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1. Introduction

In this paper, we discuss quadratic (second order) optimality conditions, both
necessary and sufficient, in optimal control problems on a variable interval of
time, with control appearing nonlinearly. There exists an extensive literature
on this subject for optimal control problems considered on a fixed time inter-
val; see Arutyunov and Karamzin (2005), Bonnans and Hermant (2007), Dunn
(1995, 1996), Levitin, Milyutin and Osmolovskii (1978), Maurer (1981), Maurer
and Pickenhain (1995), Maurer and Oberle (2002), Milyutin and Osmolovskii
(1998), Osmolovskii (1988, 2004), Osmolovskii and Lempio (2000, 2002), Zeidan
(1994) and further literature cited in these papers. Necessary (sufficient) second
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order conditions require that a certain quadratic form be positive semidefinite
(positive definite) on the so called critical cone. In practice, the test for second
order sufficient conditions can be performed by checking whether an associated
matrix Riccati equation has a bounded solution under appropriate boundary
conditions. The Riccati approach has been extended to discontinuous controls
(broken extremals) by Osmolovskii and Lempio (2002). The second order suf-
ficient conditions play important role in the sensitivity analysis of parametric
optimal control problems; see Malanowski (1992, 1993, 1994, 2001), Malanowski
and Maurer (1996, 1998, 2001), Dontchev et al. (1995), Augustin and Maurer
(2001).

We study the question of optimality of extremal with discontinuous control
in the problem which can be reduced to the following form, given in the book
by Milyutin and Osmolovskii (1998), p. 1: let T denote a trajectory (x(t), u(t) |
t ∈ [t0, t1]), where the state variable x(·) is a Lipschitz continuous function, and
the control variable u(·) is a bounded measurable function on a time interval
∆ = [t0, t1]; the interval ∆ is not fixed; for each trajectory T we denote by
p = (t0, x(t0), t1, x(t1)) the vector of the endpoints of time-state variable (t, x).
It is required to find T minimizing the functional

J (T ) := J(p) → min (1)

subject to the constraints

F (p) ≤ 0, K(p) = 0, (2)

ẋ(t) = f(t, x(t), u(t)), (3)

g(t, x(t), u(t)) = 0, (4)

p ∈ P , (t, x(t), u(t)) ∈ Q, (5)

where P and Q are open sets, x, u, F , K, f , and g are vector-functions.
We assume that the functions J , F , and K are defined and twice contin-

uously differentiable on P , and the functions f and g are defined and twice
continuously differentiable on Q. It is also assumed that the gradients with
respect to the control giu(t, x, u), i = 1, . . . , d(g) are linearly independent at
each point (t, x, u) ∈ Q such that g(t, x, u) = 0. Here d(g) is a dimension of the
vector g.

This statement corresponds to the general canonical optimal control problem
in the Dubovitskii–Milyutin form, but, in contrast to the latter, it does not con-
tain pointwise (or ‘local’, in the Dubovitskii–Milyutin terminology) inequality-
type constraints ϕ(t, x, u) ≤ 0. Precisely these constraints bring about the
biggest difficulties in the study of quadratic conditions (see Osmolovskii, 1988)
and, because of the absence of local inequalities, we place this problem not in
the context of optimal control, but rather of the calculus of variations and call it
the general problem of the calculus of variations (see Milyutin and Osmolovskii,
1998). Its statement is close to the Mayer problem, but the existence of endpoint
inequality-type constraints determines its specifics.
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On the other hand, this problem, even being referred to the calculus of
variations, is sufficiently general, and its statement is close to optimal control
problems, especially owing to the local relation g(t, x, u) = 0. In Milyutin
and Osmolovskii (1998), it was shown how, by using quadratic conditions for
problem (1)-(5), one can obtain quadratic (necessary or sufficient) conditions in
optimal control problems in which the controls enter linearly and the constraint
on the control is given in the form of a convex polyhedron under the assumption
that the optimal control is piecewise-constant and (outside the switching points)
belongs to vertices of the polyhedron (the so-called bang-bang control). To show
this, in Milyutin and Osmolovskii (1998), we first used the property that the
set V of vertices of a polyhedron U can be given by a nondegenerate relation
g(u) = 0 on an open set Q consisting of disjoint open neighborhoods of vertices.
This allowed us to write quadratic necessary conditions for bang-bang controls.
Further, in Milyutin and Osmolovskii (1998), it was shown that a sufficient
minimality condition on V guarantees (in the problem linear in the control) the
minimum on its convexification U = coV . In this way, the quadratic sufficient
conditions were obtained for bang-bang controls.

However, in Milyutin and Osmolovskii (1998), there is a substantial gap
stemming from the fact that, in order to avoid making the book too large, the
authors decided not to present the proofs of quadratic conditions for the general
problem of calculus of variations and restricted themselves to their formulation
and the presentation of proofs only in the case of the simplest problem.

The most important and considerable step to remove this gap was done in
Osmolovskii (2004), where complete proofs of quadratic extremality conditions
for discontinuous controls were presented in problem (1)-(5) on a fixed time
interval [t0, t1]:

J(x(·), u(·)) = J(x(t0), x(t1)) → min,

F (x(t0), x(t1)) ≤ 0, K(x(t0), x(t1)) = 0,

ẋ = f(t, x, u), g(t, x, u) = 0, (t, x, u) ∈ Q,

under the assumptions of C2 smoothness of functions J , F , K, f , and g and
the full rank condition for the matrix gu on the surface g = 0. (The proofs were
based on the general theory of conditions of higher order by Levitin, Milyutin,
and Osmolovskii, 1978). The aim of the present paper is to extend the results
obtained in Osmolovskii (2004) (for the problem on the fixed time interval) to
the problem (1)-(5) on a variable interval of time [t0, t1]. Thus, the present
paper together with Osmolovskii (2004) can be considered as a necessary sup-
plement to the book of Milyutin and Osmolovskii (1998), completely removing
the mentioned gap in the book.

We briefly recall different notions of minimum in the problem (1)-(5) on a
variable interval [t0, t1]. First let us recall the definition of Pontryagin minimum,
given in Milyutin and Osmolovskii (1998), pp. 2-3.
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Definition 1.1 The trajectory T affords a Pontryagin minimum if there is no
sequence of admissible trajectories T n = (xn(t), un(t) | t ∈ [tn0 , t

n
1 ]), n = 1, 2, . . .

such that
(a) J (T n) < J (T ) ∀n;
(b) tn0 → t0, tn1 → t1 (n→ ∞);
(c) max

∆n∩∆
|xn(t) − x(t)| → 0 (n→ ∞), where ∆n = [tn0 , t

n
1 ];

(e)
∫

∆n∩∆

|un(t) − u(t)| dt→ 0 (n→ ∞);

(d) there exists a compact set C ⊂ Q such that (t, xn(t), un(t)) ∈ C a.e. on ∆n

for all n.

For convenience, let us give an equivalent definition of the Pontryagin minimum.

Definition 1.2 The trajectory T affords a Pontryagin minimum if for each
compact set C ⊂ Q there exists ε > 0 such that J (T̃ ) ≥ J (T ) for all admissible
trajectories T̃ = (x̃(t), ũ(t) | t ∈ [t̃0, t̃1]) satisfying the conditions

(a) |t̃0 − t0| < ε, |t̃1 − t1| < ε,
(b) max

∆̃∩∆
|x̃(t) − x(t)| < ε, where ∆̃ = [t̃0, t̃1],

(c)
∫

∆̃∩∆

|ũ(t) − u(t)| dt < ε,

(d) (t, x̃(t), ũ(t)) ∈ C a.e. on ∆̃.

Next, we recall the definition of a bounded strong minimum, given in Mi-
lyutin and Osmolovskii (1998), pp. 290-291. To this end, let us define the notions
of essential and unessential components of vector x.

Definition 1.3 The ith component xi of vector x is called unessential if the
functions f and g do not depend on this component and the functions J , F , and
K are affine in xi0 = xi(t0), xi1 = x(t1); otherwise the component xi is called
essential.

We denote by x a vector composed of all essential components of vector x.

Definition 1.4 We say that the trajectory T affords a bounded strong mini-
mum if there is no sequence of admissible trajectories

T n = (xn(t), un(t) | t ∈ [tn0 , t
n
1 ]), n = 1, 2, . . .

such that
a) J (T n) < J (T ),
b) tn0 → t0, tn1 → t1, xn(tn0 ) → x(t0) (n→ ∞),
c) max

∆n∩∆
|xn(t) − x(t)| → 0 (n→ ∞), where ∆n = [tn0 , t

n
1 ],

d) there exists a compact set C ⊂ Q such that

(t, xn(t), un(t)) ∈ C a.e. on ∆n ∀n.
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An equivalent definition has the following form:

Definition 1.5 The trajectory T affords a bounded strong minimum if for each
compact set C ⊂ Q there exists ε > 0 such that J (T̃ ) ≥ J (T ) for all admissible
trajectories T̃ = (x̃(t), ũ(t) | t ∈ [t̃0, t̃1]) satisfying the conditions

(a) |t̃0 − t0| < ε, |t̃1 − t1| < ε, |x̃(t̃0) − x(t0)| < ε,
(b) max

∆̃∩∆
|x̃(t) − x(t)| < ε, where ∆̃ = [t̃0, t̃1],

(c) (t, x̃(t), ũ(t)) ∈ C a.e. on ∆̃.

The strict bounded strong minimum is defined in a similar way, with the
nonstrict inequality J (T̃ ) ≥ J (T ) replaced by the strict one and the trajectory
T̃ required to be different from T .

Finally, we define a (strict) strong minimum in the same way, but omitting
condition (c) in the last definition. The following statement is quite obvious.

Proposition 1.1 If there exists a compact set C ⊂ Q such that

{(t, x, u) ∈ Q | g(t, x, u) = 0} ⊂ C,

then a (strict) strong minimum is equivalent to a (strict) bounded strong mini-
mum.

Obviously, any of the following concepts is implied by the previous one:
strong, bounded strong, Pontryagin, weak minimum. In the sequel, we will
present necessary conditions of Pontryagin minimum and sufficient conditions
of a bounded strong minimum in problem (1)-(5).

2. Necessary conditions of a Pontryagin minimum

Let T be a fixed admissible trajectory such that the control u(·) is a piecewise
Lipschitz-continuous function on the interval ∆ with the set of discontinuity
points

Θ = {t1, . . . , ts}, t0 < t1 < · · · < ts < t1.

In order to make the notations simpler we do not use such symbols and indices
as zero, hat or asterisk to distinguish this trajectory from others.

Let us formulate a first-order necessary condition for optimality of the tra-
jectory T . To this end, let us introduce the Pontryagin function

H(t, x, u, ψ) = ψf(t, x, u) (6)

and the augmented Pontryagin function

H̄(t, x, u, ψ, ν) = H(t, x, u, ψ) − νg(t, x, u), (7)

where ψ and ν are row-vectors of the dimensions d(x) and d(g), respectively.
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Let us define the end-point Lagrange function

l(p, α0, α, β) = α0J(p) + αF (p) + βK(p), (8)

where p = (t0, x0, t1, x1), x0 = x(t0), x1 = x(t1), α0 ∈ IR, α ∈ (IRd(F ))∗,

β ∈ (IRd(K))∗. By IRn∗ we denote the space of horizontal vectors of the dimension
n.

We introduce a tuple of Lagrange multipliers

λ = (α0, α, β, ψ(·), ψ0(·), ν(·)) (9)

such that ψ(·) : ∆ → (IRd(x))∗ and ψ0(·) : ∆ → IR1 are piecewise smooth
functions, continuously differentiable on each interval of the set ∆ \ Θ, and

ν(·) : ∆ → (IRd(g))∗ is a piecewise continuous function, Lipschitz continuous on
each interval of the set ∆ \ Θ.

Denote by M0 the set of the normed tuples λ satisfying the conditions of the
maximum principle for the trajectory T :

α0 ≥ 0, α ≥ 0, αF (p) = 0, α0 +
∑

αi +
∑

|βj | = 1,

ψ̇ = −H̄x, ψ̇0 = −H̄t, H̄u = 0, t ∈ ∆ \ Θ,

ψ(t0) = lx0
, ψ(t1) = −lx1

, ψ0(t0) = lt0 , ψ0(t1) = −lt1 ,

max
u∈U(t,x(t))

H(t, x(t), u, ψ(t)) = H(t, x(t), u(t), ψ(t)), t ∈ ∆ \ Θ,

H(t, x(t), u(t), ψ(t)) + ψ0(t) = 0, t ∈ ∆ \ Θ,

(10)

where U(t, x) = {u ∈ IRd(u) | g(t, x, u) = 0, (t, x, u) ∈ Q}. The derivatives lx0

and lx1
are at (p, α0, α, β), where p = (t0, x(t0), t1, x(t1)), and the derivatives

H̄x, H̄u, and H̄t are at (t, x(t), u(t), ψ(t), ν(t)), where t ∈ ∆ \ Θ. (Condition
H̄u = 0 follows from the other conditions in this definition, and therefore could
be excluded; yet we need to use it later.)

The condition M0 6= ∅ is equivalent to the Pontryagin’s maximum principle.
It is a first-order necessary condition of Pontryagin minimum for the trajec-
tory T , see Milyutin and Osmolovskii (1998), pp. 24-25 and 32-40. Thus, the
following theorem holds:

Theorem 2.1 If the trajectory T affords a Pontryagin minimum, then the set
M0 is nonempty.

Assume that M0 is nonempty. Using the definition of the set M0 and the
full rank condition of the matrix gu on the surface g = 0 one can easily prove
the following statement:

Proposition 2.1 The set M0 is a finite-dimensional compact set, and the map-
ping λ 7→ (α0, α, β) is injective on M0.
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Continuity of the functions ψ and ψ0 at the points tk ∈ Θ (for λ ∈ M0)
constitute the Weierstrass–Erdmann necessary conditions for broken extremal.
Let us formulate one more condition of this type. To this end, for each λ ∈
M0, t

k ∈ Θ, we set

Dk(H̄) = H̄k+
x H̄k−

ψ − H̄k−
x H̄k+

ψ + [H̄t]
k, (11)

where H̄k−
x = H̄x(t

k, x(tk), u(tk−), ψ(tk), ν(tk−)),
H̄k+
x = H̄x(t

k, x(tk), u(tk+), ψ(tk), ν(tk+)), [H̄t]
k = H̄k+

t − H̄k−
t , etc.

Theorem 2.2 For each λ ∈M0 the following conditions hold:

Dk(H̄) ≥ 0, k = 1, . . . , s. (12)

Thus, conditions (12) follow from the maximum principle conditions (10). An
alternative method to calculate Dk(H̄) is the following. For λ ∈ M0, t

k ∈ Θ,
consider the function

(∆kH̄)(t) = H̄(tk, x(t), u(tk+), ψ(t), ν(tk+))

− H̄(tk, x(t), u(tk−), ψ(t), ν(tk−)).

Proposition 2.2 For each λ ∈M0 the following equalities hold

d

dt
(∆kH̄)

∣

∣

t=tk−
=

d

dt
(∆kH̄)

∣

∣

t=tk+
= Dk(H̄), k = 1, . . . , s. (13)

Hence, for λ ∈ M0 the function (∆kH̄)(t) has a derivative at the point tk ∈ Θ
equal to Dk(H̄), k = 1, . . . , s.

Let us formulate a quadratic necessary condition of a Pontryagin minimum
for the trajectory T . First, for this trajectory, we introduce a Hilbert space
Z2(Θ) and the critical cone K ⊂ Z2(Θ).

Denote by PΘW
1,2(∆, IRd(x)) the Hilbert space of piecewise continuous func-

tions x̄(·) : ∆ → IRd(x), absolutely continuous on each interval of the set
∆ \ Θ and such that their first derivative is square integrable. For each x̄ ∈

PΘW
1,2(∆, IRd(x)), tk ∈ Θ we set x̄k− = x̄(tk−), x̄k+ = x̄(tk+), [x̄]k =

x̄k+ − x̄k−. Further, we denote z̄ = (t̄0, t̄1, ξ̄, x̄, ū) , where

t̄0 ∈ IR1, t̄1 ∈ IR1, ξ̄ ∈ IRs, x̄ ∈ PΘW
1,2(∆, IRd(x)), ū ∈ L2(∆, IRd(u)).

Thus,

z̄ ∈ Z2(Θ) := IR2 × IRs × PΘW
1,2(∆, IRd(x)) × L2(∆, IRd(u)).

Moreover, for given z̄ we set

w̄ = (x̄, ū), x̄0 = x̄(t0), x̄1 = x̄(t1), (14)

¯̄x0 = x̄(t0) + t̄0ẋ(t0), ¯̄x1 = x̄(t1) + t̄1ẋ(t1), ¯̄p = (¯̄x0, t̄0, ¯̄x1, t̄1). (15)
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By IF (p) = {i ∈ {1, . . . , d(F )} | Fi(p) = 0} we denote the set of active indices
of the constraints Fi(p) ≤ 0.

Let K be the set of all z̄ ∈ Z2(Θ) satisfying the following conditions:

J ′(p)¯̄p ≤ 0, F ′
i (p)¯̄p ≤ 0 ∀i ∈ IF (p), K ′(p)¯̄p = 0,

˙̄x(t) = fw(t, w(t))w̄(t), for a.a. t ∈ [t0, t1],

[x̄]k = [ẋ]k ξ̄k, k = 1, . . . , s

gw(t, w(t))w̄(t) = 0, for a.a. t ∈ [t0, t1],

(16)

where p = (t0, x(t0), t1, x(t1)), w = (x, u). It is obvious that K is a convex cone
in the Hilbert space Z2(Θ), and we call it the critical cone. If the interval ∆ is
fixed, then we set p := (x0, x1) = (x(t0), x(t1)), and in the definition of K we
have t̄0 = t̄1 = 0, ¯̄x0 = x̄0, ¯̄x1 = x̄1, and ¯̄p = p̄ := (x̄0, x̄1).

Let us introduce a quadratic form on Z2(Θ). For λ ∈M0 and z̄ ∈ K, we set

ωe(λ, z̄) = 〈lpp ¯̄p, ¯̄p〉 + 2ψ̇(t1)x̄(t1)t̄1 +
(

ψ̇(t1)ẋ(t1) + ψ̇0(t1)
)

t̄21

−2ψ̇(t0)x̄(t0)t̄0 −
(

ψ̇(t0)ẋ(t0) + ψ̇0(t0)
)

t̄20, (17)

where lpp = lpp(p, α0, α, β), p = (t0, x(t0), t1, x(t1)). We also set

ω(λ, z̄) = ωe(λ, z̄) −

∫ t1

t0

〈H̄www̄(t), w̄(t)〉 dt, (18)

where H̄ww = H̄ww(t, x(t), u(t), ψ(t), ν(t)). Finally, we set

Ω(λ, z̄) = ω(λ, z̄) +
s

∑

k=1

(

Dk(H̄)ξ̄2k + 2[ψ̇]kx̄kav ξ̄k

)

, (19)

where

x̄kav =
1

2
(x̄k− + x̄k+), [ψ̇]k = ψ̇k+ − ψ̇k−.

Now, we formulate the main necessary quadratic condition of Pontryagin
minimum in the problem on a variable time interval (see Theorem 10.1 in Mi-
lyutin and Osmolovskii, 1998, Part 2, p. 289, given there without proof).

Theorem 2.3 If the trajectory T yields a Pontryagin minimum, then the fol-
lowing Condition A holds: the set M0 is nonempty and

max
λ∈M0

Ω(λ, z̄) ≥ 0 for all z̄ ∈ K.

3. Sufficient conditions of a bounded strong minimum

Let us formulate a sufficient optimality condition B, which is a natural strength-
ening of the necessary condition A. The condition B is sufficient not only for a
Pontryagin minimum, but also for a strict bounded strong minimum.
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To formulate the condition B, we introduce, for λ ∈ M0, the following con-
ditions of the strict maximum principle:

(MP+
∆\Θ) : H(t, x(t), u, ψ(t)) < H(t, x(t), u(t), ψ(t))

if t ∈ ∆ \ Θ, u 6= u(t), u ∈ U(t, x(t)),

(MP+
Θ ) : H(tk, x(tk), u, ψ(tk)) < Hk

if tk ∈ Θ, u ∈ U(tk, x(tk)), u 6= u(tk−), u 6= u(tk+), where

Hk := Hk− = Hk+,

Hk− = H(tk, x(tk), u(tk−), ψ(tk)), Hk+ = H(tk, x(tk), u(tk+), ψ(tk)).

We denote by M+
0 the set of all λ ∈ M0 satisfying conditions (MP+

∆\Θ) and

(MP+
Θ ).

For λ ∈M0 we also introduce the strengthened Legendre-Clebsch conditions:
Condition (SLC∆\Θ): for each t ∈ ∆ \ Θ the quadratic form

−〈H̄uu(t, x(t), u(t), ψ(t), ν(t))ū, ū〉

is positive definite on the subspace of vectors ū ∈ IRd(u) such that

gu(t, x(t), u(t))ū = 0.

Condition (SLCk−): for tk ∈ Θ, the quadratic form

−〈H̄uu(t
k, x(tk), u(tk−), ψ(tk), ν(tk−))ū, ū〉

is positive definite on the subspace of vectors ū ∈ IRd(u) such that

gu(t
k, x(tk), u(tk−))ū = 0.

Condition (SLCk+) — this condition is symmetric to condition (SLCk−):
(tk−) must be replaced everywhere by (tk+).

Note that for each λ ∈ M0 the non strengthened Legendre–
Clebsch conditions hold, i.e., the same quadratic forms are nonnegative on the
corresponding subspaces.

We denote by Leg+(M+
0 ) the set of all λ ∈M+

0 satisfying the strengthened
Legendre–Clebsch conditions (SLC∆\Θ), (SLCk−), (SLCk+), k = 1, . . . , s,
and also the conditions

Dk(H̄) > 0 for all k = 1, . . . , s. (20)

Let us introduce the functional

γ̄(z̄) = t̄20 + t̄21 + 〈ξ̄, ξ̄〉 + 〈x̄(t0), x̄(t0)〉 +

∫ t1

t0

〈ū(t), ū(t)〉 dt, (21)
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which is equivalent to the norm squared on the subspace

˙̄x = fw(t, x(t), u(t))w̄; [x̄]k = [ẋ]k ξ̄k, k = 1, . . . , s (22)

of Hilbert space Z2(Θ). Recall that the critical cone K is contained in the
subspace (22). The following theorem is given without proof in Milyutin and
Osmolovskii (1998), Part 2, Theorem 10.2, p. 293.

Theorem 3.1 For the trajectory T , assume that the following Condition B
holds: the set Leg+(M+

0 ) is nonempty and there exist a nonempty compact set
M ⊂ Leg+(M+

0 ) and a number C > 0 such that

max
λ∈M

Ω(λ, z̄) ≥ Cγ̄(z̄) (23)

for all z̄ ∈ K. Then the trajectory T affords a strict bounded strong minimum.

4. Proofs

We will give the proofs omitting some details. As it was already mentioned
in Introduction, the proofs are based on the quadratic optimality conditions,
obtained in Osmolovskii (2004) for problem (1)-(5) considered on a fixed interval
of time.

In order to extend the results given in Osmolovskii (2004) to the case of a
variable interval [t0, t1] we use a simple change of the time variable. Namely,
with the fixed admissible trajectory

T = (x(t), u(t) | t ∈ [t0, t1])

in problem on a variable time interval (1)-(5) we associate a trajectory

T τ = (v(τ), t(τ), x(τ), u(τ) | τ ∈ [τ0, τ1]),

considered on a fixed interval [τ0, τ1], where

τ0 = t0, τ1 = t1, t(τ) ≡ τ, v(τ) ≡ 1.

This is an admissible trajectory in the following problem on a fixed interval
[τ0, τ1]: to minimize the cost function

J (T τ ) := J(t(τ0), x(τ0), t(τ1), x(τ1)) → min (24)

subject to the constraints

F (t(τ0), x(τ0), t(τ1), x(τ1)) ≤ 0, K(t(τ0), x(τ0), t(τ1), x(τ1)) = 0, (25)

dx(τ)

dτ
= v(τ)f(t(τ), x(τ), u(τ)),

dt(τ)

dτ
= v(τ),

dv(τ)

dτ
= 0, (26)

g(t(τ), x(τ), u(τ)) = 0, (27)

(t(τ0), x(τ0), t(τ1), x(τ1)) ∈ P , (t(τ), x(τ), u(τ)) ∈ Q. (28)
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In this problem, x(τ), t(τ), and v(τ) are state variables, and u(τ) is a control
variable. For brevity, we will refer to the problem (1)-(5) as the problem P (on
a variable interval ∆ = [t0, t1]), and to the problem (24)-(28) as the problem P τ

(on a fixed interval [τ0, τ1]). We denote by Aτ the necessary quadratic condition
A for problem P τ on a fixed interval [τ0, τ1], see Osmolovskii (2004), Theorem
4.1. Similarly, we denote by Bτ the sufficient quadratic condition B for problem
P τ on a fixed interval [τ0, τ1], see Osmolovskii (2004), Theorem 4.2.

Recall that the control u(·) is a piecewise Lipschitz-continuous function on
the interval ∆ = [t0, t1] with the set of discontinuity points Θ = {t1, . . . , ts},
where t0 < t1 < · · · < ts < t1. Hence, for each λ ∈M0, the function ν(t) is also
piecewise Lipschitz-continuous on the interval ∆, and, moreover, all disconti-
nuity points of ν belong to Θ. This easily follows from the equation H̄u = 0
and the full rank condition for matrix gu. Consequently, u̇ and ν̇ are bounded
measurable functions on ∆.

The proof of Theorem 2.3 is composed of the following chain of implications:

(i) A Pontryagin minimum is attained on the trajectory T in the problem
P ⇒

(ii) A Pontryagin minimum is attained on the trajectory T τ in the problem
P τ =⇒

(iii) Condition Aτ for the trajectory T τ in the problem P τ =⇒

(iv) Condition A for the trajectory T in the problem P .

The first implication is readily verified, the second follows from Theorem 4.1
in Osmolovskii (2004). The verification of the implication (iii) ⇒ (iv) is not
short and rather technical: we have to compare the sets of Lagrange multipliers,
the critical cones and the quadratic forms in both problems. This will be done
below.

In order to prove the sufficient conditions in the problem P , given by Theo-
rem 3.1, we have to check the following chain of implications:

(v) Condition B for the trajectory T in problem P =⇒

(vi) Condition Bτ for the trajectory T τ in problem P τ =⇒

(vii) A bounded strong minimum is attained on the trajectory T τ in problem
P τ =⇒

(viii) A boundeded strong minimum is attained on the trajectory T in prob-
lem P .

The verification of the first implication here (v) ⇒ (vi) is similar to the
verification of the third implication (iii) ⇒ (iv) in the proof of the necessary
conditions, the second implication (vi) ⇒ (vii) follows from Theorem 4.2 in
Osmolovskii (2004), the third one (vii) ⇒ (viii) is readily verified.

Thus, it remains to compare the sets of Lagrange multipliers, the critical
cones and the quadratic forms in problems P and P τ for the trajectories T and
T τ , respectively.
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Comparison of the sets of Lagrange multiplies. Let us formulate the
Pontryagin maximum principle in the problem P τ for the trajectory T τ . The
endpoint Lagrange function l, the Pontryagin function H and the augmented
Pontryagin function H̄ (all of them are equipped with the superscript τ) have
the form:

lτ = α0J + αF + βK = l,

Hτ = ψvf + ψ0v + ψv · 0 = v(ψf + ψ0), H̄τ = Hτ − νg.

According to Osmolovskii (2004), the set M τ
0 in the problem P τ for the trajec-

tory T τ consists of all tuples of Lagrange multipliers λτ = (α0, α, β, ψ, ψ0, ψv,
ν) such that the following conditions hold:

α0 + |α| + |β| = 1,

− dψ

dτ
= vψfx − νgx, − dψ0

dτ
= vψft − νgt, − dψv

dτ
= ψf + ψ0

ψ(τ0) = lx0
, −ψ(τ1) = lx1

, ψ0(τ0) = lτ0 , −ψ0(τ1) = lt1 ,

ψv(τ0) = ψv(τ1) = 0, vψfu − νgu = 0,

v(τ)
(

ψ(τ)f(t(τ), x(τ), u) + ψ0(τ)
)

≤ v(τ)
(

ψ(τ)f(t(τ), x(τ), u(τ)) + ψ0(τ)
)

.

(29)

The last inequality holds for all u ∈ IRd(u) such that g(t(τ), x(τ), u) = 0,
(t(τ), x(τ), u) ∈ Q. Recall that here

v(τ) ≡ 1, t(τ) ≡ τ, τ0 = t0, τ1 = t1.

In (29), the function f and its derivatives fx, fu, ft, as well as gx gu, gt are
taken at (t(τ), x(τ), u(τ)), τ ∈ [τ0, τ1] \ Θ, while the derivatives lt0 , lx0

, lt1 lx1

are calculated at (t(τ0), x(τ0), t(τ1), x(τ1)) = (t0, x(t0), t1, x(t1)).
Conditions −dψv/dτ = ψf + ψ0 and ψv(τ0) = ψv(τ1) = 0 imply that

∫ τ1

τ0
(ψf +ψ0) dτ = 0. As is well-known, conditions (29) of the maximum princi-

ple also imply that ψf + ψ0 = const, whence ψf + ψ0 = 0 and ψv = 0. Taking
this fact into account and comparing the definitions of the sets M τ

0 (29) and
M0 (10) we see that the projector

(

α0, α, β, ψ, ψ0, ψv, ν
)

→
(

α0, α, β, ψ, ψ0, ν
)

(30)

realizes a one-to-one correspondence between these two sets. (Moreover, in the
definition of the set M τ

0 we could replace the relations −dψv/dτ = ψf +ψ0 and
ψv(τ0) = ψv(τ1) = 0 by ψf + ψ0 = 0 and thus identify M τ

0 with M0).
We shall say that an element λτ ∈M τ

0 corresponds to an element λ ∈M0 if
λ is the projection of λτ under the mapping (30).

Comparison of the critical cones. For brevity, we set

̺ = (v, t, x, u) = (v, t, w).
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According to Osmolovskii (2004), the critical cone Kτ in the problem P τ for the
trajectory T τ consists of all tuples (ξ̄, v̄, t̄, x̄, ū) = (ξ̄, ¯̺) satisfying the relations:

Jt0 t̄(τ0) + Jx0
x̄(τ0) + Jt1 t̄(τ1) + Jx1

x̄(τ1) ≤ 0, (31)

Fit0 t̄(τ0) + Fix0
x̄(τ0) + Fit1 t̄(τ1) + Fix1

x̄(τ1) ≤ 0, i ∈ IF (p), (32)

Kt0 t̄(τ0) +Kx0
x̄(τ0) +Kt1 t̄(τ1) +Kx1

x̄(τ1) = 0, (33)

dx̄

dτ
= v̄f + v

(

ftt̄+ fxx̄+ fuū
)

, [x̄]k = [ẋ]k ξ̄k, k = 1, . . . s, (34)

dt̄

dτ
= v̄, [t̄]k = 0, k = 1, . . . s,

dv̄

dτ
= 0, [v̄]k = 0, k = 1, . . . s, (35)

gtt̄+ gxx̄+ guū = 0, (36)

where the derivatives Jt0 , Jx0
, Jt1 Jx1

, etc. are calculated at

(t(τ0), x(τ0), t(τ1), x(τ1)) = (t0, x(t0), t1, x(t1)),

while f , ft, fx, fu gt, gx, and gu are taken at (t(τ), x(τ), u(τ)), τ ∈ [τ0, τ1] \ Θ.
Let (ξ̄, v̄, t̄, x̄, ū) be an element of the critical cone Kτ . We will make use of

the following change of variables:

x̃ = x̄− t̄ẋ, ũ = ū− t̄u̇, (37)

or briefly

w̃ = w̄ − t̄ẇ. (38)

Since v = 1, ẋ = f , and t = τ , equation (34) is equivalent to the equation

dx̄

dt
= v̄ẋ+ ftt̄+ fww̄. (39)

Using the relation x̄ = x̃+ t̄ẋ in this equation along with ˙̄t = v̄, we get

˙̃x+ t̄ẍ = t̄ft + fww̄. (40)

By differentiating the equation ẋ(t) = f(t, w(t)), we obtain

ẍ = ft + fwẇ. (41)

Using this relation in (40), we get

˙̃x = fww̃. (42)

The relations

[x̄]k = [ẋ]k ξ̄k, x̄ = x̃+ t̄ẋ
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imply

[x̃]k = [ẋ]k ξ̃k, (43)

where

ξ̃k = ξ̄k − t̄k, t̄k = t̄(tk), k = 1, . . . , s. (44)

Further, relation (36) may be written as

gtt̄+ gww̄ = 0.

Differentiating the relation g(t, w(t)) = 0 we obtain

gt + gwẇ = 0. (45)

These relations along with (38) imply that

gww̃ = 0. (46)

Finally, note that since x̄ = x̃+ t̄ẋ, and τ0 = t0, τ1 = t1, we have

p̄ =
(

t̄0, x̄(t0), t̄1, x̄(t1)
)

=
(

t̄0, x̃(t0) + t̄0ẋ(t0), t̄1, x̃(t1) + t̄1ẋ(t1)
)

, (47)

where t̄0 = t̄(t0) and t̄1 = t̄(t1). The vector in the r.h.s. of the last equality has
the same form as the vector ¯̄p in definition (15). Consequently, all relations in
definition (16) of the critical cone K in problem P are satisfied for the element
z̃ = (t̄0, t̄1, ξ̃, w̃). We have proved that the thus obtained element z̃ belongs to
the critical cone K in problem P .

Vice versa, if (t̄0, t̄1, ξ̃, w̃) is an element of the critical cone in problem P ,
then by setting

v̄ =
t̄1 − t̄0
t1 − t0

, t̄ = v̄(τ−τ0)+ t̄0, w̄ = w̃+ t̄ẇ, ξ̄k = ξ̃k+ t̄(τk), k = 1, . . . , s,

we obtain an element (ξ̄, v̄, t̄, w̄) of the critical cone (31)-(36) in the problem P τ .
Thus, we have proved the following lemma:

Lemma 4.1 If (ξ̄, v̄, t̄, w̄) is an element of the critical cone (31)-(36) in problem
P τ for the trajectory T τ and

t̄0 = t̄(t0), t̄1 = t̄(t1), w̃ = w̄ − t̄ẇ,

ξ̃k = ξ̄k − t̄(tk), k = 1, . . . , s,
(48)

then (t̄0, t̄1, ξ̃, w̃) is an element of the critical cone (16) in the problem P for
the trajectory T . Moreover, relations (48) define a one-to-one correspondence
between elements of the critical cones in problems P τ and P .

We shall say that an element (ξ̄, v̄, t̄, w̄) of the critical cone in problem P τ cor-
responds to an element (t̄0, t̄1, ξ̃, w̃) of the critical cone in problem P if relations
(48) hold.
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Comparison of the quadratic forms. Assume that the element λτ ∈
M τ

0 corresponds to the element λ ∈ M0. Let us show that the quadratic
form Ωτ (λτ , ·), calculated on the element (ξ̄, v̄, t̄, w̄) of the critical cone in the
problem P τ for the trajectory T τ (see Osmolovskii, 2004), can be transformed to
the quadratic form Ω(λ, ·) calculated on the corresponding element (t̄0, t̄1, ξ̃, w̃)
of the critical cone in the problem P for the trajectory T .

(i) The relations

H̄τ = v(H + ψ0) − νg, H̄ = H − νg, v = 1

imply

〈H̄τ
̺̺ ¯̺, ¯̺〉 = 〈H̄www̄, w̄〉 + 2H̄tww̄t̄+ H̄ttt̄

2 + 2v̄(Hww̄ +Htt̄), (49)

where ̺ = (v, t, w), ¯̺ = (v̄, t̄, w̄). Since w̃ = w̄ − t̄ẇ, we have

〈H̄www̄, w̄〉 = 〈H̄www̃, w̃〉 + 2〈H̄wwẇ, w̄〉t̄− 〈H̄wwẇ, ẇ〉t̄
2. (50)

Moreover, using the relations

Hw = H̄w + νgw, Ht = H̄t + νgt, gww̄ + gtt̄ = 0,

−ψ̇ = H̄x, −ψ̇0 = H̄t, H̄u = 0,

we obtain

Hww̄ +Htt̄ = H̄ww̄ + H̄tt̄+ ν(gww̄ + gtt̄)

= H̄ww̄ + H̄tt̄ = H̄xx̄+ H̄t t̄ = −ψ̇x̄− ψ̇0t̄.
(51)

Relations (49)-(51) imply

〈H̄τ
̺̺ ¯̺, ¯̺〉 = 〈H̄www̃, w̃〉 + 2〈H̄wwẇ, w̄〉t̄+ 2H̄tww̄t̄

−〈H̄wwẇ, ẇ〉t̄2 + H̄ttt̄
2 − 2v̄

(

ψ̇x̄+ ψ̇0 t̄
)

.
(52)

(ii) Let us transform the terms 2〈H̄wwẇ, w̄〉t̄+ 2H̄tww̄t̄ in (52). By differen-
tiating the equation −ψ̇ = H̄x with respect to t, we obtain

−ψ̈ = H̄tx + (ẇ)∗H̄wx + ψ̇H̄ψx + ν̇H̄νx.

Here we have H̄ψx = fx and H̄νx = −gx. Therefore

−ψ̈ = H̄tx + (ẇ)∗H̄wx + ψ̇fx − ν̇gx. (53)

Similarly, by differentiating the equation H̄u = 0 with respect to t, we obtain

0 = H̄tu + (ẇ)∗H̄wu + ψ̇fu − ν̇gu. (54)
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Multiplying equation (53) by x̄ and equation (54) by ū and summing the results
we get

−ψ̈x̄ = H̄tww̄ + 〈H̄wwẇ, w̄〉 + ψ̇fww̄ − ν̇gww̄. (55)

Since (ξ̄, v̄, t̄, w̄) is an element of the critical cone in the problem P τ , from (34)
and (36) we get

fww̄ = ˙̄x− v̄ẋ− ftt̄, gww̄ = −gtt̄.

Therefore, equation (55) can be represented in the form

H̄tww̄ + 〈H̄wwẇ, w̄〉 = v̄(ψ̇ẋ) −
d

dt
(ψ̇x̄) +

(

ψ̇ft − ν̇gt
)

t̄, (56)

which implies

2〈H̄wwẇ, w̄〉t̄+ 2H̄tww̄t̄ = 2t̄v̄(ψ̇ẋ) − 2t̄
d

dt
(ψ̇x̄) + 2

(

ψ̇ft − ν̇gt
)

t̄2. (57)

(iii) Let us transform the term −〈H̄wwẇ, ẇ〉t̄2 in (52). Multiplying equation
(53) by ẋ and equation (54) by u̇ and summing the results we obtain

−ψ̈ẋ = H̄twẇ + 〈H̄wwẇ, ẇ〉 + ψ̇fwẇ − ν̇gwẇ. (58)

From (41) and (45) we get

fwẇ = ẍ− ft, gwẇ = −gt,

respectively. Then (58) implies

H̄twẇ + 〈H̄wwẇ, ẇ〉 = −
d

dt
(ψ̇ẋ) +

(

ψ̇ft − ν̇gt
)

. (59)

Multiplying this relation by −t̄2 we get

−〈H̄wwẇ, ẇ〉t̄
2 = H̄twẇt̄

2 + t̄2
d

dt
(ψ̇ẋ) −

(

ψ̇ft − ν̇gt
)

t̄2. (60)

(iv) Finally, let us transform the term H̄tt t̄
2 in (52). Differentiating the

equation −ψ̇0 = H̄t with respect to t and using the relations H̄ψt = ft and
H̄νt = −gt, we get

−ψ̈0 = H̄tt + H̄twẇ +
(

ψ̇ft − ν̇gt
)

. (61)

Consequently,

H̄ttt̄
2 = −ψ̈0t̄

2 − H̄twẇt̄
2 −

(

ψ̇ft − ν̇gt
)

t̄2. (62)
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(v) Summing equations (60) and (62) we obtain

−〈H̄wwẇ, ẇ〉t̄
2 + H̄ttt̄

2 = −ψ̈0t̄
2 − 2

(

ψ̇ft − ν̇gt
)

t̄2 + t̄2
d

dt
(ψ̇ẋ). (63)

Using relations (57) and (63) in (52) we get

〈H̄τ
̺̺ ¯̺, ¯̺〉 = 〈H̄www̃, w̃〉 + 2t̄v̄(ψ̇ẋ)

−2t̄
d

dt
(ψ̇x̄) − ψ̈0 t̄

2 + t̄2
d

dt
(ψ̇ẋ) − 2v̄

(

ψ̇x̄+ ψ̇0t̄
)

. (64)

But

ψ̈0t̄
2 + 2v̄t̄ψ̇0 =

d

dt

(

ψ̇0t̄
2
)

, t̄
d

dt
(ψ̇x̄) + v̄(ψ̇x̄) =

d

dt

(

t̄ψ̇x̄
)

,

2t̄v̄(ψ̇ẋ) + t̄2
d

dt
(ψ̇ẋ) =

d

dt
(ψ̇ẋt̄2).

Therefore,

〈H̄τ
̺̺ ¯̺, ¯̺〉 = 〈H̄www̃, w̃〉 +

d

dt

(

(ψ̇ẋ)t̄2 − ψ̇0t̄
2 − 2ψ̇x̄t̄

)

. (65)

Finally, using the change of the variable x̄ = x̃+ t̄ẋ in the r.h.s. of this relation,
we obtain

〈H̄τ
̺̺ ¯̺, ¯̺〉 = 〈H̄www̃, w̃〉 −

d

dt

(

(ψ̇0 + ψ̇ẋ)t̄2 + 2ψ̇x̃t̄
)

. (66)

We have proved the following lemma.

Lemma 4.2 Let (ξ̄, v̄, t̄, w̄) = (ξ̄, ¯̺) be an element of the critical cone Kτ in the
problem P τ for the trajectory T τ . Set w̃ = w̄ − t̄ẇ. Then, formula (66) holds.

(vi) Recall that λτ is an arbitrary element of the set M τ
0 (consequently

ψv = 0) and λ is the corresponding element of the setM0, i.e., λ is the projection
of λτ under the mapping (30). The quadratic form Ωτ (λτ , ·) in the problem P τ

for the trajectory T τ has the following representation (see Osmolovskii, 2004):

Ωτ (λτ ; ξ̄, ¯̺) =
s

∑

k=1

(

Dk(H̄τ )ξ̄2k + 2[ψ̇]kx̄kavξ̄k + 2[ψ̇0]
k t̄kavξ̄k

)

+〈lppp̄, p̄〉 −
τ1
∫

τ0

〈H̄τ
̺̺ ¯̺, ¯̺〉 dτ.

(67)

Comparing the definitions of Dk(H̄τ ) and Dk(H̄) (see (13)) and taking into
account that H̄τ = v(ψf + ψ0) − νg and v = 1, we get

Dk(H̄τ ) = Dk(H̄). (68)



1552 N.P. OSMOLOVSKII

Let z̄τ = (ξ̄, ¯̺) = (ξ̄, v̄, t̄, x̄, ū) be an element of the critical cone Kτ in the
problem P τ for the trajectory T τ and let z̃ = (t̄0, t̄1, ξ̃, x̃, ũ) be the correspond-
ing element of the critical cone K in the problem P for the trajectory T , i.e.,
relations (48) hold. Since [t̄]k = 0, k = 1, . . . , s, we have

t̄kav = t̄k, k = 1, . . . , s (69)

where t̄k = t̄(tk), k = 1, . . . , s. Also recall that τ0 = t0, τ1 = t1, t(τ) = τ, dt =
dτ. Since the functions ψ̇0, ψ̇, ẋ, and x̄ may have discontinuities only at the
points of the set Θ, the following formula holds:

t1
∫

t0

d
dt

(

(ψ̇0 + ψ̇ẋ)t̄2 + 2ψ̇x̄t̄
)

dt

=
(

(ψ̇0 + ψ̇ẋ)t̄2 + 2ψ̇x̃t̄
)

|t1t0 −
s

∑

k=1

(

[ψ̇0 + ψ̇ẋ]k t̄(tk)2 + 2[ψ̇x̃]k t̄(tk)
)

.

(70)

Relations (66)-(70) imply the following representation of the quadratic form Ωτ

on the element (ξ̄, ¯̺) of the critical cone Kτ :

Ωτ (λτ ; ξ̄, ¯̺) =
s

∑

k=1

(

Dk(H̄)ξ̄2k + 2[ψ̇]kx̄kav ξ̄k + 2[ψ̇0]
k t̄(tk)ξ̄k

− [ψ̇0 + ψ̇ẋ]k t̄(tk)2 − 2[ψ̇x̃]k t̄(tk)
)

+ 〈lppp̄, p̄〉 (71)

+
(

(ψ̇0 + ψ̇ẋ)t̄2 + 2ψ̇x̃t̄
)

|t1t0 −

t1
∫

t0

〈H̄www̃, w̃〉 dτ.

Let us transform the terms related to the discontinuity points tk of the control
u(·), k = 1, . . . , s. For any λ ∈M0, the following lemma holds.

Lemma 4.3 Let z̄ = (ξ̄, ¯̺) = (ξ̄, v̄, t̄, w̄) be an element of the critical cone Kτ

in the problem P τ for the trajectory T τ . Let the pair (ξ̃, x̃) be defined by the
relations

ξ̃k = ξ̄k − t̄(tk), k = 1, . . . , s, x̃ = x̄− t̄ẋ. (72)

Then for any k = 1, . . . , s the following formula holds

Dk(H̄)ξ̄2k + 2[ψ̇]kx̄kav ξ̄k + 2[ψ̇0]
k t̄(tk)ξ̄k − [ψ̇0 + ψ̇ẋ]k t̄(tk)2 − 2[ψ̇x̃]k t̄(tk)

= Dk(H̄)ξ̃2k + 2[ψ̇]kx̃kav ξ̃k.
(73)

Proof. Everywhere in this proof we will omit the subscript and superscript k.
We will also write t̄ instead of t̄(tk). Set a = D(H̄). Using the relations

ξ̄ = ξ̃ + t̄, x̄av = x̃av + t̄ẋav, (74)
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we obtain

aξ̄2 + 2[ψ̇]x̄av ξ̄ + 2[ψ̇0]t̄ξ̄ − [ψ̇0 + ψ̇ẋ]t̄2 − 2[ψ̇x̃]t̄

= aξ̃2 + 2aξ̃t̄+ at̄2 + 2[ψ̇]x̃av ξ̄ + 2[ψ̇]ẋav t̄ξ̄

+2[ψ̇0]t̄ξ̄ − [ψ̇0 + ψ̇ẋ]t̄2 − 2[ψ̇x̃]t̄

= aξ̃2 + 2[ψ̇]x̃av ξ̃ + r,

(75)

where

r = 2aξ̃t̄+ at̄2 + 2[ψ̇]x̃av t̄+ 2[ψ̇]ẋav t̄ξ̄+ 2[ψ̇0]t̄ξ̄− [ψ̇0 + ψ̇ẋ]t̄2 − 2[ψ̇x̃]t̄. (76)

It suffices to show that r = 0. Using the relations (74) in formula (76), we get

r = 2a(ξ̄ − t̄)t̄+ at̄2 + 2[ψ̇](x̄av − t̄ẋav)t̄+ 2[ψ̇]ẋav t̄ξ̄ + 2[ψ̇0]t̄ξ̄

−[ψ̇0 + ψ̇ẋ]t̄2 − 2[ψ̇(x̄− t̄ẋ)]t̄

= t̄2
(

− a− 2[ψ̇]ẋav − [ψ̇0] + [ψ̇ẋ]
)

+ 2t̄ξ̄
(

a+ [ψ̇]ẋav + [ψ̇0]
)

+2t̄
(

[ψ̇]x̄av − [ψ̇x̄]
)

.

The coefficient of t̄2 in the r.h.s. of the last equality vanishes:

[ψ̇ẋ] − 2[ψ̇]ẋav − a− [ψ̇0] = ψ̇+ẋ+ − ψ̇−ẋ− − (ψ̇+ − ψ̇−)(ẋ+ + ẋ−)

−
(

ψ̇−ẋ+ − ψ̇+ẋ− − [ψ̇0]
)

− [ψ̇0] = 0.

The coefficient of 2t̄ξ̄ is equal to

a+ [ψ̇]ẋav + [ψ̇0]

= ψ̇−ẋ+ − ψ̇+ẋ− − [ψ̇0] +
1
2 (ψ̇+ − ψ̇−)(ẋ− + ẋ+) + [ψ̇0]

= − 1
2

(

ψ̇+ẋ− − ψ̇−ẋ+
)

+ 1
2 [ψ̇ẋ].

The coefficient of 2t̄ is equal to

[ψ̇]x̄av − [ψ̇x̄]

= 1
2 (ψ̇+ − ψ̇−)(x̄− + x̄+) − (ψ̇+x̄+ − ψ̇−x̄−)

= − 1
2 ψ̇

+[x̄] − 1
2 ψ̇

−[x̄] = −ψ̇av[ẋ]ξ̄,

since [x̄] = [ẋ]ξ̄. Consequently,

r = 2t̄ξ̄
(

a+ [ψ̇]ẋav + [ψ̇0]
)

+ 2t̄
(

[ψ̇]x̄av − [ψ̇x̄]
)

= 2t̄ξ̄
(

− 1
2

(

ψ̇+ẋ− − ψ̇−ẋ+
)

+ 1
2 [ψ̇ẋ] − ψ̇av[ẋ]

)

= t̄ξ̄
(

− (ψ̇+ẋ− − ψ̇−ẋ+) + (ψ̇+ẋ+ − ψ̇−ẋ−)

−(ψ̇− + ψ̇+)(ẋ+ − ẋ−)
)

= 0.

In view of (75) the equality r = 0 proves the lemma.
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Relation (71) along with equality (73) gives the following transformation of
quadratic form Ωτ (67) on the element z̄τ = (ξ̄, ¯̺) of the critical cone Kτ

Ωτ (λτ ; ξ̄, ¯̺) =
s

∑

k=1

(

Dk(H̄)ξ̃2k + 2[ψ̇]kx̃kav ξ̃k
)

+〈lppp̄, p̄〉 +
(

(ψ̇0 + ψ̇ẋ)t̄2 + 2ψ̇x̃t̄
)

|t1t0 −
t1
∫

t0

〈H̄www̃, w̃〉 dτ.
(77)

Taking into account (47) and definitions (17)-(19) of quadratic forms ωe, ω, and
Ω, we see that the r.h.s. of (77) is the quadratic form Ω(λ, z̃) (19) in problem
P for the trajectory T , where z̃ = (t̄0, t̄1, ξ̃, w̃) is the corresponding element of
the critical cone K. Thus we have proved the following theorem.

Theorem 4.1 Let z̄τ = (ξ̄, v̄, t̄, w̄) be an element of the critical cone Kτ in the
problem P τ for the trajectory T τ . Let z̃ = (t̄0, t̄1, ξ̃, w̃) be the corresponding ele-
ment of the critical cone K in the problem P for the trajectory T , i.e., relations
(48) holds. Then for any λτ ∈ M τ

0 and the corresponding projection λ ∈ M0

(under the mapping (30)) the following equality holds

Ωτ (λτ , z̄τ ) = Ω(λ, z̃).

This theorem proves the implications (iii) ⇒ (iv) and (v) ⇒ (vi) (see the
beginning of this section), and thus completes the proofs of Theorems 2.3 and
3.1.
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