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1. Introduction

In the paper we will study certain invariants, called curvatures, associated to a
control-affine system with scalar control:

Σ : ẋ = f(x) + ug(x), u ∈ R, x ∈ X.

We assume that the state space X is an open subset of R
n or, more generally,

a differentiable manifold of class C∞, of dimension n. The vector fields f and
g are assumed smooth (of class C∞) or sufficiently many times differentiable.

In our approach we will analyse the behaviour of Σ around a given trajectory
or a family of trajectories. For technical simplicity it is convenient to assume
that the trajectory or trajectories are trajectories of the drift f (see Remark 1
for a more general case). Therefore, we will treat the zero control u∗(t) ≡ 0 as
a distinguished one and the drift f as given. On the other hand, the term ug
will play a role of a “correctional control” or perturbation. Changing g for βg,
where β(x) is a nonvanishing function, will only reparametrise the control and
will have no effect on the properties of Σ.
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Higher Education, grant N201 039 32/2703.
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From our point of view one can represent Σ by the pair

(f,V),

where f is the drift and V is the distribution of tangent lines defined by g,

V(x) = Rg(x).

The curvatures of Σ, introduced in Section 3, will be invariants associated to
the pair (f,V), that is, they will not depend on the choice of the generator g of
the distribution V . On the other hand, changing f for f + α(x)g (i.e., adding
feedback) will change the curvatures.

Remark 1 If, instead of zero control, we distinguish a control u∗(x) then we
can replace the drift f with the new one,

f̂(x) = f(x) + u∗(x)g(x),

and analyse the new dynamic pair (f̂ ,V). In order for the further constructions
to work we have to assume that u∗(x) is smooth. Similarly, if the distinguished
control is u∗(t), then we add t = x0 as the new coordinate of the system, with
the new system equation ẋ0 = 1, thus modifying the system vector fields to f̄
and ḡ. Then we replace the earlier drift with f̂ = f̄ + u∗(x0)ḡ. Again, u∗(·) is
required to be smooth.

There are two canonical problems, where our invariants are applicable. One
is an analysis of the linearized version of Σ along a given trajectory. The second
one is the variational equation (the Jacobi equation) along an extremal of an
integral functional or, more generally, of an optimal control problem. In this
case the drift f is replaced with the vector field on the tangent or cotangent
bundle (or on a submanifold of the tangent/cotangent bundle), which defines
the extremals of the problem, and V is the vertical distribution of the bundle.
We briefly indicate possibilities of such applications in Sections 5, 6, and 8.

The curvatures seem to be an appropriate tool to determine if a given optimal
control problem has conjugate points, the problem which has been treated using
other methods by Bonnard and Kupka (1993), Bonnard and Chyba (2003), by
Agrachev and other researchers. The case of scalar control, analysed in detail in
the two references, seems treatable with our approach with additional advantage
of omitting the difficulty of computing the normal form needed there.

The name “curvatures” is justified by the fact that, in the special case of
f being the geodesic spray of a surface endowed with a Riemann metric, our
curvature is a single scalar and coincides with the curvature appearing in the
classical Jacobi equation. Similarly, if f is the Hamiltonian vector field defining
the extremals of an optimal problem on X = M2 satisfying certain regularity
conditions, then the curvature coincides with the one defined in Agrachev and
Sachkov (2004).
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The approach can be extended to the vector-control case. In fact, the curva-
tures for general dynamic pair were used in Kryński (2008) as partial invariants
in the equivalence problem for dynamic pairs. They are applicable for dynamic
pairs defined by systems of ordinary differential equations, as special cases of
dynamic pairs with rankV > 1 (Kryński, 2008; Jakubczyk and Kryński, 2009).

We introduce the curvatures in Section 3 and provide explicit formulas for
computing them in Section 4. Next we write the variational equation (linearized
equation along a trajectory) in terms of the curvatures (Section 5, Theorem 2).
We introduce a notion of conjugate point, corresponding to needle variations.
We prove that there are no conjugate points, if the curvatures are negative along
the trajectory (Section 6). Finally, in Sections 7 and 8 we give an example how
the curvatures can be used in order to establish if a given extremal of Σ, for a
time-minimal problem, has conjugate points and how to estimate their position
(we use results from Bonnard and Chyba, 2003).

2. Notation and basic assumptions

Let f and g be arbitrary smooth vector fields on X . In coordinates

f(x) =
∑

j

f j(x)
∂

∂xj
, g(x) =

∑

j

gj(x)
∂

∂xj
.

Recall that the Lie bracket of f and g is the commutator

[f, g] =
∑

j,k

(

fj
∂gk

∂xj
− gj

∂fk

∂xj

)

∂

∂xk
,

which is a new vector field. We denote:

adfg = [f, g], ad2
fg = [f, [f, g]] , . . . . . . , adr+1

f g = [f, adr
fg].

Given a smooth function β : X → R, we denote its Lie derivative along f by

Lf(β) = f(β) :=
∑

j

f j ∂β

∂xj
.

Let now f and g be vector fields defining Σ.

Assumptions on Σ: ∃ r ≥ 1 such that, pointwise,

(A1) g, adfg, . . . , adr
fg are linearly independent and f 6= 0,

(A2) adr+1
f g = h0 g + h1 adfg + · · · + hr adr

fg,

for some (unique) functions h0, . . . , hr.
In particular, (A1) and (A2) are satisfied (with r = n − 1) if

(A) g, adfg, . . . , adn−1
f g are linearly independent and f 6= 0.
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Alternative assumptions: ∃ r ≥ 1 such that, pointwise,

(A1′) f, g, adfg, . . . , adr
fg are linearly independent

(A2′) adr+1
f g = h0 g + h1 adfg + · · · + hr adr

fg + h̄ f,

for some (unique) functions h0, . . . , hr, h̄.

In particular, (A1’) and (A2’) are satisfied (with r = n − 2) if

(A′) f, g, adfg, . . . , adn−2
f g are linearly independent.

The domain of validity of the above assumptions will be made precise in the
statements of our results. They will be needed along a single trajectory of
the vector field f , only, if the system properties are analysed along such a
trajectory. In particular, f 6= 0 will mean that f(x) 6= 0 along a given trajectory
or a neighbourhood of a given point. The functions h0, . . . , hr will be used to
compute the curvatures.

3. Definition of curvatures

Our definition is based on the following fact, saying that the function hr in (A2)
and (A2’) can be annihilated, by replacing g with some ḡ = βg.

Proposition 1 (a) If a pair of vector fields (f, g) satisfies (A1) and (A2), or
(A1’) and (A2’), in a neighbourhood W of a point x0 ∈ X such that f(x0) 6= 0,
(respectively, along a given trajectory γ : [t0, t1] → X of f), then there exists
a smooth, nonvanishing function β, defined in a neighbourhood V ⊂ W of x0

(respectively, along γ), such that, with ḡ = βg, we have

adr+1
f ḡ = h̄0 ḡ + h̄1 adf ḡ + · · · + h̄r−1 adr−1

f ḡ (N)

in V (respectively, along γ), where in the case of (A1’) and (A2’) the equality
(N) holds modulo f .

(b) If both g and ḡ have the property (N), then β satisfies Lf (β) = 0, i.e., β
is constant on trajectories (respectively on the trajectory γ) of f .

(c) The functions h̄0, . . . , h̄r−1 are independent of the choice of β.

The above proposition allows us to define the curvatures using the functions
h̄0, . . . , h̄r−1, uniquely defined and independent of the choice of the generator g.

Definition 1 Assume (A1) and (A2). The functions

k0 = (−1)rh̄0, k1 = (−1)r−1h̄1, . . . , kr−1 = −h̄r−1

are called curvatures of Σ (or of (f,V)). In other words, curvatures are unique
functions ki defined, using the generator ḡ in Proposition 1, by the equality

adr+1
f ḡ =

r−1
∑

i=0

(−1)r−iki adi
f ḡ. (C)
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A vector field ḡ satisfying (N), or (C), is called normal generator (of V) and (N)
is called normality condition. The same definitions apply under the assumptions
(A1’), (A2’). In that case the equalities (N) and (C) are understood modulo f .

The alternating sign in the definition of ki is chosen for simplicity of their ge-
ometric interpretation (see Section 6). If r = 1 then k0 plays the role analogous
to Gauss curvature in the Jacobi equation, which is of the form

v̇0 = −k0v1, v̇1 = v0.

The sign of k0 determines if v0 and v1 have oscillatory or non-oscillatory be-
haviour. To see the geometric role of the curvatures the reader may go directly
to Sections 5, 6 and 7.

Proof of Proposition 1. (a) Assume that (A1) and (A2) hold. We will use the
Leibniz property of Lie bracket,

[f, βg] = Lf (β)g + β[f, g],

and its iterated consequence

adi
f (βg) =

i
∑

j=0

(

i

j

)

Li−j
f (β)adj

fg. (1)

In particular, we have

adr+1
f (βg) = βadr+1

f g + (r + 1)Lf(β)adr
fg mod g, adfg, . . . , adr−1

f g.

Since adr+1
f g = hradr

fg, modulo g, adfg, . . . , adr−1
f g, we find that

adr+1
f (βg) = (βhr + (r + 1)Lf (β))adr

fg mod g, adfg, . . . , adr−1
f g.

Therefore, in order to get h̄r = 0 we should have

βhr + (r + 1)Lf(β) = 0. (2)

This is a linear differential equation for β. It has a nonvanishing smooth solution
β along any trajectory γ of f , and in a neighbourhood of a given point x0 such
that f(x0) 6= 0. (If the trajectory evolves along a closed orbit, then the function
β(t) may have different values at points t1 6= t2 such that γ(t1) = γ(t2).)

If (A1’) and (A2’) hold, then the proof is the same, except that we consider
the equations involving adr+1

f (βg) modulo f, g, adfg, . . . , adr−1
f g.

(b) If also g satisfies (N) then hr = 0. It follows from (2) that Lf(β) = 0.
(c) This statement follows from (b). Indeed, the only freedom of changing

the normal generator ḡ in (N) is to multiply it by β such that Lf (β) = 0. Then
adi

f (βḡ) = βadi
f ḡ, for any i, and the functions h̄i, defined by (N) with ḡ replaced

by g̃ = βḡ are the same as those defined by ḡ. This ends the proof.
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4. Computing curvatures

Before we discuss some problems involving curvatures, we address the question
how they can be computed. One obvious way is to use the definition, that is to
find them using formula (C). This requires finding a normal generator ḡ = βg
which is to be determined from the differential equation (2), i.e., from

Lf(β) = hβ, where h = − 1

r + 1
hr. (3)

Finding a normal generator, or solving the differential equation (3) for a nor-
malizing function β, may not be an easy task. Computing β along a given
trajectory γ of f is always possible, at least numerically. However, this may not
suffice for computing the Lie brackets of ḡ = βg and f .

In order to present explicit formulas for the curvatures we introduce a vector
notation. Let

H = (h0, h1, . . . , hr),

where hi are given by formula (A2) or (A2’). The curvatures are arranged into
the row vector

K = ((−1)rk0, (−1)r−1k1, (−1)r−2k2, . . . ,−kr−1, 0),

where we add the last zero component, for simplicity of further formulas.
Consider the differential operators of order 1,

D = Lf + h, D̄ = Lf − h,

where Lf =
∑

f j ∂
∂xj and h is the operator of multiplication by the function

h = −(r + 1)−1hr. We introduce the coefficients (functions)

Li
j =

(

i

j

)

Di−j(1), L̄i
j =

(

i

j

)

D̄i−j(1), if i ≥ j,

where 1 is the constant function, equal to 1, and Dk, D̄k denote the k-th powers
of D and D̄. We put Li

j = 0 = L̄i
j , if i < j. Note that Li

i = 1 = L̄i
i. If hr = 0 = h

then D(1) = 0 = D̄(1), and then Li
j = 0 = L̄i

j, if i 6= j.
Let Lr+1

•
denote the row vector

Lr+1
•

= (Lr+1
0 , Lr+1

1 , . . . , Lr+1
r )

and let L and L̄ be the (r + 1) × (r + 1) matrices

L = (Li
j)

r
i,j=0, L̄ = (L̄i

j)
r
i,j=0.

If hr = 0, then Lr+1
•

= 0 and L = L̄ = I - the identity matrix.
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Theorem 1 The vector of curvatures, well defined under the assumptions (A1)
and (A2), or (A1’) and (A2’), is given by the formula

K = (H + Lr+1
•

) L̄. (K)

Note that the above formula is well defined along a single trajectory of f .
For illustration we note that, in the simplest case of r = 1, we get from (K)

Corollary 1 If r = 1 then K = (−k0, 0), where the curvature k0 is

k0 = −h0 +
1

2
Lf (h1) −

1

4
h2

1. (4)

Proof. We compute

D(1) = h, D2(1) = D(h) = Lf (h) + h2, D̄(1) = −h,

L2
•

= (L2
0, L

2
1) = (Lf(h) + h2, 2h),

and

L̄ =

(

1 0
−h 1

)

.

Thus, H + L2
•

= (h0 + Lf(h) + h2, h1 + 2h) and we find

K = (H+L2
•
)L̄ = (h0+Lf(h)+h2−hh1−2h2, 0) = (h0+Lf(h)−h2−hh1, 0).

Taking into account that h = − 1
2h1 we get K = (−k0, 0), with k0 as in (4).

In order to prove the theorem we will use the following simple lemmata.

Lemma 1 If (3) holds then

(Lf)i(β) = βDi(1), (Lf )i(β−1) = β−1D̄i(1). (5)

Proof. Let α and β be smooth functions. Then (5) are special cases (with α = 1)
of the general formulas

(Lf)i(αβ) = βDi(α), (Lf )i(αβ−1) = β−1D̄i(α).

For i = 1 the former formula follows from the Leibnitz rule and from (3). For
general i it is proved by induction:

(Lf )i+1(αβ) = Lf (Lf)i(αβ) = Lf (βDi(α)) = β(h+Lf )Di(α) = βDi+1(α),

where in the third equality we use (3). The latter formula is proved in the same
way.
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Denote

V 0 = g, V 1 = adfg, . . . , V r = adr
fg, V r+1 = adr+1

f g,

and let V = (V 0, . . . , V r)T (we treat V as a column vector). Similarly, we denote
V̄ 0 = ḡ, V̄ 1 = adf ḡ, . . . , V̄ r = adr

f ḡ, V̄ r+1 = adr+1
f ḡ and V̄ = (V̄ 0, . . . , V̄ r)T .

Lemma 2 If ḡ = βg and (3) holds, then

V̄ = βL V, V = β−1L̄ V̄ and (6)

V̄ r+1 = β(H + Lr+1
•

)V. (7)

Proof. It follows from the iterative Leibniz rule (1) in Section 3 that

V̄ i =

i
∑

j=0

(

i

j

)

Li−j
f (β) V j .

Together with (5), this implies the first formula in (6). The second formula is
proved analogously. Finally, to prove (7) note that the above formula applied
for i = r + 1 gives

V̄ r+1 = adr+1
f (βg) = βadr+1

f g +

r
∑

j=0

(

r + 1

j

)

Lr+1−j
f (β)V j

= βV r+1 + β

r
∑

j=0

Lr+1
j V j = βHV + βLr+1

•
V.

From (6) and the linear independence of the vectors in V and V̄ we get

Corollary 2 The matrices L and L̄ are mutually inverse, i.e., L̄ = L−1.

Proof of Theorem 1. Consider a normal generator ḡ = βg. By its definition, the
function β satisfies the relation (3). It follows from (C) that

adr+1
f ḡ = KV̄ =

r−1
∑

j=0

(−1)r−ikiV̄
i.

Using the first formula in Lemma 2 we find that KV̄ = βKLV , thus

adr+1
f ḡ = βKLV.

Using the second formula we get

adr+1
f ḡ = β(H + Lr+1

•
)V.

Both equalities yield

KLV = (H + Lr+1
•

)V.

As the vector fields V 0, . . . , V r in V = (V 0, . . . , V r)T are linearly independent,
this implies KL = (H + Lr+1

•
) and K = (H + Lr+1

•
)L̄ (since LL̄ = I), which

ends the proof.
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5. Variational equation

Consider a system

Σ : ẋ = f(x) + ug(x),

and a control u∗ : I = [t0, t1] → R such that the corresponding trajectory
x∗ : I → X of Σ is well defined. Recall that a needle variation of u∗(·) is a
control

u(t) =

{

ū if t ∈ (τ − ǫ, τ ]

u∗(t) otherwise,

where τ ∈ (t0, t1] is given, ū ∈ R is a given value and ǫ > 0 is small enough. The
corresponding trajectory x(t, ǫ) is called a needle variation of x∗(·) at t = τ .

For simplicity, we will assume that 0 ∈ (t0, t1), τ = 0 and u∗(t) ≡ 0 (the
general case can be reduced to this one if the control is smooth). Thus, the
variation of the trajectory will be nontrivial on the interval [0, T ], where we
take T = t1.

Given a trajectory γ : t 7→ x(t), t ∈ I, of

ẋ = f(x), x(0) = x0, (8)

and its needle variation x(t, ǫ) at t = 0, it is well known that the corresponding
infinitesimal variation δx(t) is propagating so that it satisfies the linearized
equation

v̇(t) =
∂f

∂x
(x(t))v(t), v(0) = ag(x0), (9)

where a = ū − u∗(τ) and we denote

v(t) = δx(t) =
∂x

∂ǫ
(t, 0).

If f t = exp(tf) denotes the flow of f , we can write

v(t) = Df t(x0)v(0). (10)

Lemma 3 If (A1) and (A2) are satisfied, then

v(t) =

r
∑

0

vi(t)(−1)i+1adi
fg(f t(x0)), (11)

where vi are suitable coefficients (the factor (−1)i+1 is introduced for simplicity
of variational equations in Theorem 2). The same is true under the assumptions
(A1’) and (A2’), in which case (11) holds modulo f(f t(x0)).
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Proof. By our assumption, f does not vanish. Therefore, locally, there are
coordinates x1, . . . , xn such that f = ∂/∂x1. Denote t = x1, then f = ∂/∂t. In
these coordinates the flow f t of f is of the form (0, x2, . . . , xn) 7→ (t, x2, . . . , xn)
and Df t(x0) = Id. Thus, v(t) = const = v(0).

Moreover, if g =
∑

j gj∂/∂xj, then

adi
fg =

∑

j

∂igj

∂ti
∂

∂xj
.

Write g as the vector g = (g1, . . . , gn), then adi
fg is represented by the vector

g(i) :=

(

∂ig1

∂ti
, . . . ,

∂ign

∂ti

)

.

Our assumption (A2) takes the form

g(r+1) = h0g
(0) + h1g

(1) + · · · + hrg
(r), (12)

along a considered trajectory on [0, T ]. Since the coefficients h0, . . . hr are
smooth functions of t, this equation has a solution, uniquely determined by
the initial values g(0) = p0, g

(1)(0) = p1, . . . , g
(r)(0) = pr. Moreover, we have

g(t) ∈ span{p0, . . . , pr}.
This follows from existence and uniqueness of solutions of linear ordinary dif-
ferential equations. Namely, choosing a new basis in R

n such that p0, . . . , pr are
its first r + 1 elements, we see that (12) reduces to the subspace spanned by
p0, . . . , pr and has a solution in this subspace. On the other hand, by uniqueness,
the original equation has the same solution, thus g(t) lies in this subspace.

The same argument works backwards. This means that, for a given t ∈ [0, T ],
we have g(0) ∈ span{g(t), g(1)(t), . . . , g(r)(t)}. This gives (11) as, due to our
notation, g(i)(t) = adi

fg(f t(x0)) and, by the definition of the variation, we have
v(t) = v(0) = ag(0), where a is a constant.

In general, the curvatures are not complete invariants of the pair (f,V) (see
Jakubczyk and Kryński, 2009) but they are complete for linear non-autonomous
equations, in particular, for the variational equation along a given trajectory.
This is implied by the following result:

Theorem 2 Under the assumptions (A1) and (A2) (or (A1’) and (A2’)), if
the generator g is normal, the coefficients v0, . . . , vr in (11) of the infinitesimal
variation v(t) satisfy the differential equations

v̇0 = −k0vr

v̇i = vi−1 − kivr, i = 1, . . . , r − 1, (13)

v̇r = vr−1

and initial conditions v0(0) = a, v2(0) = · · · = vr(0) = 0, where ki = ki(f
t(x0))

are the curvatures along the trajectory f t(x0) of f .
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Proof. We assume that (A1), (A2) are fulfilled. (In the case of (A1’) (A2’) the
same considerations work, provided we consider further equalities modulo f .)
Then adr+1

f g = h0g + h1adfg + · · ·+ hradr
fg. If the generator g is normal then,

according to our definition of the curvatures ki, hi = (−1)r−iki, i = 0, . . . , r−1,
and hr = kr = 0. We can then write

adr+1
f g =

r
∑

i=0

(−1)r−ikiadi
fg. (14)

From the equality (11) we get

v(0) = (Df t(x0))
−1v(t) =

r
∑

0

(−1)i+1vi(t)(Df t(x0))
−1adi

fg(f t(x0))

=

r
∑

0

(−1)i+1vi(t)f
−t
∗

(adi
fg)(x0).

Differentiating both sides with respect to t and taking into account the relation
d/dt(f−t

∗
h) = f−t

∗
(adf (h)), which holds for any vector field h, we get

0 =
r

∑

0

(−1)i+1v̇i(t)f
−t
∗

(adi
fg)(x0) +

r
∑

0

(−1)i+1vi(t)f
−t
∗

(adi+1
f g)(x0)

=
r

∑

0

(−1)i+1v̇i(t)f
−t
∗

(adi
fg)(x0) +

r−1
∑

0

(−1)i+1vi(t)f
−t
∗

(adi+1
f g)(x0)

+(−1)r+1vr(t)f
−t
∗

(adr+1
f g)(x0).

Using the expression (14) we get

(−1)r+1vr(t)f
−t
∗

(adr+1
f g)(x0) =

r
∑

i=0

(−1)i+1vr(t)kif
−t
∗

(adi
fg)(x0),

thus

0 =
r

∑

0

(−1)i+1(v̇i(t) − vi−1(t) + vr(t)ki)f
−t
∗

(adi
fg)(x0),

where we put v−1 = 0 and kr = 0. Thus, since adi
fg, i = 0, . . . , r are linearly

independent, and so are f−t
∗

(adi
fg), we obtain the system of equations

v̇i = vi−1 − kivr, i = 0, . . . , r.

This system coincides with (13), as we have chosen v−1 = 0 and kr = 0.

The fact that, in the special basis (−1)iadi−1
f g(f t(x0)), where g is normal,

the coefficients of the variation v(t) = δx(t) satisfy the special system of linear
differential equations (13), with curvatures ki(t) as the only nontrivial coeffi-
cients, gives hopes that a lot can be said about the behaviour of the variation
v(t) in terms of the curvatures. The following section contains a simple example.
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6. Absence of conjugate points

Consider again the system

Σ : ẋ = f(x) + ug(x), u ∈ R, x ∈ X.

We introduce a notion of conjugate points of Σ along a trajectory γ : I → X of
the vector field f , I = [t0, t1]. Assume that (A1) and (A2) hold along γ and

r = max{k : g, adfg, . . . , adk
fg are linearly independent along γ}.

Definition 2 Two points x1 = γ(t′) and x2 = γ(t′′), with t′, t′′ ∈ I, t′ < t′′,
are called conjugate points of Σ if, for any needle variation at τ = t′ ∈ I of
u∗(t) ≡ 0, the corresponding infinitesimal perturbation δx(t) of γ satisfies:

δx(t′′) ∈ span{ g(γ(t′′)), (adfg)(γ(t′′)), . . . , (adr−1
f g)(γ(t′′)) }.

Note that we can take τ = t0, since the trajectory γ of f is well defined on
(t0 − ǫ, t1] and the corresponding needle variation at τ = t0 is well defined.

In further considerations we assume, without losing generality, that I =
[0, T ]. Then, a point xc = x(tc) is called conjugate if it is conjugate to x0 = γ(0),
and tc is called conjugate time.

Theorem 3 (a) If Σ satisfies (A1) and (A2) along γ : [0, T ] → X then there
is a constant δ > 0 such that Σ has no conjugate points on γ|[0,δ).
(b) If, in addition, the curvatures k0, k1, . . . , kr−1 are nonpositive along γ, then
Σ has no conjugate points on γ.

Remark 2 The same holds for trajectories corresponding to arbitrary smooth
control u∗(t), or u∗(x), if the assumptions (A1), (A2) and definitions of curva-
tures are suitably modified, see Remark 1.

Proof. Theorem 3 follows from Theorem 2, the ensuing lemma and from Remark
3 at the end of this section.

Lemma 4 Consider the Cauchy problem

v̇0 = b0vr

v̇1 = v0 + b1vr

...
...

...

v̇r = vn−1 + brvr

with continuous coefficients bi(t), i = 0, . . . , r, and initial conditions

v0(0) = a 6= 0, v1(0) = · · · = vr(0) = 0.

The following statements hold:
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(a) The components vi of the solution are (i+1)-times differentiable at zero and

vi(t) =
a

i!
ti + o(ti), i = 0, . . . , r. (15)

(b) If the coefficients b0(t), b1(t), . . . , br(t) are nonnegative, then also

vi(t) 6= 0, and sgn (vi(t)) = sgn (a), for all t > 0 and all 0 ≤ i ≤ r. (16)

(c) If the nonzero initial component is changed for vk(0) = a 6= 0 and vi(0) = 0,
for i 6= k, then statement (a) holds, with assertion (15) changed for

vi(t) =
a

(i − k)!
ti−k + o(ti−k), i = k, . . . , r, (17)

and statement (b) holds, with (16) satisfied for i = k, . . . , r and t > 0 small
enough.

Proof. (a) Given a smooth function f , defined in a neighbourhood of zero, we
denote by ord f the order at 0 ∈ R, that is – the smallest order of a nonvanishing
derivative of f at zero, and ord f = 0 if f(0) 6= 0 (ord f = ∞ if such derivative
does not exist). Put v−1 = 0, then our equations take the iterative form

v̇i = vi−1 + bivr, i = 0, . . . , r. (18)

Note that, due to nontrivial initial conditions and the form of the equations
(18), we can not have ord vr = ∞. From (18) it follows that, for i = 1, . . . , r,

ord vi−1 = ord (v̇i − bivr) = ord vi − 1, if ord vr ≥ ord vi and vi(0) = 0,

which gives the sequence of implications

ord vi ≤ ord vr =⇒ ord vi−1 = ord vi − 1 < ord vr. (19)

Applying inductively these implications for i = r, r − 1, . . . , 1 we find out that

ord vi−1 = ord vi − 1, and ord vi−1 < ord vr i = 1, . . . r. (20)

Together with the initial condition v0(0) = a 6= 0 this yields

ord vi = i, i = 0, . . . r.

Denote by v∗i (t) the lowest order Taylor terms of vi(t). Since ord vi−1 < ord vr,
(18) imply the equations

v̇∗i = v∗i−1, i = 1, . . . , r.

Taking into account that v∗0 = v0(0) = a we find that v∗i (t) = a(i!)−1ti, which
proves the formula (15).
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To show statement (b) assume v0(0) = a > 0. It follows from statement (a)
that all vi(t) are positive, for small t. Once this holds for small t, the equations
(18) with nonnegative ki imply that all the derivatives are nonnegative, thus
vi(t) > 0 for all t > 0. Namely, suppose this is not true and t∗ > 0 is the
infimum of t such that at least one component vj vanishes at t∗. Then, since
vj(t) > 0 for t < t∗, the derivative v̇j(t) must be negative at some moments
t < t∗. This is impossible, since on the right hand side of (18) all components
are nonnegative. The proof in the case of a negative is analogous.

The proof of statement (c) is similar but, proving (19) and (20), one should
proceed with the induction argument taking i = r, r−1, . . . , k−1, and then use
the initial condition vk(0) = a. If a > 0, then vi(t) > 0, for i = k, . . . , r and
t > 0 small enough.

Remark 3 Note that our definition (11) of the coefficients vi and Theorem 2
imply that the conjugate time tc is the time where vr vanishes, i.e., vr(tc) = 0.

7. Conjugate points in the classic case

For r = 1 the system (13) takes the form

v̇0 = −k0v1, v̇1 = v0.

Putting y = v1 gives the second order equation

ÿ = −Ky,

where K = k0. It is well known that y has oscillatory behaviour if K is positive.
One can estimate positions of zeros of y(t) using the following classical result,
which is a special case of the Sturm comparison theorem (see Hartman, 1964).

If two copies ÿj = −Kjyj, j = 1, 2, of the above equation satisfy

K2(t) ≥ K1(t), t ∈ [a, b], and
y′

1(a)

y1(a)
≥ y′

2(a)

y2(a)

and the function y1(t) has a zero in (a, b], then y2(t) also has a zero in (a, b]. If
one of the assumed equalities is strict, then y2(t) has a zero in [a, b).

Above, we put y′

j(a)/yj(a) = +∞, if yj(a) = 0, thus the assumed inequality
is satisfied if y1(0) = 0 = y2(0). The proof uses a new variable θ, satisfying
cot θ = y′/y. Differentiation of this equality and elimination of y′′ using y′′ =
−Ky gives

θ̇ = cos2 θ + K sin2 θ =: f(θ).

Zeros of y correspond to the values θ = nπ. The inequality K2 ≥ K1 implies that
the right-hand sides of two copies of the above equation, corresponding to K1

and K2, satisfy f2(θ) ≥ f1(θ). This and θ2(a) ≥ θ1(a) imply that their solutions
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satisfy θ2(t) ≥ θ1(t) and the result follows. In particular, assuming K1 = K =
const > 0 and y1(a) = 0, y′

1(a) = c 6= 0 we have y1(t) = cK−1/2 sin(
√

K(t− a)).
Thus, if K2(t) ≥ K then both assumed inequalities hold and ÿ2 = −K2y2 has a
root in (a, b], where b = a + π

√
K.

8. Conjugate points for a time-optimal problem

We illustrate the use of our curvatures for estimating existence and position of
conjugate times for a system in R

3,

Σ : ẋ = f(x) + ug(x), |u| ≤ M.

We admit M = +∞, then u(t) ∈ R. We make use of an analysis presented
in Bonnard and Chyba (2003), where the conjugate time is defined in R

n in a
different way, using normal forms of Σ and eigenfunctions of certain self-adjoint
differential operators.

Define the functions on R
3,

D = det(g, [f, g], [g, [f, g]]), D1 = det(g, [f, g], [f, [f, g]]),

and the vector field

S = f − D1

D
g.

It is well known that a trajectory γ of S is a singular extremal of the time-
optimal problem for Σ, if the following assumptions hold:
(H0) γ is contained in the region of x ∈ R

3 where D(x) 6= 0 and f(x), g(x) are
linearly independent.

(H1) Along γ we have

[S, [S, g]](γ(t)) ∈ span{g(γ(t)), [f, g](γ(t))}.

Since S is smooth in the region where D(x) 6= 0 and it follows from (H0)
that γ lies in this region, we may assume that S is smooth in the domain of
consideration. Moreover, from the formula for S we see that [S, g] = [f, g]
modulo g. Therefore, it follows from (H1) that there are smooth functions h0(t)
and h1(t) such that

[S, [S, g]](γ(t)) = h0(t)g(γ(t)) + h1(t)[S, g](γ(t)).

We see that our assumptions (A1), (A2) are satisfied, with r = 1, for the control
system ẋ = S(x)+ug(x). Thus, the curvature k0(t) is well defined along γ, with
the formula given in Section 4,

k0(t) = −h0(t) +
1

2
h′

1(t) −
1

4
(h1(t))

2. (21)
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The variational equations in Theorem 2 take the form

v̇0 = −k0v1, v̇1 = v0, (22)

or ÿ = −k0y, where y = v1. The latter equation plays the role of the Jacobi
equation for the time-optimal problem.

Consider a time-minimal problem for the system Σ, with a starting point
x(0) = γ(0) and let γ(t) be a fixed singular extremal (i.e. satisfying the necessary
conditions of the Pontryagin Maximum Principle and corresponding to control
u∗(t) ∈ (−M, M)). Assume, in addition, that γ satisfies (H0) and (H1). From
the considerations ending the preceding section and the results in Bonnard and
Chyba (2003) we deduce the following:

Proposition 2 Let tc > 0 denote the first zero of v1 of the solution of (22)
with initial conditions v0(0) = 1, v1(0) = 0 (if such tc does not exist, we put
tc = +∞). Then, γ is a time minimal trajectory of Σ in a C0 neigbourhood of
γ for the fixed end-point problem. γ ceases to be time-optimal for t > tc.

The proof is a consequence of Lemma 21 in Bonnard and Chyba (2003) and
the fact that the variational equation there can be replaced with our equation
(22). Note that our approach gives an explicit formula (21) for computing
the curvature k0 in the variational equation. In particular, by denoting TK =
min{πK−1/2, T } we have the following corollaries.

(i) If k0(t) ≤ 0 along γ : [0, T ] → R
3, then γ is time-optimal on [0, t] in a C0

neighbourhood of γ, for all 0 < t ≤ T .
(ii) If k0(t) ≤ K = const > 0 along γ, then γ is optimal on [0, t] in a C0

neighbourhood of γ, for t < TK .
(iii) If k0(t) ≥ K = const > 0 along γ, then γ is not optimal on [0, t], in any

C0 neighbourhood of γ, for πK−1/2 < t ≤ T .

The statements follow from the Sturm comparison theorem. In the first and
second cases it implies that v1 has no zeros on [0, T ] (respectively, on [0, TK)),
and in the third case it implies that it has a zero in the interval [0, TK ], see the
preceding section.
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