently small. Concerning the shape sensitivity analysis
we can mention work of Zolésio and his collaborators (see Boisgérault and Zolé-
sio, 2000, 2001; Delfour and Zolésio, 2001; Dziri and Zolésio, 1996, 1997; Dziri,
Moubachir and Zolésio, 2004; Murat and Simon, 1976; Pironneau, 1984; Plot-
nikov and Sokolowski, 2006; Plotnikov, Ruban and Sokolowski, 2008), where the
case of Navier-Stokes problem was investigated and also the coupled problem
with heat transfer. We refer to Consiglieri, Nečasová and Sokolowski (2008)
where an uncoupled complete problem is studied (see Remark 5). It is only in
this paper that the problem under study has the principal coefficients varying
with the temperature as well as the space variable.

Let Ω be an open bounded subset of R
3 with the boundary ∂Ω ∈ C1,1 which

is splitted into two parts ∂Ω = Γ̄D ∪ Γ̄N , where ΓD is an open nonempty subset
of ∂Ω and ΓN = ∂Ω \ Γ̄D. The thermoelectromagnetoflow problem reads in Ω:

−∇ · (ν(T )Du) + ρ(u · ∇)u + ∇p = µrotH× H + ρf − ρG(T )T ; (1)

∇× (σ−1(T )∇× H) = ∇× (σ−1(T )J0 + µu × H); (2)

divu =

3∑

i=1

∂ui

∂xi
= divH = 0; (3)

−∇ · (k(T )∇T ) + ρu · ∇T = f. (4)

Here u is the fluid velocity vector, T is the temperature, Du = (Dij) = (∂iuj +
∂jui)/2 (i, j = 1, 2, 3) is the symmetrized gradient of the velocity, µ the magnetic
permeability, p denotes the pressure, ρ is density, f and f denote the external
forces and heat sources, respectively. The coefficients ν, σ, k are temperature
dependent functions representing the viscosity of the fluid, the electric and the
heat conductivities, respectively. Indeed in order for the setting to be more
realistic these coefficients are not only functions of the temperature but also of
the space variable. The density ρ is assumed to be constant, we set ρ = 1.

The buoyancy force, as in the Boussinesq approximation, is described by
G(T ) = β(T )(0, 0, g)⊤, where β denotes the coefficient of thermal dilatation
and g is the constant of gravity. The existence of two body forces in the fluid,
the Lorentz force J × B = (∇ × H) × (µH) and the buoyancy force, results
from the presence of the magnetic field H. Moreover (2) results if we take the
rotational in the second equation of the steady-state Maxwell equations:

∇× E = 0; J = ∇× H,

where E is the electric intensity field and J is the current density given by the
Ohm’s law

J = J0 + σ(T )(E + u × B),

where J0 denotes a given applied current (see Alekseev, 2006).
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Finally, the thermoelectromagnetoflow problem under study has the follow-
ing boundary conditions

u = 0, H · n = 0 on ∂Ω; (5)

T = 0 on ΓD, k(T )
∂T

∂n
+ αT = h on ΓN , (6)

where α represents the convective heat transfer coefficient. Here α is a function
only depending on the space variable. We refer to Consiglieri (2006, 2008), Druet
(2009), Meir and Schmidt (2001), whereby it can be extended to a function also
depending on the temperature and even to include radiation effects. To simplify
the presentation we assume a homogeneous Dirichlet condition for the velocity
of the fluid (see Remark 2).

The outline of the paper is as follows. In Section 2, new existence results
are stated under diverse assumptions for the system of strongly coupled ellip-
tic equations governing temperature dependent electromagnetic stationary flow.
Fluid velocity, magnetic field intensity and fluid temperature are the state vari-
ables. Section 3 is devoted to the proof of existence of a weak solution to the
nonlinear coupling of electromagnetics, heat and fluid device, using a fixed point
argument. Some well posedness auxiliary existence results are established as well
as results on the regularity of solutions. In Section 4, additional regularity of
a weak solution to the considered electromagnetic flow problem is proved, as-
suming more regular external forces and applied current intensities. Assuming
Lipschitz type continuity of function parameters with respect to temperature,
this solution is shown to be unique for suitable small data. In Section 5, assum-
ing that all coefficients of the elliptic system are constant and the velocity field
is divergence free, sensitivity analysis of the unique solution to the considered
elliptic system with respect to perturbation of the boundary of the domain oc-
cupied by the fluid is performed using the material derivative approach. The
existence of strong material derivative of the weak solution to the elliptic system
is shown. The elliptic system characterizing this derivative is provided.

2. Assumptions and main existence results

We need some assumptions on the model, which are listed below.
Let us assume that

(H1) ν, σ, k : Ω × R → R are Caratheodory functions such that

∃ν#, ν# > 0 : ν# ≤ ν(·, ξ) ≤ ν#, a.e. in Ω, ∀ξ ∈ R; (7)

∃σ#, σ# > 0 : σ# ≤ σ(·, ξ) ≤ σ#, a.e. in Ω, ∀ξ ∈ R; (8)

∃k#, k# > 0 : k# ≤ k(·, ξ) ≤ k#, a.e. in Ω, ∀ξ ∈ R; (9)

(H2) G = (0, 0, G) where G = gβ with β a real, continuous, and bounded
function and we denote by G# the upper bound for the function G;
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(H3) α ∈ Lq
+(ΓN ) = {α ∈ Lq(ΓN ) : α ≥ 0} for q such that q > 3/2, which

means that its conjugate q′ = q/(q − 1) verifies q′ < 3;
(H4) and f ∈ L2(Ω), J0 ∈ L2(Ω), f ∈ L2(Ω) and h ∈ L2(ΓN ).

In the framework of function spaces of the Lebesgue and Sobolev type, the
norms are denoted by the symbols ‖ · ‖, ‖ · ‖1, ‖ · ‖ΓN in spaces L2(Ω), H1(Ω),
L2(ΓN ), respectively, and the scalar and vector function spaces are not dis-
tinguished in our notations. Providing that the meaning remains clear, the
canonical norm in Lp(Ω) for p 6= 1, 2 is denoted by ‖ · ‖p. We introduce the
Hilbert spaces

V = {v ∈ H1
0(Ω) : div v = 0 in Ω} ,

V(rot) = {v ∈ L2(Ω) : rot v ∈ L2(Ω), div v = 0 in Ω, v · n = 0 on ∂Ω} ,

Z = {ξ ∈ H1(Ω) : ξ = 0 on ΓD} ,

equipped with their standard scalar products. We recall that the norms ‖·‖V(rot)

and ‖ · ‖Z are equivalent to the usual seminorms ‖∇ × ·‖ and ‖∇ · ‖ and also
to the norms ‖ · ‖1 on spaces H1(Ω) and H1(Ω), respectively (see Duvaut and
Lions, 1972).

We state the main existence results of the paper.

Theorem 1 Under the above assumptions (H1)-(H4), and, in addition, under
the following assumptions

b > 0 and µa2 < b3 , (10)

a =
ν#

µσ#
‖J0‖ ,

b =
ν#

µσ#
−

(
‖f‖ +

G#

k#
(‖f‖ + ‖h‖ΓN )

)
,

the problem (1)-(6) has a weak solution in the following sense:
The triplet (u,H, T ) ∈ V ×V(rot) × Z satisfies the following integral iden-

tities
∫

Ω

ν(T )Du : Dvdx +

∫

Ω

(v ⊗ u) : ∇udx =

=

∫

Ω

(
µ(∇× H) × H + f − G(T )T

)
· vdx, ∀v ∈ V; (11)

∫

Ω

1

σ(T )
(∇× H) · (∇× v)dx = µ

∫

Ω

(u × H) · (∇× v)dx+

+

∫

Ω

1

σ(T )
J0 · (∇× v)dx, ∀v ∈ V(rot); (12)

∫

Ω

k(T )∇T · ∇ηdx +

∫

Ω

u · ∇Tηdx +

∫

ΓN

αTηds =

=

∫

Ω

fηdx +

∫

ΓN

hηds, ∀η ∈ Z. (13)
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Moreover, the pair (H, T ) enjoys the additional regularity, actually, it belongs
to W1,2+ǫ(Ω) × W 1,2+ε(Ω) for some ǫ, ε > 0.

Remark 1 If ǫ > 2/5 we can deduce the additional regularity on u as in Con-
siglieri, Nečasová and Sokolowski (2008). Otherwise, since the operators in the
above elliptic equations of the second order have discontinuous coefficients, we
can obtain Hölder continuity on Ω̄ of the weak solution T due to the De Giorgi-
Nash Theorem if f, h ∈ Lq(Ω) for q > 3. If σ is taken as a continuous function,
then the main operator in (12) has continuous coefficient and the regularity the-
ory can be applied to the weak solution H. Or, simply, if we suppose that the
electric conductivity σ is constant, it will be sufficient to our purposes in the
study of the shape sensivity. However, in the sequel the data assumptions are
kept as general as possible.

Theorem 2 Let ǫ0 < ǫ < 1 and 2 < q < 3 be such that

3q

3 − q
=

(2 + ǫ0)(2 + ǫ)

ǫ − ǫ0
. (14)

If J0 ∈ Lq(Ω), then H ∈ L3q/(3−q)(Ω). Under the assumption f ∈ L2+δ1(Ω),
where δ1 > 0, the weak solution u given by Theorem 1 enjoys the additional
regularity, actually, it belongs to W1,2+δ(Ω) for some δ > 0. Furthermore, under
the following Lipschitz-type continuity assumption on the temperature dependent
function parameters of the model

∃ν̄ > 0 : |ν(T 2) − ν(T 1)| ≤ ν̄|T 2 − T 1|3δ/(2+δ), (15)

∃Ḡ > 0 : g|β(T 2) − β(T 1)| ≤ Ḡ|T 2 − T 1|, (16)

∃σ̄ > 0 : |σ(T 2) − σ(T 1)| ≤ σ̄|T 2 − T 1|3ǫ/(2+ǫ), (17)

∃k̄ > 0 : |k(T 2) − k(T 1)| ≤ k̄|T 2 − T 1|3ε/(2+ε), ∀T 2, T 1 ∈ R, (18)

the weak solution (u,H, T ) is unique for small data.

The existence of the pressure p in the space of distributions follows from the
well-known results by using the divergence-free test functions v ∈ C∞

0 (Ω) in
(11). Moreover, the pressure is unique up to a constant.

3. Proof of Theorem 1

First, we recall the Tychonoff extension to weak topologies of the Schauder fixed
point theorem (see Dunford and Schwartz, 1958, pp. 453-456 and 470).

Theorem 3 Let K be a nonempty weakly sequentially compact convex subset
of a locally convex linear topological vector space V . Let L : K → K be a weakly
sequentially continuous operator. Then L has at least one fixed point.



1198 L. CONSIGLIERI, Š. NEČASOVÁ, J. SOKOLOWSKI

Let L be the mapping of the form

L : (w,h, ξ) ∈ V × V(rot) × Z 7→ (H, T ) 7→ (u,H, T ) ,

where the functions u, H and T are the solutions for the elliptic boundary value
problems (23), (21) and (19), respectively. Indeed, the fixed point argument
starts by prescribing (w,h, ξ) from V×V(rot)×Z next by finding the temper-
ature and the magnetic field and finally the velocity of the fluid. The proofs of
such existence results are the straightforward application of the classical exis-
tence theory, hence are omitted here.

Proposition 1 Let (w, ξ) ∈ V×Z and assume that conditions (9), (H3)-(H4)
are fulfilled. Then there exists a unique T ∈ Z such that

∫

Ω

k(ξ)∇T · ∇ηdx +

∫

Ω

w · ∇Tηdx +

∫

ΓN

αTηds =

=

∫

Ω

fηdx +

∫

ΓN

hηds, ∀η ∈ Z. (19)

Moreover, the energy estimate holds

k#‖T ‖1 ≤ ‖f‖ + ‖h‖ΓN . (20)

Proposition 2 Let (w,h, ξ) ∈ V×V(rot)×Z and assume that conditions (8)
and (H4) are fulfilled. Then there exists a unique H ∈ V(rot) such that

∫

Ω

1

σ(ξ)
(∇× H) · (∇× v)dx = −µ

∫

Ω

(h × w) · (∇× v)dx+

+

∫

Ω

1

σ(ξ)
J0 · (∇× v)dx, ∀v ∈ V(rot). (21)

Moreover, the energy estimate holds

1

σ#
‖H‖1 ≤ µ‖h× w‖ +

1

σ#
‖J0‖. (22)

Proposition 3 Let (w, ξ) ∈ V × Z, and T and H the solutions in accordance
with Propositions 1 and 2, respectively, and assume that conditions (7), (H2)
and (H4) are fulfilled. Then there exists a unique u ∈ V such that

∫

Ω

ν(ξ)Du : Dvdx +

∫

Ω

(v ⊗ w) : ∇udx =

=

∫

Ω

(
µ(∇× H) × H + f − G(T )T

)
· vdx, ∀v ∈ V. (23)

Moreover, the energy estimate holds

ν#‖u‖1 ≤ µ‖∇× H‖‖H‖L3 + ‖f‖ + G#‖T ‖L6/5. (24)
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Remark 2 For given g ∈ H−1/2(∂Ω), there exists a lifting ug ∈ H1(Ω) such
that ug = g on ∂Ω and ug verifies

−∇ · (ν(ξ)Dug) + (w · ∇)ug = −∇pg; ∇ · ug = 0 in Ω.

If the element U = u− ug ∈ V is determined by a solution to the problem

−∇ · (ν(ξ)DU) + (w · ∇)U = −∇pU + µ(∇×H)×H + f −G(T )T in Ω,

then u = U + ug is the solution to the problem

−∇ · (ν(ξ)Du) + (w · ∇)u = −∇p + µ(∇× H) × H + f − G(T )T in Ω,

∇ · u = 0 in Ω, u = g on ∂Ω.

Therefore, it is assumed that g = 0, observing that in the inhomogeneous case
a smallness assumption for the velocity at the boundary will be also needed in
order to prove the main results.

In view of Propositions 1, 2 and 3, the operator L is well defined. Moreover,
L maps the ball

K = {(w,h, ξ) ∈ V × V(rot) × Z : ‖w‖1 ≤ R1, ‖h‖1 ≤ R2,

‖ξ‖1 ≤
1

k#
(‖f‖ + ‖h‖ΓN )}

into itself, since by (20), (22) and (24) it follows that

‖H‖1 ≤ σ#

(
µR1R2 +

1

σ#
‖J0‖

)
≤ R2 , (25)

‖u‖1 ≤
1

ν#

(
µR2

2 + ‖f‖ +
G#

k#
(‖f‖ + ‖h‖ΓN )

)
= R1 , (26)

where R2 > 0 is such that

µσ#

ν#
R2

(
µR2

2 + ‖f‖ +
G#

k#
(‖f‖ + ‖h‖ΓN )

)
+

σ#

σ#
‖J0‖ ≤ R2

or equivalently

a ≤ R2(b − µR2
2),

if b > 0 and (a/b)2 < b/µ, which is assured by (10).
In order to apply Theorem 3 it remains to prove the weak continuity of L.

Since we have the compact embeddings

V,V(rot) →֒→֒ {w ∈ L4(Ω) : ∇ ·w = 0 in Ω, w · n = 0 on ∂Ω} (27)

Z →֒→֒ L1(Ω), (28)
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let {(wm,hm, ξm)} be a sequence such that

wm → w, hm → h in L4(Ω); ξm → ξ in L1(Ω). (29)

Let (um,Hm, Tm) be the corresponding weak solutions given by Propositions 1,
2 and 3, for each m ∈ N. From the estimates (24), (22) and (20), the sequence
{(um,Hm, Tm)} is bounded in V × V(rot) × Z. Then there exists the weak
limit (u,H, T ) ∈ V × V(rot) × Z such that

um ⇀ u in V; Hm ⇀ H in V(rot); Tm ⇀ T in Z, (30)

possibly for a subsequence, still denoted by (um,Hm, Tm). Applying (27)-(28)
we obtain

um → u, Hm → H in L4(Ω); Tm → T in L1(Ω). (31)

We pass to the limit as m → +∞ in the integral identities (23), (21) and
(19), replacing w,h, ξ,u,H and T by the sequences wm, hm, ξm, um, Hm and
Tm, respectively, using (29)-(31) and the continuity properties of the Niemytskii
operators in the coefficients combined with (7)-(9). Therefore, we conclude
that the limit (u,H, T ) is a solution corresponding to (w,h, ξ) of the required
problem (23), (21) and (19).

Then, Theorem 3 guarantees the existence of at least one fixed point which
is the required weak solution.

The regularity (H, T ) ∈ W1,2+ǫ(Ω) × W 1,2+ε(Ω) for some ǫ, ε > 0 is a
consequence of the following regularity results.

Proposition 4 If J0 ∈ L2(Ω) then there exists a constant ǫ > 0 such that the
weak solution H ∈ V(rot) of (12) belongs to W1,2+ǫ(Ω), i.e.

‖∇H‖2+ǫ ≤ K1,

with a constant K1 > 0 only dependent on the data.

Proof. Adapting the regularity theory for elliptic equations of the second order
(see Groger, 1989), we obtain H ∈ W1,2+ǫ(Ω) with 2 + ǫ < 6 since

J0 − σ(T )µH× u ∈ L2(Ω) →֒ (W1,6/5(Ω))′.

The following result is a consequence of the regularity of solutions to the
mixed boundary value problems for elliptic equations (see Groger, 1989).

Proposition 5 If f ∈ L2(Ω) and h ∈ L2(ΓN ) then there exists a constant
ε > 0 such that the weak solution T ∈ Z of (13) belongs to W 1,2+ε(Ω), i.e.

‖∇T ‖2+ε ≤ K2,

with a constant K2 > 0 only dependent on the data.

Proof. According to Groger (1989) we obtain T ∈ W 1,2+ε(Ω) with 2 + ε < 3
since f, h ∈ (W 1,3/2(Ω))′.
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4. Proof of Theorem 2

The regularity u ∈ W1,2+δ(Ω) for some δ > 0 is a consequence of the following
regularity results.

Proposition 6 For every 2 < q < 3, if J0 ∈ Lq(Ω) then the weak solution
H ∈ V(rot) of (12) belongs to L3q/(3−q)(Ω).

Proof. Adapting the regularity theory for elliptic equations of the second order
(see Groger, 1989), the desired result is obtained, provided by J0−σ(T )µH×u ∈
Lq(Ω).

Proposition 7 If q is given as in (14) and f ∈ L2+δ1(Ω) for some δ1 > 0, then
there exists a constant δ > 0 such that the weak solution u ∈ V of (11) belongs
to W1,2+δ(Ω), i.e.

‖∇u‖2+δ ≤ K3,

with a constant K3 > 0 only dependent on the data.

Proof. For every x0 ∈ Ω̄, 0 < r < R small enough, Ω(x0, R) := Ω ∩ B(x0, R),
θ ∈]0, 1[ and some positive constants B1, B2, independent of u,H and T , we
have the following reverse estimate (see Consiglieri and Shilkin, 2000, Lemma
3.2)

(∫

Ω(x0,r)

|∇u|2dx

)1/2

≤ θ

(∫

Ω(x0,R)

|∇u|2dx

)1/2

+
B1

R − r

(∫

Ω(x0,R)

|∇u|6/5dx

)5/6

+
B2

R − r

(∫

Ω(x0,R)

(|u ⊗ u|2 + |F|2 + |f |2 + 1)dx

)1/2

where F = µrotH × H − G(T )T . By Propositions 4 and 6, we have H ∈
W1,2+ǫ(Ω) ∩L(2+ǫ0)(2+ǫ)/(ǫ−ǫ0)(Ω). Thus, it follows that rotH×H ∈ L2+ǫ0(Ω)
and F ∈ L2+ǫ0(Ω). Since u ⊗ u ∈ L3(Ω) then the Gehring inequality (cf.
Gehring, 1973) guarantees the higher integrability u ∈ W1,2+δ(Ω) for some
0 < δ < min{ǫ0, δ1}.

Now, we prove the uniqueness. To this end, let (u1,H1, T 1) and (u2,H2, T 2)
be two weak solutions to problem (11), (13), and (12). Arguing as in Consiglieri,
Nečasová and Sokolowski (2008), the respective differences ū = u1 − u2, H̄ =
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H1 − H2 and T̄ = T 1 − T 2 satisfy

ν#

2
‖Dū‖2 ≤

ν̄

ν#
‖T̄‖

6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖+

+
C1

ν#

(
µ‖(∇× H1) × H1 − (∇× H2) × H2‖6/5+

+G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T
2‖3/2

)2

;

1

4σ#
‖∇× H̄‖2 ≤ σ#

∥∥∥∥
(

1

σ(T 2)
−

1

σ(T 1)

)
∇× H2

∥∥∥∥
2

+

+σ#µ‖u1 × H1 − u2 × H2‖2 + σ#

∥∥∥∥
(

1

σ(T 1)
−

1

σ(T 2)

)
J0

∥∥∥∥
2

;

k#

2
‖∇T̄‖2 ≤

k̄

k#
‖T̄‖

6ε/(2+ε)
6 ‖∇T 2‖2

2+ε +
C1

k#
‖ū‖2

6‖∇T 2‖2
3/2, (32)

where C1, C2 are the Sobolev constants of the embeddings H1(Ω) →֒ L6(Ω)
and H1(Ω) →֒ L4(Ω), respectively. Using the Lipschitz continuity assumptions
(15)-(18), and applying Hölder and Young inequalities leads to

ν#

2
‖Dū‖2 ≤

ν̄

ν#
‖T̄‖

6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖+

+
C1

ν#

(
µ‖∇× H̄‖‖H1‖3 + µ‖∇× H2‖‖H̄‖3 + G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T

2‖3/2

)2

;

1

4(σ#)2
‖∇× H̄‖2 ≤

σ̄

(σ#)2
‖T̄‖

6ǫ/(2+ǫ)
6 (‖∇H2‖2

2+ǫ + ‖J0‖
2
2+ǫ)+

+µ(‖ū‖2
4‖H

1‖2
4 + ‖u2‖2

4‖H̄‖2
4).

Let K1, K2 and K3 be the upper bounds derived in Propositions 4, 5 and 7,
respectively, and K4 stand for the upper bound in estimate (20), namely,

K4 =
1

k#
(‖f‖ + ‖h‖ΓN ).

Next, in view of (25)-(26), we set

R1 =
1

ν#

(
µR2

2 + ‖f‖ + G#K4

)
,

where R2 is chosen such that

(
1 −

µσ#

ν#

(
µR2

2 + ‖f‖ + G#K4

) )
R2 =

σ#

σ#
‖J0‖,
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we have

ν#

2
‖Dū‖2 ≤

ν̄

ν#
‖T̄‖

6δ/(2+δ)
6 K2

3 + C2
2‖Dū‖2R1+

+
C1

ν#

(
µR2(‖∇× H̄‖ + ‖H̄‖3) + G#‖T̄‖6/5 + Ḡ‖T̄‖6K4

)2

;

1

4(σ#)2
‖∇× H̄‖2 ≤

σ̄

(σ#)2
‖T̄‖

6ǫ/(2+ǫ)
6 (K2

1 + ‖J0‖
2
2+ǫ)+

+µ(‖ū‖2
4R

2
2 + R2

1‖H̄‖2
4).

Now, sum the above two inequalities with (32) rewritten as follows as

k#

2
‖∇T̄‖2 ≤

k̄

k#
‖T̄‖

6ε/(2+ε)
6 K2

2 +
C1

k#
‖ū‖2

6K
2
4 .

As a result,
(

ν#

2
− C2R1 − CµR2

2 −
C

k#
K2

4

)
‖Dū‖2+

+

(
1

4(σ#)2
−

2Cµ2

ν#
R2

2 − CµR2
1

)
‖∇H̄‖2+

+

(
k#

2
−

C

ν#
(ν̄K2

3 + (G# + ḠK4)
2)−

−
Cσ̄

(σ#)2
(K2

1 + ‖J0‖
2
2+ǫ) −

Ck̄

k#
K2

2

)
‖∇T̄‖2 ≤ 0,

with C standing for different Sobolev constants, and the uniqueness of solution
holds under smallness assumption on the data.

5. Shape sensivity analysis

In this section we deal with the shape sensivity analysis to the model correspon-
dent to Theorem 1, when the coefficients ν, k, σ and α are assumed constants.
First, a family of mappings Tτ : R

3 → R
3 associated with a given velocity field

V (τ, x) is constructed. The evolution of geometrical domains, if the vector field
V is chosen, is governed by the real parameter τ . So we denote by Ωτ = Tτ (Ω)
the variable domain depending on two parameters, a vector field V and the real
variable τ . We call the family of perturbations Ωτ of a given initial configura-
tion Ω, and the variable τ has the meaning of time in our setting. Indeed, the
variable domains Ωτ are defined by the images of the mapping, which is given
by the system of differential equations

d

dτ
x(τ) = V (τ, x(τ)), x(0) = X,
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with the solution denoted by x(τ) = x(τ, X), τ ∈ (0, τ1), X ∈ R
3, for some

positive constant τ1. Therefore, each specific family parametrized by τ is defined
in the direction of a given vector field V , and it is denoted by Ωτ = {x ∈ R

3| x =
x(τ, X), X ∈ Ω}.

In our setting all equations defined in variable domain Ωτ can be transported
to the reference domain, which is also called the fixed domain Ω, using the
inverse transformation T −1

τ : Ωτ → Ω.
Let us assume the following additional hypotheses:

(H5) The field V is compactly supported with respect to the spatial variable x,
i.e.,

V ∈ C(0, τ1;D
2(Ω; R3)), suppV ⊂ Ω,

and it is divergence free.
(H6) In the variable domain setting, the elements

fτ ∈ L2(Ωτ ), Jτ
0 ∈ L2(Ωτ ), f τ ∈ L2(Ωτ ) and hτ ∈ L2(Γτ

N ), (33)

stand for the data in boundary value problems in Ωτ , are simply given by
restrictions to Ωτ of some functions

f ∈ H1(R3), J0 ∈ H1(R3), f ∈ H1(R3) and h ∈ H1(R3) (34)

defined in the whole space. In this way the shape derivatives of all the
data vanish, except for h, and the material derivatives are just given by
the scalar products of the gradients of the data with respect to spatial
variables with the velocity vector field, e.g., ḟ = ∇f · V , provided that all
data are given in the Sobolev spaces H1(R3).

Notice that (H5) implies the additional constraint, |Ω| = constant, this
means that for our shapes the admissible domains have the given volume.

5.1. Perturbed problem

We consider in (H5) that the velocity field V (τ, x) is divergence free, which
implies that also our u and H conserve the divergencelessness. This simplifies
the situation and we do not need to apply Bogovskii operator, since for pressure
we use the standard Rham theorem.

Definition 1 We call a perturbed problem to the model (1)-(6) in a perturbed
domain the following system of equations in Ωτ

−∇ · (νDuτ ) + (uτ · ∇)uτ + ∇pτ = µrotHτ × Hτ + fτ − G(T τ )T τ ; (35)

∇× (∇× Hτ ) = ∇× (Jτ
0 + σµuτ × Hτ ); (36)

divuτ = divHτ = 0; (37)

−∇ · (k∇T τ ) + uτ · ∇T τ = f τ ; (38)
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with the boundary conditions:

uτ = 0, Hτ · nτ = 0 on ∂Ωτ ; (39)

T τ = 0 on Γτ
D; k

∂T τ

∂nτ
+ αT τ = hτ on Γτ

N . (40)

We introduce the Hilbert spaces

Vτ = {v ∈ H1
0(Ωτ ) : div v = 0 in Ωτ}

Vτ (rot) = {v ∈ L2(Ωτ ) : rot v ∈ L2(Ωτ ),

div v = 0 in Ωτ , v · n = 0 on ∂Ωτ}

Zτ = {ξ ∈ H1(Ωτ ) : ξ = 0 on Γτ
D}

equipped with their standard inner products.

Theorem 4 Assuming (H2), (H5), (33) and (10) with the constants a and b
under the perturbed data, i.e.

a =
ν

µσ
‖Jτ

0‖

b =
ν

µσ
−

(
‖fτ‖ +

G#

k
(‖f τ‖ + ‖hτ‖ΓN )

)
,

the problem (35)-(40) has a weak solution in the following sense:
The triple (uτ ,Hτ , T τ) ∈ Vτ × Vτ (rot) × Zτ and it satisfies

ν

∫

Ωτ

Duτ : Dvτdxτ +

∫

Ωτ

Duτ : (uτ ⊗ vτ )dxτ =

=

∫

Ωτ

(
µ(∇× Hτ ) × Hτ + fτ − G(T τ )T τ

)
· vτdxτ , ∀vτ ∈ Vτ ;

∫

Ωτ

(∇× Hτ ) · (∇× wτ )dxτ = σµ

∫

Ωτ

(uτ × Hτ ) · (∇× wτ )dxτ +

+

∫

Ωτ

Jτ
0 · (∇× wτ )dxτ , ∀wτ ∈ Vτ (rot);

k

∫

Ωτ

∇T τ · ∇ητdxτ +

∫

Ωτ

uτ · ∇T τητdxτ + α

∫

Γτ
N

T τητdsτ =

=

∫

Ωτ

f τητdxτ +

∫

Γτ
N

hτητdsτ , ∀ητ ∈ Zτ .

Proof. See the proof of Theorem 1.

Theorem 5 If the assumptions of Theorem 4 are fulfilled, the solution (uτ ,Hτ ,
T τ ) in accordance to Theorem 4 is such that (Hτ , T τ ) belongs to W1,2+ǫ(Ωτ )×
W 1,2+ε(Ωτ ) for some ǫ, ε > 0. Moreover, if we assume fτ ∈ L2+δ1(Ωτ ) for
some δ1 > 0 and Jτ

0 ∈ Lq(Ωτ ) with q given as in (14), then uτ ∈ W1,2+δ(Ωτ )
for some δ > 0, and (uτ ,Hτ , T τ ) is unique under small data.

Proof. See the proof of Theorems 1 and 2.
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5.2. Transported problem

The transported solution to the fixed domain is denoted by uτ = uτ ◦ Tτ ,
Hτ = Hτ ◦Tτ , Tτ = T τ ◦Tτ with data fτ = fτ ◦Tτ , Gτ = Gτ ◦Tτ , J0τ = Jτ

0 ◦Tτ ,
fτ = f τ ◦ Tτ and hτ = hτ ◦ Tτ .

We begin by recalling the following result (see Sokolowski and Zolésio, 1992).

Proposition 8 The unit normal vector field on Γτ is given by

nτ (Tτ (X)) = (‖∇T −1
τ · n‖−1

R3 (∇T −1
τ · n)(X)

for X ∈ Γ. For any f ∈ L1(Γτ ),

∫

Γτ

fdsτ =

∫

Γ

f ◦ Tτ‖M(Tτ ) · n‖R3ds,

where M(Tτ ) = det (∇Tτ )∇T −1
τ is the cofactor matrix of the Jacobian matrix

JTτ .

We recall the following important results, which give us the answer to the
question, what happens with grad, div or curl after applying the transformation
of domain.

Proposition 9 Denote by JTτ the Jacobian of Tτ i.e. JTτ = ∂xi(Tτ )j , and for
any matrix B the transposed matrix is denoted by B⊤. The following relations
hold, with JT ⊤

τ = ∇Tτ ,

(i) (grad w) ◦ Tτ =
(
JT −⊤

τ ∇
)(

w ◦ Tτ

)
for all w ∈ H1(Ω);

(ii) (div w) ◦ Tτ = ζ(τ)−1
(
ζ(τ)JT −1

τ ∇
)
·
(
w ◦ Tτ

)
for all w ∈ H1(Ω);

(iii) (curl w) ◦ Tτ =
(
JT −⊤

τ ∇
)
×
(
w ◦ Tτ

)
for all w ∈ H1(Ω).

Remark 3 From Proposition 9, it follows that functions, which are divergence
free on Ωτ , generally lose this property when they are transported to the fixed
domain. For more details see Remark 6.2 in Hömberg and Sokolowski (2003).
This is the reason, why we assume, additionally, for simplicity, that div V = 0.

We introduce the following notations

ζ(τ) = det(JTτ ),

̺(τ) = ∇T −1
τ ,

A(τ) = ζ(τ) ̺(τ)⊤̺(τ),

B(τ) = ζ(τ)̺(τ),

ω(τ) = ‖M(Tτ ) · n‖R3 .
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Definition 2 We call the weak variational formulation of the transported prob-
lem to the model (1)-(6) in the fixed domain (relative to the perturbed problem
in accordance with Definition 1) the following system of equations

ν

∫

Ω

A(τ) : (DuτDv)dx +

∫

Ω

B(τ)∇uτ : (v ⊗ uτ )dx =

=

∫

Ω

ζ(τ)
(
µ((̺(τ)∇) × Hτ ) × Hτ + fτ − G(Tτ )Tτ

)
· vdx, ∀v ∈ V;

∫

Ω

((̺(τ)∇) × Hτ ) · ((̺(τ)∇) × w)dx =

=

∫

Ω

ζ(τ)(σµuτ × Hτ + J0τ ) · ((̺(τ)∇) × w)dx, ∀w ∈ V(rot);

k

∫

Ω

A(τ) : (∇Tτ ⊗∇η)dx +

∫

Ω

B(τ) : (uτ ⊗∇Tτ )ηdx+

+α

∫

ΓN

Tτηω(τ)ds =

∫

Ω

fτηζ(τ)dx +

∫

ΓN

hτηω(τ)ds, ∀η ∈ Z.

In particular, with vτ = vτ ◦Tτ , wτ = wτ ◦Tτ and ητ = ητ ◦Tτ , for all vτ ∈ Vτ ,
wτ ∈ Vτ (rot), and ητ ∈ Zτ .

Theorem 6 Suppose that the assumptions (H2), (H5) and (34) are fulfilled
and additionally assume that (10) holds for the constants a and b under the
transported data:

a =
ν

µσ
‖J0τ‖

b =
ν

µσ
−

(
‖fτ‖ +

G#

k
(‖fτ‖ + ‖hτ‖ΓN )

)
,

then the triple (uτ ,Hτ , Tτ ) ∈ V×V(rot)×Z is a weak solution in the sense of
Definition 2. Moreover, the solution (uτ ,Hτ , Tτ ) is such that (Hτ , Tτ) belongs
to W1,2+ǫ(Ω) × W 1,2+ε(Ω) for some ǫ, ε > 0, and if fτ ∈ L2+δ1 (Ω) for some
δ1 > 0 and J0τ ∈ Lq(Ω) with q given as in (14) then uτ ∈ W1,2+δ(Ω) for some
δ > 0. Furthermore (uτ ,Hτ , Tτ ) is unique under small data.

Proof. See the proof of Theorems 1 and 2.

As we introduce the forms

(F1) α0(τ,u,v) = ν
∫
Ω ζ(τ)(̺(τ)Du) : (̺(τ)Dv)dx = ν

∫
Ω A(τ) : (DuDv)dx

(F2) α1(τ,u,v) =
∫
Ω ζ(τ)(̺(τ)∇u) : (v ⊗ u)dx =

∫
Ω B(τ)∇u : (v ⊗ u)dx

(F3) α2(τ,H,v) = µ
∫
Ω

ζ(τ)
(
((̺(τ)∇) × H) × H

)
· vdx
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(F4) α3(τ, f , T,v) =
∫
Ω ζ(τ)

(
f − G(T)T

)
· vdx

(F5) β1(τ,H,w) =
∫
Ω
((̺(τ)∇) × H) · ((̺(τ)∇) × w) dx

(F6) β2(τ,u,H,w) = σµ
∫
Ω

ζ(τ)(u × H) · ((̺(τ)∇) × w) dx

(F7) β3(τ,J0,w) =
∫
Ω ζ(τ)J0 · ((̺(τ)∇) × w) dx

(F8) γ1(τ, T, η) = k
∫
Ω A(τ) : (∇T ⊗∇η)dx

(F9) γ2(τ,u, T, η) =
∫
Ω ζ(τ)u · (̺(τ)∇)Tηdx =

∫
Ω B(τ) : (u ⊗∇T)ηdx

(F10) γ3(τ, T, η) = α
∫
ΓN

Tηω(τ)ds

(F11) γ4(τ, f, η) =
∫
Ω

fηζ(τ)dx

(F12) γ5(τ, h, η) =
∫
ΓN

hηω(τ)ds

we can state the following corollary:

Corollary 1 Assume (H5). Let |τ | ≤ τ1 and τ1 be small enough, then there
exist real valued functions gi satisfying gi(τ) = o(τ), i = 0, ..., 11 and forms
α̃i(τ, ...), i = 0, 1, 2, 3, β̃(τ, ...), i = 1, 2, 3, and γ̃(τ, ...), i = 1, · · · , 5, such that
the following statements are valid.

(B1) For all u,v ∈ V

α0(τ,u,v) = α0(0,u,v) + τα0,τ (0,u,v) + α̃0(τ,u,v)

α0,τ (0,u,v) = ν

∫

Ω

A′(0) : (DuDv)dx

α̃0(τ,u,v) ≤ g0(τ)‖u‖1‖v‖1.
(B2) For all u,v ∈ V

α1(τ,u,v) = α1(0,u,v) + τα1,τ (0,u,v) + α̃1(τ,u,v)

α1,τ (0,u,v) =

∫

Ω

B′(0)∇u : (v ⊗ u)dx

α̃1(τ,u,v) ≤ g1(τ)‖u‖2
1‖v‖1.

(B3) For all H ∈ H1(Ω) and v ∈ V

α2(τ,H,v) = α2(0,H,v) + τα2,τ (0,H,v) + α̃2(τ,H,v)

α2,τ (0,H,v) = µ

∫

Ω

((̺′(0)∇) × H) × H · vdx

α̃2(τ,H,v) ≤ g2(τ)‖∇ × H‖‖H‖1‖v‖1.
(B4) For all f ∈ L2(Ω), T ∈ Z and v ∈ V

α3(τ, f , T,v) = α3(0, f , T,v) + α̃3(τ, f , T,v)

α̃3(τ, f , T,v) ≤ g3(τ)
(
‖f‖ + G#‖T‖

)
‖v‖.

(B5) For all H,w ∈ V(rot)

β1(τ,H,w) = β1(0,H,w) + τβ1,τ (0,H,w) + β̃1(τ,H,w)

β1,τ (0,H,w) =

∫

Ω

A′(0) : (∇× H) ⊗ (∇× w)dx

β̃1(τ,H,w) ≤ g4(τ)‖H‖1‖w‖1.
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(B6) For all u ∈ V, H ∈ V(rot), w ∈ V(rot)

β2(τ,u,H,w) = β2(0,u,H,w) + τβ2,τ (0,u,H,w) + β̃2(τ,u,H,w)

β2,τ (0,u,H,w) = σµ

∫

Ω

(u × H) · ((̺′(0)∇) × w)dx

β̃2(τ,u,H,w) ≤ g5(τ)‖u × H‖2‖w‖V(rot).
(B7) For all J0 ∈ L2(Ω), w ∈ V(rot)

β3(τ,J0,w) = β2(0,J0,w) + τβ3,τ (0,J0,w) + β̃3(τ,J0,w)

β3,τ (0,J0,w) =

∫

Ω

J0 · ((̺
′(0)∇) × w)dx

β̃3(τ,J0,w) ≤ g6(τ)‖J0‖‖∇× w‖.
(B8) For all T, η ∈ Z

γ1(τ, T, η) = γ1(0, T, η) + τγ1,τ (0, T, η) + γ̃1(τ, T, η)

γ1,τ (0, T, η) = k

∫

Ω

A′(0) : (∇T ⊗∇η)dx

γ̃1(τ, T, η) ≤ g7(τ)‖T‖1‖η‖1.
(B9) For all u ∈ V and T, η ∈ Z

γ2(τ,u, T, η) = γ2(0,u, T, η) + τγ2,τ (0,u, T, η) + γ̃2(τ,u, T, η)

γ2,τ (0,u, T, η) =

∫

Ω

B′(0) : (u ⊗∇T)ηdx

γ̃2(τ,u, T, η) ≤ g8(τ)‖u‖1‖T‖1‖η‖1.
(B10) For all T ∈ Z, η ∈ Z

γ3(τ, T, η) = γ3(0, T, η) + τγ3,τ (0, T, η) + γ̃3(τ, T, η)

γ3,τ (0, T, η) = α

∫

ΓN

Tηω′(0)ds

γ̃3(τ, T, η) ≤ g9(τ)‖T‖1‖η‖1.
(B11) For all f ∈ L2(Ω) and η ∈ Z

γ4(τ, f, η) = γ4(0, f, η) + γ̃4(τ, f, η)

γ̃4(τ, f, η) ≤ g10(τ)‖f‖‖η‖.
(B12) For all h ∈ L2(ΓN ) and η ∈ Z

γ5(τ, h, η) = γ5(0, h, η) + τγ5,τ (0, h, η) + γ̃5(τ, h, η)

γ5,τ (0, h, η) =

∫

ΓN

hηω′(0)ds

γ̃5(τ, h, η) ≤ g11(τ)‖h‖ΓN ‖η‖1.

Proof. The expressions (B1)-(B12) are consequence of the following derivatives
with respect to τ at τ = 0

ζ′(0) = div V (0) = 0, ̺′(0) = B′(0) = −∇V (0), A′(0) = −2D(V (0)),

observing that as in Section 1, D(V (0)) denotes the symmetrized part of ∇V (0),
i.e. D(V (0)) = 1

2 (∇V (0)+(∇V )⊤(0)). For the proof see Sokolowski and Zolésio
(1992), Section 2.13.
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Applying Taylor polynomials of degree one we can prove the stability results.

Proposition 10 Under the assumptions of Theorem 6, if (uτ ,Hτ , Tτ) is the
transported solution corresponding to (u,H, T ) and the following assumptions
are fulfilled
(M1) ‖fτ − f‖ ≤ C|τ |
(M2) ‖G(Tτ )Tτ − G(T )T ‖6/5 ≤ C|τ |
(M3) ‖J0τ − J0‖ ≤ C|τ |
(M4) ‖hτ − h‖ΓN ≤ C|τ |
(M5) ‖fτ − f‖ ≤ C|τ |
then we have

‖uτ − u‖1 ≤ C|τ |; (41)

‖Hτ − H‖1 ≤ C|τ |; (42)

‖Tτ − T ‖1 ≤ C|τ |, (43)

with C denoting different constants.

Proof. For τ small enough and ξi ∈ [0, τ ], i = 0, ..., 4, we can write

ζ(τ) = 1 + τζ′(ξ0),

̺(τ) = I + τ̺′(ξ1),

A(τ) = I + τA′(ξ2),

B(τ) = I + τB′(ξ3),

ω(τ) = 1 + τω′(ξ4),

where ζ(τ) ≥ cτ1
> 0 for |τ | ≤ τ1 and A, B, ̺ are positive definite for |τ | ≤ τ1.

Observing that α0 is linear with respect to the second argument, we write

α0(τ,uτ ,v) − α0(0,u,v) = α0(0,uτ−u,v)+
+τν

∫
Ω

A′(ξ2) : (DuτDv)dx.
(44)

Observe that αi, (i = 1, 2, 3), is no more linear with respect to the secondary
argument, thus we write

α1(τ,uτ ,v) − α1(0,u,v) = α1(0,uτ ,v)−α1(0,u,v)+
+τ
∫
Ω B′(ξ3)∇uτ : (v ⊗ uτ )dx;

(45)

α2(τ,Hτ ,v) − α2(0,H,v) = α2(0,Hτ ,v)−α2(0,H,v)+

+τµ
∫
Ω

(
ζ′(ξ0)(∇× Hτ ) × Hτ + ((̺′(ξ1)∇) × Hτ ) × Hτ

)
· vdx;

(46)

α3(τ, fτ , Tτ ,v) − α3(0, f , T,v) = α3(0, fτ , Tτ ,v)−

−α3(0, f , T,v) + τ
∫
Ω ζ′(ξ0)

(
fτ − G(Tτ )Tτ

)
· vdx.

(47)
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Considering that u is the particular case (τ = 0) to the perturbed uτ , it
follows that

RHS of (44) + RHS of (45) = RHS of (46) + RHS of (47).

If we set v = uτ − u and argue as in the proof of Theorem 2, we get
(ν

2
− C2

2‖u‖1

)
‖uτ − u‖2

1 ≤
C

ν

(
µ‖(∇× Hτ ) × Hτ − (∇× H) × H‖6/5

+‖fτ − f‖ + ‖G(Tτ )Tτ − G(T )T ‖6/5 + C|τ |
)2

. (48)

Now, observing that β1 and β3 are linear with respect to the second argument
we write

β1(τ,Hτ ,w) − β1(0,H,w) = β1(0,Hτ − H,w)+

+τ

∫

Ω

A′(ξ2) : (∇× Hτ ⊗∇× w)dx;

β3(τ,J0τ ,w) − β3(0,J0,w) = β3(0,J0τ − J0,w)+

+τ

∫

Ω

B′(ξ3) : (J0τ ⊗∇× w)dx,

while the remaining term reads

β2(τ,uτ ,Hτ ,w) − β2(0,u,H,w) = β2(0,uτ ,Hτ ,w)−

−β2(0,u,H,w) + τσµ

∫

Ω

B′(ξ3) :
(
(uτ × Hτ ) ⊗∇× w

)
dx.

Considering that H is the particular case (τ = 0) to the perturbed Hτ , we set
w = Hτ − H to get the following estimate

‖Hτ − H‖1 ≤ ‖J0τ − J0‖ + σµ‖uτ × Hτ − u × H‖ + C|τ |. (49)

Next
(N1) γ1(τ, Tτ , η)− γ1(0, T, η) = γ1(0, Tτ − T, η) + τk

∫
Ω A′(ξ2) : (∇Tτ ⊗∇η)dx;

(N2) γ2(τ,uτ , Tτ , η) − γ2(0,u, T, η) = γ2(0,uτ , Tτ , η) − γ2(0,u, T, η)
+ τ

∫
Ω

B′(ξ3) : (uτ ⊗∇Tτ )ηdx;
(N3) γ3(τ, Tτ , η) − γ3(0, T, η) = γ3(0, Tτ − T, η) + τα

∫
ΓN

Tτηω′(ξ4)ds;

(N4) γ4(τ, fτ , η) − γ4(0, f, η) = γ4(0, fτ − f, η) + τ
∫
Ω fτηζ′(ξ0)dx;

(N5) γ5(τ, hτ , η) − γ5(0, h, η) = γ5(0, hτ − h, η) + τ
∫
ΓN

hτηω′(ξ4)ds.

We set η = Tτ − T to get

k

2
‖∇(Tτ − T )‖2 + α‖Tτ − T ‖2

ΓN
≤

C

k

(
‖(uτ − u) · ∇T ‖6/5+

+‖fτ − f‖ + ‖hτ − h‖ΓN + C|τ |
)2

. (50)

Now we add the three inequalities (48),(49),(50) and from assumptions (M1)
-(M5), we get (41)-(43).
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Finally, we are in the position to formulate the existence theorem for the
material derivative of our problem.

Definition 3 The following limit in the function space norm H

ḟ = lim
τ→0

f(τ) − f(0)

τ

is called the strong material derivative ḟ of f in H.

Remark 4 The shape derivative u′ of u(τ) in the direction of the vector field V
is defined by the formula u′ = u̇−∇u · V provided that there exists the material
derivative u̇.

We recall that A(0) = B(0) = ̺(0) = I , ζ(0) = ω(0) = 1, ζ̇ = ζ′(0) = 0,
˙̺ = ̺′(0), Ȧ = A′(0), Ḃ = B′(0) and ω̇ = ω′(0), and we state the following
result on the existence of material derivatives.

Theorem 7 Assume (H2), (H5), ḟ ∈ L2(Ω), J̇ ∈ L2(Ω), ḟ ∈ L2(Ω), ḣ ∈
L2(ΓN ) and moreover (10) holds with constants a and b given as

a =
ν

µσ
‖J̇0‖

b =
ν

µσ
−

(
‖ḟ‖ +

Ġ#

k
(‖ḟ‖ + ‖ḣ‖ΓN )

)
,

then the triple (u̇, Ḣ, Ṫ ) ∈ V × V(rot) × Z satisfies

ν

∫

Ω

(ȦDu + Du̇) : Dvdx +

∫

Ω

(Ḃ∇u + ∇u̇) : (v ⊗ u)dx +

∫

Ω

∇u : (v ⊗ u̇)dx

= µ

∫

Ω

(
(( ˙̺∇) × H) × H + (∇× Ḣ) × H + (∇× H) × Ḣ

)
· vdx+

+

∫

Ω

(
ḟ − Ġ(T)T − G(T )Ṫ

)
· vdx, ∀v ∈ V;

∫

Ω

(( ˙̺∇) × H + ∇× Ḣ) · (∇× w) dx +

∫

Ω

(∇× H) · (( ˙̺∇) × w) dx =

= σµ

∫

Ω

(
u̇× H+u× Ḣ

)
· (∇× w)dx + σµ

∫

Ω

(u × H) · (( ˙̺∇) × w)dx+

+

∫

Ω

J̇0 · (∇× w)dx +

∫

Ω

J0 · ( ˙̺∇) × wdx, ∀w ∈ V(rot);

k

∫

Ω

(Ȧ∇T + ∇Ṫ ) · ∇ηdx +

∫

Ω

(Ḃ : u⊗∇T + u̇ · ∇T + u · ∇Ṫ )ηdx

+α

∫

ΓN

(Ṫ + T ω̇)ηds =

∫

Ω

ḟ ηdx +

∫

ΓN

(ḣ + hω̇)ηds, ∀η ∈ Z;
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and the following estimates

‖Ṫ‖1 ≤ C
(
(1 + ‖u‖1 + ‖u̇‖1)‖T ‖1 + ‖ḟ‖ + ‖ḣ‖ΓN + ‖h‖ΓN

)
;

‖u̇‖1 ≤ C
(
(‖Ḣ‖1 + ‖H‖1)‖H‖1 + ‖ḟ‖ + Ġ#‖T ‖1 + G#‖Ṫ‖1 + ‖u‖1

)
;

‖Ḣ‖1 ≤ C
(
‖H‖1 + µσ(‖u̇× H‖ + ‖u× Ḣ‖ + ‖u× H‖) + ‖J̇0‖ + ‖J0‖

)
.

Proof. We subtract the perturbed solution and the transported solution and we
pass to the limit with τ tending to 0 (for details, see Consiglieri, Nečasová and
Sokolowski, 2008, for analogous proof).

6. Concluding remarks

In order to overcome the problem of losing divergence free behavior we can
apply the Piola transform, which is given by the following mapping:

PI : V → Vτ ;

v 7→ (JTτ · v) ◦ T −1
τ .

Denoting
ûτ := (JTτ )−1 · (uτ ◦ Tτ ) defined on Ω

and
uτ = PI(ûτ ) is defined on Ωτ ,

the mapping PI can be applied on velocity field and also on magnetic field to
conserve the divergencelessness and that u · n = 0 and H · n = 0. By the same
method as in Section 5 we get the stability and material derivative for û and
then we just apply the inverse mapping to conclude the results in Consiglieri,
Nečasová and Sokolowski (2008).

Remark 5 In Consiglieri, Nečasová and Sokolowski (2008) we get the stability
depending not only on the data but also on assumption of behavior of H, but it
is not the case in our present problem.
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