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Abstract: In this paper we consider point control of a structural
acoustic model with thermoelastic effects. The key feature of this
paper is that the two-dimensional plate modeling the active wall of
the acoustic chamber has clamped boundary conditions. For this
case a new optimal regularity result has recently become available
(Triggiani, 2008). Using this new result for the plate alone, we derive
a sharp (optimal) regularity result for the overall coupled system of
wave and thermoelastic plate equations, after overcoming a series
of additional technical difficulties. This allows for the study of an
optimal control problem of the coupled system.
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1. Introduction

In this paper we consider point control of a structural acoustic model with ther-
moelastic effects. This type of model arises in engineering applications in which
one is attempting to control noise in an acoustic chamber by means of a feed-
back mechanism on the active wall. Here we examine a canonical case where
the 2-dimensional active wall is modeled by means of a clamped thermoelastic
plate. The natural equation for the thermoelastic structural acoustic problem is
a three-dimensional chamber with an active wall modeled by a two-dimensional
plate with clamped boundary conditions. This is precisely the case for which a
new optimal regularity result has recently become available (Triggiani, 2008).
Indeed, optimal interior regularity for the thermoelastic equations of dimension
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n = 1 and n = 3 was shown in Triggiani (2007b), but the n = 2 case suf-
fered from a loss of ǫ due to the incompatibility of the boundary conditions

of the spaces H
3

2

0 (Ω) and H
3

2

00(Ω); see Eqns. (3.6) and (3.7) below. This loss
was rectified in Triggiani (2008), where the optimal regularity was derived us-
ing technical analysis based on sharp trace regularity theory of the Kirchhoff
and wave equations (Lasiecka, Lions and Triggiani, 1986; Lasiecka and Trig-
giani, 1991, 2000; Ourada and Triggiani, 1991; Lagnese, 1989). The approach
used in Triggiani (2008) to analyze the n = 2 case is very different from that
taken in Triggiani (2007b). For the cases of n = 1 and 3, the optimal re-
sult is produced—in the final analysis, after decoupling the wave and thermal
dynamics—by a thermoelastic semigroup approach as applied to a ‘right-hand
side input.’ However, for n = 2, this last step is responsible for a loss of ε in
the final regularity, as noted before. Hence, one needs to work from bound-
ary to interior, first changing variables to obtain a purely elastic problem and
an associated z-thermoelastic problem. Then, optimal interior regularity for
this new z-variable is obtained by using a very special boundary regularity for
∆z|Σ. This trace regularity requires a technical argument involving two pseudo-
differential operators (Triggiani, 2008).

Our current work considers the case where such a clamped thermoelastic
plate equation is coupled to a three-dimensional acoustic chamber. More pre-
cisely, part of the wall of the chamber is modelled by a thermoelastic plate,
and the other part is considered a ‘hard’ wall. Control of the wave equation
inside the chamber is accomplished by means of a point control on the ther-
moelastic wall. Various related models of plate and waves have been studied
for some time (Avalos and Lasiecka, 1996, 1997, 2003; Bucci, 2007; Camurdan,
1999; Camurdan and Ji, 2000; Camurdan and Triggiani, 1999; Triggiani, 1997;
Lasiecka, 2002; Lebiedzik, 2000, 2001; Lasiecka and Lebiedzik, 1999; Lasiecka
and Triggiani, 2000c,d, Section 9.10, p. 844) with or without thermal effects.
However, unlike other models of the literature, the present structural acous-
tic system constitutes a coupling of hyperbolic- thermally damped hyperbolic
dynamics; vis-á-vis the parabolic/hyperbolic PDE models seen in the existing
literature for the modelling of structural acoustic flows. Thermoelasticity has
a natural damping effect which can be used to stabilize these systems (Avalos
and Lasiecka, 1997; Lasiecka, 2002; Lasiecka and Lebiedzik, 1999; Lebiedzik,
2000, 2001). In analyzing these coupled systems of waves and plates, it can be
seen that the coupling of the two equations can produce phenomena that do
not appear with waves and plates alone. The precursor was the paper of Avalos
and Lasiecka (1996), where the flexible wall is a damped Euler-Bernoulli plate
equation, so that the overall system is parabolic/hyperbolic. Problems studied
include: regularity, stabilization, singular estimates, optimal control and min-
max game theory problems. More relevant to the present work is the paper
by Camurdan and Triggiani (1999) (see also Triggiani, 1997), where optimal
regularity of the overall structural acoustic model is studied, with a point con-
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trol acting on the elastic (flexible) wall. Here we generalize this result to the
case where the flexible wall is, in fact, thermoelastic. We note explicitly the
important feature that, due to the presence of the constant γ > 0 in equa-
tion (2.1d) below, the thermoelastic problem (2.1d,e,f) on the active wall with
u ≡ 0 and no coupling term −zt is hyperbolic-dominated: its free dynamics is
described by a C0− contractive uniformly stable group of operators (based on
only the mechanical variables) perturbed by a compact term (Lasiecka and Trig-
giani, 2000b). The constant γ accounts for rotational forces in the model and is
proportional to the square of the thickness of the plate in the two-dimensional
case. In contrast, the case γ = 0 in the model corresponds to an analytic semi-
group, that is, parabolic behavior (Lasiecka and Triggiani, 2000c, Appendices
3E, 3F, 3G, 3H, 3I to Chapter 3, pp. 324–401, 1998a,b,c, 2001) in fact under all
canonical boundary conditions.

Ω

∂Γ0

Γ0

Γ1

• •

�
�
��

((((((((((�
���

Figure 1. Cross-section of a sample domain Ω

Orientation. Following the approach in Camurdan and Triggiani (1999),
Lasiecka and Triggiani (2000d, Section 9.10, p. 884), Triggiani (2007a,b, 2008),
the first step of the present work consists of decoupling the wave and the ther-
moelastic equation to look at the optimal regularity of each part separately. The
advantage of this procedures is that the point control is dealt with only within
the thermoelastic model alone, rather than in the overall coupled structural
acoustic-with-thermoelastic-wall problem. The overall solution of the problem
of the main Theorem 2.1, or Theorem 4.3 encounters an unexpected number
of technical issues and difficulties: the sharp regularity under point control of
the (uncoupled) thermoelastic problem in dimension 2 (Triggiani, 2008); the
sharp regularity of the mixed problem for the wave equation with Neumann
boundary control (Lasiecka and Triggiani, 1990, 1991a, 1994; Tataru, 1998);
and the role played by the factor space L̃2(Γ0) (Laciecka and Triggiani, 2001)
The definition of L̃2(Γ0) is recalled in Step 4, equations (5.19), properties (i),
(ii) below equation (5.20), in the proof of Theorem 4.3 in Section 5. The latter



1464 C. LEBIEDZIK, R. TRIGGIANI

appears precisely due to the presence of clamped boundary conditions. Due to
the pathology associated with clamped boundary conditions expressed by the
space L̃2(Γ0) (the “visible” portion of L2(Γ0) ), we need to establish a new
additional interpolation result (Proposition 3.1b below) to obtain the optimal
regularity result of Theorem 4.3 (see also Proposition B.1, Appendix B). All
this requires the preliminary critical “trick” in rewriting the semigroup solution
as in (5.43) through (5.45).

2. Model equations. Main regularity result: a Sobolev
space version. Significance

Mathematical model. Let Ω be a general three-dimensional bounded domain,
whose smooth boundary Γ is divided into two parts, Γ0 and Γ1, Γ = Γ0 ∪ Γ1.
The portion of the boundary acting as the hard wall is Γ1, and Γ0 is the flat
portion acting as the moving wall clamped at its edges.

The model considered consists of the acoustic wave equation on Ω in the
variable z coupled to the thermoelastic equation on Γ0. Here, w is the vertical
displacement of the wall, θ is the thermal stress resultant, γ > 0 is a constant
(see Introduction), u(t) is the scalar control function, and δ(x0) is the Dirac
δ-function at x0.

ztt = ∆z on (0, T ]× Ω ≡ Q, (2.1a)

chamber Ω :































∂

∂ν
z = 0 on (0, T ]× Γ1 ≡ Σ1, (2.1b)

∂

∂ν
z = −wt on (0, T ] × Γ0 ≡ Σ0; (2.1c)

wtt − γ∆wtt + ∆2w + ∆θ − zt = δ(x0)u(t) on Σ0, (2.1d)

wall Γ0 :























θt − ∆θ − ∆wt = 0 on Σ0, (2.1e)

w = 0;
∂

∂ν
w = 0; θ = 0 on (0, T ]× ∂Γ0; (2.1f)

I.C. z(0, ·) = z0; zt(0, ·) = z1 in Ω; w(0, ·) = w0; wt(0, ·) = w1;

θ(0, ·) = θ0 in Γ0. (2.1g)

Remark 2.1 Integrating equation (2.1a) in (0, t] × Ω yields the following in-
variance property of the dynamics

∫

Ω

zt(t) dΩ +

∫

Γ0

w(t) dΓ0 ≡

∫

Ω

z1 dΩ +

∫

Γ0

w0 dΓ0, ∀t. (2.2)
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Main regularity result. The main regularity result of the present paper,
in a preliminary version, is given next. Its achievement will then allow us to
introduce, formulate, and solve an optimal control problem in Section 4, in line
with the main aim of the September 2008 Conference “50 Years of Optimal
Control Theory,” held at Bȩdlewo, Poland.

Theorem 2.1 With reference to problem (2.1a-g), let

[z0, z1, w0, w1, θ0] = 0, u ∈ L2(0, T ). (2.3)

Then, the corresponding PDE solution satisfies

[z(t), zt(t), w(t), wt(t), θ(t)]

∈ C([0, T ];H3/2(Ω)/R ×H1/2(Ω) ×
[

H5/2(Γ0) ∩H
2
0 (Γ0)

]

× H
3/2
00 (Γ0) ×H1

0 (Γ0)). (2.4)

Actually, the regularity of the thermal variable θ(t) can then be further boosted
to read:

θ(t) ∈ C([0, T ];H3/2−ε(Γ0)) ∩ Lp(0, T ;H
3/2
0 (Γ0)) (2.5)

for any ε > 0 and 1 < p <∞.

A more detailed version of the regularity results for problem (2.1a-g), in terms
of domains of fractional powers of relevant operators is postponed to Section 4,
Theorem 4.3, after these concepts and notations have been introduced in Section
3 and related to Sobolev spaces. Moreover, Proposition 4.1 states the basic
semigroup well posedness result, in the natural energy space Yγ in equation
(3.20) below. A corresponding optimal control problem—to hinge on these
regularity results—is given in Theorem 4.4 below.

Remark 2.2 When dealing with a non-parabolic PDE problem subject to point
control, in order to appreciate the regularity of the solution claimed, it is both in-
structive and enlightening to compare it with the result that can be obtained in a
straightforward manner through the variation of parameters formula of the prob-
lem at hand. In the present case, such a formula is given for [z0, z1, w0, w1, θ0] =
0 by













z(t)
zt(t)
w(t)
wt(t)
θ(t)













=

∫ t

0

eA(t−τ)













0
0
0

B−1
γ δu(τ)

0













dτ, (2.6)

where A (see (3.18), (3.19) below) is the generator of the C0-semigroup eAt

asserted by Proposition 4.1 on the natural finite energy space Yγ , defined in
(3.20) below.
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The following considerations apply:
(a) The weaker (than Theorem 2.1) claim that

[z(t), zt(t), w(t), wt(t), θ(t)] ∈ C([0, T ];Yγ), (2.7)

which is obtained in the present paper without taking advantage of the
technical Proposition 3.1b below (in Step 8 of the proof of the main the-
orem), is only ε-better in space regularity over the result that can be
obtained directly from (2.6) by simply using two ingredients: that eAt

is a C0-semigroup on Yγ and that A− 1

2 δ ∈ L2(Γ0) in the present case of

dim Γ0 = 2, see (A.4) of Appendix A. The fact that the operator A
1

2B−1
γ is

not well-defined in L2(Γ0) is an obstacle that prevents one from obtaining
(2.7) directly from (2.6). Since Yγ is the natural finite energy space of the
free dynamics of the present problem ((2.1a-g) with u ≡ 0, the regularity
result (2.7) is physically satisfactory and it balances off with that of the
semigroup eAt, for initial conditions [z0, z1, w0, w1, θ] ∈ Yγ . But it is not
optimal.

(b) In contrast, the optimal regularity obtained in (2.1), (2.5) of Theorem 2.1
yields for the mechanical variables {w,wt} precisely the same regularity
result that holds true for the elastic Kirchhoff equation with clamped
boundary conditions alone (Triggiani, 1993; Lasiecka and Triggiani, 2001),
as well as for the corresponding variables {w,wt, θ} of the thermoelastic
problem (Triggiani, 2008), under point control, all in dimension equal
to two. Accordingly, for these mechanical variables {w,wt}, their optimal
regularity given in Theorem 2.1 is, in fact,

(

1
2 + ε

)

better than that claimed
through the variation of parameter formula (2.6), by the direct procedure
explained in point (a).

3. Abstract model. Preliminary technical results

Abstract settings. (Lasiecka and Triggiani, 2000d, Section 9.10, p. 884). We
now introduce an abstract setting for problem (2.1) following the notation of
Triggiani (2008). We define:

(i) the positive, self-adjoint operators B, Bγ , on L2(Γ0):

Bf = −∆f ; D(B) = H2(Γ0) ∩H
1
0 (Γ0), (3.1a)

Bγ = (I + γB); D(B
1

2

γ ) = D(B
1

2 ) = H1
0 (Γ0); (3.1b)

(ii) the positive, self-adjoint elastic operator A on L2(Γ0),

Af = ∆2f ; D(A) =

{

f ∈ H4(Γ0); f |∂Γ0
=

∂

∂ν
f

∣

∣

∣

∣

∂Γ0

= 0

}

. (3.2)

For these, we recall that (Triggiani, 1991, 2008)

D(B
1

2

γ ) = D(B
1

2 ) = H1
0 (Γ0); (3.3)
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D(A
3

4 ) ≡ H3(Γ0) ∩H
2
0 (Γ0)

≡

{

f ∈ H3(Γ0) : f

∣

∣

∣

∣

∂Γ0

=
∂f

∂ν

∣

∣

∣

∣

∂Γ0

= 0

}

; (3.4)

D(A
1

2 ) ≡ H2
0 (Γ0); D(A

1

4 ) ≡ H1
0 (Γ0) = D(B

1

2 ); (3.5)

D(A
3

8 ) = [D(A
1

2 ),D(A
1

4 )] 1

2

= [H2
0 (Γ0), H

1
0 (Γ0)] 1

2

≡ H
3

2

00(Γ0) (3.6)

⊂ [D(B),D(B
1

2 )] 1

2

≡ D(B
3

4 ) ≡ D(B
3

4

γ ) ≡ H
3

2

0 (Γ0); (3.7)

D(A
1

8 ) = [D(A
1

4 ), L2(Γ0)] 1

2

= [H1
0 (Γ0), L2(Γ0)] 1

2

= H
1

2

00(Γ0) (3.8)

= D(B
1

4 ) ≡ D(B
1

4

γ ), (3.9)

D(A
5

8 ) = H
5

2 (Γ0) ∩H
2
0 (Γ0). (3.10)

see Lions and Magenes (1972, p. 66) for these Sobolev spaces. The lack of com-

patibility of the boundary conditions between H
3

2

00(Γ0) and H
3

2

0 (Γ0)—whereby

H
3

2

00(Γ0)⊂
6=
H

3

2

0 (Γ0) with a finer topology (Lions and Magenes, 1972, p. 66)—is

a source of serious technical difficulties in the study of well-posedness of the
thermoelastic problem alone in dim Γ0 = 2, with clamped boundary conditions.
This difficulty is not present in the case dim Γ0 = 3 or dim Γ0 = 1 (here, a
different technical difficulty arises, Triggiani, 2007b), with clamped boundary
conditions. Moreover, all these difficulties are not present in the case of hinged
boundary conditions. See Triggiani (2007a).
(iii) In addition, we define the Neumann map N (harmonic extension in interior

of a Neumann boundary datum) as N : Hs(Γ0) → Hs+ 3

2 (Ω), s ∈ R

h = Ng ⇐⇒







(∆ − I)h = 0 in Ω

∂

∂ν
h = 0 on Γ1;

∂

∂ν
h = g on Γ0;

(3.11)

the strictly positive, self-adjoint operator AN defined by (−∆) with Neumann
homogeneous boundary conditions, that is, AN : L0

2(Ω) ≡ L2(Ω)/N (AN ) →
L2(Ω),

ANf = −∆f ; D(AN ) =

{

f ∈ H2(Ω) :
∂

∂ν
f

∣

∣

∣

∣

Γ

= 0

}

(3.12a)

D(A
1

2

N ) = H1(Ω)/R. (3.12b)

In (3.11) and (3.12), L0
2(Ω) is the factor space L2(Ω)/N (AN ): L2(Ω) factored

by the one-dimensional null space of N (AN ) defined by constant functions.
Define also

ÃN = AN + I. (3.13a)
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It is well known that (Lasiecka and Triggiani, 2000c, Ch. 3, Lem. 3.3.1.1)

N∗ÃNf =

{

0 on Γ1;

f |Γ0
on Γ0;

initially for f ∈ D(AN ), extended to f ∈ D(A
1

2

N ),

(3.13b)

where N∗ : L2(Ω) → L2(Γ) is the adjoint of the bounded operator N : L2(Γ) →
L2(Ω), (Ng, v)L2(Ω) = (g,N∗v)L2(Γ).
[ In fact, if f ∈ D(AN ) and g ∈ L2(Γ), then Green’s second theorem with (3.11)
and (3.12) yield ((·, ·)Ω and (·, ·)Γ0

being the respective L2-inner products):

−(N∗ÃNf, g)Γ = ((∆ − I)f,Ng)Ω =

=
�����*
(f, (∆ − I)h)Ω +

����*
(
∂

∂ν
f, h)Γ − (f,

∂

∂ν
f)Γ

= −(f, g)Γ0
, g ∈ L2(Γ) (3.14)

and (3.13b) follows for f ∈ D(AN ). Next, extend its validity to all f ∈ D(A
1

2

N ),

as D(A
1

2

N ) is dense in D(AN ). ]

Second-order model. In the above notation, the PDE-problem (2.1a–g) can
be rewritten abstractly as (Lasiecka and Triggiani, 2000d, p. 888)

ztt = −ANz − (AN + I)N(wt|Γ0
) on [D(AN )]′; (3.15a)



















Bγwtt +Aw −Bθ −N∗(AN + I)zt = δu on L2(Γ0); (3.15b)

θt +Bθ +Bwt = 0 on L2(Γ0), (3.15c)

where [D(AN )]′ is the dual space of D(AN ) with respect to L2(Ω) as a pivot
space. In fact, as to (3.15a), we obtain from (2.1a) via (3.11), (3.12):

ztt = ∆z = (∆ − I)z + z = (∆ − I)(z −Ng) + z = ∆(z −Ng) +Ng

= −AN (z −Ng) +Ng ∈ L2(Ω) (3.16)

since (z − Ng) ∈ D(AN ). Extending now the original operator AN in (3.12),
by isomorphism, as: continuous L2(Ω) → [D(AN )]

′
, while retaining the same

symbol, the above equation (3.16) yields

ztt = −ANz + (AN + I)Ng ∈ [D(AN )]′ (3.17)

from which (3.15a) follows with g ≡ −wt|Γ0
, g ≡ 0 on Γ1, as dictated by (2.1b-

c). To obtain (3.15b) from (2.1c), we have invoked (3.1b) for Bγ , (3.2) for A
and (3.13b) for the Dirichlet trace on Γ0.
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First-order model. The corresponding first-order model is (Lasiecka and Trig-
giani, 2000d, p. 888)

ẏ = Ay + Bu; y(t) = [z(t), zt(t), w(t), wt(t), θ(t)];

y(0) = y0 = [z0, z1, w0, w1, θ0] ∈ Yγ (3.18)

A =

















0 I 0 0 0

−AN 0 0 −(AN + I)N( · |Γ0
) 0

0 0 0 I 0

0 B−1
γ N∗(AN + I) −B−1

γ A 0 B−1
γ B

0 0 0 −B −B

















,

Bu =

















0

0

0

B−1
γ δu

0

















, (3.19)

with the space Yγ defined as (Lasiecka and Triggiani, 2000d, p. 889)

Yγ ≡ D(A
1

2

N ) × L0
2(Ω) ×D(A

1

2 ) ×D(B
1

2

γ ) × L2(Γ0); (3.20)

(x1, x2)
D(B

1

2
γ )

= ((I + γB)x1, x2)L2(Γ0). (3.21)

Characterization of D(A) Next, we characterize the domain of A, D(A). To
this end, let y = [y1, y2, y3, y4, y5] ∈ D(A). We require that Ay ∈ Yγ that is,
invoking (3.19) for A and (3.20) for Yγ , we require that

Ay =







































y2 ∈ D(A
1

2

N ) (3.22a)

−(AN +I)
1

2

[

(AN +I)
1

2 y1+(AN +I)
1

2N(y4|Γ0
)
]

+y1 ∈ L2(Ω) (3.22b)

y4 ∈ D(A
1

2 ) ⊂ D(B) (3.22c)

B−1
γ N∗(AN + I)y2 −B−1

γ Ay3 +B−1
γ By5 ∈ D(B

1

2

γ ) (3.22d)

−By4 −By5 ∈ L2(Γ0) (3.22e)

where the penultimate line (3.22d) is rewritten equivalently as

B
− 1

2

γ N∗(AN + I)y2 − (B
− 1

2

γ A
1

4 )A
3

4 y3 +B
− 1

2

γ By5 ∈ L2(Γ0). (3.23)

With y2 ∈ D(A
1

2

N ) = H1(Ω)/R as in (3.22a), see (3.12), we haveN∗(AN +I)y2 =

y2|Γ0
∈ H

1

2 (Γ0), and N∗(AN + I)y2 = 0 on Γ1, by (3.13b). Moreover, since
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(B
− 1

2

γ A
1

4 ) is an isomorphism on L2(Γ0) by (3.5), we see that (3.23) requires y3 ∈

D(A
3

4 ). Finally, (3.22e), where By4 ∈ L2(Γ0) by (3.22c), requires y5 ∈ D(B).
Thus, the domain D(A) of A : Yγ ⊃ D(A) → Yγ is characterized as follows:

D(A) = S1 ×D(A
1

2

N ) ×D(A
3

4 ) × S4 ×D(B) (3.24a)

S1 × S4 =
{

y1 ∈ D(A
1

2

N ), y4 ∈ D(A
1

2 ) :

[ÃN

1

2 y1 + Ã
1

2

NN(y4|Γ0
) ∈ D(Ã

1

2

N )

}

(3.24b)

=

{

y1 ∈ H2(Ω), y4 ∈ H2
0 (Γ0),

∂

∂ν
y1

∣

∣

∣

∣

Γ1

= 0,
∂

∂ν
y1

∣

∣

∣

∣

Γ0

= y4

}

(3.24c)

(passage from (3.24b) to (3.24c) uses (3.11) and (3.12) – in particularN(y4|Γ0
) ∈

H2(Ω), since y4|Γ0
∈ H

3

2 (Γ0)). A-fortiori, we have

D(A) ⊂ H2(Ω) ×D(A
1

2

N ) ×D(A
3

4 ) ×D(A
1

2 ) ×D(B). (3.25)

The domain D(A
1

2 ) of A
1

2 . In the definition of D(A) in (3.24) above, the
first and the third component space variables are coupled, while the remaining
variables are uncoupled. Thus, by interpolation between (3.20) for Yγ and (3.24)
for D(A), we obtain:

D(A
1

2 ) = V1 ×D(A
1

4

N ) ×D(A
5

8 ) × V4 ×D(B
1

2 ). (3.26)

Moreover, interpolating—this time componentwise—between the RHS of Yγ in
(3.20) and the RHS of (3.25), we readily obtain [to complement (3.26)]

D(A
1

2 ) = [D(A), Yγ ] 1

2

⊂ [[RHS of (3.25)] , [RHS of (3.20)]] 1

2

= H
3

2 (Ω)/R ×D(A
1

4

N ) ×D(A
5

8 ) ×D(A
3

8 ) ×D(B
1

2 ) (3.27a)

= H
3

2 (Ω)/R ×H
1

2 (Ω) ×
[

H
5

2 (Γ0) ∩H
2
0 (Γ0)

]

×H
3

2

00(Γ0) ×H1
0 (Γ0). (3.27b)

For the top line, recall Lasiecka and Triggiani (2000c, p. 5). In obtaining (3.27a),

we have also invoked (3.5) in D(B
1

2

γ ) = D(A
1

4 ); while (3.6),(3.4) and (3.10) are
also used in obtaining (3.27b). With reference to the first and fourth components

of D(A
1

2 ) in (3.26), the following reverse containment holds true:
{[

z1
z4

]

: z1 ∈ H
3

2 (Ω)/R, ∆z1 ∈ [H
1

2 (Ω)]′ = H− 1

2 (Ω); z4 ∈ H
3

2

00(Γ0),

∂

∂ν
z1

∣

∣

∣

∣

Γ1

= 0,
∂

∂ν
z1

∣

∣

∣

∣

Γ0

= −z4

}

⊂ V1 × V4. (3.27c)
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This result is established in Appendix B, Proposition B.1 (which, in particular,
shows that ∂

∂ν z1
∣

∣

Γ
is well-defined in H−ε(Γ) ∀ε > 0). Combining (3.27b) with

(3.27c) in (3.26), we obtain that







D(A
1

2 ) is topologically equivalent to

H
3

2 (Ω)/R ×H
1

2 (Ω) ×
[

H
5

2 (Γ0) ∩H2
0 (Γ0)

]

×H
3

2

00(Γ0) ×H1
0 (Γ0).

(3.27d)

The domain D(A2) of A
2. In Step 7 of the proof of the main result of the

present paper, Theorem 4.3, we shall need to identify the third space component
of D(A

3

2 ), the domain of the power A
3

2 . This will be accomplished by first
identifying the third component space of D(A2), the domain of A

2, and then
interpolating with the third component space of D(A) in (3.24). As noted, the
third component spaces of these domains are not coupled with other component
spaces. The following result will be critical to obtain the optimal regularity
result of Theorem 4.3.

Proposition 3.1 (a) With reference to the operator A in (3.19), (3.24) we
have the following characterization for the third component space of D(A2):

D(A2) = 1©× 2©× (A−1H⊥) × 4©× 5© (3.28)

(A−1H⊥) = D(A
1

2B−1
γ A) (3.29)

where, as in Lasiecka and Triggiani (2001, eqns. (2.5),(2.6), p. 448)

H ≡
{

h ∈ L2(Γ0) : (1 − γ∆)h = 0 in H−2(Γ0)
}

= N {(1 − γ∆)} (3.30)

H⊥ ≡
{

f ∈ L2(Γ0) : (f, h)L2(Γ0) = 0, ∀h ∈ H
}

(3.31)

L2(Γ0) = H + H⊥ orthogonal sum (3.32)

(b) The following interpolation result holds true:

[

A−1H⊥,D(A
3

4 )
]

1

2

= D(A
7

8 ). (3.33)

As a consequence, regarding the third component space of D(A
3

2 ), we have:

D(A
3

2 ) = 1©× 2©×D(A
7

8 ) × 4©× 5©. (3.34)

Remark 3.1 A result such as (3.28) for D(A2) was already noted in Lasiecka
and Triggiani (2001, Lemma 4.2, p. 466), in the context of the Kirchhoff elastic
plate equation with clamped boundary alone (in arbitrary dimension). It is such
an elastic component that is responsible for the same result (3.28) now, in the
context of its coupling with the thermal component as well as with the acoustic
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chamber. As noted in Lasiecka and Triggiani (2001, Lemma 4.2, eqn (4.11),
p. 466)

H⊥ ∼= L̃2(Γ0), so that A−1H⊥ ∼= A−1L̃2(Γ0). (3.35)

In fact, the space L̃2(Γ0), defined in (5.18)-(5.21) is isometrically isomorphic
(congruent) to the factor (or quotient) space L2(Γ0)/H. The subspace H is pre-

cisely the “invisible” subspace of the operator A− 1

2Bγ ∈ L(L2(Γ0)), see Lasiecka
and Triggiani (2001, Lemma 2.1(ii) and remark just below it).

Proof of Proposition 3.1 (a) With y = [y1, y2, y3, y4, y5] ∈ Yγ , we require that
A

2y = A(Ay) ∈ Yγ in (3.20) where Ay is given in (3.22). Our intent in (3.28) is
simply to identify the third space component of D(A2) – thus, below, we shall
chase and track down only the third coordinate y3. Accordingly, by (3.19) and
(3.22) we obtain

A(Ay) =






















0 I 0 0 0

−AN 0 0 −ÃNN( · |Γ0
) 0

0 0 0 I 0

0 B−1
γ N∗ÃN −B−1

γ A 0 B−1
γ B

0 0 0 −B −B













































y2

· · ·

· · ·

−B−1
γ Ay3

+ · · ·
· · ·























(3.36)

=





















· · ·

−Ã
1

2

N

[

Ã
1

2

Ny2 − Ã
1

2

NN(B−1
γ Ay3)

]

+ y2 + · · ·

−B−1
γ Ay3

· · ·

BB−1
γ Ay3 + · · ·





















(3.37)

where · · · refer to terms not involving y3 and we have used ÃN = (AN + I).
Via Yγ in (3.20) we require that:

B−1
γ Ay3 ∈ D(A

1

2 ); that is, A
1

2B−1
γ Ay3 ∈ L2(Γ0) (3.38)

BB−1
γ Ay3 ∈ L2(Γ0); that is, y3 ∈ D(A) (3.39)

in addition to the second term in (3.37) being in L2(Γ0). With y3 ∈ D(A) by
(3.39), we see that B−1

γ Ay3 ∈ D(Bγ) ⊂ H2(Γ0) and the second term is well
defined concerning the coordinate y3. But the critical element is the one in
(3.38): recalling Lasiecka and Triggiani (2001, eqn. (2.17) p. 450; Lemma 4.2,
eqn. (4.11) p. 466), we require

Ay3 ∈ H⊥, or y3 ∈ D(A
1

2B−1
γ A) = A−1H⊥ ∼= A−1L̃2(Γ0). (3.40)
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Thus, via (3.39) and (3.40), conclusion (3.28) is established, as desired.

(b) To prove the interpolation result (3.33), we shall use the setting of Lions and
Magenes (1972, Section 14.3, pp. 96-98). This is an interpolation result between
subspaces; that is, between spaces subject to additional constraints. To this
end, let (we use the notation of Lions and Magenes, 1972, Section 14.3):

X = D(A) ⊂ Φ, X = H⊥ = X̄ ⊂ Ψ, δ = A (3.41)

so that we may equivalently rewrite A−1H⊥ as

A−1H⊥ = (X)δ,X = {x ∈ X : δx ∈ X}

=
{

x ∈ D(A) : Ax ∈ H⊥
}

. (3.42)

Similarly, we set

Y = D(A
3

4 ) = Φ, Y =
[

D(A
1

4 )
]′

= Ȳ ≡ Ψ, δ = A, δ ∈ L(Φ; Ψ) (3.43)

so that δ ∈ L(X ; X̄ )∩L(Y ; Ȳ) as well, and we may equivalently rewrite D(A
3

4 )
as

D(A
3

4 ) = (Y )δ,Y = {y ∈ Y : δy ∈ Y}

=

{

y ∈ D(A
3

4 ) : Ay ∈
[

D(A
1

4 )
]′

}

. (3.44)

In (3.43), (3.44), [ · ]′ denotes duality with respect to L2(Γ0) as a pivot space.

Then, our original object
[

A− 1

2H⊥,D(A
3

4 )
]

1

2

is accordingly equivalently rewrit-

ten via (3.42) and (3.43) as
[

A− 1

2H⊥,D(A
3

4 )
]

1

2

= [(X)δ,X , (Y )δ,Y ] 1

2

. (3.45)

Finally, to verify the remaining assumption in Lions and Magenes (1972, Eqn

(14.23)(iii)), we take G = A−1, χ ∈ X̄ + Ȳ = [D(A
1

4 )]′, and r = 0. We can now
appeal to Lions and Magenes (1972, Theorem 14.3, p. 97) to get

[

A− 1

2H⊥,D(A
3

4 )
]

1

2

= [(X)δ,X , (Y )δ,Y ] 1

2

=
(

[X,Y ] 1

2

)

δ,[X ,Y]1
2

. (3.46)

But from (3.41) and (3.43), we compute

[X,Y ] 1

2

=
[

D(A),D(A
3

4 )
]

1

2

= D(A
7

8 ) (3.47)

as desired. Via (3.46) and (3.47), our sought after conclusion (3.33) will be
established, as soon as we verify that the required constraint

δ
(

[X,Y ] 1

2

)

∈ [X ,Y] 1

2

(3.48)
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is automatically satisfied. Via (3.47) and δ = A, X = H⊥ and Y = [D(A
1

4 )]′ in
(3.41),(3.43), we re-write the terms in (3.48) explicitly as

δ
(

[X,Y ] 1

2

)

= AD(A
7

8 ) = [D(A
1

8 )]′ (3.49)

[X ,Y] 1

2

=
[

H⊥, [D(A
1

4 )]′
]

1

2

=
[

D(A
1

4 ), (H⊥)′
]′

1

2

(3.50)

where in the last step we have invoked the duality result (Lions and Magenes,
1972, Theorem 6.2, p. 29). In conclusion, via (3.49) and (3.50), verifying the
validity of statement (3.48) means establishing that

[

D(A
1

8 )
]′

⊂
[

D(A
1

4 ), (H⊥)′
]′

1

2

(3.51)

where (H⊥)′ denotes duality with respect to the L2(Γ0)-topology. In turn, (3.51)
is equivalent to

[

D(A
1

4 ), (H⊥)′
]

1

2

⊂ D(A
1

8 ) =
[

D(A
1

4 ), L2(Γ0)
]

1

2

(3.52)

which is plainly true. Thus, the required condition (3.48) has been verified. In
conclusion, (3.46), (3.47), (3.48) cumulatively establish the validity of (3.33).
Finally, interpolating for the third component space between (3.24) for D(A)
and (3.28) for D(A2), and invoking (3.33) yields (3.34) at once. Proposition 3.1
is proved.

4. Statement of main regularity results

In this section, we collect the statement of the relevant regularity results of
system (2.1a-g). These include a restatement of the main direct regularity result,
Theorem 2.1, this time expressed also in terms of the domain of fractional powers
of the relevant operators introduced in Section 3. A dual version will also be
stated explicitly, though not in the optimal spaces for the sake of shortness.

Homogeneous problem. We begin by recalling a known well-posedness result,
Lebiedzik (2000), on the homogeneous problem (2.1), with forcing term u ≡ 0.
Its proof is based on Lumer-Phillips Theorem.

Proposition 4.1 (Lebiedzik, 2000) The operator A in (3.19), (3.24) is the in-
finitesimal generator of a strongly continuous semigroup of contractions eAt on
the space Yγ .

More precisely, for z = [z1, z2, z3, z4, z5] ∈ D(A), one obtains

(Az, z)Yγ
= −(Bz5, z5)L2(Γ0) ≤ 0 (4.1)

(after cancellation of eight pair-wise terms). Thus, equation (4.1) shows, in
particular, that the operator obtained from A in (3.19) after replacing the term
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−B by 0 in its a55 entry becomes then skew-adjoint on Yγ (as the right-hand
side of (4.1) then becomes zero).

Input u → solution y. As a consequence of Proposition 4.1, the solution to
the abstract problem (3.18) —ultimately, of (2.1a–g)—can be written as

y(t) = eAty0 + (Lu)(t); (Lu)(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ. (4.2)

Control operator B : U → [D(A∗)]′.

Proposition 4.2 The operator B in (3.19) is not bounded from U to Yγ , but
rather B : continuous U → [D(A∗)]′.

The proof will be given in Appendix A.

Optimal regularity of non-homogeneous problem (3.18) or (2.1). The
following is the main result of the present paper. It rephrases Theorem 2.1.

Theorem 4.3 (Regularity of L) With reference to problem (3.18) or (2.1), or
(4.2), let

u ∈ L2(0, T ). (4.3)

(i) For each 0 < T <∞, the input-solution operator L, defined in (4.2), satisfies
the property

L : continuous L2(0, T ) → C([0, T ];Zγ), (4.4a)

where

Zγ ≡ H
3

2 (Ω)/R×H
1

2 (Ω)× [H
5

2 (Γ0)∩H
2
0 (Γ0)]×H

3

2

00(Γ0)×H1
0 (Γ0) (4.4b)

where we recall from (3.1b), (3.5),(3.6), (3.10), (3.12):

D(A
3

4

N ) ≡ H
3

2 (Ω)/R; D(A
1

4

N ) ≡ H
1

2 (Ω); (4.5)

D(A
5

8 ) ≡ H
5

2 (Γ0) ∩H
2
0 (Γ0)], D(A

3

8 ) ≡ H
3

2

00(Γ0) (4.6)

D(A
1

4 ) = D(B
1

2 ) = D(B
1

2

γ ) ≡ H1
0 (Γ0). (4.7)

As noted in (3.27d), the space Zγ is topologically equivalent to D(A
1

2 ), a con-
sequence of Proposition B.1 in Appendix B (see (3.27c) and (3.27b)). In PDE
terms, we have that with zero initial conditions [z0, z1, w0, w1, θ0] = 0, the cor-
responding solution of the original PDE-model (2.1) satisfies

u ∈ L2(0, T ) → [z(t), zt(t), w(t), wt(t), θ(t)] ∈ C([0, T ];Zγ), (4.8)

continuously, where the space Zγ is defined in (4.4b). Moreover, from (4.8)

and (4.6), whereby A
3

8wt ∈ C([0, T ];L2(Γ0)), it readily follows from a stan-
dard semigroup result, Lasiecka and Triggiani (1990, Proposition 0.1, p. 4) that



1476 C. LEBIEDZIK, R. TRIGGIANI

the regularity of the parabolic component θ can be further improved to read via
(3.15c):

θ(t) = −

∫ t

0

e−B(t−τ)Bwt(τ)dτ

= −

∫ t

0

B
1

4 e−B(t−τ)(B
3

4A− 3

8 )A
3

8wt(τ)dτ (4.9a)

∈ C([0, T ];D(B
3

4
−ε)) ∩ Lp(0, T ;D(B

3

4 )), (4.9b)

≡ C([0, T ];H
3

2
−ε(Γ0)) ∩ Lp(0, T ;H

3

2

00(Γ0)). (4.9c)

for ε > 0, 1 < p < ∞, as the operator ( ) in (4.9a) is bounded on L2(Γ0) by
(3.6), (3.7).

(ii) Duality results as in Lasiecka and Triggiani (2000d, Ch. 7, Thm. 7.2.1)
can be given. For simplicity (and lack of space), we shall only state those that
are dual to the regularity expressed by (4.8) with, however, the optimal space
Zγ in (4.4b) replaced by the space of finite energy Yγ in (3.20). The following
abstract trace regularity property holds true: For each 0 < T < ∞, there exists
a constant CT > 0 such that

∫ T

0

|B∗eA
∗ty|2U ≤ CT ||y||

2
Yγ
, (4.10)

for all y first in D(A∗), next extended to all of Yγ .

With reference to (4.10), we have

A
∗ =



















0 −I 0 0 0

AN 0 0 −ANN( · |Γ0
) 0

0 0 0 −I 0

0 B−1
γ N∗AN B−1

γ A 0 −B−1
γ B

0 0 0 B −B



















, D(A∗) = D(A);

(4.11a)

B∗



















y1

y2

y3

y4

y5



















= y4|x=x0
, y = [y1, y2, y3, y4, y5] ∈ D(A∗). (4.11b)
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In PDE terms the meaning of (4.10) is the following, by virtue of (4.11)
and (4.12). Let u ≡ 0 in Eqn. (2.1d). Then, the corresponding homogeneous
problem (2.1a–g) satisfies the estimate

∫ T

0

|wt(t, x; y0)|x=x0
|2 dt ≤ CT ‖y0‖

2
Yγ
, (4.12)

y0 = [z0, z1, w0, w1, θo], where wt( · ; y0)|x=x0
is the velocity wt evaluated at the

point x = x0 ∈ Γ0 of the elastic component w of problem (2.1a–g) due to the
I.C. y0 with u ≡ 0.

The proof of Theorem 4.3 is given in Section 5. The regularity result in The-
orem 4.3 makes the point-control problem (2.1a–g) fit the abstract dynamical
properties of Lasiecka and Triggiani (2000d, Ch. 9).

Remark 4.1 If in (2.1f) we replace the clamped boundary conditions for w
with the corresponding hinged boundary conditions w = ∆w = 0 on (0, T ] ×
∂Γ0, then the counterpart of Theorem 4.3 holds true in this case as well. In
fact, this case is even easier to handle at the thermoelastic level (on Γ0) alone:
Compare the hinged case in Triggiani (2007a)(in dimension 1, 2, 3) against
the more challenging treatment of the clamped case in Triggiani (2007b) (in
dimension 1 and 3) and, above all, in Triggiani (2008) (in dimension 2, the
physically significant case for the structural acoustic thermoelastic problem).

Remark 4.2 In view of Theorem 4.3 – the basic regularity result, we could set
the subsequent optimal control problem in the space C([0, T ];Zγ), topologically

equivalent to C([0, T ];D(A
1

2 )). However, we shall confine ourselves to set up the
subsequent optimal control problem in the basic finite energy space C([0, T ];Yγ),
which is physically significant.

A corresponding optimal control problem with quadratic cost func-

tional. Related Riccati differential equation. Next, we will use the well-
posedness result of Theorem 4.3 to analyze the following optimal control problem
for system (2.1) over the time interval [s, T ], 0 ≤ s < T < ∞) in the setting of
Lasiecka and Triggiani (2000d, Ch. 9):

Minimize over all u ∈ L2(s, T ;U) the cost functional

Js(u, y) =

∫ T

s

[

|Ry(t)|2Z + |u(t)|2U
]

dt+ |Gy(T )|2Zf
, (4.13)

where Z and Zf are Hilbert (output) spaces and the observation operatorsR and
G satisfy the following assumptions (Lasiecka and Triggiani, 2000d, pp. 766–7):

(i) R ∈ L(Yγ ; Z), G ∈ L(Yγ ; Zf). (4.14)

(ii) The map R∗ReAtB can be extended as a map

R∗ReAtB : continuous U → L1(0, T ;Yγ) : (4.15a)
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∫ T

0

|R∗ReAtBu|Yγ
dt ≤ cT |u|U , u ∈ U. (4.15b)

(iii) The operator G has the properties:

B∗eA
∗tG∗G ∈ L(Yγ ;U); and sup

0≤t≤T
|B∗eA

∗tG∗G|L(Yγ ;U) <∞, (4.16a)

so that

sup
0≤t≤T

|B∗eA
∗tG∗Gx|L(Yγ ;U) ≤ cT |x|Yγ

, x ∈ Yγ . (4.16b)

In (4.13), y(t) = y(t, s; y0) is the solution of equation (3.18) with initial condition
y(s) = y0, that is,

y(t, s; y0) = eA(t−s)y0 + (Lsu)(t) ∈ C([s, T ];Yγ); (4.17)

(Lsu)(t) =

∫ t

s

eA(t−τ)Bu(τ) dτ (4.18a)

: continuous L2([s, T ];U) → C([s, T ];Yγ). (4.18b)

The regularity guaranteed a-fortiori by Theorem 4.3 (see Remark 4.2) and
the assumptions on R and G (4.14)–(4.16) give directly (Lasiecka and Triggiani,
2000d, Ch. 9, Thms. 9.2.1 and 9.2.2, pp. 773–776) that

Theorem 4.4 (Optimal control problem) With reference to the optimal
control problem (4.13) for system (3.18) [the abstract version of (2.1a–g)] for
initial data y(s) = y0 ∈ Yγ , we have, with LsTu = (Lsu)(T ):

(i) There exists a unique optimal pair {u0(t, s; y0), y
0(t, s; y0)} satisfying the

optimality condition

u0(t, s; y0) = −{L∗
sR

∗Ry0(·, s; y0)}(t)−{L∗
sT
G∗Gy0(T, s; y0)}(t) ∈ L2(s, T ;U),

(4.19)

and given explicitly in terms of the data of the problem by the following
representation formulas

u0(t, s; y0) = −{Λ−1
sT [L∗

sR
∗ReA( · −s)y0 + L∗

sTG
∗GeA(T−s)y0]}(t) (4.20a)

∈ L2(s, T ;U); (4.20b)

ΛsT = Is + L∗
sR

∗RLs + L∗
sTG

∗GLsT ∈ L(L2(s, T ;U)); (4.21)

‖Λ−1
sT ‖L(L2(s,T ;U)) ≤ 1, (4.22)

where Is is the identity operator on L2(s, T ;U),

y0(t, s; y0) = eA(t−s)y0 + {Lsu
0( · , s; y0)}(t) ∈ C([s, T ];Yγ), (4.23)

which becomes explicit upon substituting (4.20a) into (4.23);
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(ii) The optimal pair satisfies the estimates (here U ≡ R),

u0( · , s; y0) ∈ L∞(s, T ), u0(t, s; y0) ∈ U ≡ R (4.24a)




 for all t; moreover, u0( · , s; y0) ∈ C([s, T ]) if G = 0; (4.24b)

sup
0≤s≤T

|u0( · , s; y0)|L∞(s,T ) ≤ CT ‖y0‖Yγ
; (4.25)

sup
0≤s≤T

‖y0( · , s; y0)‖C([s,T ];Yγ) ≤ CT ‖y0‖Yγ
. (4.26)

(iii) The operator

Φ(t, s)y0 ≡ y0(t, s; y0) : Yγ → C([s, T ];Yγ) (4.27)

(strong continuity in the first variable) is an evolution operator satisfying
the following properties:

(a) (transition property of optimal solution)

Φ(t, s) = Φ(t, τ)Φ(τ, s), 0 ≤ s ≤ τ ≤ t ≤ T, Φ(t, t) = I; (4.28)

(b) (transition property of optimal control)

u0(t, τ ; Φ(τ, s)x) = u0(t, s;x) a.e. in t,

0 ≤ s ≤ τ ≤ t ≤ T, x ∈ Yγ ; (4.29)

(c) for 0 < t ≤ T fixed

the map s→ Φ(t, s)x is continuous on Yγ , ∀x ∈ Yγ ; 0 ≤ s ≤ t; (4.30)

(strong continuity in the second variable).

(iv) There exists an operator P (t) ∈ L(Yγ), 0 ≤ t ≤ T defined explicitly in
terms of the data by

P (t)x =

∫ T

t

eA
∗(τ−t)R∗Ry0(τ, t;x) dτ

+ eA
∗(T−t)G∗Gy0(T, t;x), x ∈ Yγ , 0 ≤ t ≤ T (4.31a)

: continuous Ys → C([0, T ];Yγ), (4.31b)

where P (t) is positive, self-adjoint, P (t) = P ∗(t) ∈ L(Yγ), and we have
that

u0(t, s; y0) = −B∗P (t)y0(t, s; y0) ∈ L2(s, T ;U) = L2(s, T ) (4.32)

for the optimal pair u0 and y0.
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(v) The operator P (t) defined in (4.31) satisfies the following additional regu-
larity properties:

V (t) ≡ B∗P (t) ∈ L(Yγ ;U), 0 ≤ t ≤ T ; (4.33)

V (t) ≡ B∗P (t) : continuous Yγ → L∞(0, T ;U); (4.34)

B∗P (·)eA(·−s)B : continuous U → L2(s, T ;U) for any s

with norm that may be taken independent of s. (4.35)

(vi) P (t) is a solution to the following operator Differential Riccati Equation:

(Pt(t)x, y)Yγ
= −(P (t)x,Ay)Yγ

− (P (t)Ax, y)Yγ



















−(Rx,Ry)Z + (B∗P (t)x,B∗P (t)y)U (4.36a)

P (T ) = G∗G, for x, y ∈ D(A). (4.36b)

Finally, P (t) in (4.31) is the only positive, self-adjoint solution to satisfy
properties (4.31b), (4.33)–(4.35).

5. Proof of Theorem 4.3

We will prove the regularity of L by uncoupling the wave and thermoelastic
equations in system (2.1). In other words, following the strategy of the purely
elastic case in Camurdan and Triggiani (1999), Lasiecka and Triggiani (2000d,
Section 10, p. 884), as well as Triggiani (2007a,b, 2008), we shall prove the
theorem by first looking at the thermoelastic and wave components separately.
At this stage, a direct semigroup argument (based on a loss of regularity aready
achieved of the term ξt in (5.30)) readily produces the weaker result (5.38)
in Remark 5.2. To obtain the optimal regularity result of Theorem 4.3, this
last step requires two non-trivial ingredients, pointed out in Remark 5.1 and
Orientation, below.

Step 1. (Uncoupled nonhomogeneous thermoelastic equations on Γ0) Let
ψ, h be the solution to the following (uncoupled) thermoelastic system:

ψtt − γ∆ψtt + ∆2ψ + ∆h = δ(x0)u(t) on Σ0, (5.1a)


































ht − ∆h− ∆ψt = 0 on Σ0, (5.1b)

ψ = 0;
∂

∂ν
ψ = 0; h = 0 on (0, T ]× ∂Γ0, (5.1c)

ψ(0, ·) = 0; ψt(0, ·) = 0; h(0, ·) = 0 in Γ0. (5.1d)

The optimal regularity result for this problem in dim Γ0 = 2 with zero initial
conditions is given by Triggiani (2008).
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Theorem 5.1 Triggiani (2008, Theorem 1.2) Let n = dim Γ0 = 2 and assume
(4.3): u ∈ L2(0, T ) for the problem (5.1). Then, continuously, the following
interior regularity holds true:

ψ ∈ C
(

[0, T ]; D(A
5

8 ) ≡ H
5

2 (Γ0) ∩H
2
0 (Γ0)

)

; (5.2a)










































ψt ∈ C
(

[0, T ]; D(A
3

8 ) = H
3

2

00(Γ0)
)

, (5.2b)

h ∈ Lp

(

0, T ; D(B
3

4 ) ≡ H
3

2

0 (Γ0)
)

∩ C
(

[0, T ]; D(B
3

4
− ǫ

2 ) ≡ H
3

2
−ǫ

0 (Γ0)
)

, 1 < p <∞. (5.2c)

Moreover, still continuously in u ∈ L2(0, T ), the following boundary regularity
of the elastic component holds true:

∆ψ|∂Γ0
∈ L2(0, T ; L2(∂Γ0)). (5.2d)

Step 2 (Uncoupled nonhomogeneous wave equation on Ω) Next, let φ denote
the solution to the following (uncoupled) wave mixed problem:

φtt = ∆φ on (0, T ]× Ω ≡ Q, (5.3a)


























∂

∂ν
φ = g on (0, T ]× Γ ≡ Σ, (5.3b)

φ(0, ·) = 0; φt(0, ·) = 0 in Ω. (5.3c)

Sharp regularity theory for this problem is given in Lasiecka and Triggiani
(1990, 1991a, 1994, 2000d, Ch. 8, p. 755), Tataru (1998). Following Lasiecka
and Triggiani (2000d, Theorem 9.10.3.2, p. 893) with α = 2

3 by Tataru (1998),
we have (here dim Ω = 3, but this is not important, as long as dim Ω ≥ 2):

Theorem 5.2 For the problem (5.3), we have
(i) (interior regularity) Let

g ∈ H1(0, T ; L2(Γ)) ∩ C
(

[0, T ]; H
1

6 (Γ)
)

, g|t=0 = 0. (5.4)

Then, continuously,

[φ, φt, φtt] ∈ C
(

[0, T ]; H
5

3 (Ω) ×H
2

3 (Ω) ×H− 1

3 (Ω)
)

. (5.5)

(ii) (boundary regularity) Let

g ∈ H1(Σ) ≡ L2(0, T ;H1(Γ)) ∩H1(0, T ;L2(Γ)), g|t=0 = 0. (5.6)

Then, continuously,

φ|Σ ∈ H
4

3 (Σ) = L2(0, T ;H
4

3 (Γ)) ∩H
4

3 (0, T ;L2(Γ)). (5.7)
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Remark 5.1 We note that by Lions and Magenes (1972, Thm. 3.1, p. 19), we
have

g ∈ H1(Σ) ⇒ g ∈ C([0, T ]; [H1(Γ), L2(Γ)] 1

2

= H
1

2 (Γ)). (5.8)

Thus, hypothesis (5.6) implies hypothesis (5.4).

Step 3. Next, with ψt provided by Theorem 5.1, (5.2b) for the thermoelastic
problem (5.1a–d), we consider the following mixed problem in Ω:

ξtt = ∆ξ on Q, (5.9a)










































∂

∂ν
ξ = 0 on Σ1, (5.9b)

∂

∂ν
ξ = −ψt on Σ0, (5.9c)

ξ(0, ·) = 0; ξt(0, ·) = 0 in Ω. (5.9d)

In this step, we seek to apply Theorem 5.2 to the mixed problem (5.9a–d)
in ξ. In the notation of (5.3b), we then have

g =

{

0 on Σ1

−ψt on Σ0

, so that g|t=0 =

{

0 on Γ1

−ψt|t=0 on Γ0

≡ 0, (5.10)

after recalling the initial condition (5.1d) for ψt|t=0 on Γ0. Having verified in
(5.10) the compatibility condition required by (5.6), in order to apply Theorem
5.2 on the mixed problem (5.9a–d) in ξ, it remains to verify the validity of the
assumption of regularity in (5.6) for g defined in (5.10); that is, that

ψt ∈ H1(Σ0) ≡ L2(0, T ;H1(Γ0)) ∩H
1(0, T ;L2(Γ0)). (5.11)

One half of condition (5.11) is provided at once (a-fortiori) by Theorem 5.1,
Eqn. (5.2b) (as dim Γ = 2 in our case), namely

ψt ∈ C
(

[0, T ]; D(A
3

8 ) = H
3

2

00(Γ0)
)

⊂ C([0, T ];H1(Γ0)) ⊂ L2(0, T ;H1(Γ0)).

(5.12)

Thus, in order to satisfy (5.11), it remains to verify that

ψt ∈ H1(0, T ;L2(Γ0)). (5.13)

But showing this is equivalent to showing that

ψtt ∈ L2(0, T ;L2(Γ0)), (5.14)

which is the next task. (This task is challenging in the case of clamped boundary
conditions, as opposed to the case of hinged boundary conditions.)
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Step 4. (Proof of (5.14)) To this end, we return to the ψ-problem in (5.1a-
d) and rewrite it abstractly, recalling the operators B, Bγ in (3.1a–b) and A in
(3.2). We thus obtain the abstract form of problem (5.1a–d), that is

Bγψtt +Aψ −Bh = δu. (5.15)

Applying A− 1

2 on (5.15) gives

A− 1

2Bγψtt = −A− 1

2Aψ +A− 1

2Bh+ A− 1

2 δu. (5.16)

Our goal is now to establish that the right-hand side of (5.16) satisfies the
following regularity property

RHS of (5.16) ∈ L2(0, T ;L2(Γ0)). (5.17)

Once (5.17) is established, we then obtain via (5.16), (5.17), that

A− 1

2Bγψtt ∈ L2(0, T ;L2(Γ0)). (5.18)

Now, according to the results of Lasiecka and Triggiani (2001, Proposition 2.3,
p. 453), one has

A− 1

2Bγf ∈ L2(Γ0) ⇐⇒ f ∈ L̃2(Γ0), (5.19)

so that (5.18) implies

ψtt ∈ L2(0, T ; L̃2(Γ0)), (5.20)

and (5.14) is a-fortiori established. In fact (Lasiecka and Triggiani, 2001), the
space L̃2(Γ0) can be characterized in two ways:

(i) as the dual space of D(A
1

2 ) with respect to the space D(B
1

2

γ ) as a pivot
space, endowed with the norm

‖f‖2

D(B
1

2
γ )

= (B
1

2

γ f,B
1

2

γ f)L2(Γ0) = ((I + γB)f, f)L2(Γ0); (5.21)

(ii) isometric to the factor space L2(Γ0)/H, with H defined in (3.30). Thus,
characterization (ii) says that (5.20) implies a-fortiori the desired regularity
property (5.14) for ψtt. The appearance of the space L̃2(Γ0) is a pathological
fact due to the clamped boundary conditions.

It remains to show (5.17), after which the proof of (5.14), hence of (5.11) is
complete. To this end, we examine individually the regularity property of each
component on the RHS of (5.16).

As to the first term in the RHS of (5.16), we have, recalling (5.2a) and (3.8):

−A− 1

2Aψ = −A
1

2ψ ∈ C([0, T ];D(A
1

8 ) ≡ H
1

2

00(Γ0)) ⊂ L2(0, T ;L2(Γ0)). (5.22)
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As to the second term in the RHS of (5.16), we have

A− 1

2Bh ∈ Lp(0, T ;L2(Γ0)), 1 < p <∞, in particular p = 2. (5.23)

In fact, (5.23) follows by virtue of the following two properties:

h ∈ Lp(0, T ;L2(Γ0)), a-fortiori from (5.2c); (5.24)

A− 1

2B ∈ L(L2(Γ0)), since BA− 1

2 ∈ L(L2(Γ0)). (5.25)

Indeed, D(A
1

2 ) = H2
0 (Γ0) ⊂ D(B) = H2(Γ0) ∩H1

0 (Γ0) by (3.1a), (3.5), and the

closed graph theorem then yields BA− 1

2 ∈ L(L2(Γ0)).

Then, with B and A self-adjoint, the adjoint A− 1

2B ∈ L(L2(Γ0)) as well,
and (5.25) is established.

Then, (5.24) and (5.25) imply (5.23).
The third term on the RHS of (5.16) is analyzed in (A.4) of Appendix A.

Thus

A− 1

2 δu ∈ L2(0, T ;L2(Γ0)), for u ∈ L2(0, T ). (5.26)

Invoking (5.22), (5.23), (5.26) on the RHS of (5.16), we obtain

A− 1

2Bγψtt = RHS of (5.16) ∈ L2(0, T ;L2(Γ0)). (5.27)

Thus, (5.27) proves (5.17), hence (5.18), hence (5.20), finally (5.14), as desired.
This concludes Step 4.

By (5.12) and (5.14), we conclude that ψt ∈ H1(Σ0), and (5.11) is estab-
lished. This concludes Step 3.

Step 5. Next, we return to the mixed problem (5.9a–d) in ξ. This is
precisely the same as the mixed problem (5.3a–c) in φ, with the Neumann
boundary datum g defined by (5.10): g ≡ 0 in Σ1, g = −ψt in Σ0. We seek to
apply Theorem 5.2(i),(ii). To this end, with the aforementioned g, the required
assumptions (5.4) for interior regularity and (5.6) for boundary regularity, have
already been verified in the preceding analysis:

g ∈ H1(Σ); g|t=0 = 0 by (5.11) on Γ0 and (5.10); (5.28a)




 g ∈ C([0, T ];H
1

6 (Γ)) a-fortiori from (5.12) on Γ0 and (5.10) (5.28b)

(recall also Remark 5.1). Hence, via (5.28a–b), we are authorized to apply
Theorem 5.2 in its entirety to the ξ-problem (5.9a–d) and obtain the follow-
ing interior and boundary regularity results, corresponding to (5.5) and (5.7),
respectively: the interior regularity

[ξ, ξt, ξtt] ∈ C
(

[0, T ]; H
5

3 (Ω) ×H
2

3 (Ω) ×H− 1

3 (Ω)
)

, (5.29)
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and boundary regularity

ξ ∈ H
4

3 (0, T ;L2(Γ0)), or ξt ∈ H
1

3 (0, T ;L2(Γ0)). (5.30)

Step 6. (coupled system) With the regularity of ξt given by (5.30), we
consider the following coupled system in the variables {ζ, υ, q}:

ζtt = ∆ζ on (0, T ]× Ω ≡ Q; (5.31a)

chamber Ω :



































∂

∂ν
ζ = 0 on (0, T ]× Γ1 ≡ Σ1; (5.31b)

∂

∂ν
ζ = −υt on (0, T ]× Γ0 ≡ Σ0; (5.31c)

υtt − γ∆υtt + ∆2υ + ∆q − ζt = ξt on Σ0; (5.31d)

wall Γ0 :























qt − ∆q − ∆υt = 0 on Σ0; (5.31e)

υ = 0;
∂

∂ν
υ = 0; q = 0 on (0, T ] × ∂Γ0 (5.31f)

I.C. ζ(0, ·) = 0; ζt(0, ·) = 0 in Ω; υ(0, ·) = 0; υt(0, ·) = 0; q(0, ·) = 0 in Γ0.

(5.31g)

Notice that problem (5.31) is obtained by setting

ζ(t, x) ≡ z(t, x)−ξ(t, x), υ(t, x) ≡ w(t, x)−ψ(t, x), q(t, x) = θ(t, x)−h(t, x),

(5.32)

with {z, w} the wave solution in (2.1a–c) and the elastic solution in (2.1d),
respectively; with ξ solution of the wave problem (5.9a–d); with ψ solution of
the elastic problem (5.1a–d), finally, with θ and h the thermal terms in (2.1d–e)
and (5.1a–b). Differentiating formally from (5.32) and invoking the respective
problems (2.1), (5.9), (5.1) yields problem (5.31). The coupled problem (5.31)
in the new variables {ζ, υ, q} is the same as the original coupled problem (2.1)
in {z, w, θ}, except for the fact that the point control term δu in (2.1d) on Σ0

is now replaced by the general nonhomogenous term ξt in (5.31d) on Σ0, for
which we already have the regularity noted in (5.30).

Thus, problem {ζ, υ, q} is expected to be easier to analyze than problem
{z, w, θ}, the advantage of the change of variables. In fact, this is genuinely the
case when it comes to obtaining the weaker regularity result (5.38) of Remark
5.2 (after accepting the ε loss of regularity of ξt, see (5.41) below.) To this end,
we shall obtain regularity results for problem {ζ, υ, q} by semigroup methods,
just by using the s.c. semigroup asserted by Proposition 4.1 generated by the
operator A in (3.19). Instead, in contrast, to obtain the optimal regularity
result of Theorem 4.3, (4.10a), it is necessary to overcome the two additional
difficulties pointed out in Remark 5.2 below.
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Recalling the operators AN , N , Bγ , B, A, N∗AN from Section 2, and pro-
ceeding as in obtaining the abstract version (3.15a–c) of the original {z, w, θ}-
problem in (2.1a–d), we see likewise that the abstract version of the {ζ, υ, q}-
problem (5.31) is given by

ζtt = −ANζ − (AN + I)N(υt|Γ0
) on [D(AN )]′; (5.33a)



















Bγυtt +Aυ −Bq +N∗(AN + I)ζt = ξt on L2(Γ0); (5.33b)

qt +Bq +Bυt = 0 on L2(Γ0). (5.33c)

Thus, recalling (3.18) and (3.19), we see that the corresponding first-order sys-
tem of (5.33a–c) is given by

∂

∂t

















ζ

ζt

υ

υt

q

















= A

















ζ

ζt

υ

υt

q

















+

















0

0

0

B−1
γ ξt

0

















. (5.34)

So, according to Proposition 4.1, the solution of (5.34) is given by

η(t) =

















ζ(t)

ζt(t)

υ(t)

υt(t)

q(t)

















=

∫ t

0

eA(t−τ)

















0

0

0

B−1
γ ξt(τ)

0

















dτ. (5.35)

Next, we need to establish the regularity of η(t).

Step 7. Proposition 5.3 With Yγ as in (3.20) and η as in (5.35), we have

η(t) = [ζ(t), ζt(t), υ(t), υt(t), q(t)] ∈ C([0, T ];D(A
1

2 )). (5.36)

Thus, recalling (3.27b),



















ζ(t)

ζt(t)

υ(t)

υt(t)

q(t)



















= C([0, T ];























H
3

2 (Ω)/R

D(A
1

4

N ) = H
1

2 (Ω)

D(A
5

8 ) = H
5

2 (Γ0) ×H2
0 (Γ0)

D(A
3

4 ) = H
3

2

00(Γ0)

D(B
1

2 ) = H1
0 (Γ0)























). (5.37)
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Remark 5.2 The proof of the sharp (optimal) regularity result (5.36) runs into
additional technical difficulties. However, (5.36) is critical to obtain the final
sought-after result of Theorem 4.3, equation (4.4a). To overcome these, we need
two new ideas that are pointed out and described in the Orientation below. To
emphasize this point, we shall proceed as follows. We shall first show the weaker,
non-optimal result

η(t) = [ζ(t), ζt(t), υ(t), υt(t), q(t)] ∈ C([0, T ];Yγ). (5.38)

At the present stage, conclusion (5.38) can be readily reached, by accepting a
loss of regularity of one unit in Sobolev regularity, as displayed in (5.41) below.
Then, returning in Step 8 to the structural acoustic problem (3.18), (2.1), the
readily achieved regularity (5.38) will then automatically imply the result

u ∈ L2(0, T ) ⇒ [z(t), zt(t), w(t), wt(t), θ(t)] ∈ C([0, T ];Yγ) (5.39)

continuously. Such a result is still satisfactory in that Yγ is the space of finite
energy for the problem (2.1), and the natural state space of the solution semi-
group eAt, describing the evolution of the free dynamics (i.e. due only to the
initial data). Having noted this positive feature, we should, however, also point
out that the regularity result (5.39) is only ε more regular than the result that
could be obtained at the outset by a direct application of the semigroup formula
(2.6). All this was already elaborated in the comments made after equation (2.6).
We now pass to the proof of the weaker regularity result (5.38).

Direct proof of the weaker regularity result (5.38). The a priori regularity of ξt
given by (5.30) yields preliminarily

B−1
γ ξt ∈ H

1

3 (0, T ;D(B)). (5.40)

The direct proof of the weaker (yet physically satisfactory) regularity result
(5.38) in the finite energy space Yγ is based on acceptance of the following loss
of regularity:

B−1
γ ξt ∈ H

1

3 (0, T ;D(B)) ⊂ L2(0, T ;D(B
1

2

γ )), (5.41)

where a serious loss takes place in the space variable by one unit in Sobolev
space regularity: from H2(Γ0) to H1(Γ0). Using this fact in (5.35) and the def-
inition of Yγ in (3.20), in particular, its fourth component space, readily gives
(5.38).

The loss of regularity in (5.38) for the variables [ζ, ζt, υ, υt, q] then propagates
also to the original variables [z, zt, w, wt, θ], producing the weaker result (5.39).

Proof of Proposition 5.3, Eqn. (5.36): sharp regularity

Orientation To improve upon the proof given above (of the weaker result (5.38)
for η(t)), it is necessary to drastically modify the argument by injecting two new
ideas expressed in points (a) and (b) below.



1488 C. LEBIEDZIK, R. TRIGGIANI

(a) First, with reference to the variation of parameters formula (5.35), we
would like to take full advantage of the original regularity result (5.40),
at least in space, that is in the form B−1

γ ξt ∈ L2(0, T ;D(B)), and seek to
obtain that

[

0, 0, 0, B−1
γ ξt, 0

]

∈ L2(0, T ;D(A
1

2 )). (5.42)

Unfortunately, there are technical difficulties in establishing (5.42), since
the active component B−1

γ occurs on the fourth component space; as we
have seen in characterizing D(A) in (3.24a,b,c), the first and fourth co-
ordinates are coupled. Thus, it does not appear to be a trivial matter
to characterize exactly the fourth component space of D(A

1

2 ) (such a re-
sult seems to be unknown, even in the case of the elastic equation per
se). See, however, the topological equivalence in (3.27d). With reference

to (5.40) and (3.27d), whose fourth component is H
3

2

00(Ω), we note that

D(B) 6⊂ H
3

2

00(Ω), an obstacle to invoking (5.35) directly. Inspiration for
overcoming this difficulty comes from (A.1), (A.3) of Appendix A. Ac-
cordingly, we have

A
−1













0
0
0

B−1
γ ξt
0













=













0
0

−A−1ξt
0
0













(5.43)

and then re-write (5.35), via(5.43) as

η(t) =













ζ(t)
ζt(t)
υ(t)
υt(t)
q(t)













=

∫ t

0

AeA(t−τ))
A

−1













0
0
0

B−1
γ ξt(τ)

0













dτ

=

∫ t

0

AeA(t−τ))













0
0

−A−1ξt(τ)
0
0













dτ (5.44)

where, by (5.30), we have

A−1ξt ∈ H
1

3 (0, T ;D(A)); (5.45)

thus transferring the active term in (5.44) from the fourth to the third
component space. While the coupling between the fourth and first com-
ponent spaces presents challenges when it comes to characterizing D(A

1

2 )

[or D(A
3

2 )], by contrast, the third components of the domain of fractional
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powers of A are dealt with directly for D(A) in (3.24a), for D(A
1

2 ) in
(3.26). Moreover, they involve the operator A (and its fractional powers)
– for which the term in (5.45) is then a suitable and promising starting
point for the subsequent analysis. In the present case, with reference to
(5.44) and (5.45), we need to characterize the third component space of

D(A
3

2 ) (as opposed to the fourth component space of D(A
1

2 )). To this
end, the dependence of (5.45) in terms of D(A) helps.
For instance – consistently with the direct proof of the weaker regularity
result (5.38) given above – if we accept the loss of space regularity

A−1ξt ∈ H
1

3 (0, T ;D(A))) ⊂ L2(0, T ;D(A
3

4 )) (5.46)

(that is, a loss of 1
4 in terms of domains of fractional powers of A, which

translates – again – into a loss of one unit in Sobolev regularity from
H2(Γ0) to H3(Γ0) (see (3.4)), then again (5.44) would imply at once
the weaker regularity result η(t) ∈ C([0, T ];Yγ) in (5.38), by (3.24a) and
(5.44).
Our present goal, instead, is to exploit the weaker topological loss

A−1ξt ∈ H
1

3 (0, T ;D(A))) ⊂ L2(0, T ;D(A
7

8 )) (5.47)

which will amount to identifying the third component space of D(A
3

2 ).

(b) Indeed, seeking to characterize the third component space of D(A
3

2 ) does
run into technical difficulties, due to the pathology that the third compo-
nent space of D(A2) in (3.28) is only A−1H⊥, and not the full space D(A)
(thus an algebraic, not a topological, loss takes place here). To handle this
obstacle, the technical argument of Proposition 3.1b, leading to (3.34) is

needed: the third component space D(A
7

8 ) in (3.34) would have been a

straightforward interpolation result between D(A) and D(A
3

4 ) for D(A),
if D(A) – not A−1H−1 – had been the third component space of D(A2).

Proceeding with the proof of Proposition 5.3, equation (5.36), we return to
(5.44) with active term given by (5.45). We then appeal to Proposition 3.1b,
equations (3.33) and (3.34) and obtain that the statement (5.47) does indeed
imply as a consequence, that

[

0, 0,−A−1ξt, 0, 0
]

∈ L2(0, T ;D(A
3

2 )). (5.48)

Then, (5.48), used in (5.44) yields η ∈ C([0, T ];D(A
1

2 )), as desired. Proposition
5.3, equation (5.36) is proved.

Remark 5.3 The trick, exhibited in (5.43), (5.44), works also in the purely
thermo-elastic case (n = 2) of Triggiani (2008), thus reproducing, through a
simpler proof, the interior regularity result of this paper (Lebiedzik and Trig-
giani, 2010). The latter yielded, however, both interior and boundary optimal
regularity results.
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Step 8. We now return to the (z, w, θ)-problem (2.1 from the (ζ, υ, q)-
problem (5.31)), and use relations in (5.32). Thus,

z(t, x) = ζ(t, x) + ξ(t, x); w(t, x) = υ(t, x) + ψ(t, x);

θ(t, x) = h(t, x) + q(t, x). (5.49)

Thus, we can obtain the regularity of (z, w, θ) from (ζ, υ, q) via that of {ψ, h}
obtained in Theorem 5.1, and of ξ obtained in (5.29), (5.30). First, we have,
from (5.36),(5.37) of Proposition 5.3:

















ζ

ζt

υ

υt

q

















∈ C





















[0, T ];





















H
3

2 (Ω)/R

D(A
1

2

N ) = H
1

2 (Ω)

D(A
5

8 ) = H
5

2

0 (Γ0) ∩H2
0 (Γ0)

D(A
3

8 ) = H
3

2

00(Γ0)

D(B
1

2 ) = H1
0 (Γ0)









































. (5.50)

Moreover, Eqns. (5.29) for {ξ, ξt} and Eqn. (5.2a–c) for {ψ, ψt, h} give, re-
spectively,

[

ξ

ξt

]

∈ C



[0, T ];





H
5

3 (Ω)

H
2

3 (Ω)







 ;









ψ

ψt

h









∈ C









[0, T ];









D(A
5

8 ) = H
5

2 (Γ0) ∩H2
0 (Γ0)

D(A
3

8 ) = H
3

2

00(Γ0)

H
3

2
−ǫ

0 (Γ0)

















. (5.51)

Finally, using in (5.49) the previous regularity statements, given by (5.50) and
(5.51), we obtain

















z

zt

w

wt

θ

















∈ C





















[0, T ];





















H
3

2 (Ω)/R

D(A
1

2

N ) = H
1

2 (Ω)

D(A
5

8 ) = H
5

2

0 (Γ0) ∩H2
0 (Γ0)

D(A
3

8 ) = H
3

2

00(Γ0)

D(B
1

2 ) = H1
0 (Γ0)









































(5.52)

and Theorem 4.3 is proved.
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Appendix A: Proof of Proposition 4.2

As in Lasiecka and Triggiani (2000d, bottom of p. 890), given u ∈ U ≡ R, we
seek g ∈ D(A)) such that Bu = Ag. By (3.19), we verify that

Bu =

















0

0

0

B−1
γ δu

0

















(A.1)

=

















0 I 0 0 0

−AN 0 0 −ÃNN(·|Γ0
) 0

0 0 0 I 0

0 −B−1
γ N∗ÃN −B−1

γ A 0 B−1
γ B

0 0 0 −B −B

































0

0

−A−1δu

0

0

















. (A.2)

Hence, we deduce that the sought-after vector g is given by

A
−1Bu = g =

















0

0

−A−1δu

0

0

















, (A.3)

where A
−1 ∈ L(Yγ). Thus, by (A.2) and the third component space D(A

1

2 ) of
Yγ in (3.20), we see that in order to establish Proposition 4.2, we need to show
that

g ∈ Yγ or A−1δu ∈ D(A
1

2 ) or A− 1

2 δu ∈ L2(Γ0). (A.4)

Indeed, we shall show below the stronger result that

A−1δu = A− 3

4
+ ǫ

4A−( 1

4
+ ǫ

4
)δu ∈ D

(

A
3

4
− ǫ

4

)

⊂ D(A
1

2 ),

a-fortiori A− 1

2 δu ∈ L2(Γ0), (A.5)
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since we shall establish, in fact, that (set theoretically)

δ ∈ [H1+ǫ(Γ0)]
′ ⊂

[

D(A
1

4
+ ǫ

4 )
]′

or A−( 1

4
+ ǫ

4
)δu ∈ L2(Γ0). (A.6)

It remains to verify (A.5). To this end, recall that for dim Γ0 = 2, Sobolev
embedding yields:

δ ∈ [H1+ǫ(Γ0)]
′, ǫ > 0, arbitrary. (A.7)

Moreover, we shall establish below the following identification:

D(A
1

4
+ ǫ

4 ) = H1+ǫ
0 (Γ0) ⊂ H1+ǫ(Γ0). (A.8)

In fact, since Lions and Magenes (1972, Thm. 11.6, p. 64 and Thm. 11.7, p. 66)
give

[H2
0 (Γ0), H

1
0 (Γ0)]θ = H

(1−θ)2+θ·1
0 (Γ0) = H1+ǫ

0 (Γ0), (A.9)

as long as (1+ǫ) 6= (integer+ 1
2 ), whereby then 2(1−θ)+θ = 1+ǫ, i.e., θ = 1−ǫ.

Also, from Lions and Magenes (1972, Eqn. (1.4a)) and recalling (3.5), one sees
that the above is norm-equivalent to

[D(A
1

2 ),D(A
1

4 )]θ=1−ǫ = D(A
1

2
(1−θ)+ 1

4
θ) = D(A

1

4
+ ǫ

4 ) = H1+ǫ
0 (Γ0), (A.10)

thus giving again (A.9). So, (A.7), (A.6), yield (A.5), as desired. The proof of
[(A.5), hence of (A.3), hence of] Bu = Ag is complete.

Appendix B: Proof of containment (3.27c)

We return to equation (3.26):

D(A
1

2 ) = V1 ×D(A
1

2

N ) ×D(A
5

8 ) × V4 ×D(B
1

2 ). (B.1)

The goal of the present Appendix B is to show the following reverse containment
(equation (3.27c).

Proposition B.1 We have
{[

z1
z4

]

: z1 ∈ H
3

2 (Ω)/R, ∆z1 ∈ [H
1

2 (Ω)]′ = H− 1

2 (Ω); z4 ∈ H
3

2

00(Γ0),

∂

∂ν
z1

∣

∣

∣

∣

Γ1

= 0,
∂

∂ν
z1

∣

∣

∣

∣

Γ0

= −z4

}

⊂ V1 × V4 (B.2)

where the normal derivative ∂
∂ν z

∣

∣

Γ
is a-priori well-defined in H−ε(Γ), ε >

0; see Claim #2 below. Recall that f ∈ H
3

2 (Ω) automatically implies ∆f ∈

[H
1

2

00(Ω)]′.
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Proof of Proposition B.1. We seek to apply Lions and Magenes (1972, Theorem
14.3, p. 97), whereby extra conditions that define subspaces are preserved under
interpolation. The first and fourth space components, S1 × S4, of the domain
D(A) of A readily define a subspace of H2(Ω) ×H2

0 (Γ0), see (3.24c). However,
the first space component of the space Yγ in (3.20)—that is, the component

D(A
1

2

N ) ≡ H1(Ω)/R—is at a too low topological level and does not support
the normal derivative on the boundary Γ, as a well-defined operation for each
of its members. To remedy this we then introduce the space Y1 below, Y1 ⊂

D(A
1

2

N ), but Y1 at the same toplogical level as D(A
1

2

N ) for which—in contrast—

the normal derivative on Γ is well-defined in H− 1

2 (Γ), see Claim #1 below.
To fall into the setting of Lions and Magenes (1972, Section 14.3, p. 96), we
introduce the following spaces and operator δ:

X ≡

[

X1 ≡ H2(Ω)

X4 ≡ H2
0 (Γ0)

]

⊂ Φ; X1 ≡
{

x1 ∈ H2(Ω) so that ∆x1 ∈ L2(Ω)
}

(B.3)

X ≡





L2(Ω)

0 on Γ1

H2
0 (Γ0)



 ≡ X̄ ⊂ Ψ; δ ∈ L(X ;X ) (B.4)

∆x1 ∈ L2(Ω) (B.5a)

(X)δ,X ≡

{[

x1

x4

]

∈ X : δ

[

x1

x4

]

≡















































∂

∂ν
x1

∣

∣

∣

∣

Γ1

= 0

}

(B.5b)

∂

∂ν
x1

∣

∣

∣

∣

Γ0

= −x4 ∈ H2
0 (Γ0) (B.5c)

so that by equation (3.24c)

(X)δ,X =

{[

x1

x4

]

∈ X : δ

[

x1

x4

]

∈ X

}

≡ S1 × S4; (B.6)

Y ≡

[

Y1

Y4 ≡ H1
0 (Γ0)

]

≡ Φ; Y1 =
{

y1 ∈ H1(Ω)/R : ∆y1 ∈ [H1(Ω)/R]′
}

(B.7)

Thus, Y1 is at the same topological level as D(A
1

2

N ), but Y1 ⊂ D(A
1

2

N ), since

y1 ∈ D(A
1

2

N ) implies automatically that ∆y1 ∈ H−1(Ω)/R, where [H1(Ω)/R]′ ⊂
H1(Ω)/R.

It is shown below in Claim #1 that in Y1, the normal derivative on Γ is
well-defined in H− 1

2 (Γ);
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Y ≡







[H1(Ω)/R]′

0 on Γ1

H1
0 (Γ0)






≡ Ȳ ≡ Ψ (B.8)

∆y1 ∈ [H1(Ω)/R]′ (B.9a)

(Y)δ,Y ≡

{[

y1
y4

]

∈ Y : δ

[

y1
y4

]

≡















































∂

∂ν
y1

∣

∣

∣

∣

Γ1

= 0

}

(B.9b)

∂

∂ν
y1

∣

∣

∣

∣

Γ0

= −y4 ∈ H2
0 (Γ0) (B.9c)

so that recalling also (3.20)

(Y)δ,Y =

{[

y1
y4

]

∈ Y : δ

[

y1
y4

]

∈ Y

}

⊂ H1(Ω)/R ×H1
0 (Γ0) (B.10)

≡ first × fourth components of Yγ

The definitions of Φ, Ψ, X̄ , Ȳ satisfy properties in Lions and Magenes (1972,
Eq (14.18), (14.23)(i), pp. 96-97).

Claim #1

y1 ∈ Y1 ⇒
∂

∂ν
y1

∣

∣

∣

∣

Γ

exists well-defined in H− 1

2 (Γ) (B.11a)

continuously:
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂ν
y1

∣

∣

∣

∣

Γ

∣

∣

∣

∣

∣

∣

∣

∣

H−
1

2 (Γ)

≤ c||y1||H1(Ω), y1 ∈ Y1. (B.11b)

Proof of Claim #1 This Claim #1 follows by an application of Green’s first
theorem, upon integration by parts against a test function ϕ ∈ H1(Ω)/R

∫

Ω

∆y1ϕdΩ =

∫

Γ

∂

∂ν
y1ϕdΓ −

∫

Ω

.∇y1 · ∇ϕdΩ. (B.12)

With ∆y1 ∈ [H1(Ω)/R]′, y1 ∈ H1(Ω)/R and ϕ ∈ H1(Ω)/R, the first and
last integral terms on Ω in (B.12) are well-defined. Thus, so is the boundary

integral term ( ∂
∂ν y1

∣

∣

Γ
, ϕΓ)Γ, where ϕ|Γ ∈ H

1

2 (Γ) runs over all of H
1

2 (Γ)/R by

surjectivity of the trace operator, as ϕ runs over H1(Ω)/R. Thus, ∂
∂ν y1

∣

∣

Γ
is

well-defined in H− 1

2 (Γ), as claimed by (B.11a). Moreover, (B.12) implies via
the above argument also the quantitative estimate (B.11b), as

||∆y1||[H1(Ω)]′ ≤ c||∆y1||H−1(Ω) ≤ C||y1||H1(Ω) (B.13)
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via H1
0 (Ω) ⊂ H1(Ω), hence [H1(Ω)]′ ⊂ [H1

0 (Ω)]′ = H−1(Ω), as well as via Lions
and Magenes (1972, p. 85). Thus, Claim #1 is established.

Notice that Claim #1 implies, via the spaces Φ and Ψ defined in (B.7), (B.8),
that the operator δ defined in (B.5) satisfies the first and third relationships of
boundedness below:

δ ∈ L(Φ; Ψ); δ ∈ L(X ; X̄ ), δ ∈ L(Y; Ȳ) (B.14)

as required by Lions and Magenes (1972, eq. (14.19), (14.23)(ii), pp. 96-97),
while the second relationship in (B.14) is plain with X̄ ≡ X as in (B.4). Fi-
nally, we need to check the remaining assumption Lions and Magenes (1972,
(14.23)(iii)). To this end, we define the operator G as the solution z1 (modulo
a constant) of the following elliptic problem:

∆z1 = χ1 (B.15a)

z1 = Gχ = G





χ1

0
χ2



 :≡























∂

∂ν
z1

∣

∣

∣

∣

Γ1

= 0 (B.15b)

∂

∂ν
z1

∣

∣

∣

∣

Γ0

= χ2 (B.15c)

so that recalling (B.3),(B.4),(B.7), and (B.8):

G ∈ L(X̄ ≡ X ;X) and G ∈ L(Ȳ ≡ Ψ; Y) (B.16)

as required; moreover, we have δGχ = X :

δGχ =







χ1

0
χ2

∀χ =





χ1

0
χ2



 ∈ X̄ + Ȳ ≡ Ȳ ⊂ Ψ, ν = 0. (B.17)

We have thus satisfied all the required assumptions of Lions and Magenes (1972,
Theorem 14.3, p. 97). Application of this, then, yields

[(X)δ,X , (Y)δ,Y ] 1

2

=
(

[X,Y] 1

2

)

δ,[X ,Y]1
2

, (B.18)

where, by (B.3) and (B.7), we compute

[X,Y] 1

2

=

[[

x1 ∈ H2(Ω),

x4 ∈ H2
0 (Γ0)

]

,

[

y1 ∈ H1(Ω)/R : ∆y1 ∈ [H1(Ω)/R]′

y4 ∈ H1
0 (Γ0)

]]

1

2

(B.19)

=





x1 ∈ H
3

2 (Ω) : ∆x1 ∈ [H
1

2 (Ω)]′

x4 ∈ H
3

2

00(Γ0)



 . (B.20)
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Moreover, by (B.4) and (B.8), we compute

[X,Y] 1

2

=

















L2(Ω)

0 on Γ1

H2
0 (Γ0)









,









[H1(Ω)/R]′

0 on Γ1

H1
0 (Γ0)

















1

2

=









[H
1

2 (Ω)]′

0 on Γ1

H
3

2

00(Γ0)









. (B.21)

To conclude the proof of Proposition B.1 that

(

[X,Y] 1

2

)

δ,[X ,Y]1
2

= LHS of (B.2) (B.22)

via (B.20) it remains to show that the constraint

δ : [X,Y] 1

2

→ [X ,Y] 1

2

(B.23)

is automatically satisfied. This follows from the following Claim #2:

Claim #2

z1 ∈ Z1 meaning
z1 ∈ H

3

2 (Ω) :

∆z1 ∈ [H
1

2 (Ω)]′
⇒

∂

∂ν
z1

∣

∣

∣

∣

Γ

exists well-defined in H−ε(Γ), ε > 0 (B.24a)

continuously:

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂ν
z1

∣

∣

∣

∣

Γ

∣

∣

∣

∣

∣

∣

∣

∣

H−ε(Γ)

≤ c||z1||
H

3

2 (Ω)
, z1 ∈ Z1 (B.24b)

Proof of Claim #2 Again, this claim follows by use of Green’s first theorem, upon
integration by parts against a test function ϕ ∈ H

1

2
+ε(Ω) ⊂ H

1

2 (Ω), ∀ε > 0 :

∫

Ω

∆z1ϕdΩ =

∫

Γ

∂

∂ν
z1ϕdΓ −

∫

Ω

∇z1 · ∇ϕdΩ. (B.25)

With ∆z1 ∈ [H
1

2 (Ω)]′ = H− 1

2 (Ω) (Lions and Magenes, 1972, p. 55) and ϕ ∈

H
1

2 (Ω), the first interior integral term on the LHS of (B.25) is well-defined.

Next, z1∈H
3

2 (Ω) implies ∇z1∈H
1

2
−ε(Ω), while ∇ϕ∈ H− 1

2
+ε(Ω)=H−( 1

2
−ε)(Ω),

so that the third interior integral term on the RHS of (B.25) is well-defined.
Hence the boundary integral term ( ∂

∂ν z1
∣

∣

Γ
, ϕ|Γ)Γ is well-defined, where ϕ|Γ ∈

Hε(Γ) runs over all of Hε(Γ) by surjectivity of the trace operator as ϕ runs

over all of H
1

2
+ε(Ω). Hence ∂

∂ν z1
∣

∣

Γ
∈ H−ε(Γ) is well-defined as claimed in

(B.24a) and then the above argument yields the bound in (B.24b). Claim #2
is established.
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Remark 5.4 In contrast, the space H
3

2 (Ω) does not support the normal deriva-
tive as a well-defined operation on the boundary.

With the ∂
∂ν

∣

∣

Γ
well-defined by Claim #2, we see that relation (B.23) for δ is

automatically satisfied, by use of (B.20) and (B.21), in view of the definition of
δ in (B.5). Thus, relation (B.23) holds true and Proposition B.1 is established.
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