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Abstract: Necessary conditions of extremum (from the times
of Fermat and Lagrange till our times) for extremal problems where
smoothness is interlaced with convexity, and some type of regularity
takes place, correspond to a unique general principle, which is due
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Introduction

This paper1 represents a fragment of my lecture “On some methods, calculi,
phenomena, principles and results in the theory of extremum” given at the
Conference in Bȩdlewo (Poland) “50 years of Optimal Control, September 2008”.

An idea of the way to solve problems with equality constraints was expressed
by Lagrange. He wrote:

Here we only sketch these procedures and it will be easy to apply them, but

one can reduce them to this general principle: If a function of several variables

should be maximum or minimum, and there are between these variables one or

several equations, then it will suffice to add to the proposed function the func-

tions that should be zero, each multiplied by an undetermined quantity and then

to look for the maximum or the minimum as if the variables were independent;

the equations that one will find, combined with the given equations, will serve

to determine all the unknowns.

J.-L. Lagrange

“Théorie des fonctions analytique”, Paris, 1797
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The Lagrange principle of eliminating the constraints:

According to this principle, when one searches a necessary condi-
tion of an extremal problem with equality constraints in which
smoothness is interlaced with convexity, it is sufficient to con-
struct the Lagrange function of the problem and then to apply
necessary conditions for a minimum of the Lagrange function “as

if the variables were independent”.

Now we will translate this heuristic idea to the mathematical language.

1. The Lagrange principle for smooth-convex problems

Definition Let X and Z be normed spaces and V be a neighborhood of a point
x̂ ∈ X2. A mapping F : V → Z is said to be strictly differentiable at a point x̂
(and we write in this case F ∈ SD1(x̂)) if there is a linear continuous operator
M : X → Z such that for any ε > 0 there exists δ > 0, such that ‖F (x2) −
F (x1) − M(x2 − x1)‖Y ≤ ε‖x2 − x1‖Z whenever ‖xi − x̂‖X < δ, i = 1, 2. The
operator M is the Fréchet derivative of the mapping F at the point x̂, denoted
F ′(x̂). The mapping F is said to be regular (weakly regular), if the operator
F ′(x̂) is surjective (if F ′(x̂)X is a closed subspace of finite codimension).

Statement of the smooth-convex problem

Let X and Y be normed spaces, V neighborhood of a point x̂ ∈ X , U a set; and
let a functional f0 : V → R and a mapping F : V × U → Y be given. Consider
the problem

f0(x) → min; F (x, u) = 0. (P )

The constraint F (x, u) = 0 is said to be smooth-convex at (x̂, û), if the
mapping x → F (x, û) is strictly differentiable at the point x̂, and subsets
F (x,U) ⊂ Y are convex for all x ∈ V . If the functional f0 in (P ) is smooth and
the mapping F is a smooth-convex, then (P ) we call a smooth-convex problem.

If the constraint F = 0 is absent, the problem (P ) is called the problem
without constraints or an elementary smooth problem.

Proposition 1 If x̂ is a local extremum in the problem (P ) without constraints
and f0 is differentiable at x̂, then f ′

0(x̂) = 0.

This result (which trivially follows from definitions) is called Fermat theorem.

A pair (x̂, û) is said to afford a strong local minimum in the problem (P ), if
there exists ε > 0 such that for any pair(x, u) ∈ V × U satisfying the condition
F (x, u) = 0 and ‖x − x̂‖X < ε the inequality f0(x) ≥ f0(x̂) holds.

2Sometimes we shall write in this case V ∈ O(x̂, X)
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The function L((x, u), λ̄) = λ0f0(x) + 〈λ, F (x, u)〉 is referred to as the La-
grange function of problem (P), and λ̄ = (λ0, λ) ∈ R+ × Y ∗ is referred to as the
collection of Lagrange multipliers.

According to the Lagrange’s idea, if (x̂, û) is a strong local minimum in (P ),
then we have to consider two problems: L((x, û), λ) → min and L((x̂, u), λ) →
min, u ∈ U . The first one is a smooth problem without constraints and according
to Fermat theorem at the point x̂ of local minimum the equality

Lx((x̂, û), λ) = 0 ⇔ λ0f
′
0(x̂) + (Fx(x̂, û))∗λ = 0, (a)

holds. The equality (a) is called a stationarity condition.
The second problem is in fact a convex problem 〈λ, y〉 → min, y = F (x̂, u),

u ∈ U . The condition of minimum at the point û can be expressed analytically,
but we prefer to write the following tautological condition

min
u

L((x̂, u), λ) = L((x̂, û), λ) ⇔ min
u

〈λ, F (x̂, u)〉 = 0. (b)

We call it a minimum condition.

Now we formulate a necessary condition of minimum in the problem (P ).

The main theorem (Lagrange principle for smooth-convex problem)
(see Ioffe and Tikhomirov, 1979). Let X and Y be Banach spaces, the function
f0 be differentiable at x̂, F = 0 a smooth-convex constraint and the mapping
x → F (x, û) weakly regular at the point (x̂, û). Then the necessary condition of
a strong local minimum in (P ) at the point (x̂, û) corresponds to the Lagrange
principle, i.e. there exists a nontrivial collection of Lagrange multipliers λ =
(λ0, λ) ∈ R+ × Y ∗, for which the stationarity condition (a) and the minimum
condition (b) are satisfied.

2. Proof

Preliminaries from functional analysis. In the proof we will use the Banach
open mapping principle and separation theorems (see Ioffe and Tikhomirov,
1979). The set of all linear continuous operators from a normed space X to a
normed space Y is denoted L(X, Y ).

Lemma 1 (on right inverse mapping) Let X and Y be Banach spaces and
Λ ∈ L(X, Y ) be a surjective operator. Then there exists an operator R : Y → X
(right inverse of Λ) and a constant γ such that ΛR(y) = y and ‖R(y)‖X ≤
γ‖y‖Y for all y ∈ Y .

Proof of Lemma 1. Let UX(0, 1) = {x ∈ X | ‖x‖X < 1} be an open unit ball.
According to Banach open mapping principle ΛUX(0, 1) contains a ball UY (0, δ).
Thus, for each element y ∈ UY (0, δ) there exists an element x(y) ∈ UX(0, 1),

such that Λx(y) = y. Hence, the mapping R(y) = 2‖y‖Y

δ
x( δy

2‖y‖Y

) satisfies the

conditions of the lemma.
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Lemma 2 (on nontriviality of the annihilator) Let X be a normed space
and L be its closed proper subspace. Then the annihilator L⊥ of L has a nonzero
element.

This lemma trivially follows from the separation theorem.

Lemma 3 (on closedness of the image) Let X and Y be Banach spaces,
M ∈ L(X, Rn), Λ ∈ L(X, Y ), ΛX = Y Nx = (Mx, Λx). Then ImN is closed
in R

n × Y .

Proof of Lemma 3. Let {xn}n∈N be a sequence such that Mxn → ξ, Λxn → η.
Denote x′

n = R(Λxn − η), where R is the right-inverse mapping for Λ. Then
‖x′

n‖X ≤ γ‖Λxn − η‖Y → 0. We see that Λ(xn − x′
n) = η and at the same time

ξ = lim
n→∞

M(xn − x′
n). Thus, ξ belongs to the affine manifold A = {Mx | Λx =

η} ∈ R
n, which is a closed set. Thus, there exists x such that Mx = ξ, i.e.

(ξ, η) = (Mx, Λx).

Lemma 4 (on annihilator of a kernel of a regular operator)
The annihilator of a linear continuous surjective operator from one Banach
space to another coincides with the image of the conjugate operator.

Proof of Lemma 4. The inclusion ImΛ∗ ⊂ (KerΛ)⊥ follows from definition. Let
Λ ∈ L(X, Y ) and x∗ ∈ (KerΛ)⊥. Consider the operator Mx = (〈x∗, x〉, Λx) ∈
L(X, R×Y ). It follows from Lemma 3 that MX is a closed subset in R×Y . It
is the proper subspace (because (1, 0) /∈ MX). From Lemma 2 there exists an
element (λ0, λ) ∈ R×Y ∗ \ (0, 0) such that λ0〈x∗, x〉+ 〈λ, Λx〉 = 0 ∀x ∈ X . The
operator Λ is a surjective operator, thus λ0 6= 0, so we obtain: x∗ = −Λ∗ λ

λ0

.

Modified Newton method and a theorem on right-inverse mapping.

Let X and Y be Banach spaces, V ∈ O(x0, X), F : V → Y, Λ ∈ L(X, Y ),
ΛX = Y . The sequence

xn = xn−1 + R(y − F (xn−1)), n ∈ N (A)

where R is a right-inverse mapping to Λ, is called a modified Newton’s sequence,
and application of it is called a modified Newton method.

Theorem (on right-inverse mapping). Let V be a neighborhood of x̂ in X
and F : V → Y . If there exist a linear continuous surjective operator Λ from X
onto Y and a number θ, 0 < θ < 1, such that for all pairs (x′, x) ∈ V

‖F (x′) − F (x) − Λ(x′ − x)‖Y ≤
θ

γ
‖x′ − x‖X (B)

holds where γ is a constant from the right-inverse map lemma, then there exists
an open neighborhood W of F (x̂) in Y and a map ϕ : W → V , a constant K > 0
such that F (ϕ(y)) = y for all y ∈ W and ‖ϕ(y)− x̂‖X ≤ K‖y − F (x̂)‖Y for all
y ∈ W .
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Proof. Let δ > 0 be so small that the closed ball BX(x̂, δ) = {x ∈ X | ‖x−x̂‖X ≤

δ} (with center x̂ and radius δ) belongs to V and y ∈ BY (F (x̂), δ0), δ0 ≤ (1−θ)δ
γ

.

Let us prove that a) all elements {xk}k∈N of the modified Newton’s sequence
(x0 = x̂) belong to BX(x0, δ) and b) that this sequence is fundamental. We
prove proposition a) by induction over n. The element x0 belongs to BX(x0, δ)
by definition. Let xk ∈ BX(x0, δ), 1 ≤ k ≤ n. The equality Λ(xk − xk−1) −
y + F (xk−1) = 0 1 ≤ k ≤ n, (i), follows from (A) and, besides, the equality

ΛR(y) = y holds. Thus (“An” means here “analogously”) ‖xn+1 − xn‖X
(A)
=

‖R(y − F (xn))‖Y

(i),Lemma1

≤ γ‖y − F (xn) − y + F (xn−1) + Λ(xn − xn−1)‖Y

(B)

≤

θ‖xn − xn−1‖X

An

≤ θ2‖xn−1 − xn−2‖X

An

≤ . . .
An

≤ θn‖x1 − x0‖X (ii). In the
subsequent calculations (iii) means the triangle inequality, (iv) is the formula for

the sum of geometrical progression: ‖xn+1−x0‖X

(iii)

≤ ‖xn+1−xn‖X +. . .+‖x1−

x0‖X

(ii)

≤ (θn+θn−1+. . .+1)‖x1−x0‖X

(A),(iv)

≤ γ/(1−θ)‖y−F (x0)‖Y

defδ0

≤ δ (v).

We see that elements xn are defined for all n.

Let us prove b). We have for all n, m ∈ N: ‖xn+m − xn‖X

(iii)

≤ ‖xn+m −

xn+m−1‖X + . . . + ‖xn+1 − xn‖X

(ii)

≤ (θn+m−1 + . . . + θn)‖x1 − x0‖X

(iv),(A)

≤

γθn

1−θ
‖y − F (x0)‖Y

defδ0

≤ δθn (vi).

Consequently, {xn}n∈N is a fundamental sequence. Denote lim
n∈N

xn = ϕ(y).

From (i) and continuity of F in BX(x0, δ)) we obtain the equality F (ϕ(y)) = y.
The inequality ‖ϕ(y) − x0‖X ≤ K‖y − F (x0)‖Y with K = γ

1−θ
follows from

(vi).

Proof of the main theorem. The notion of smoothness is related to analysis,
whereas that of convexity is related to geometry. The proof of the Lagrange
principle will consists of three parts, one of which is analytic, based on the
theorem on right-inverse mapping and the other two are geometric, based on
separation theorems.

Denote Λ := Fx(x̂, û), Y1 := ImΛ, Z = Y/Y1. By condition, dimZ < ∞. Let
π : Y → Y/Y1 be the canonical projection, C := Y1 + F (x̂,U).

We will distinguish between two cases: degenerate, where either intπ(C) = ∅
or intπ(C) 6= ∅, 0Z /∈ intπ(F (x̂,U) and nondegenerate, where intπ(C) 6= ∅ and
0Z ∈ intπ(F (x̂,U).

Degenerate case: Here we use geometry. From the finite-dimensional sep-
aration theorem it follows that there exists a vector z∗ ∈ Z∗ \ 0Z∗ such that
〈z∗, z〉 ≥ 0 ∀z ∈ π(F (x̂,U)) (i).

Denote by π∗ the conjugate operator π∗ : Z∗ → Y ∗ and λ = π∗z∗. It
is evident that λ 6= 0 (because π is a surjective operator) and then 〈λ, Λx +

F (x̂,U)〉
Id
= 〈π∗z∗, Λx + F (x̂,U)〉

Id
= 〈z∗, π(Λx + F (x̂,U))〉

(i)

≥ 0 (ii).
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From this inequality we obtain that Λ∗λ = 0 and 〈λ, F (x̂, u)〉 ≥ 0 ∀u ∈ U),
i.e. the stationarity condition a) and minimum condition b) with λ = (0, λ) hold
true.

Nondegenerate case: 0Z ∈ intπC. Here we use differential calculus. From
the equality spanπ C = Z it follows that there exist m ∈ N and m ele-
ments {zj}m

j=1, zj ∈ πF (x̂, vj) such that the conic hull of {zj}m
j=1 is Z and

there exist m positive numbers {β̄i}m
i=1 such that

∑m
i=1 β̄izi = 0 ⇒ ∃ξ :

Λξ +
∑m

i=1 β̄iF (x̂, vi) = 0 (iii).

Let v be an element of U such that F (x̂, v) ∈ Y1. Then, there exists xv ∈ X
such that Λxv + F (x̂, v) = 0 (iv).

Define the mapping Φ : (V \ x̂)×R×R
m → Y by the formula: Φ(x, α, β) =

(1−α−αε
∑m

j=1 β̄j −
∑m

j=1 βj))F (x̂ + x, û) + αF (x̂ + x, v) + αε
∑m

j=1 β̄jF (x̂ +

x, vj)+
∑m

j=1 βjF (x̂+x, vj), where β = (β1, . . . , βm). It is obvious that if the co-

efficient at F (x̂+x, x̂) is nonnegative, α > 0 and αεβ̄j +βj ≥ 0, 1 ≤ j ≤ m, then
this expression is a convex combination of vectors F (x̂+x, û), F (x̂+x, v), {F (x̂+
x, vj)}m

j=1. From the condition of smoothness it follows that Φ ∈ SD1(0, 0, 0)

and Φ′(0, 0, 0)[(x, α, β)] = Λ(x − αεξ) + αF (x̂, v) +
∑m

j=1 βjF (x̂, vj). Let us
be convinced, that Φ′(0, 0, 0)(X × R × R

m) = Y . In fact, let y be in Y . From
{cone(π(F (x̂, vi))}m

i=1 =Z, it follows that there exist numbers (β1(y), . . . , βm(y))
such that

∑m
i=1 βi(y)π(F (x̂, vi)=πy, i.e. y−

∑m
i=1 βi(y)(F (x̂, vi))∈Y1. Conse-

quently there exists an element x(y) such than Λx(y)=y−
∑m

i=1 βi(y)(F (x̂, vi)),
i.e. Φ′(0, 0, 0)[x(y), 0, β(y)] = y.

From the formula for Φ′(0, 0, 0) and equality (iv) we obtain that Φ′(0, 0, 0)
[xv +εξ, 1, 0] = 0, hence starting from the point Φ((t(xv +εξ), t, 0), and using the
modified Newton method, we shall find ri(t), i = 1, 2, 3, such that Φ(x̂ + t(xv +
εξ) + r1(t), t + r2(t), r3(t)) = 0 with the estimate ‖r1(t)‖X + |r2(t)| + |r3(t)| ≤
K‖Φ(t(xv + εξ), t, 0)‖Y = ‖Φ(0, 0, 0) + tΦ′(0, 0, 0)[xv + εξ, 1, 0] + o(t)‖y = o(t).
Thus (from the condition about the convexity), for some u(t) ∈ U the equality
F (x̂ + t(xv + εξ) + r(t), u(t)) = 0 holds true. We construct an admissible
element (x̂+ t(xv +εξ)+r(t), u(t)) in the problem (P ). We supposed that (x̂, û)
is a local minimum of (P ), consequently (because ε is an arbitrary number)
〈f ′

0(x̂), xv〉 ≥ 0. Thus, implication Λxv + F (x̂, v) = 0 ⇒ 〈f ′
0(x̂), xv〉 ≥ 0 (v) is

proved.

Let v in (iv) be û. Then f ′
0(x̂) ∈ (KerΛ)⊥. From Lemma 4 on a kernel of

a regular operator f ′
0(x) + Λ∗y∗

1 = 0 (vi) for some y∗
1 ∈ Y ∗

1 . Let us take now
v ∈ Y1

⋂
F (x̂,U). Then we will have

〈y∗
1 , F (x̂, v)〉

(iv)
= −〈y∗

1 , Λxv〉
Id
= −〈Λ∗y∗

1 , xv〉
(vi)
= 〈f ′

0(x̂), xv〉
(v)

≥ 0. (v)

Now we shall show that there exists an extension λ of the functional y∗
1 to

the entire Y such that 〈λ, F (x̂, u)〉 ≥ 0 or all u ∈ U (which will mean that (b)
holds with λ0 = 1). To this end we again use geometry.
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Consider the subspace Y0 ⊂ Y1 = {y ∈ Y1 | 〈y∗
1 , y〉 = 0}. It is a hyperplane

in the space Y1. The factor-space Z0 = Y/Y0 is equal to Y/Y1 × Y1/Y0. The
canonical projection π0 : Y → Z0 maps Y1 into one-dimensional space so that
the image of Π = {y ∈ Y1 | 〈y∗

1 , y〉 < 0} is a ray (0, ζ), ζ < 0. From (v) it fol-
lows that this ray does not intersect π0(F (x̂,U). Finite-dimensional separation
theorem allows for separating them by a functional η∗. Then, the functional
y∗ = π∗

0η∗ has the property

〈y∗, F (x̂,U)〉 = 〈π∗
0η∗, F (x̂,U)〉 = 〈η∗, π0F (x̂,U)〉 ≥ 0, (vi)

and, besides, if y ∈ Kery∗
1 , then 〈y∗, y〉 = 〈π∗

0η∗, y〉 = 〈η∗, π0y〉 = 0. So βy∗|Y1
=

y∗
1 , β > 0. If we put βy∗ := λ we obtain the stationarity condition (see (v)) and

the condition of minimum (see (vi)). The Lagrange principle is proven.

3. Applications (the Lagrange principle for particular
classes of extremal problems)

3.1. Problems of mathematical programming.

Let X, Y be normed spaces, V ∈ O(x̂, X), fi : V → R, 0 ≤ i ≤ m, F : V → Y .
The problem

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m, F(x) = 0 (P1)

is called the problem of mathematical programming. The function L(x, λ̄) =
L(x, λ0, . . . , λm, λ) =

∑m
i=0 λifi(x) + 〈λ,F(x)〉, where λi ∈ R, λ ∈ Y ∗, is called

the Lagrange function of the problem (P1). The vector λ = (λ0, . . . , λm, λ) is
called a collection of Lagrange multipliers.

Proposition 2 The vector û = (û1, . . . , ûm) affords an absolute minimum of
the problem ϕ(u) =

∑m
i=1 λiui → min, ui ≥ 0 (which we call an elementary

problem of linear programming) iff the conditions of nonnegativity λi ≥ 0, 1 ≤
i ≤ m, and complementary slackness λiûi = 0, 1 ≤ i ≤ m, hold.

The proof of this proposition is evident.

Theorem 1 (the Lagrange principle for problems of mathematical
programming) If in the problem (P1) the following smoothness conditions:
f0 ∈ D1(x̂), F ∈ SD1(x̂), and regularity conditions: F ′(x̂)X is a closed subspace
in Y are satisfied, then necessary conditions for a local minimum in the problem
(P1) at the point x̂ coincide with the Lagrange principle, i.e., there exists a
collection of Lagrange multipliers λ = (λ0, . . . , λm, λ) ∈ R

m+1 × Y ∗ such that
the stationarity condition

Lx(x̂, λ) = 0 ⇔
m∑

i=0

λif
′
i(x̂) + F ′(x̂)∗λ = 0, (1)
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the nonnegativity condition λi ≥ 0, 0 ≤ i ≤ m, and the condition of comple-
mentary slackness λifi(x̂) = 0, 1 ≤ i ≤ m, are satisfied. In the regular case
(when F ′(x̂)X = Y ) of the problem without inequalities the multiplier λ0 6= 0.

Proof. If F ′(x̂)X 6= Y , then (by Lemma 2 on nontriviality of annihilator) there
exists an element λ̄ ∈ Y ∗ such that 〈λ̄,F(x̂)x〉 = 0 ∀x ∈ X ; i.e., Lx(x̂, λ) = 0
for λ = (0, . . . , 0, λ̄).

If F ′(x̂)X = Y , we put Ỹ = Y ×R
m, F (x, u) = (f1(x)+u1, . . . , fm(x)+um),

u = (u1, . . . , um), U = R
m
+ and apply the main theorem (together with Lemma 3

on closedness of the image). The stationarity condition of the main theorem
together with Proposition 1 lead to the stationarity condition in Theorem 1.
Condition of minimum of the main theorem together with Proposition 2 lead to
nonnegativity of Lagrange multipliers and conditions of complementary slack-
ness.

3.2. Problems of the Calculus of Variations

Let ∆ = [t0, t1], −∞ < t0 < t1 < ∞, Li : ∆ × R
n × R

r → R, 0 ≤ i ≤ m,
li : R

n × R
n → R, 0 ≤ i ≤ m, ϕ : ∆ × R

n × R
r → R

n, Ξ = {ξ = (x(·), u(·))} =
C1(∆, Rn)×C(∆, Rr), fi(ξ) =

∫
∆ Li(t, x(t), u(t)) dt+li(x(t0), x(t1)), 0 ≤ i ≤ m.

The problem

f0(ξ) → min, fi(ξ) ≤ 0, 1 ≤ i ≤ m′, fi(ξ) = 0, m′ + 1 ≤ i ≤ m,

ẋ = ϕ(t, x, u) (P2)

is called the Lagrange problem of the Calculus of Variations. The problem
B(x(·)) =

∫
∆ L(t, x(t), ẋ(t)) dt + l(x(t0), x(t1)) → min is called an elementary

problem of the Calculus of Variations or the Bolza problem.
A local extremum in the space C1(∆, Rn) for the Bolza problem, and a local

minimum for the Lagrange problem in the space Ξ are called weak extrema.
The Lagrange function for the problem (P2) has the following form:

L(ξ, λ) = L(ξ, λ0, . . . , λm, p(·))

=
m∑

i=0

λifi(ξ) +

∫

∆

p(t) · (ẋ(t) − ϕ(t, x(t), u(t)) dt

=

∫

∆

(L̃(t, x(t), u(t)) + p(t) · (ẋ(t) − ϕ(t, x(t), u(t))) dt + l(x(t0), x(t1)),

where L̃=
∑m

i=0 λiLi, l=
∑m

i=0 λili, λ=(λ0, . . . , λm, p(·)) ∈ R
m+1×C1(∆, Rn∗).

Proposition 3 Let x̂(·) ∈ C1(∆, Rn), let L = L(t, x, y) : R × R
n × R

n → R be
a continuous function continuously differentiable in x and y in a neighborhood
of the graph {(t, x, y) | t ∈ ∆, x = x̂(t), y = ŷ(t)} and let the function l =
l(ξ0, ξ1) : R

n × R
n → R be continuously differentiable in a neighborhood of the
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point (x̂(t0), x̂(t1)). If x̂(·) is a weak minimum of the Bolza problem in the space

C1(∆, Rn), then L̂ẋ(·) ∈ C1(∆) and the Euler equation − d
dt

L̂ẋ(t) + L̂x(t) = 0,

and the transversality conditions L̂ẋ(ti) = (−1)i+1 l̂ξi
, i = 0, 1, are satisfied.

Proof of Proposition 3. It can be proved that if smoothness conditions of L and
l are satisfied, then B ∈ D1(x̂(·)) in the space C1([t0, t1], R

n) and

B′(x̂(·))[x(·)] =

∫ t1

t0

(L̂ẋ(t) · ẋ(t) + L̂x(t) · x(t)) dt + l̂ξ0
· x(t0) + l̂ξ1

· x(t1). (i)

By solving the Cauchy problem ṗ = L̂x(t), p(t1) = −l̂ξ1
(in other words, by

denoting p(t) = −(l̂ξ1
+

∫ t1

t
L̂x(τ) dτ)), substituting to (i) and integrating by

parts, we obtain (from Fermat’s theorem)

∫ t1

t0

(L̂ẋ(t)−p(t)) · ẋ(t) dt+(l̂ξ0
−p(t0)) ·x(t0) = 0 ∀x(·) ∈ C1([t0, t1], R

n). (ii)

By solving the Cauchy problem ẋ = L̂x(t) − p(t), x(t0) = lξ0
− p(t0) (in other

words, by denoting x(t) := lξ0
− p(t0) +

∫ t

t0
L̂ẋ(τ)dτ − p(τ)) and substituting to

(ii), we obtain the required relations.

Theorem 2 (the Lagrange principle for the Lagrange problem of
the Calculus of Variations) Let in the Lagrange problem (P2) the functions
(x̂(·), û(·)) ∈ C1(∆, Rn)×C(∆, Rr), Li : R×R

n×R
r → R and ϕ : R×R

n×R
r →

R
n be continuous and continuously differentiable in x and u in a neighbor-

hood of the graph {(t, x, y) | t ∈ ∆, x = x̂(t), y = û(t)}, and let the functions
li be continuously differentiable in a neighborhood of the point (x̂(t0), x̂(t1)).
Then, the necessary conditions of a weak minimum in the problem (P2) at the
point (x̂(·), û(·)) coincide with the Lagrange principle, i.e., there exists a non-
trivial collection of Lagrange multipliers λ = (λ0, . . . , λm, p(·)) such that for

L(t, x, ẋ, u) = L̃(t, x, u) + p(t) · (ẋ − ϕ(t, x, u)) the Euler equations for x(·) and
u(·):

−
d

dt
L̂ẋ(t) + L̂x(t) = 0, L̂u(t) = 0, (2a)

the transversality conditions:

L̂ẋ(ti) = (−1)i+1 l̂ξi
, i = 0, 1, (2b)

together with nonnegativity conditions (λi ≥ 0, 0 ≤ i ≤ m′) and conditions of

complementary slackness: (λifi(ξ̂) = 0, 1 ≤ i ≤ m′) hold.



1598 V. TIKHOMIROV

Proof of Theorem 2.

Preliminaries: global existence theorem for linear systems. Let D =
[t0 − a, t0 + a] × BRn(x0, b), f : D → R

n, x0 ∈ R
n. Consider the problem:

ẋ = f(t, x), x(t0) = x0. (3)

We call it the Cauchy problem for the differential equation ẋ = f(t, x).

Theorem on global existence of solution of the Cauchy problem
for linear systems. Let ∆ = [t0, t1], let functions A : ∆ 7→ L(Rn, Rn) and
b : ∆ 7→ R

n be continuous in the segment ∆, let τ ∈ ∆ and ξ ∈ R
n. Then there

exists a unique solution on ∆ of the problem:

ẋ = A(t)x + b(t), x(τ) = ξ.

This result is a simple corollary of the theorem on right-inverse mapping.

Let X be Ξ×R
m. Denote F(ξ) := ẋ(·)−ϕ(·, x(·), u(·)), U = R

m′

+ , F (ξ, u) =
(F(ξ), f1(ξ)+u1, . . . , fm′(ξ)+um′ , fm′+1(ξ), . . . , fm(ξ)). Let us verify conditions
of the main theorem. Conditions of smooth-convexity are fulfilled trivially, the
condition of weak regularity follows from the global existence theorem for linear
systems and Lemma 3 on closedness of the image. Differentiating in x(·) leads
to the identity:

∫

∆

̂̃
Lx(t) · x(t) dt + 〈λ, ẋ(·) − ϕ̂x(·)x(·))〉 = 0 ∀x(·). (i)

Theorem on existence of solution of linear systems allows us to solve the
problems: ẋ(·) − ϕ̂x(·)x(·) = y(·), x(t0) = x0, (ii), and −ṗ(·) = p(·)ϕ̂x(·) −
̂̃
Lx(·), p(t1) = −l̂ξ1

(iii). Thus, the Euler equation and the second transver-

sality conditions are satisfied. Substituting in (i) the expression (iii) for
̂̃
Lx,

integrating by parts and using (ii), we obtain the equality
∫
∆ p(t) · y(t) dt =

〈λ, y(·)〉. (iv). Differentiation in u(·) leads to the identity:
∫
∆

̂̃
Lu(t) · u(t) dt +

〈λ,−ϕ̂u(·)u(·))〉 = 0 ∀u(·) (v).
Using (iv) we obtain the Euler equation for u(·) and the first transversality

condition.

3.3. Convex and Lyapunov problems

The set of all convex functions in a vector space Z will be denoted by Cof (Z).
Let ∆ = [t0, t1], −∞ < t0 < t1 < ∞, U ⊂ R

r, Li : ∆ × U → R, 0 ≤ i ≤ m,
Z be a vector space, ϕi ∈ Cof (Z), 0 ≤ i ≤ m, A be a convex subset of Z. The
problem

ϕ0(z) → min,

∫

∆

Li(t, u(t)) dt + ϕi(z) ≤ 0, 1 ≤ i ≤ m, z ∈ A, (P3)
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where u(·) is a measurable vector-function, is called a problem of convex pro-
gramming.

The problem of the Calculus of Variations of the form

J0(u(·)) =

∫

∆

L0(t, u(t)) dt → min,

Ji(u(·)) =

∫

∆

Li(t, u(t)) dt ≤ 0, 1 ≤ i ≤ m′, (P
′

3)

Ji(u(·)) =

∫

∆

Li(t, u(t)) dt = 0, m′ + 1 ≤ i ≤ m, u(t) ∈ U,

is called the Lyapunov problem.

The problem J (u(·)) =
∫
∆

L(t, u(t)) dt → min, u(t) ∈ U is called an ele-
mentary Lyapunov’s problem or an elementary problem of Optimal Control.

The Lagrange function for the problem (P2) has the following form:

L((z, u(·)), λ) =

m∑

i=0

(λiϕi(z) + λi

∫

∆

Li(t, u(t))dt).

Proposition 4 A function û(·) is a solution of an elementary problem of op-
timal control iff f(t, û(t)) = minu∈U f(t, u) for a.a. t of û(·). We call it the
minimum condition.

The proof of this proposition is evident.

Theorem 3 (the Lagrange principle for problems of convex pro-
gramming) Let in the problem (P3) Li : ∆ × U be continuous functions and
ϕi : Z → R be convex functions. Then, the necessary conditions for an abso-
lute minimum in the problem (P3) at the point (ẑ, û(·)) coincide with the La-
grange principle, i.e., there exists a nontrivial collection of Lagrange multipliers
λ0, . . . , λm such that

m∑

i=0

λiϕi(z) ≥
m∑

i=0

λiϕi(ẑ) ∀z ∈ A. (3a)

If t is a point of continuity of û(·), then

m∑

i=0

λiLi(t, u) ≥
m∑

i=0

λiLi(t, û(t)), ∀u ∈ U. (3b)

If the Lagrange multiplier λ0 6= 0, then the absolute minimum in the problem
(P3) attains.
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Proof of Theorem 3.

Preliminaries: phenomenon of convexity of finite-dimensional integral

mappings.

Lyapunov theorem. Let ∆ be a segment in R, and let p(·) = (p1(·), . . . , pn(·))
be an integrable vector-function. Then the set M = {x ∈ R

n | x =
∫
A

p(t) dt, A ∈

A}, where A is the σ-algebra of all Lebesgue measurable sets, is a convex compact
set in R

n (Alekseev, Tikhomirov and Fomin, 1987).
The problem (P3) can be reduced to the problem (P ) by denoting X :=

R, U := A×A×R
m
+ (where A is the set of measurable functions such that t 7→

Li(t, u(t)) ∈ L1(∆)), u = (u(·), z, α) ∈ A×A×R
m
+ , f0(x) = x, φ0(x.u) = α0−x,

φi(u) =
∫
∆ Li(t, u(t))dt + ϕi(z) + αi, 1 ≤ i ≤ m. Conditions of smoothness

and weak regularity are satisfied trivially, the convexity condition follows from
Lyapunov’s theorem. Together with Proposition 4 this implies the theorem.

4. Problems of Optimal Control

Let ∆ = [t0, t1], −∞ < t0 < t1 < ∞, U ⊂ R
r, Li : ∆×R

n ×U → R, 1 ≤ i ≤ m,
li : R

n × R
n → R, 0 ≤ i ≤ m, ϕ : ∆ × R

n × U → R
n, Ξ1 = {ξ = (x(·), u(·))} =

PC1(∆, Rn) × PC(∆, Rr) (piecewise continuously differentiable and piecewise
continuous functions), fi(ξ) =

∫
∆

Li(t, x(t), u(t)) dt+li(x(t0), x(t1)), 0 ≤ i ≤ m.
The problem

f0(ξ) → min, fi(ξ) ≤ 0, 1 ≤ i ≤ m′, fi(ξ) = 0, m′ + 1 ≤ i ≤ m,

ẋ = ϕ(t, x, u), u ∈ U (P4)

is called the problem of Optimal Control. We call the problem

J(x(·), u(·)) =

∫

∆

f(t, x(t), u(t)) dt → min,

ẋ = ϕ(t, x, u), x(t0) = x0 , (x(t0) = x0, x(t1) = x1), u ∈ U, (P
′

4)

the problem of Optimal Control in Pontryagin’s form with a free boundary con-
dition (with fixed boundary conditions).

The Lagrange function of the problem (P4) has the following form:

L(ξ, λ̄) = L(ξ, λ0, . . . , λm, p(·))

=

m∑

i=0

λifi(ξ) +

∫

∆

p(t) · (ẋ(t) − ϕ(t, x(t), u(t)) dt

=

∫

∆

(L̃(t, x(t), u(t)) + p(t) · (ẋ(t) − ϕ(t, x(t), u(t))) dt + l(x(t0), x(t1)),

where L̃ =
∑m

i=0 λiLi, l =
∑m

i=0 λili.
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A pair ξ̂ = (x̂(·), û(·)) is said to be an optimal process or to afford a strong
local minimum in problem (P4), if there exists a ε > 0 such that for any ad-

missible pair(x, u) such that ‖x − x̂‖C(∆,Rn) < ε the inequality f0(ξ) ≥ f0(ξ̂)
holds.

Theorem 4 (the Lagrange principle for problems of Optimal Con-
trol) Let in the problem (P4) of Optimal Control the functions (x̂(·), û(·)) ∈
PC1(∆, Rn) × PC(∆, Rr), Li : R × R

n × R
r → R and ϕ : R × R

n × R
r → R

n

be continuous and continuously differentiable in x in a neighborhood of the
graph {(t, x, y) | t ∈ ∆, x = x̂(t), y = û(t)}, and let the functions li be con-
tinuously differentiable in a neighborhood of the point (x̂(t0), x̂(t1)). Then,
necessary conditions of a strong local minimum in the problem (P4) at the
point (x̂(·), û(·)) coincide with the Lagrange principle, i.e., there exists a non-
trivial collection of Lagrange multipliers λ = (λ0, . . . , λm, p(·)) such that for

L(t, x, ẋ, u) = L̃(t, x, u) + p(t) · (ẋ − ϕ(t, x, u)) the Euler equations for x(·),
minimum condition for u(·):

−
d

dt
L̂ẋ(t) + L̂x(t) = 0, (4a)

min
u∈U

L(t, x̂(t), ˙̂x(t), u) = L̂(t) (4a′)

for all t of continuity û(·), the transversality conditions:

L̂ẋ(ti) = (−1)i+1 l̂ξi
, i = 0, 1, (4b)

together with nonnegativity conditions (λi ≥ 0, 0 ≤ i ≤ m′) and conditions of

complementary slackness: (λifi(ξ̂) = 0, 1 ≤ i ≤ m′) hold.

Theorem 4′ (the Lagrange principle for the problem of Optimal
Control in Pontryagin’s form). Let the functions f and ϕ in the problem
(P ′

4) be continuous together with their derivatives fx and ϕx. Then, the neces-
sary conditions for strong minimum in the problem (P ′

4) at the point (x̂(·), û(·))
coincide with the Lagrange principle, i.e., for the Lagrange function

L =

∫ t1

t0

L(t, x(t), ẋ(t), u(t)) dt,

where L = λ0f + p(t)(ẋ − ϕ), the Euler equation in x:

−
d

dt
L̂ẋ(t) + L̂x(t) = 0 ⇔ −ṗ = pϕ̂x(t) − λ0fx(t) (4′a)

and b) the minimum condition in u:

min
u

L(t, x̂(t), u) = L̂(t) (4′b)
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are satisfied. In the problem with free end the transversality condition p(t1) = 0
is satisfied.

Outline of the proof of Theorem 4’. We restrict ourself to the problems of
Optimal Control in Pontryagin’s form with free end (with fixed end):

f0(x(·)) =

∫

∆

f(t, x(t))dt → min, x(t0) = x0 (x(ti) = xi, i = 1, 2),

ẋ = ϕ(t, x, u), u(t) ∈ U. (P
′′

4 )

To prove Theorem 4 one has to overcome only some technicalities.

Preliminaries: the phenomenon of “almost convexity”of infinite-di-

mensional integral mappings. Consider the mapping F (x(·), u(·)) = x0 +∫ t

t0
ϕ(s, x(s), u(s))ds. Let U(x(·)) ⊂ PC(∆, Rn) denote the set of functions

F (x(·), u(·)), for which u(t) ∈ U at continuity points of u(·). The image
u(·) 7→ F (x(·), u(·)) is not convex: if we take ui(·) ∈ U(x(·)), i = 1, 2, and
a number β ∈ [0, 1], then there need not exist a function uβ(·), such that
(1 − β)F (x(·), u1(·)) + βF (x(·), u2(·) = F (x(·), uβ(·)). But it is possible to
construct a function uβδ(·), which almost satisfies this equality. This means
that for any ε > 0 there exists a number δ > 0 and a function uβδ(·) such that
‖(1 − β)F (x(·), û1(·)) + βF (x(·), u2(·)) − F (x(·), uβδ(·))‖C(∆,Rn) < ε.

To do this, divide the segment ∆ into segments ∆i of length δ, and then di-
vide each segment ∆i into two parts, of length (1− β)|∆i| and β|∆i|. Then we
put uβδ(t) = u1(t) on the first parts of the segments and uβδ(t) = u2(t) on the
second parts. Denote this function by Mβ,δ(u1(·), u2(·)). It is easy to prove
that lim

δ→0
F (x(·), Mβ,δ(u1(·), u2(·))) = (1 − β)F (x(·), u1(·)) + βF (x(·), u2(·)),

lim
β→0

F (x(·), Mβ,δ(u1(·), u2(·))) = F (x(·), u1(·)).

Such construction is called a “mix of control functions”.

Now, we shall apply the method of proof of the main theorem to our prob-
lem (P ′

4) with free end. Here X = Y = C(∆, Rn), U is the set of piecewise-

continuous functions u(·) : ∆ → U , F (x(·), u(·)) = x0 +
∫ t

t0
ϕ(s, x(s), u(s)) ds,

Λ = Fx(x̂(·), û(·)). By the theorem on existence of solution, Λ is a surjective
operator from X onto Y .

Let v(·) be an admissible control function and let xv(·)(·) ∈ X be a func-
tion such that Λxv(·)+F (x̂(·), v(·)) = 0. Define the mapping Φ by the formula
Φ(x(·), θ)=(1−θ)F (x̂(·)+x(·), û)+θF (x̂(·)+x(·), v(·)). Applying the theorem on
the right-inverse mapping we obtain the equality (1−θ−ρ(θ))F (x̂(·)+xv(·)(·)+
r(θ), û(·))+(θ+ρ(θ))F (x̂(·)+xv(·)(·)+r(θ), v(·))=0, where r(θ) and ρ(θ) are o(θ).
Consider a mix Mθ+ρ(θ),δ(û(·), v(·)) with δ so small that the modified Newton’s
sequence starting from the point F (x̂(·)+xv(·)(·)+r(θ), Mθ+ρ(θ),δ(û(·), v(·))) con-
verges to the solution of the equation F (x̂(·)+θxv(·)(·)+o(θ), Mθ+ρ(θ),δ(û(·), v(·)))
=0. Then one can finish the proof as it was done in the main theorem.



Lagrange principle and necessary conditions 1603

In the case of the problem with fixed ends it is necessary also to realize the
plan of proof of the main theorem.

At first, it is necessary to consider the degenerate case and to reject it.
Then we have to prove the equality Φ(θ(xv(·) + εξ(·))+ r1(θ), θ + r2(θ), r3(θ)) =

0, ri(θ)) = o(θ), i = 1, 2, 3. This means that (1−θ−ρ(θ)−
∑N

j=1(βj+ε
∑m

j=1 β̄j+

ρj(θ)))F (x̂(·)+θxv(·)(·), û(·))+(θ+ρ(θ)F (x̂(·)+θxv(·)(·)+r(θ), v(·)+(ε
∑m

j=1β̄j+∑m
j=1 βj + ρj(θ))F (x̂(·) + θxv(·)(·) + rj(θ), vj(·)) = 0.

And then we must mix the control functions proportionally to (θ+ρ(θ), εβ̄+
β + ρ(θ)), i.e., construct the following mix:

M(θ+ρ(θ),εβ̄+β+ρ(θ),δ)(û(·), v0(·), v1(·), . . . , vm(·)).

Then, we have to choose δ so small that the modified Newton’s sequence starting
from the point (x̂ + θxv0(·)(·) + r(θ), M(θ+ρ(θ),εβ̄+β+ρ(θ),δ)(û(·), v0(·), v1(·), . . . ,
vm(·)) and varying x(·) and β converges to the solution of the equation F (x̂(·)+
θxv(·)(·) + o(θ), Mθ+ρ(θ),δ(û(·), v(·))) = 0. Then one can finish the proof as it
was done in the main theorem.

5. Comments

The notion of differentiability appears for the first time in the papers by Newton
(in the 1660s) (Newton, 1736) and Leibniz (1684). The modern definition was
introduced by Cauchy (1823). The concept of differentiability of functions of
many variables is due to Weierstrass (1880s, see Weierstrass, 1903). Derivatives
for functions of infinitely many variables were defined by Frèchet (1912). The
idea of strong differentiability is due to Leach (1961).

Newton’s method (and inverse function theorem for one variable) goes back
to Newton (dated 1676), the implicit function theorem goes back to Dini.
Infinite-dimensional versions of the inverse map theorem go back to Lyusternik
(1934), Graves (1950) and Robinsson (1976), among others.

A necessary condition of extremum for smooth problems without constraints
goes back to Fermat (1638) (see Fermat, 1891). Actually, the theory of extremal
problems was born with the letter of Fermat. Stationary conditions in terms
of derivatives appear in the first papers on calculus (see Newton, 1736, and
Leibniz, 1684). In the infinite-dimensional case, a stationarity condition goes
back to Frèchet (1912).

A classical calculus of variations was born in 1696 when John Bernoulli
(1696) posed the brachistochrone problem. The Euler equation for the sim-
plest problem of calculus of variations was obtained by Euler (1744). He also
deduced a necessary condition for isoperimetric problem. Euler’s equation for
multidimensional problems was derived by Gauss and Ostrogradsky.

Lagrange started the study of problems with constraints. The Lagrange
multipliers rule was formulated in the book Lagrange (1797). He used it as
a heuristic method from the beginning of the 1770s. Rigorous (in the sense
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of the end of the 19th century) proofs of the Lagrange multipliers rule were
given for the finite-dimensional case after proving the inverse map and implicit
function theorems, when finite-dimensional linear algebra was created. For the
first time a rigorous proof of the Lagrange multipliers method was given by
Mayer. (Hilbert also proposed a rigorous proof of this result.) Before that,
many particular cases have been treated. Necessary conditions for isoperimetric
problems were given by Weierstrass, necessary conditions for the derivatives
of higher order were given by Poisson; moreover, necessary conditions for the
problems with non-stationarity ends have been found, and so on. In the 19th
century this was the main subject of all textbooks on the calculus of variation.

Convex problems appeared at the end of the 1930s: Kantorovich (1939),
Karush (1939), John (1948), Kuhn and Tucker (1951) and others. The phe-
nomenon of the convexity of integral maps was discovered by Lyapunov (1940).

Optimal control appeared in 1687 (before the classical calculus of variations)
when Newton, in his “Principia” posed and solved the problem of minimal
resistance of a solid of revolution in the discrete space, but nobody noted that.

The optimal control theory was elaborated in 1950s by Pontryagin and his
collaborators. The results of the first stage of the theory were summarized
in Pontryagin (1959). This paper stimulated a great growth of the extremum
theory.

The paper by Dubovitsky and Milyutin (1965) made an impact on the ex-
tremum theory. It may be regarded as the first paper on extremum problems
theory. The developments of this theory for ten years were set out in the book
by Ioffe and Tikhomirov (1979). The results of Milyutin’s work on Pontryagin’s
maximum principle were partially exposed in the book by Milyutin, Dmitruk
and Osmolovsky (2004).

Almost all results on necessary extremum conditions contained in the papers
referred to correspond to the Lagrange principle given in this paper. The ma-
jority of the results on necessary conditions for extremum, in particular, all the
results on necessary conditions contained in Ioffe and Tikhomirov (1979), Alek-
seev, Tikhomirov and Fomin (1987), Magaril-Ilyaev and Tikhomirov (2003),
Brinkhuis and Tikhomirov (2005) and Arutyunov, Magaril-Ilyaev and Tikhomi-
rov (2006), follow directly from the main theorem.
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