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1. Introduction

In this paper we show that metric regularity is a sufficient condition for conver-
gence of iterative methods for solving generalized equations. We adopt a general
model of two-point iteration, which covers, in particular, inexact versions of the
Newton method and the proximal point method. Our analysis is based on es-
timates for stability of the metric regularity under changes of the mapping and
the reference point. As an application, we consider discrete approximations in
optimal control.

Throughout, X and Y are Banach spaces. The notation g : X → Y means
that g is a function (a single-valued mapping), while G : X →→ Y denotes a
general mapping, which may be set-valued. The graph of G is the set gphG =
{

(x, y) ∈ X×Y
∣

∣ y ∈ G(x)
}

, and the inverse of G is the mapping y 7→ G−1(y) =
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{

x
∣

∣ y ∈ G(x)
}

. All norms are denoted by ‖ · ‖ and the closed ball centered at
x with radius r is IBr(x). The distance from a point x to a set C is denoted by
d(x, C), while the excess from a set C to a set D is e(C, D) = supy∈C d(x, D).
The definition of metric regularity of a general set-valued mapping is as follows:

Definition 1 A mapping G : X →→ Y is said to be metrically regular at x̄ for
ȳ when ȳ ∈ G(x̄) and there is a constant κ ≥ 0 together with neighborhoods U
of x̄ and V of ȳ such that

d(x, G−1(y)) ≤ κd(y, G(x)) for all (x, y) ∈ U × V.

The infimum of κ over all such combinations of κ, U and V is called the regularity
modulus for G at x̄ for ȳ and is denoted reg(G; x̄ | ȳ).

The metric regularity property has come into play in recent years in various
forms in the context of generalized equations, that are relations of the form

f(x) + F (x) ∋ 0, (1)

for a function f and a set-valued mapping F . The classical case of an equation
corresponds to having F (x) ≡ 0, whereas by taking F (x) ≡ −C for a fixed set
C ⊂ Y one gets various (inequality and equality) constraint systems. When Y
is the dual X∗ of X and F is the normal cone mapping NC , associated with a
closed, convex set C ⊂ X ; that is, NC(x) is empty if x 6∈ C, while

NC(x) = {y ∈ X∗ : y(z − x) ≤ 0 for all z ∈ C} for x ∈ C,

then (1) becomes a variational inequality.
When a mapping G : X →→ Y is not only metrically regular at x̄ for ȳ but also

its inverse G−1 localized around a point of its graph is single valued, then the
mapping G is said to be strongly metrically regular at x̄ for ȳ. In this context it
is useful to have the concept of a graphical localization of a mapping G : X →→ Y
at x̄ for ȳ, where x̄ ∈ G(ȳ). By this, we mean a mapping with its graph in
X × Y having the form (U × V ) ∩ gphG for some neighborhoods U of x̄ and
V of ȳ. It is well known that when a mapping G is metrically regular at x̄ for
ȳ and, moreover, its inverse G−1 has localization at ȳ for x̄, which is not multi
valued, then G is strongly regular at x̄ for ȳ, which amounts to the existence of
neighborhoods U of x̄ and V of ȳ such that the mapping V ∋ y 7→ G−1(y) ∩ U
is a Lipschitz continuous function with Lipschitz modulus equal to reg(G; x̄ | ȳ).

In Section 2 we focus on the “stability" of the property of metric regularity
of the mapping f + F appearing in (1) in the case when the function f is
replaced by an “approximation" of f at a point near the reference point. The
roots of the result presented go back to the Banach open mapping theorem
and its extensions due to Lyusternik, Graves, Milyutin, Ioffe and Robinson, to
name a few; for a comprehensive treatment of these developments, together with
detailed historical remarks, see the recent book by Dontchev and Rockafellar
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(2009). We show that the same type of stability also holds for the property of
strong metric regularity.

The central results of this paper are presented in Section 3, where we focus
on a general two-point iteration, which covers inexact versions of the classical
Newton’s method as well as the proximal point method, but also reaches far
beyond, both in general ideas and possible applications. As a sample result,
we show that metric regularity of the underlaying mapping alone implies the
existence of a linearly convergent sequence of iterates, provided that the quantity
measuring the inexactness is linearly convergent to zero. To our knowledge,
inexact iteration methods have not been considered in such generality in the
literature.

Section 4 gives applications of the concepts and results presented to dis-
crete approximation in optimal control. For a standard optimal problem we
show that metric regularity implies an a priori estimate for the solution of the
discretized optimality system. Also, we apply a result from Section 3 to show
that the inexact Newton’s method associated with the discretization is linearly
convergent. Finally, we pose some open problem.

2. Stability of metric regularity

Our first result is a version of Theorem 5E.1 in Dontchev and Rockafellar (2009),
in which both the mapping and the reference point are perturbed.

Theorem 1 Consider a continuous function f : X → Y and a mapping F :
X →→ Y with closed graph and suppose that f +F is metrically regular at x̄ for 0
with constant κ and neighborhoods IBa(x̄) and IBb(0) for some positive scalars
a and b. Let µ > 0 and κ′ be such that κµ < 1 and κ′ > κ/(1 − κµ). Then for
every positive constants α and β satisfying

2α + 5κ′β ≤ a, µα + 6β ≤ b and α ≤ 2κ′β, (2)

every function f̃ : X → Y , and every x̃ ∈ IBα(x̄) and ỹ ∈ IBβ(0) with

ỹ ∈ f̃(x̃) + F (x̃) and ‖f̃(x̃) − f(x̃)‖ ≤ β, (3)

and

‖[f̃(x′)−f(x′)]−[f̃(x)−f(x)]‖ ≤ µ‖x′−x‖ for every x′, x ∈ IBα+5κ′β(x̃), (4)

we have that the mapping f̃ + F is metrically regular at x̃ for ỹ with constant
κ′ and neighborhoods IBα(x̃) and IBβ(ỹ).

The assumptions (3) and (4) describe the way the function f̃ approximates
f so that the “approximate" mapping f̃ + F is metrically regular. We use here
approximations that have specific bounds on the approximation error, which we
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need for the analysis in the next section, where the perturbed function f̃ and
the reference point (x̃, ỹ) change from iteration to iteration. Theorem 3, which
comes further on is the same type of result, but for the strong metric regularity,
extending Robinson’s theorem (see Robinson 1980). Although these theorems
are versions of known results, they have never been stated in the literature in
the form given here; therefore, for completeness we supply them with proofs.

In the proof of Theorem 1 we employ the following result from Dontchev
and Hager (1994):

Theorem 2 Let (X, ρ) be a complete metric space, and consider a set-valued
mapping Φ : X →→ X, a point x̄ ∈ X, and positive scalars r and θ such that
θ < 1, the set gphΦ ∩ (IBr(x̄) × IBr(x̄)) is closed and the following conditions
hold:

(i) d(x̄, Φ(x̄)) < r(1 − θ);
(ii) e(Φ(u) ∩ IBr(x̄), Φ(v)) ≤ θρ(u, v) for all u, v ∈ IBr(x̄).

Then there exists x ∈ IBr(x̄) such that x ∈ Φ(x).

If Φ is assumed to be a function on X , then Theorem 2 follows from the
standard contraction mapping principle, see, e.g., Dontchev and Rockafellar
(2009), Theorem 1A.2 and around, in which case the inequality in (i) does not
have to be sharp and θ in (ii) can be zero.

We will now supply Theorem 1 with a proof.

Proof. By the definition of metric regularity, the mapping f + F satisfies

d(x, (f +F )−1(y)) ≤ κd(y, (f +F )(x)) for every (x, y) ∈ IBa(x̄)×IBb(0). (5)

Choose 0 < µ < 1/κ and κ′ > κ(1−κµ) and then the constants α and β so that
the inequalities in (2) hold. Pick a function f̃ : X → Y and points x̃ ∈ IBα(x̄),
ỹ ∈ IBβ(0) that satisfy (3) and (4). Let x ∈ IBα(x̃) and y ∈ IBβ(ỹ). We will
first show that

d(x, (f̃ + F )−1(y)) ≤ κ′‖y − y′‖ for every y′ ∈ (f̃(x) + F (x))∩ IB4β(ỹ). (6)

Choose y′ ∈ (f̃ + F )(x) ∩ IB4β(ỹ). If y′ = y, then x ∈ (f̃ + F )−1(y), and hence
(6) holds trivially. Suppose y′ 6= y and let u ∈ IBα(x̃). Using (3) and (4) and
then the second inequality in (2), we have

‖ − f̃(u) + f(u) + y′‖ ≤ ‖y′ − ỹ‖ + ‖ỹ‖ + ‖ − f̃(u) + f(u) + f̃(x̃) − f(x̃)‖

+ ‖f̃(x̃) − f(x̃)‖ ≤ 4β + β + µ‖u − x̃‖

+ β ≤ 6β + µα ≤ b.

The same estimate holds, of course, with y′ replaced by y; thus, both −f̃(u) +
f(u) + y′ and −f̃(u) + f(u) + y are in IBb(0) whenever u ∈ IBα(x̃). Consider
the mapping

Φ : u 7→ (f + F )−1(−f̃(u) + f(u) + y) for u ∈ IBα(x̃). (7)
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Denote r := κ′‖y − y′‖ and θ := κµ. Then, r ≤ 5κ′β and hence, from (2), for
any v ∈ IBr(x) we have

‖v − x̃‖ ≤ ‖v − x‖ + ‖x − x̃‖ ≤ 5κ′β + α

and

‖v − x̄‖ ≤ ‖v − x̃‖ + ‖x̃ − x̄‖ ≤ 5κ′β + 2α ≤ a.

Thus, IBr(x) ⊂ IB5κ′β+α(x̃) ⊂ IBa(x̄). By (4) and the assumed continuity of

f , the function f̃ is continuous on IBr(x). Then, by the continuity of f , f̃ and
the closedness of gphF , the set (gph Φ) ∩ (IBr(x) × IBr(x)) is closed. Since
x ∈ (f + F )−1(−f̃(x) + f(x) + y′) ∩ IBa(x̄), utilizing (5) we obtain

d(x, Φ(x)) = d(x, (f + F )−1(−f̃(x) + f(x) + y))

≤ κd(−f̃(x) + f(x) + y, (f + F )(x))

≤ κ‖ − f̃(x) + f(x) + y − (y′ − f̃(x) + f(x))‖ = κ‖y − y′‖

< κ′‖y − y′‖(1 − κµ) = r(1 − θ).

Moreover, from (5) again we get that for any u, v ∈ IBr(x),

e(Φ(u) ∩ IBr(x), Φ(v)) ≤

sup
z∈(f+F )−1(−f̃(u)+f(u)+y)∩IBa(x̄)

d(z, (f + F )−1(−f̃(v) + f(v) + y))

≤ sup
z∈(f+F )−1(−f̃(u)+f(u)+y)∩IBa(x̄)

κd(−f̃(v) + f(v) + y, f(z) + F (z))

≤ κ‖ − f̃(u) + f(u) − [−f̃(v) + f(v)]‖ ≤ θ‖u − v‖.

Theorem 2 then yields the existence of a point x̂ ∈ Φ(x̂) ∩ IBr(x); that is,

y ∈ f̃(x̂) + F (x̂) and ‖x̂ − x‖ ≤ κ′‖y − y′‖.

Since x̂ ∈ (f̃ + F )−1(y) ∩ IBr(x), we obtain (6).
Now we are ready to prove the desired inequality

d(x, (f̃+F )−1(y)) ≤ κ′d(y, f̃(x)+F (x)) for every x ∈ IBα(x̃), y ∈ IBβ(ỹ). (8)

First, note that if f̃(x) + F (x) = ∅, then (8) holds automatically since the right
hand side is +∞. Choose ε > 0 and any w ∈ f̃(x) + F (x) such that

‖w − y‖ ≤ d(y, f̃(x) + F (x)) + ε.

If w ∈ IB4β(ỹ), then from (6) with y′ = w we have that

d(x, (f̃ + F )−1(y)) ≤ κ′‖w − y‖ ≤ κ′d(y, f̃(x) + F (x)) + κ′ε,

and since the left hand side of this inequality does not depend on ε, we obtain
(8). If w /∈ IB4β(ỹ), then

‖w − y‖ ≥ ‖w − ỹ‖ − ‖y − ỹ‖ ≥ 3β.
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On the other hand, from (6) applied for x = x̃, y′ = ỹ, and then from the last
inequality in (2), we obtain

d(x, (f̃ + F )−1(y)) ≤ α + d(x̃, (f̃ + F )−1(y)) ≤ α + κ′‖y − ỹ‖

≤ α + κ′β ≤ 3κ′β ≤ κ′‖w − y‖

≤ κ′d(y, f̃(x) + F (x)) + κ′ε.

This yields (8) again and we are done.

The kind of result stated in Theorem 1 can be extended to hold for strong
metric regularity, that is, in the case when (f + F )−1 is locally a Lipschitz con-
tinuous function around the reference point. This result, that we present next,
can be extracted from combining proofs presented in Dontchev and Rockafellar
(2009), where the reader can find more about the implicit function theorem
paradigm; its direct proof echoes the proof of Theorem 1 in that it uses the
standard contraction mapping principle in place of Theorem 2.

Theorem 3 For a function f : X → Y and a mapping F : X →→ Y with
0 ∈ f(x̄)+F (x̄), suppose that y 7→ (f+F )−1(y)∩IBa(x̄) is a Lipschitz continuous
function on IBb(0) with Lipschitz constant κ for positive scalars a and b. Let
µ > 0 and κ′ be such that κµ < 1 and κ′ ≥ κ/(1− κµ). Then, for every positive
constants α and β satisfying

2α ≤ a, µα + 3β ≤ b and κ′β ≤ α, (9)

for every function f̃ : X → Y , and every x̃ ∈ IBα(x̄) and ỹ ∈ IBβ(0) satisfying

ỹ ∈ f̃(x̃) + F (x̃) and ‖f̃(x̃) − f(x̃)‖ ≤ β, (10)

and

‖[f̃(x′)−f(x′)]− [f̃(x)−f(x)]‖ ≤ µ‖x′−x‖ for every x′, x ∈ IBα(x̃), (11)

we have that the mapping y 7→ (f̃ + F )−1(y) ∩ IBα(x̃) is a Lipschitz continuous
function on IBβ(ỹ) with Lipschitz constant κ′, that is, f̃+F is strongly metrically
regular at x̃ for ỹ with respective constant and neighborhoods.

Proof. Pick µ, κ′ as required and then α, β to satisfy (9), then choose f̃ and
(x̃, ỹ) that satisfy (10) and (11). First, for any y ∈ IBβ(ỹ) and any u ∈ IBα(x̃),
noting that IBα(x̃) ⊂ IBa(x̄) by (9), we have from (10) and (11)

‖ − f̃(u) + f(u) + y‖ ≤ ‖y − ỹ‖ + ‖ỹ‖ + ‖ − f̃(u) + f(u) + f̃(x̃) − f(x̃)‖

+ ‖f̃(x̃) − f(x̃)‖

≤ β + β + µ‖u − x̃‖ + β ≤ µα + 3β ≤ b.

By assumption, y 7→ s(y) := (f + F )−1(y) ∩ IBa(x̄) is a Lipschitz continuous
function on IBb(0) with Lipschitz constant κ. Fix y ∈ IBβ(ỹ) and consider
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the function Φ(x) = s(−f̃(x) + f(x) + y) on IBα(x̃). Observing that x̃ =
s(−f̃(x̃) + f(x̃) + ỹ), using (10) and (11), and taking into account (9), for
θ = κµ we get

‖x̃ − Φ(x̃)‖ = ‖s(−f̃(x̃) + f(x̃) + ỹ) − s(−f̃(x̃) + f(x̃) + y)‖

≤ κ‖ỹ − y‖ ≤ κβ ≤ κ′β(1 − κµ) ≤ α(1 − θ).

Furthermore, for any u, v ∈ IBα(x̃), from (11),

‖Φ(u) − Φ(v)‖ = ‖s(−f̃(u) + f(u) + y) − s(−f̃(v) + f(v) + y)‖

≤ κ‖ − f̃(u) + f(u) − [f̃(v) + f(v)]‖ ≤ θ‖u − v‖.

Hence, by the standard contraction mapping principle, there exists a unique
fixed point x̂ = Φ(x̂) in IBα(x̃). Thus, the mapping y 7→ s̃(y) := (f̃ + F )−1(y)∩
IBα(x̃) is a function defined on IBβ(ỹ). Let y, y′ ∈ IBβ(ỹ). Utilizing the equality

s̃(y) = s(−f̃(s̃(y)) + f(s̃(y)) + y) we obtain

‖s̃(y) − s̃(y′)‖ = ‖s(−f̃(s̃(y)) + f(s̃(y)) + y) − s(−f̃(s̃(y′)) + f(s̃(y′)) + y′)

≤ κ‖ − f̃(s̃(y)) + f(s̃(y)) − [−f̃(s̃(y′)) + f(s̃(y′))] + κ‖y − y′‖

≤ κµ‖s̃(y) − s̃(y′)‖ + κ‖y − y′‖.

Hence

‖s̃(y) − s̃(y′)‖ ≤ κ′‖y − y′‖.

This is the desired result: the mapping y 7→ s̃(y) := (f̃ + F )−1 ∩ IBα(x̃) is a
Lipschitz continuous function on IBβ(ỹ) with Lipschitz constant κ′.

Note that, in contrast to Theorem 1, in Theorem 3 we can choose κ′ equal
to κ/(1 − κµ). Also note that in the latter theorem we do not need to assume
continuity of f and closedness of the graph of F .

3. Convergence of inexact two-point iterations

In this section we consider the following general two-point iterative process for
solving the generalized equation (1): Given sequences of functions rk : X → Y
and Ak : X × X → Y, and an initial point x0, generate a sequence {xk}

∞
k=0

iteratively by taking xk+1 to be a solution to the auxiliary generalized equation

rk(xk) + Ak(xk+1, xk) + F (xk+1) ∋ 0 for k = 0, 1, . . . . (12)

Here Ak is an approximation of the function f in (1) and the term rk represents
the error (inexactness) in computations. In this section we give conditions on
Ak and rk that ensure the existence of a sequence {xk} generated by the process
(12) which converges to a solution x̄ of the generalized equation (1), provided
that the mapping f + F is metrically regular at x̄ for 0. If f + F is strongly
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metrically regular, then, under these conditions, there is a unique such sequence
{xk}.

Specific choices of the sequence of mappings Ak lead to known computational
methods for solving (1). Under the assumption that f is differentiable with
derivative mapping Df , if we take Ak(x, u) = f(u)+Df(u)(x−u) and rk = 0 for
all k, the iteration (12) becomes the Newton method applied to the generalized
equation:

f(xk) + Df(xk)(xk+1 − xk) + F (xk+1) ∋ 0, for k = 0, 1, . . . , (13)

If we add the term rk to the left hand side of this inclusion, we obtain an inexact
version of the method, see Kelley (2003) for background. There are various ways
to choose rk, but we shall not go into this here. Another inexact version has
Ak(x, v) = f(v) + ∆kf(v)(x− v) where ∆kf is an approximation of the deriva-
tive mapping Df . The iteration (13) reduces to the standard Newton method
for solving the nonlinear equation f(x) = 0 when F is the zero mapping. In the
case when (1) represents the optimality systems for a nonlinear programming
problem, the iteration (13) becomes the popular sequential quadratic program-
ming (SQP) algorithm for optimization. See Robinson (1994) for a predecessor
to the general model of two-point iteration process (12).

If we choose Ak(x, v) = λk(x−v)+f(x) in (12) for some sequence of positive
numbers λk, we obtain an inexact proximal point method :

rk(xk) + λk(xk+1 − xk) + f(xk+1) + F (xk+1) ∋ 0, for k = 0, 1, . . . . (14)

This method has received a lot of attention recently, in particular in relation to
monotone mappings and optimization problems.

Our first result establishes conditions for the existence of a sequence {xk}
generated by the iterative process (12) that is linearly convergent to x̄; specifi-
cally, there exists a constant γ ∈ (0, 1) such that for k = 0, 1, ...,

‖xk+1 − x̄‖ ≤ γ‖xk − x̄‖.

Theorem 4 Let the mapping f + F be metrically regular at x̄ for 0, let the
non-negative numbers ε and µ satisfy

ε + µ <
1

reg(f + F ; x̄ |0)
(15)

and let V be a neighborhood of x̄. Then there exists a neighborhood O of x̄ such
that for any sequences of mappings rk : X → Y and Ak : X × X → Y with the
properties that for all k = 0, 1, . . .

‖f(x)−Ak(x, v)−[f(x′)−Ak(x′, v)]‖ ≤ µ‖x−x′‖ for every x, x′, v ∈ V (16)

and

‖rk(v) + Ak(x̄, v) − f(x̄)‖ ≤ ε‖v − x̄‖ for every v ∈ V, (17)
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and for any starting point x0 ∈ O, there exists a sequence {xk} generated by the
procedure (12) and it converges linearly to x̄. In addition, if f + F is strongly
metrically regular at x̄ for 0, then the procedure (12) generates a unique sequence
{xk} in O.

Proof. Choose κ > reg(f + F ; x̄|0) such that, by (15),

(ε + µ)κ < 1. (18)

Let a and b be positive numbers such that f + F is metrically regular at x̄ for
0 with constant κ and neighborhoods IBa(x̄) and IBb(0). Taking a smaller a, if
necessary, we may assume that IBa(x̄) ⊂ V . Notice that in the case of a strongly
metrically regular f +F (as in the last claim of the theorem) the constants a and
b have to be chosen such that the mapping y 7→ (f + F )−1(y)∩ IBa(x̄) is single-
valued and Lipschitz continuous on IBb(0) with Lipschitz constant κ. Then a
can again be decreased, if necessary, so that IBa(x̄) ⊂ V , but also b has to be
decreased (so that κb ≤ a holds) in order to ensure that (f + F )−1(y) ∩ IBa(x̄)
is still single-valued in IBb(0). Let κ′ satisfy

εκ′ < 1, κ′ >
κ

1 − κµ
.

Such a κ′ exists since (εκ)/(1− κµ) < 1 due to κµ < 1 and (18). Choose ε′ > ε
such that ε′κ′ < 1. Let α and β be chosen so that the conditions (2) hold. Then
choose δ > 0 such that

δ ≤ α and εδ ≤ β. (19)

Finally, set O = IBδ(x̄).
Let rk and Ak satisfy (16) and (17). Let x0 be an arbitrary point in O

and assume that xk ∈ O has been already defined for some k ≥ 0. If xk = x̄
then we set xk+1 = x̄, which satisfies (12) according to (17) applied for v = x̄
and there is nothing more to prove. Let xk 6= x̄. We apply Theorem 1 with
f̃(x) = rk(xk) + Ak(x, xk), x̃ = x̄, ỹ = rk(xk)+ Ak(x̄, xk)− f(x̄) = f̃(x̄)− f(x̄).
According to (17) and the choice of δ in (19), we have

‖ỹ‖ = ‖f̃(x̃)−f(x̃)‖ = ‖rk(xk)+Ak(x̄, xk)−f(x̄)‖ ≤ ε‖xk−x̄‖ ≤ εδ ≤ β, (20)

and hence the condition (3) in Theorem 1 holds. Further, the condition (4) in
Theorem 1 is implied by (16) because IBα+5κ′β ⊂ IBa(x̄) ⊂ V , according to the
first inequality in (2).

Theorem 1 then yields that the mapping x 7→ rk(xk) + Ak(x, xk) + F (x) is
metrically regular at x̄ for ỹ with constant κ′ and neighborhoods IBα(x̄) and
IBβ(ỹ). In particular, since 0 ∈ IBβ(ỹ) according to (20), using (17) we obtain

d
(

x̄, (rk(·) + Ak(·, xk) + F (·))−1(0)
)

≤ κ′d (0, rk(xk) + Ak(x̄, xk) + F (x̄))

≤ κ′‖rk(xk) + Ak(x̄, xk) − f(x̄)‖

≤ κ′ε‖xk − x̄‖ < κ′ε′‖xk − x̄‖.
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Hence, there exists xk+1 ∈ (rk(xk) + Ak(·, xk) + F (·))−1(0), that is, satisfying
the iteration (12), which is such that

‖xk+1 − x̄‖ ≤ κ′ε′‖xk − x̄‖. (21)

In particular, this implies that xk+1 ∈ O, due to κ′ε′ < 1. Thus, the sequence
xk ∈ O is well defined by induction and linearly convergent due to (21). If the
mapping f + F is strongly metrically regular, we apply Theorem 3 instead of
Theorem 1, where α and β now satisfy (9), obtaining that xk+1 is the only point
in O satisfying (12) and (21).

Now we will consider the iteration process (12) under somewhat weaker
assumptions for the error term rk than in (17). In particular, rk(x̄) need not be
zero as implied by (17), provided Ak(x̄, x̄) = f(x̄).

Theorem 5 Let the mapping f + F be metrically regular at x̄ for 0, let ε and
µ be non-negative numbers satisfying (15), and let V be a neighborhood of x̄.
Then there exist δ > 0, ρ ∈ (0, 1) and θ > 0, such that for any xk ∈ IBδ(x̄) and
any functions rk : X → Y and Ak : X × X → Y that satisfy the inequalities

‖ [Ak(x′, xk)−f(x′)]−[Ak(x, xk)−f(x)] ‖ ≤ µ‖x−x′‖ for every x, x′ ∈ V, (22)

and

‖Ak(x̄, xk) − f(x̄)‖ ≤ ε‖xk − x̄‖, ‖rk(xk)‖ ≤ θ, (23)

there exists xk+1 ∈ IBδ(x̄) solving (12) and such that

‖xk+1−x̄‖ ≤ ρ‖xk−x̄‖+C‖rk(xk)‖ with C =
2 reg(f + F ; x̄ |0)

1 − µ reg(f + F ; x̄ |0)
. (24)

If f + F is strongly metrically regular, then the solution xk+1 of (12) is unique
in IBδ(x̄).

Proof. Choose a, b, κ, κ′ and ε′ as in the beginning of the proof of Theorem 4.
Since κ can be taken arbitrarily close to reg(f + F ; x̄ |0) we may assume also
that

κ′ <
2κ̄

1 − µκ̄
= C with κ̄ = reg(f + F ; x̄ |0). (25)

Let α and β be chosen so that the inequalities in (2) hold. Choose δ > 0 so that
(19) holds and moreover

εδ < β. (26)

Finally, set ρ := ε′κ′ < 1 and specify θ > 0 such that

θ ≤ β − εδ and Cθ ≤ δ(1 − ρ). (27)
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Choose xk ∈ IBδ(x̄), rk and Ak satisfying (22) and (23). We apply Theo-
rem 1 with f̃(x) = rk(xk) + Ak(x, xk), x̃ = x̄, ỹ = rk(xk) + Ak(x̄, xk) − f(x̄).
Abbreviating rk(xk) = rk we obviously have

ỹ = rk + Ak(x̄, xk) − f(x̄) = f̃(x̄) − f(x̄) ∈ f̃(x̄) + F (x̄),

and then, using (23),

‖f̃(x̄) − f(x̄)‖ = ‖ỹ‖ = ‖rk + Ak(x̄, xk) − f(x̄)‖

≤ ‖rk‖ + ε‖xk − x̄‖ ≤ θ + εδ ≤ β,

where we use (26) and the first inequality in (27). Thus, (3) holds. The condition
(4) follows from (22) since IBα+5κ′β(x̄) ⊂ IBa(x̄) ⊂ V , due to the choice of a in
the beginning of the proof of Theorem 4, and the first inequality in (2). Then,
according to Theorem 1, we have

d(x̄, (f̃ + F )−1(0)) ≤ κ′d(0, f̃(x̄) + F (x̄)) ≤ κ′‖ỹ‖ < κ′‖rk‖ + κ′ε′‖xk − x̄‖.

Notice that the last inequality is strict only if xk 6= x̄ or rk 6= 0, which we assume
for the moment. Hence, there exists xk+1 = (f̃ + F )−1(0), that is, satisfying
(12), such that

‖xk+1 − x̄‖ ≤ κ′‖ỹ‖ ≤ κ′‖rk‖ + κ′ε′‖xk − x̄‖ ≤ ρ‖xk − x̄‖ + C‖rk‖. (28)

In the case xk = x̄ and rk(x̄) = 0 we may choose xk+1 = x̄, which solves (12) and
obviously satisfies the above inequality. It remains to note that xk+1 ∈ IBδ(x̄)
due to (28) and the second inequality in (27).

In the case of strong metric regularity of f + F we use Theorem 3 in place
of Theorem 1, as in the end of the proof of Theorem 4, to show that xk+1 is
unique in ∈ IBδ(x̄).

The proof of Theorem 5 shows that one can take ρ to be any number from
the non-degenerate interval (εκ̄/(1 − µκ̄), 1). The number δ is independent of
the choice of ρ, but θ may depend on it.

The essence of the above theorem is that if at any step k of the iterative
process (12) the approximation mapping Ak is chosen in such a way that it
sufficiently well approximates f (in the sense of (22) and the first inequality in
(23)) and the respective error term rk(x) is sufficiently small for the current
iteration xk (i.e. ‖rk(xk)‖ ≤ θ), then a next iteration xk+1 exists (and is unique
in the case of strong metric regularity), satisfying (24). In particular, if the
initial x0 is sufficiently close to x̄, then the iterative process can be infinitely
continued, generating a sequence {xk}. By a standard induction argument, this
sequence satisfies the error estimation

‖xk − x̄‖ ≤ ρk‖x0 − x̄‖ + C

k−1
∑

i=0

ρi‖rk−i(xk−i)‖.
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In particular, if rk(xk) converges linearly to zero, then the sequence {xk} con-
verges to x̄ linearly as well. If f +F is strongly metrically regular, then each xk

is unique in IBδ(x̄). To verify the first claim we observe that if ‖rk(xk)‖ ≤ cγk

for some constants γ ∈ (0, 1) and c and all k, then ‖rk(xk)‖ ≤ c′γ′k/k2 for some
γ′ ∈ (γ, 1) and c′. Hence, ‖xk − x̄‖ can be estimated by the expression

Cc′(max{ρ, γ′})k
∞
∑

i=0

1/k2,

which converges linearly to zero.
We will now consider the iteration (12) from a different standpoint. We

will give conditions on rk and Ak, under which, for any sequence generated
by (12), there also exists a sequence of the exact version of (12), the one with
rk = 0, which starts from the same x0 and is at a distance proportional to {rk}.
Specifically, we have the following theorem:

Theorem 6 Let the mapping f + F be metrically regular at x̄ for 0, let µ ≥ 0
and ρ satisfy µ reg(f + F ; x̄ |0) < ρ < 1 and let V be a neighborhood of x̄.
Then there exist θ > 0 and δ > 0 such that for every sequences of mappings
rk : X → Y and Ak : X × X → Y that satisfy

sup
x∈V

‖rk(x)‖ ≤ θ (29)

and

‖f(x) − Ak(x, v) − [f(x′) − Ak(x′, v′)]‖ ≤ µ(‖x − x′‖ + ‖v − v′‖), (30)

for all x, x′, v, v′ ∈ V and for every k = 0, 1, . . ., if a sequence {xk} is generated
by (12) starting from a point x0 ∈ IBδ(x̄) and contained in IBδ(x̄), there exists
a sequence {x′

k}, generated again by (12), but with rk = 0, and starting from
the same initial condition x0, such that

‖x′
k+1 − xk+1‖ ≤ C

k
∑

i=0

ρi‖rk−i(xk−i)‖ for all k, (31)

where C is given in (24).

Proof. Choose κ > reg(f + F ; x̄ |0) such that µκ < ρ and let a and b be pos-
itive scalars such that f + F is metrically regular at x̄ for 0 with constant κ
and neighborhoods IBa(x̄) and IBb(0). Take a smaller a, if necessary, so that
IBa(x̄) ⊂ V (see the note at the beginning of the proof of Theorem 4). Then
choose κ′ to satisfy

µκ′ < ρ and C > κ′ >
κ

1 − κµ
.
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Pick α and β so that (2) holds, then δ > 0 to satisfy

3µδ ≤ β, α + δ ≤ a and 2δ ≤ a,

and finally θ > 0 such that

Cθ

1 − ρ
≤ δ.

Choose rk and Ak that satisfy the conditions in the statement and a sequence
xk ∈ IBδ(x̄), generated by (12) and starting from some x0 ∈ IBδ(x̄). By induc-
tion, let x′

k ∈ IB2δ(x̄) be obtained by (12), but with rk = 0, which has x′
0 = x0

and satisfies (31) up to certain k. If ri(xi) = 0 for all i = 0, . . . , k, then we
take x′

k+1 = xk+1 and the induction step is complete. Let ri(xi) 6= 0 for some
i ∈ {0, . . . , k}. To prove that this holds for k + 1, we apply Theorem 1 with

x̃ = xk+1, f̃(x) = Ak(x, x′
k), ỹ = −rk(xk) + Ak(xk+1, x

′
k) − Ak(xk+1, xk).

Then, of course, ỹ ∈ f̃(x̃) + F (x̃). Let us check the rest of the conditions in
Theorem 1. Noting that from (30) Ak(x̄, x̄) − f(x̄) = 0, we have

‖Ak(xk+1, x
′
k) − f(xk+1)‖ ≤ ‖Ak(xk+1, x

′
k) − f(xk+1) − [Ak(x̄, x̄) − f(x̄)]‖

≤ µ‖xk+1 − x̄‖ + µ‖x′
k − x̄‖ ≤ 3µδ ≤ β,

and hence the condition (3) in Theorem 1 holds. Also, from (30), for any
x, x′ ∈ IBα(xk+1) ⊂ IBa(x̄) ⊂ V,

‖f(x) − Ak(x, x′
k) − [f(x′) − Ak(x′, x′

k)]‖ ≤ µ‖x − x′‖.

Thus, we can apply Theorem 1 according to which

d(xk+1, (f̃ + F )−1(0)) ≤ κ′d(0, Ak(xk+1, x
′
k) + F (xk+1))

≤ κ′‖ỹ‖ = κ′‖ − rk(xk) + Ak(xk+1, x
′
k) − Ak(xk+1, xk)‖

≤ κ′‖f(xk+1) − Ak(xk+1, x
′
k) − [f(xk+1) − Ak(xk+1, xk)]‖ + κ′‖rk(xk)‖

≤ κ′µ‖x′
k − xk‖ + κ′‖rk(xk)‖

< ρC

k
∑

i=1

ρi‖rk−i(xk−i)‖ + C‖rk(xk)‖ ≤ C

k
∑

i=1

ρi‖rk−i(xk−i)‖.

The sharp inequality before the last comes from κ′µ < ρ if the first term (the
sum) is nonzero; if this term is zero, then ri(xi) = 0 for all i = 0, 1, . . . , k − 1
– but then in the second term ‖rk(xk)‖ > 0 and the sharp inequality follows
from κ′ < C. Hence, there exists x′

k+1 ∈ (Ak(·, x′
k) + F (·))−1(0), that is, x′

k+1

is an exact iterate of (12), which satisfies the desired estimate (31) for k + 1.
Moreover,

‖x′
k+1 − x̄‖ ≤ ‖xk+1 − x̄‖ + ‖x′

k+1 − xk+1‖ ≤ δ +
Cθ

1 − ρ
≤ 2δ,

and the proof is complete.
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The strong regularity version of Theorem 6 will have in addition that the
elements of the reference sequence for the iteration with rk and the one for
rk = 0 will be unique in a neighborhood of x̄. Note that the conditions (16) in
Theorem 4, as well as (22) and (23) in Theorem 5, are implied by (30) (for (23)
provided that f(x̄) + Ak(x̄, x̄) = 0).

We will now show what the conditions (16) and (17) mean for the Newton
method, and the proximal point method, given in the beginning of this section.
For the Newton method (13) we have Ak(x, v) = f(v) + Df(v)(x − v) for all k,
and then, if we assume continuous differentiability of f near x̄, for any µ > 0
there exists a neighborhood V of x̄ such that

‖f(x) − f(x′) − Df(v)(x − x′)‖ ≤ ‖f(x) − f(x′) − Df(x̄)(x − x′)‖
+‖Df(v) − Df(x̄)‖‖x − x′‖ ≤ µ‖x − x′‖

(32)

for all x, x′, v ∈ V . Further, the continuous differentiability of f is sufficient to
have that for any ε > 0 there exists a neighborhood V of x̄ such that

‖f(v) − Df(v)(x̄ − v) − f(x̄)‖ ≤ ε‖v − x̄‖ for any v ∈ V.

If the derivative Df is, in addition, Lipschitz around x̄, then also (30) can be
easily verified for any positive µ, if the neighborhood V is taken sufficiently
small.

Theorem 4 can be also applied to the modification of the Newton method
proposed by Kantorovich1, in which Ak(x, v) = f(v) + Df(x̃)(x − v) for all
k, where x̃ is a fixed point near x̄, say x̃ = x0. Indeed, under continuous
differentiability of f and when x̃ is sufficiently close to x̄, the argument in
deriving (32) gives us that conditions (16) and (17) hold in this case.

For the proximal point method (14) the expression on the left hand side of
(16) is just λk(x−x′) and the left hand side of (17) is λk(v− x̄), thus both (16)
and (17) come down to the condition that each λk is less than the reciprocal of
2 reg(f + F ; x̄ |0). Condition (30) obviously holds if λk ≤ µ.

4. Some results and open questions on discretization in

optimal control

Consider the following optimal control problem

minimize

∫ 1

0

ϕ(p(t), u(t))dt (33)

subject to

ṗ(t) = g(p(t), u(t)), u(t) ∈ U for a.e. t ∈ [0, 1],

p ∈ W 1,∞
0 (IRn), u ∈ L∞(IRm),

1This was pointed out to the authors by one of the referees.
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where ϕ : IRn+m → IR, g : IRn+m → IRn, U is a convex and closed set in IRm.
Here p denotes the state trajectory of the system, u is the control function,
L∞(IRm) denotes the space of essentially bounded and measurable functions
with values in IRm and W 1,∞

0 (IRn) is the space of Lipschitz continuous functions
p with values in IRn and such that p(0) = 0. We assume that problem (33) has
a solution (p̄, ū) and also that there exists a closed set ∆ ⊂ IRn × IRm and a
δ > 0 with IBδ(p̄(t), ū(t)) ⊂ ∆ for almost every t ∈ [0, 1], so that the functions
ϕ and g are twice continuously differentiable in ∆.

Let W 1,∞
1 (IRn) be the space of Lipschitz continuous functions q with values

in IRn and such that q(1) = 0. In terms of the Hamiltonian

H(p, u, q) = ϕ(p, u) + qTg(p, u),

it is well known that the first-order necessary conditions for a weak minimum
at the solution (p̄, ū) can be expressed in the following way: there exists q̄ ∈
W 1,∞

1 (IRn), such that x̄ := (p̄, ū, q̄) is a solution of the following two-point
boundary value problem coupled with a variational inequality







ṗ(t) = g(p(t), u(t)), p(0) = 0,
q̇(t) = −∇pH(p(t), u(t), q(t)), q(1) = 0,
0 ∈ ∇uH(p(t), u(t), q(t)) + NU (u(t)), for a.e. t ∈ [0, 1],

(34)

where NU (u) is the normal cone to the set U at the point u. Denote X =
W 1,∞

0 (IRn)×W 1,∞
1 (IRn)×L∞(IRm) and Y = L∞(IRn)×L∞(IRm)×L∞(IRn).

Further, for x = (p, q, u) let

f(x) =





ṗ − g(p(t), u(t))
q̇ + ∇pH(p(t), u(t), q(t))
∇uH(p(t), u(t), q(t))



 (35)

and

F (x) =





0
0

NU (u)



 . (36)

Thus, the optimality system (34) can be written as the generalized equation (1).
We will show now that metric regularity of the mapping f+F for the optimal-

ity systems above implies an a priori error estimate for a discrete approximation
to this system. A sufficient condition for strong metric regularity of the mapping
f + F for a system of the type (34), based on coercivity, is given in Dontchev,
Hager and Veliov (2000). Strong metric regularity in appropriate metric for
problems, which are affine with respect to the control (hence non-coercive) are
given in Felgenhauer (2008) and Felgenhauer, Poggiolini and Stefani (2009).
However, the known conditions for (strong) metric regularity are only sufficient
and seemingly far from necessary, and also apply to limited classes of problems.
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Necessary and sufficient conditions for strong metric regularity plus optimal-
ity for an optimal control problem are obtained in Dontchev and Malanowski
(2000). Finding sharp conditions for metric regularity in optimal control is a
challenging avenue for further research.

Suppose that the optimality system (34) is solved inexactly by means of
a numerical method applied to a discrete approximation provided by Euler
scheme. Specifically, let N be a natural number, let h = 1/N be the mesh
spacing, and let ti = ih. Denote by PLN

0 (IRn) the space of piecewise linear
and continuous functions pN over the grid {ti} with values in IRn and such that
pN (0) = 0, by PLN

1 (IRn) the space of piecewise linear and continuous func-
tions qN over the grid {ti} with values in IRn and such that qn(0) = 0, and
by PCN (IRm) the space of piecewise constant and continuous from the right
functions over the grid {ti} with values in IRm. Clearly, PLN

1 (IRn) ⊂ W ,∞(IRn)
and PCN (IRm) ⊂ L∞(IRm). Then, introduce the products XN = PLN

0 (IRn) ×
PLN

1 (IRn) × PCN (IRm) as an approximation space for the triple (p, q, u). We
identify p ∈ PLN

0 (IRn) with the vector (p0, . . . , pN) of its values at the mesh
points (and similarly for q), and u ∈ PCN (IRm) – with the vector (u0, . . . , uN−1)
of the values of u in the mesh subintervals.

Now, suppose that, as a result of the computations, for certain natural N a
function x̃ = (pN , qN , uN) ∈ XN is found that satisfies the modified optimality
system







ṗi = g(pi, ui) p0 = 0,
q̇i = ∇pH(pi, ui, qi+1) qN = 0,
0 ∈ ∇uH(pi, ui, qi) + NU (ui)

(37)

for i = 0, 1, . . . , N − 1 and, consistently with the piece-wise linearity of p and q,

ṗi =
pi+1 − pi

h
.

The system (37) represents the Euler discretization of the optimality system
(34).

Suppose that the mapping f +F is metrically regular at x̄ for 0. Then there
exist positive scalars a and κ such that if x̃ ∈ IBa(x̄), then

d(x̃, (f + F )−1(0)) ≤ κd(0, f(x̃) + F (x̃)),

where the right hand side of this inequality is the residual associated with the
approximate solution x̃. In our specific case, the residual can be estimated by
the norm of the function ỹ, defined as follows for t ∈ [ti, ti+1):

ỹ(t) =





g(pN (ti), uN (ti)) − g(pN(t), uN (ti))
∇xH(pN (ti), uN(ti), qN (ti+1)) −∇xH(pN(t), uN (ti), qN (t))
∇uH(pN (ti), uN(ti), qN (ti)) −∇uH(pN (t), uN (ti), qN (t))



 .
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We have the estimate

‖ỹ‖ ≤ max
0≤i≤N−1

sup
ti≤t≤ti+1

[ |g(pN (ti), uN(ti)) − g(pN (t), uN (ti))|

+|∇xH(pN(ti), uN (ti), qN (ti+1)) −∇xH(pN (t), uN (ti), qN (t))|

+|∇uH(pN (ti), uN (ti), qN (ti)) −∇uH(pN (t), uN (ti), qN (t))|] .

Observe that here pN is a piecewise linear function across the grid {ti} with
uniformly bounded derivative, since both pN and uN are in some L∞ neighbor-
hood of p̄ and ū respectively. Hence, taking into account that the functions g,
∇xH and ∇uH are continuously differentiable, we obtain the following result:

Theorem 7 Assume that the mapping of the optimality system (34) is metri-
cally regular at x̄ = (p̄, q̄, ū) for 0. Then there exist constants a and c such that
if the L∞ distance from a solution x̃ = (pN , qN , uN ) to the discretized system
(37) to x̄ is not more than a, then there exists a solution x̄N = (p̄N , q̄N , ūN) of
(34) such that

‖p̄N − pN‖W 1,∞
0

+ ‖q̄N − qN‖W 1,∞
1

+ ‖ūN − uN‖L∞ ≤ ch.

If the mapping of the optimality system (34) is strongly metrically regular at x̄
for 0 then the above claim holds with x̄N = x̄.

The last claim in the above statement, regarding the strong metric regularity
case, can be viewed as follows: there is a ball around x̄ such that if xN =
(pN , qN , uN) is a sequence of approximate solutions to the discretized system
(37) contained in this ball, then xN converges to x̄ with rate proportional to
1/N .

A similar a priori error estimate is obtained in Dontchev (1996) under a
coercivity condition acting on the discretized system (37), which implies strong
metric regularity. We can obtain a posteriori error estimates provided that
the mapping of discretized system (37) is metrically regular, say, at x̃ for ỹ,
uniformly in N . The system (37) fits into the approximate mapping f̃ + F
in Section 2, but now also with approximation of the spaces X and Y with
subspaces XN and YN which, in the specific case considered here, are spaces
of piecewise linear functions for the state and costate and piecewise constant
functions for the control, and associate piecewise constant functions for Y . But
for that purpose one needs to develop results of the type displayed in Section 2,
which would also involve approximation of elements of X and Y by elements of
subspaces XN and YN . This may be a challenging task, a main difficulty being
the fact that the property of metric regularity is not necessarily inherited by
the restriction of the mapping on a subspace, as the following counterexample
shows.

Let X = IR2, Y = IR, f(x1, x2) = x2 − x3
1. Here

f−1(y) = {(x1, x2) : x2 = y + x3
1, x1 ∈ IR}.
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The function f is metrically regular at x = (0, 0) for y = 0 with κ = 1, since

d(x, f−1(y)) ≤ |(x1, x2) − (x1, y + x3
1)| = |y − (x2 − x3

1)| = |y − f(x)|.

On the other hand, the restriction of f to X̃ = {(x1, x2) : x2 = 0} is not
metrically regular at x1 = 0 for y = 0 because for x ∈ X̃ we have f(x) = −x3

1,
hence x1 = (−y)1/3, which is not Lipschitz at y = 0.

Now we turn to an application of Theorem 5 for proving convergence of a
discretized (finite-dimensional) version of the Newton method for problem (33).
The Newton mapping Ak in this case is defined for x = (p, u, q), v ∈ X as

Ak(x, v) = A(x, v) =





ṗ −∇qH(v) −∇2
qxH(v)(x − v)

q̇ + ∇pH(v) + ∇2
pxH(v)(x − v)

∇uH(v) −∇2
uxH(v)(x − v)



 .

The Newton iterative process with discretization is defined as follows.

Discretized Newton Process: Let N0 be a natural number and let u0 ∈
PCN0(IRm) be an an initial guess for the control. Let p0 and q0 be the corre-
sponding solutions of the Euler discretization of the primal and adjoint system
in (37). Obviously p0 and q0 can be viewed as piece-wise linear functions,
thus the initial approximation x0 = (p0, u0, q0) belongs to the space XN0. In-
ductively, we assume that the k-th iteration xk ∈ XNk has already been de-
fined, as well as a next mesh size Nk+1 = νkNk, where νk is a natural number
(that is, the current mesh points {tki = i/Nk}i=0,...,Nk

are embedded in the
next mesh {tk+1

i = i/Nk+1}i=0,...,Nk+1
). Then, let x = xk+1 = {xi

k+1}i =

{(pi
k+1, u

i
k+1, q

i
k+1)}i ∈ IRNk+1×n × IRNk+1×m × IRNk+1×n be a solution of the

discretized version of the Newton method:






pi+1−pi

hk+1
−∇qH(xk(tik+1)) −∇2

qxH(xk(tik+1))(x
i − xk(tik+1))

qi−qi−1

hk+1
+ ∇pH(xk(tik+1)) + ∇2

pxH(xk(tik+1))(x
i − xk(tik+1))

∇uH(xk(tik+1)) −∇2
uxH(xk(tik+1))(x

i − xk(tik+1))







+





0
0

NU (ui)



 ∋ 0,

with p0
k+1 = 0, q

Nk+1

k+1 = 0, and where hk+1 = 1/Nk+1.
2 The sequence of iter-

ates {xi}i=0,...,Nk+1
is then embedded into the space XNk+1 by piecewise linear

interpolation for the p and q components, and piecewise constant interpolation
for the u component (so that uk+1(t) = ui

k+1 on [tik+1, t
i+1
k+1)). We use the same

notation xk+1 for the so obtained next iteration, belonging to the space XNk+1.

2 We keep the argument x in the appearing derivatives of H, although in fact, ∇qH and

∇2
qxH depend only on p and u.
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In this way we obtain a sequence xk ∈ XNk , assuming that a solution of the dis-
cretized Newton method exists at each step, although no uniqueness is a priori
assumed (see the conjecture at the end of the section).

The next theorem asserts that in case of strong metrical regularity of the
mapping of the optimality system (34), if the discretized Newton iteration pro-
cess described above starts from an initial guess x0 ∈ XN0 , which is sufficiently
close to the solution x̄ and if the sequence of discretization steps hk converges
linearly to zero, then also the sequence xk converges linearly to x̄ in the space
X = W 1,∞

0 (IRn) × W 1,∞
1 (IRn) × L∞(IRm).

Theorem 8 Let the mapping f + F with the specifications (35), (36), that is,
the mapping of the optimality system (34), be strongly metrically regular at x̄ for
0. Let the Hamiltonian H be twice continuously differentiable around x̄. Then
there exist constants δ > 0 and N̄ such that for every sequence Nk = νkN0, with
N0 ≥ N̄ and a natural number ν > 1, and for every u0 ∈ PCN0(IRm) ∩ IBδ(x̄)
any sequence xk produced by the discretized Newton process (38) and contained
in IBδ(x̄) converges linearly to x̄.

Proof. We will apply Theorem 5. Let µ > 0 and ε > 0 be chosen so small
that (15) is fulfilled. According to the considerations in the end of Section 3
the Newton mapping A satisfies (22) and the first inequality in (23) with a
sufficiently small neighborhood V . Let ρ, δ and θ be as in Theorem 5 in its
version for the case of strong metric regularity (so that the last statement of the
theorem holds true).

Let xk+1 ∈ XNk+1 be the k+1-st iteration of the discretized Newton process
(38), k ≥ 0. Let rk be the residual that xk+1 gives when plugged into the exact
Newton inclusion A(·, xk) + F (x) ∋ 0, that is, rk + A(xk+1, xk) + F (xk+1) ∋ 0.
In order to apply Theorem 5 we have to estimate this residual rk in the space
Y = L∞(IRn) × L∞(IRm) × L∞(IRn). Since pk+1 and pk+1 are linear and
uk+1 is constant on each subinterval [tik+1, t

i+1
k+1), this amounts to estimating

the expression

∇qH(xk(t)) −∇qH(xk(tik+1))

+∇2
qxH(xk(t))(xk+1(t) − xk(t))

−∇2
qxH(xk(tik+1))(xk+1(t

i
k+1) − xk(tik+1))

and also the similar expressions arising from the second and the third equations
in the Newton method. The iteration xk is either the initial one (k = 0), in
which case pk and qk satisfy the Euler discretization in (37), or they satisfy
the first and the second equations in (38). The function uk, being in the ball
with radius δ around ū in L∞(IRm), is bounded (uniformly in k). Thus, for an
appropriate constant C1 in both cases |pi+1

k − pi
k| ≤ C1hk. Hence,

|pk(t) − pk(tik+1)| ≤ C1hk+1 for t ∈ [tik+1, t
i+1
k+1).
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The same applies also for q. For u we have uk(t) − uk(tik+1) = 0 due to the
condition that consequent meshes are embedded. The same argument applies
also to xk+1(t)) − xk(tik+1). Hence, |rk| ≤ C2hk+1 for an appropriate constant
C2. By choosing N̄ sufficiently large we may ensure that |rk| ≤ θ, thus Theorem
5 can be applied with the constant function rk. We obtain that xk+1, that is
claimed to exist in Theorem 5, coincides with xk+1 obtained by the discretized
Newton process, while the first claim of the same theorem implies that

‖xk+1 − x̄‖ ≤ ρ‖xk − x̄‖ + C3hk+1 ≤ ρ‖xk − x̄‖ +
C3

N0

(

1

ν

)k

.

The rest of the proof only need to repeat the argument in the discussion after
the proof of Theorem 5.

In the above theorem we assume that an initial control u0 ∈ PCN0(IRm) ∩
IBδ(x̄) exists, which is always true if the optimal control ū is integrable in
Riemann sense, provided that N0 is chosen sufficiently large.

A result related to Theorem 8 is proved in Dontchev, Hager and Veliov
(2000), Section 5, where however, Lipschitz continuity of the optimal control
is a priori assumed and the strong metric regularity of the optimality system
is ensured by a coercivity condition. We mention again that (local) coercivity
(together with the rest of the assumptions in Dontchev, Hager and Veliov, 2000,
Section 5) is a sufficient condition, but not necessary, for strong metric regularity.

Yet another open question, an attempt for solving which was the starting
point of this paper, is as follows. In Dontchev and Rockafellar (1996) it was
proved that for the mapping associated with a variational inequality over a con-
vex polyhedral set, in finite dimensions, metric regularity implies strong metric
regularity. Now, consider the optimality system (34), which is a variational in-
equality, and assume that the set U is a convex polyhedron. If we know that,
for a sufficiently small discretization step the (strong) metric regularity of the
discretized system (37) is equivalent to the (strong) metric regularity of the
original system (34), then we would obtain that for variational system of the
original optimal control problem (33) metric regularity is equivalent to strong
metric regularity. We conjecture that this statement is true.
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