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Abstract: Necessary conditions of extremum (from the times
of Fermat and Lagrange till our times) for extremal problems where
smoothness is interlaced with convexity, and some type of regularity
takes place, correspond to a unique general principle, which is due
to Lagrange. This report is devoted to the Lagrange principle in the
theory of optimization.
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Introduction

This paper! represents a fragment of my lecture “On some methods, calculi,
phenomena, principles and results in the theory of extremum” given at the
Conference in Bedlewo (Poland) “50 years of Optimal Control, September 2008”.

An idea of the way to solve problems with equality constraints was expressed
by Lagrange. He wrote:

Here we only sketch these procedures and it will be easy to apply them, but
one can reduce them to this general principle: If a function of several variables
should be mazimum or minimum, and there are between these variables one or
several equations, then it will suffice to add to the proposed function the func-
tions that should be zero, each multiplied by an undetermined quantity and then
to look for the maximum or the minimum as if the variables were independent;
the equations that one will find, combined with the given equations, will serve
to determine all the unknowns.

J.-L. Lagrange

“Théorie des fonctions analytique”, Paris, 1797
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The Lagrange principle of eliminating the constraints:

ACCORDING TO THIS PRINCIPLE, WHEN ONE SEARCHES A NECESSARY CONDI-
TION OF AN EXTREMAL PROBLEM WITH EQUALITY CONSTRAINTS IN WHICH
SMOOTHNESS IS INTERLACED WITH CONVEXITY, IT IS SUFFICIENT TO CON-
STRUCT THE LAGRANGE FUNCTION OF THE PROBLEM AND THEN TO APPLY
NECESSARY CONDITIONS FOR A MINIMUM OF THE LAGRANGE FUNCTION “as
if the variables were independent”.

Now we will translate this heuristic idea to the mathematical language.

1. The Lagrange principle for smooth-convex problems

DEFINITION Let X and Z be normed spaces and V' be a neighborhood of a point
7T € X2. A mapping F : V — Z is said to be strictly differentiable at a point T
(and we write in this case F' € SD'(Z)) if there is a linear continuous operator
M : X — Z such that for any ¢ > 0 there exists 6 > 0, such that |F(x2) —
F(z1) — M(z2 — 2z1)|ly <e¢|lze — x1]|z whenever ||z; — Z||x <9, i =1,2. The
operator M is the Fréchet derivative of the mapping F' at the point Z, denoted
F'(Z). The mapping F is said to be regular (weakly regular), if the operator
F'(Z) is surjective (if F'(Z)X is a closed subspace of finite codimension).

Statement of the smooth-convex problem

Let X and Y be normed spaces, V' neighborhood of a point € X, U a set; and
let a functional fo: V — R and a mapping F' : V XU — Y be given. Consider
the problem

fo(x) = min;  F(z,u)=0. (P)

The constraint F(xz,u) = 0 is said to be smooth-conver at (z,u), if the
mapping ¢ — F(z,u) is strictly differentiable at the point Z, and subsets
F(z,U) CY are convex for all z € V. If the functional f in (P) is smooth and
the mapping F' is a smooth-convex, then (P) we call a smooth-convex problem.

If the constraint ' = 0 is absent, the problem (P) is called the problem
without constraints or an elementary smooth problem.

PROPOSITION 1 IfZ is a local extremum in the problem (P) without constraints
and fo is differentiable at T, then fi(Z) = 0.

This result (which trivially follows from definitions) is called Fermat theorem.

A pair (Z, ) is said to afford a strong local minimum in the problem (P), if
there exists € > 0 such that for any pair(z,u) € V x U satisfying the condition
F(z,u) =0 and ||z — Z||x < € the inequality fo(x) > fo(Z) holds.

2Sometimes we shall write in this case V € O(z, X)
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The function £((x,u),\) = \ofo(x) + (\, F(z,u)) is referred to as the La-
grange function of problem (P), and A = (A, \) € Ry x Y* is referred to as the
collection of Lagrange multipliers.

According to the Lagrange’s idea, if (Z,%) is a strong local minimum in (P),
then we have to consider two problems: £((z,%),\) — min and L£((Z,u),\) —
min, u € U. The first one is a smooth problem without constraints and according

to Fermat theorem at the point T of local minimum the equality

Lo((Z,0),A) =0 Xofo(Z) + (Fa(Z, 2)"A =0, (a)

holds. The equality (a) is called a stationarity condition.

The second problem is in fact a convex problem (\,y) — min, y = F(Z, u),
u € U. The condition of minimum at the point ¥ can be expressed analytically,
but we prefer to write the following tautological condition
min £((z,u), \) = L((Z,0), ) < min(\, F(Z,u)) = 0. (b)

u
We call it a minimum condition.
Now we formulate a necessary condition of minimum in the problem (P).

THE MAIN THEOREM (LAGRANGE PRINCIPLE FOR SMOOTH-CONVEX PROBLEM)
(see Toffe and Tikhomirov, 1979). Let X and Y be Banach spaces, the function
fo be differentiable at Z, F = 0 a smooth-convex constraint and the mapping
x — F(z,u) weakly regular at the point (Z,u). Then the necessary condition of
a strong local minimum in (P) at the point (Z,u) corresponds to the Lagrange
principle, i.e. there exists a nontrivial collection of Lagrange multipliers X\ =
(Ao, A) € Ry x Y™, for which the stationarity condition (a) and the minimum
condition (b) are satisfied.

2. Proof

Preliminaries from functional analysis. In the proof we will use the Banach
open mapping principle and separation theorems (see Ioffe and Tikhomirov,
1979). The set of all linear continuous operators from a normed space X to a
normed space Y is denoted £(X,Y).

LEMMA 1 (ON RIGHT INVERSE MAPPING) Let X and Y be Banach spaces and
A € L(X,Y) be a surjective operator. Then there exists an operator R: Y — X
(right inverse of A) and a constant v such that AR(y) = y and ||R(y)||x <
Yylly for ally €Y.

Proof of Lemma 1. Let Ux(0,1) = {z € X | ||z||x < 1} be an open unit ball.
According to Banach open mapping principle AUx (0, 1) contains a ball Uy (0, 6).
Thus, for each element y € Uy (0,0) there exists an element z(y) € Ux(0,1),

such that Az(y) = y. Hence, the mapping R(y) = %x(w‘;@l"y) satisfies the

conditions of the lemma. n
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LEMMA 2 (ON NONTRIVIALITY OF THE ANNIHILATOR) Let X be a normed space
and L be its closed proper subspace. Then the annihilator L+ of L has a nonzero
element.

This lemma trivially follows from the separation theorem.

LEMMA 3 (ON CLOSEDNESS OF THE IMAGE) Let X and Y be Banach spaces,
M e L(X,R"), A € LIX,Y), AX =Y Nz = (Mz,Az). Then ImN is closed
mR" xY.

Proof of Lemma 3. Let {x,}nen be a sequence such that Mx,, — &, Az, — 7.
Denote z], = R(Az, — 1), where R is the right-inverse mapping for A. Then
Izl llx < vlAzn —n)ly — 0. We see that A(z, — z),) = n and at the same time
&= lim M(x, — ). Thus, & belongs to the affine manifold A = {Mx | Az =

n—oo

n} € R™, which is a closed set. Thus, there exists T such that Mz = &, i.e.
(&,m) = (MT,AT). -

LEMMA 4 (ON ANNIHILATOR OF A KERNEL OF A REGULAR OPERATOR)
The annihilator of a linear continuous surjective operator from one Banach
space to another coincides with the image of the conjugate operator.

Proof of Lemma 4. The inclusion ImA* C (KerA)* follows from definition. Let
A € L(X,Y) and z* € (Ker A)*. Consider the operator Mz = ((z*,2), Az) €
L(X,RxY). It follows from Lemma 3 that M X is a closed subset in R x Y. Tt
is the proper subspace (because (1,0) ¢ M X). From Lemma 2 there exists an
element (Ag, A) € R x Y*\ (0,0) such that \g(z*,z) + (A, Az) =0 Vz € X. The
operator A is a surjective operator, thus Ag # 0, so we obtain: z* = —A*)\—’\O. [

Modified Newton method and a theorem on right-inverse mapping.
Let X and Y be Banach spaces, V € O(zp,X), F : V = Y, A € L(X,Y),
AX =Y. The sequence

Tp = Tp—1+ Ry — F(zp-1)), n€N (A)

where R is a right-inverse mapping to A, is called a modified Newton’s sequence,
and application of it is called a modified Newton method.

THEOREM (ON RIGHT-INVERSE MAPPING). Let V' be a neighborhood of T in X
and F:'V — Y. If there exist a linear continuous surjective operator A from X
onto Y and a number 0, 0 < 6 < 1, such that for all pairs (z', x) € V

|F) - F(z) - Al — )]y < %nx' ~alx (B)

holds where v is a constant from the right-inverse map lemma, then there exists
an open neighborhood W of F(z) inY and a map ¢: W — V, a constant K > 0
such that F(p(y)) =y for ally € W and ||o(y) — Z||x < K|y — F(Z)||y for all
yeW.
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Proof. Let § > 0 be so small that the closed ball Bx (Z,0) = {z € X | ||a—Z||x <

0} (with center 7 and radius d) belongs to V and y € By (F(Z), o), do < @.
Let us prove that a) all elements {zy}ren of the modified Newton’s sequence
(xo = Z) belong to Bx(x,d) and b) that this sequence is fundamental. We
prove proposition a) by induction over n. The element z belongs to Bx (zo,d)
by definition. Let xp € Bx(x,d), 1 < k < n. The equality A(xp — z5—1) —
y+ Flxp—1) =01 < k < mn, (i), follows from (A) and, besides, the equality
AR(y) = y holds. Thus (“An” means here “analogously”) ||zp4+1 — Zn|lx @

(i),Lemmal (B)
Ry — F(xn))lly < My = Fzn) —y+ F(wn-1) + AMap — 2p-1)lly <

An 9 An An B
Ollzy, — zp-1llx < O*|lzp—1 — zp_2llx < ... < 0™||x1 —x0||x (i4). In the
subsequent calculations (i4i) means the triangle inequality, (iv) is the formula for

(i37)
the sum of geometrical progression: ||z, 11—o|x < [[Zpi1—2n|x+.. . F[lz1—
(i4) (A), (i) defso
zollx < (0"+0" "+ +Dm—zollx = /(A-0)lly—F(xo)lly < 6 (v).

We see that elements x,, are defined for all n.

i)
Let us prove b). We have for all n,m € N: ||Zpqm — Znllx < ||Tngm —
@ o . (0),(4)

anrmfl”X + ...+ ||In+1 - InHX S (9 + ...+ 9 )H-Il - xOHX S

n d0f50 )
155l = Flao)ly < 66" (vi).

Consequently, {x, }nen is a fundamental sequence. Denote 111% Tn = ©(y).

ne

From (4) and continuity of F' in Bx (g, d)) we obtain the equality F(o(y)) = y.
The inequality [|o(y) — zol[x < K|y — F(zo0)|ly with K = 125 follows from
(vi). ]

Proof of the main theorem. The notion of smoothness is related to analysis,
whereas that of convexity is related to geometry. The proof of the Lagrange
principle will consists of three parts, one of which is analytic, based on the
theorem on right-inverse mapping and the other two are geometric, based on
separation theorems.

Denote A := F,(Z,u), Y1 :=ImA, Z =Y/Y;. By condition, dimZ < co. Let
m:Y — Y/Y; be the canonical projection, C :=Y; + F(Z,U).

We will distinguish between two cases: degenerate, where either int 7(C') = ()
or intw(C) # 0, 0z ¢ int w(F(Z,U) and nondegenerate, where intw(C) # () and
0z € intw(F(E,L{).

Degenerate case: Here we use geometry. From the finite-dimensional sep-
aration theorem it follows that there exists a vector z* € Z*\ 0z~ such that
(z*,2) > 0 Vz e m(F(Z,U)) (i).

Denote by 7* the conjugate operator 7n* : Z* — Y* and A = n*z*. It
is evident that A # 0 (because 7 is a surjective operator) and then (\, Az +

F@U) 2 (m 2 Az + F(Z,U)) 2 (2%, 7(Az + F(3,U))) 2o (i).
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From this inequality we obtain that A*A = 0 and (A, F(Z,u))
i.e. the stationarity condition a) and minimum condition b) with A
true.

>0 Yu el),
— (0, \) hold

Nondegenerate case: 0z € int wC. Here we use differential calculus. From
the equality spanm C' = Z it follows that there exist m € N and m ele-
ments {2;}71,, z; € mF(Z,v;) such that the conic hull of {2;}7", is Z and
there exist m positive numbers {3}/, such that > ;" Biz; = 0 = 3¢ :
A+ Y BiF (F,0;) = 0 (idd).

Let v be an element of U such that F(Z,v) € Y7. Then, there exists =, € X
such that Az, + F(Z,v) =0 (iv).

Define the mapping ® : (V\Z) x R x R™ — Y by the formula: ®(z,«, ) =
(I—a—aed", B =27 B)F@+a,0) + aF (@ +2,v) +ac 300, BiF(T+
z,v;)+ Y50 BiF(Z4x,v;), where § = (b1, ..., Bm). It is obvious that if the co-
efficient at F(Z+x,7) is nonnegative, « > 0 and ag3;+3; > 0, 1 < j < m, then
this expression is a convex combination of vectors F(Z+z,u), F(Z+z,v), {F(T+
z,v;)}7,. From the condition of smoothness it follows that ® € SD'(0,0,0)
and @'(0,0,0)[(z,a,8)] = A(z — ag) + aF(Z,v) + 37°, B;F(Z,v;). Let us
be convinced, that ®(0,0,0)(X x R x R™) =Y. In fact, let y be in Y. From
{cone(n(F(Z,v;))}™, =Z, it follows that there exist numbers (81(y), ..., Om(y))
such that Y7, Bi(y)7(F(Z,v;) =7y, i.e. y—> o) Bi(y)(F(Z,v;)) € V1. Conse-
quently there exists an element z(y) such than Az(y)=y—>"1", 5;(y)(F(Z,v:)),
ie. ©(0,0,0)[z(y),0,8(y)] = y.

From the formula for ®'(0,0,0) and equality (iv) we obtain that ®'(0,0,0)
[x,+€€,1,0] = 0, hence starting from the point ®((¢t(z, +e£),t,0), and using the
modified Newton method, we shall find r;(¢), i = 1,2, 3, such that ®(Z + t(z, +
e€) + r1(t),t + ra(t), r3(t)) = 0 with the estimate ||ry(¢)]|x + [r2(¢)| + |r3(t)] <
K||®(t(xy +€£),t,0)||y = [|9(0,0,0) + t®'(0,0,0) [z, + €&, 1,0] + o(t)||y = o(t).
Thus (from the condition about the convexity), for some u(t) € U the equality
F(Z + t(xy + €£) + r(t),u(t)) = 0 holds true. We construct an admissible
element (' +t(z, +€£)+r(t), u(t)) in the problem (P). We supposed that (Z,u)
is a local minimum of (P), consequently (because ¢ is an arbitrary number)
(f6(Z),zy) > 0. Thus, implication Az, + F(Z,v) = 0= (f)(Z),z,) >0 (v) is
proved.

Let v in (iv) be @. Then fj(z) € (KerA)*. From Lemma 4 on a kernel of
a regular operator f{(z) + A*y; = 0 (vi) for some y; € Y;*. Let us take now
ve Y1 F(z,U). Then we will have

* =~ (iv) * 1d - (vi) N (v)
(i, F(@,0)) = —(yi,Azy) = (A1, z0) = (f5(2),20) = 0. (v)

Now we shall show that there exists an extension A of the functional yj to
the entire Y such that (A, F(Z,u)) > 0 or all w € U (which will mean that (b)
holds with Ao = 1). To this end we again use geometry.
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Consider the subspace Yy C Y1 = {y € Y1 | (y7,y) = 0}. It is a hyperplane
in the space Y;. The factor-space Zy = Y/Y) is equal to Y/Y; x Y1/Y;y. The
canonical projection 7wy : Y — Zy maps Y7 into one-dimensional space so that
the image of IT = {y € Y1 | (y7,y) < 0} is a ray (0,¢), ¢ < 0. From (v) it fol-
lows that this ray does not intersect mo(F(Z,U). Finite-dimensional separation
theorem allows for separating them by a functional n*. Then, the functional
y* = myn™ has the property

<y*7F(§7\a u)> = <7T377*aF(557u)> = <77*a7TOF(§7\a u)> >0, (UZ)

and, besides, if y € Keryf, then (y*,y) = (7in*,y) = (n*, moy) = 0. So By*|y, =
vy, B> 0. If we put By* := A we obtain the stationarity condition (see (v)) and
the condition of minimum (see (vi)). The Lagrange principle is proven. L]

3. Applications (the Lagrange principle for particular
classes of extremal problems)

3.1. Problems of mathematical programming.

Let X,Y be normed spaces, V € O(Z, X), fi: V=R, 0<i<m, F:V =Y.
The problem

fo(z) — min, fi(z) <0,1<i<m, F(z)=0 (P))

is called the problem of mathematical programming. The function L(z,\) =
L(z, 0,5 Ams A) = 20 g Aifi(e) + (A, F(x)), where A; € R, A € Y™, is called
the Lagrange function of the problem (Pp). The vector A = (Ao, ..., Am, A) is
called a collection of Lagrange multipliers.

PROPOSITION 2 The vector © = (U1, ...,Um) affords an absolute minimum of
the problem p(u) = > i Niu; — min, u; > 0 (which we call an elementary
problem of linear programming) iff the conditions of nonnegativity A\; > 0, 1 <
1 < m, and complementary slackness \;u; =0, 1 < i < m, hold.

The proof of this proposition is evident.

THEOREM 1 (THE LAGRANGE PRINCIPLE FOR PROBLEMS OF MATHEMATICAL
PROGRAMMING) If in the problem (Py) the following smoothness conditions:
fo € DY(Z), F € SDY (%), and regularity conditions: F'(z)X is a closed subspace
'Y are satisfied, then necessary conditions for a local minimum in the problem
(P1) at the point T coincide with the Lagrange principle, i.e., there exists a
collection of Lagrange multipliers X = (Mo, ..., Am,A) € R™TL x Y* such that
the stationarity condition

Lo(ZX) =0 & Y NfI@E) +F (@) A=0, (1)
1=0
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the nonnegativity condition A\; > 0, 0 < ¢ < m, and the condition of comple-
mentary slackness A\ fi(Z) = 0, 1 < i < m, are satisfied. In the regular case
(when F' ()X =Y ) of the problem without inequalities the multiplier Ao # 0.

Proof. If F'(Z)X # Y, then (by Lemma 2 on nontriviality of annihilator) there
exists an element A € Y* such that (\, F(?)z) = 0 Vo € X; i.e., L:(Z,\) =0
for X = (0,...,0,)).

IFF (@)X =Y, weput Y =Y xR™, F(z,u) = (f1(@)+u1, ..., fm(2)+um),
= (u1,...,Un), U =R7T and apply the main theorem (together with Lemma 3
on closedness of the image). The stationarity condition of the main theorem
together with Proposition 1 lead to the stationarity condition in Theorem 1.
Condition of minimum of the main theorem together with Proposition 2 lead to
nonnegativity of Lagrange multipliers and conditions of complementary slack-
ness. n

3.2. Problems of the Calculus of Variations

Let A = [to,tl], —0 < th <t <o, Li:r AXR"XR" - R, 0<i<m,
L:R"XR*" >R, 0<i<m, o: AxR"xR" - R", & ={¢ = (2(-),u(-)}
ct (A,Rn)XC(A,RT), fz(f) = fA Li(t,x(t),u(t)) dt—l—li(x(to),,T(tl)), 0<: <

The problem

m.

fo(f) - min7 fZ(g) < 07 1 < v < mlv fl(g) = 07 ml +1 < v < m,
iz(/)(taxau) (PQ)

is called the Lagrange problem of the Calculus of Variations. The problem
B(x(-)) = [ L(t,x(t), &(t)) dt + l(x(to), z(t1)) — min is called an elementary
problem of the Calculus of Variations or the Bolza problem.
A local extremum in the space C1(A, R™) for the Bolza problem, and a local
minimum for the Lagrange problem in the space = are called weak extrema.
The Lagrange function for the problem (P3) has the following form:

L(f,X) = L(f, Aoy -+ /\myp('))

=N + /A plt) - (i(t) — (¢, 2(t), u(t)) d

Z/A(L(faiv(f)au(t))ﬂLp(f)'(H'C(f)—w(faw(f)au(t)))dtﬂ(w(to)aw(tl)),

where L=3"" 0 \iLi, 1= 0 Ailiy A= (Ao, - -+, Am, () € R™Hx C1(A, R™).

PROPOSITION 3 Let Z(-) € CY(A,R"), let L = L(t,z,y): Rx R" x R - R be
a continuous function continuously differentiable in x and y in a neighborhood
of the graph {(t,z,y) | t € A,z = Z(t),y = Y(t)} and let the function | =
1(£0,61): R x R™ — R be continuously differentiable in a neighborhood of the
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point (Z(to),z(t1)). IfZ(-) is a weak minimum of the Bolza problem in the space
C'(A,R™), then L;(-) € C*(A) and the Euler equation —%L;(t) + Ly(t) =0,

and the transversality conditions Ly (t;) = (—1)”11;, i =0,1, are satisfied.

Proof of Proposition 3. It can be proved that if smoothness conditions of L and
[ are satisfied, then B € D*(Z(-)) in the space C*([to,t1],R™) and

~

H@mmwﬂ:/Yaﬁ»ﬂw+M@wdmﬁ+E«am+&fmm.@

to

By solving the Cauchy problem p = Ew(t),p(tl) = —ZA& (in other words, by
denoting p(t) = —(lg, + fttl L, (7)dr)), substituting to (i) and integrating by
parts, we obtain (from Fermat’s theorem)

| @att)=ple)) 5(0) e+ (e, ~plt0))-alto) =0 () € C*((to, ). R, (i)

to

~

By solving the Cauchy problem & = L, (t) — p(t), z(to) = le, — p(to) (in other
words, by denoting x(t) :=lg, — p(to) + ftz L;(7)dr — p(7)) and substituting to
(i), we obtain the required relations. L]

THEOREM 2 (THE LAGRANGE PRINCIPLE FOR THE LAGRANGE PROBLEM OF
THE CALCULUS OF VARIATIONS) Let in the Lagrange problem (Ps) the functions
(Z(-),u(-)) € CHA,R")xC(A,R"), L;: RxR*"XR" — R and p: RxR"xR" —
R™ be continuous and continuously differentiable in x and uw in a neighbor-
hood of the graph {(t,z,y) | t € A,z = Z(t),y = u(t)}, and let the functions
l; be continuously differentiable in a neighborhood of the point (Z(to),Z(t1)).
Then, the necessary conditions of a weak minimum in the problem (Pz) at the
point (Z(-),u(-)) coincide with the Lagrange principle, i.e., there exists a non-
trivial collection of Lagrange multipliers X = (o, ..., Am,p(-)) such that for

L(t,z,&,u) = L(t,x,u) + p(t) - (& — ©(t,x,u)) the Euler equations for x(-) and

d ~ N ~
—ELi(t) + Lm(t) =0, Lu(t) =0, (2&)

the transversality conditions:
Li(ts) = (-1, i=0,1, (2b)

together with nonnegativity conditions (\; > 0, 0 < i < m’) and conditions of

~

complementary slackness: (Aifi(§) =0, 1 <i<m’) hold.
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Proof of Theorem 2.

Preliminaries: global existence theorem for linear systems. Let D =
[to — a,to + a] X Bgn(x9,b), f: D — R", 2o € R". Consider the problem:

= f(t,z), z(to) = zo. (3)

We call it the Cauchy problem for the differential equation & = f(t,z).

THEOREM ON GLOBAL EXISTENCE OF SOLUTION OF THE CAUCHY PROBLEM
FOR LINEAR SYSTEMS. Let A = [tg,t1], let functions A: A — L(R™, R™) and
b: A — R™ be continuous in the segment A, let T € A and £ € R™. Then there
exists a unique solution on A of the problem:

&= Alt)z +b(t), x(r)=¢.

This result is a simple corollary of the theorem on right-inverse mapping.

Let X be Zx R™. Denote F(£) := i(-) — (-, x(-), u(-)), U = R, F(&u) =

(f(g)v fl (€)+’LL1, e fml (€)+um'7 f’m/+1(§)a e fm (5)) Let us Verify conditions
of the main theorem. Conditions of smooth-convexity are fulfilled trivially, the

condition of weak regularity follows from the global existence theorem for linear
systems and Lemma 3 on closedness of the image. Differentiating in z(-) leads
to the identity:

/A La(t) -t dt + (A () — Po()z())) =0 Va(). (i)

Theorem on existence of solution of linear systems allows us to solve the
problems: i() — &o(-)z(-) = y(-), z(to) = o, (ii), and —p(-) = p()a(") —
L.()), p(ty) = —fél (#41). Thus, the Euler equation and the second transver-
sality conditions are satisfied. Substituting in (i) the expression (iii) for Ly,
integrating by parts and using (i), we obtain the equality [, p(t) - y(t)dt =
(A y(-)). (iv). Differentiation in u(-) leads to the identity: [ Ly (t) - u(t) dt +
A =2u()u())) = 0 Vu(:) (v).

Using (iv) we obtain the Euler equation for u(-) and the first transversality
condition. (]

3.3. Convex and Lyapunov problems

The set of all convex functions in a vector space Z will be denoted by Co” (Z).

Let A = [to,t1], —00 <tg <t;1 <oo, UCR", Li: AxU - R, 0<i<m,
Z be a vector space, ¢; € Co’ (Z), 0 <i < m, A be a convex subset of Z. The
problem

©o(z) — min, / Li(t,u(t))dt + vi(2) <0, 1 <i<m, z €A, (Ps3)
A
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where u(-) is a measurable vector-function, is called a problem of convex pro-
gramming.
The problem of the Calculus of Variations of the form

Towl) = [ Lot ut) di = i,
Ji(u(+) = /ALi(t,u(t))dt <0, 1<i<m/, (P3)
Ti(u(-)) :/ Lot u(t)) dt = 0, m/ +1<i<m, u(t) €U,

A

is called the Lyapunov problem
The problem 7 (u(-)) = [, L( ))dt — min, u(t) € U is called an ele-
mentary Lyapunov’s pmblem or an elementary problem of Optimal Control.

The Lagrange function for the problem (P;) has the following form:

m

L((z,u(-),\) = Z(Aicpi(z) + )\i/Li(t,u(t))dt).

=0 A

PROPOSITION 4 A function u(-) is a solution of an elementary problem of op-
timal control iff f(t,u(t)) = mingey f(t,u) for a.a. t of u(-). We call it the
minimum condition.

The proof of this proposition is evident.

THEOREM 3 (THE LAGRANGE PRINCIPLE FOR PROBLEMS OF CONVEX PRO-
GRAMMING) Let in the problem (Ps) L;: A x U be continuous functions and
w;: Z — R be convex functions. Then, the necessary conditions for an abso-
lute minimum in the problem (Ps3) at the point (Z,u(-)) coincide with the La-
grange principle, i.e., there exists a nontrivial collection of Lagrange multipliers
A0y - - -y Am Such that

i Xipi(z) > Z Aipi(Z) Vz € A. (3a)
i=0

If t is a point of continuity of u(-), then

i i(t,u) > i , VueU. (3b)
i=0 i=0

If the Lagrange multiplier Ao # 0, then the absolute minimum in the problem
(Ps) attains.
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Proof of Theorem 3.

Preliminaries: phenomenon of convexity of finite-dimensional integral
mappings.

LYAPUNOV THEOREM. Let A be a segment in R, and let p(-) = (p1(), ..., 0n("))
be an integrable vector-function. Then the set M = {x € R" |z = [p(t)dt, A€
A

A}, where A is the o-algebra of all Lebesgue measurable sets, is a convex compact
set in R™ (Alekseev, Tikhomirov and Fomin, 1987).

The problem (P;) can be reduced to the problem (P) by denoting X :=

R, U := Ax AxRT (where A is the set of measurable functions such that ¢ —

L (t u( ) € Ll(A)) u=(u(-),z,a) € AXxAXRY, fo(x) =z, po(r.u) = ap -,

= [\ L ))dt + @i(z )+ ai, 1 < i < m. Conditions of smoothness

and weak regularlty are satisfied trivially, the convexity condition follows from

Lyapunov’s theorem. Together with Proposition 4 this implies the theorem. m

4. Problems of Optimal Control

Let A = [to,t1], —co <top <t;1 <oo, UCR", L;: AXR"xU - R, 1 <i<m,

i:R"XR" >R, 0<i<m, p: AXR" xU — R", By = {{ = (2(-),u(-)} =

PCY(A,R™) x PC(A, RT) (piecewise continuously differentiable and piecewise

continuous functions), = [\ Li yu(t)) dt+;(z(to), z(t1)), 0 < i <m.
The problem

fO(é—) i min7 fz(é—) S 07 1 S 1 S mI7 fz(é—) = 07 ml+ 1 S v S m,
=t z,u), uel (Py)

is called the problem of Optimal Control. We call the problem
/ ft,z(t),u(t)) dt — min,

i = ot z,u), z(ty) = z0 , (2(te) = xo, z(t1) = 1), u € U, (P,)

the problem of Optimal Control in Pontryagin’s form with a free boundary con-
dition (with fized boundary conditions).
The Lagrange function of the problem (Py) has the following form:

‘C(gv 5‘) = ‘C(gv /\07 ey /\map('))
=) + /A p(t) - (@) — plt, 2(2), u(t)) dt
- /A (E (20, u(t)) + p(t) - (E(8) — (b, 2(t), u(t)) de + 1(z(to), 2(t1),

where L =Y NiLi, L= 0 Al
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A pair £ = (Z(+),u(-)) is said to be an optimal process or to afford a strong
local minimum in problem (Py), if there exists a € > 0 such that for any ad-

—~

missible pair(x,u) such that ||z — Z||¢arn) < € the inequality fo(&) > fo(&)
holds.

THEOREM 4 (THE LAGRANGE PRINCIPLE FOR PROBLEMS OF OPTIMAL CON-
TROL) Let in the problem (Py) of Optimal Control the functions (Z(-),u(-)) €
PCY(A,R™) x PC(A,R"), Li: R x R" x R" — R and ¢: R x R" x R" — R"
be continuous and continuously differentiable in x in a neighborhood of the
graph {(t,z,y) | t € A,z = Z(t),y = u(t)}, and let the functions l; be con-
tinuously differentiable in a neighborhood of the point (Z(to),Z(t1)). Then,
necessary conditions of a strong local minimum in the problem (Py) at the
point (Z(-),u()) coincide with the Lagrange principle, i.e., there exists a non-
trivial collection of Lagrange multipliers X = (o, ..., Am,p(-)) such that for
Ltz @,u) = L(t,x,u) + p(t) - (& — (t,z,u)) the Euler equations for x(-),
minimum condition for u(-):

d ~ ~
~ghO+ L0 =0, (da)
min L(t, 2(t), 2(),u) = L(?) (4a’)

for all t of continuity u(-), the transversality conditions:
Li(t;) = (1), i=0,1, (4b)

together with nonnegativity conditions (A; > 0, 0 < i < m’) and conditions of

~

complementary slackness: (Aifi(€) =0, 1 <i<m’) hold.

THEOREM 4’ (THE LAGRANGE PRINCIPLE FOR THE PROBLEM OF OPTIMAL
CONTROL IN PONTRYAGIN’S FORM). Let the functions f and ¢ in the problem
(Py) be continuous together with their derivatives f, and p,. Then, the neces-
sary conditions for strong minimum in the problem (P)) at the point (Z(-),u(-))
coincide with the Lagrange principle, i.e., for the Lagrange function

ty

£= [ Lltale) 0. ut) dr
to

where L = X\of + p(t)(& — @), the Euler equation in x:

—%Zi(t) +L,(t) =0 < —p=p@.(t) — rofalt) (4a)

and b) the minimum condition in u:

~

min L(t, 7(t), u) = L(t) (4'b)

u
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are satisfied. In the problem with free end the transversality condition p(t1) =0
is satisfied.

Outline of the proof of Theorem 4°. We restrict ourself to the problems of
Optimal Control in Pontryagin’s form with free end (with fixed end):

Folz() = /Af(t,x(t))dtamin, 2(to) = w0 (a(ts) = w1, i =1,2),

T =p(t,z,u), ult) € U. (P))

To prove Theorem 4 one has to overcome only some technicalities.

Preliminaries: the phenomenon of “almost convexity”of infinite-di-
mensional integral mappings. Consider the mapping F(x(-),u(-)) = 2o +
ftz o(s,2(s),u(s))ds. Let U(z(-)) € PC(A,R") denote the set of functions
F(z(-), u(-)), for which u(t) € U at continuity points of u(-). The image
u(-) — F(z(-),u(:)) is not convex: if we take u;(-) € U(z(-)), 7 = 1,2, and
a number 8 € [0,1], then there need not exist a function ug(-), such that
(1= B)F(z(-),u1(:)) + BF(x(-),u2(-) = F(x(-),us(:)). But it is possible to
construct a function ugs(-), which almost satisfies this equality. This means
that for any £ > 0 there exists a number ¢ > 0 and a function ugs(-) such that
11 =B)F(@(), ur () + BF(x(-), u2()) = F(2(), ups()llcarm <e

To do this, divide the segment A into segments A; of length §, and then di-
vide each segment A; into two parts, of length (1 — 3)|A;| and 3|A;|. Then we
put ugs(t) = ui(t) on the first parts of the segments and ugs(t) = u2(t) on the
second parts. Denote this function by Mg s(ui(-),u2()). It is easy to prove
that lim F(z(-), Mps(ur(),u2()) = (1 = HF (), ur()) + BF(z(), u2()),
Y B2 (), Mg o(ur (), u2 (1)) = F(2(), ur ().

Such construction is called a “mix of control functions”.

Now, we shall apply the method of proof of the main theorem to our prob-
lem (Pj) with free end. Here X =Y = C(A,R"™), U is the set of piecewise-
continuous functions u(-): A — U, F(z(:),u()) = zo + ftto (s, x(s),u(s))ds,
A = Fy(z(-),u(-)). By the theorem on existence of solution, A is a surjective
operator from X onto Y.

Let v(-) be an admissible control function and let z,.y(-) € X be a func-
tion such that Az,.)+F(Z(-),v(-)) =0. Define the mapping ® by the formula
D(x(+),0)=1-0)F(Z(-)+x(-),u)+0F (Z(-)+z(-),v(:)). Applying the theorem on
the right-inverse mapping we obtain the equality (1—60—p(0))F(Z(-)+2y) () +
7(0), U(-))HO0+p(0)) F(Z(- )+, (1) +7(0),v(-)) =0, where r(0) and p(f) are o(0).
Consider a mix Mg ,g),s(u(-),v(-)) with ¢ so small that the modified Newton’s
sequence starting from the point F(Z(-)4ay.)(-)4+r(0), Maip9),s(u(-), v(-))) con-
verges to the solution of the equation F(Z(- )40z, (-)+0(0), Mgy, (u(-), v(-)))
=0. Then one can finish the proof as it was done in the main theorem.
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In the case of the problem with fixed ends it is necessary also to realize the
plan of proof of the main theorem.

At first, it is necessary to consider the degenerate case and to reject it.
Then we have to prove the equality ®(0(x, .y +€£(-)) +71(0),0 +12(0),73(0)) =
0, 7:(0)) = o(0), i = 1,2, 3. This means that (1—9—p(9)—2§\;1 (Bit+ed e, B+
pi (ON)F @()+02y() (), () +(0+p(0) F (@ () +0z0() ()+7(0), v(-)+(e 2711 8+
> =1 B+ pi () F(() + 0oy () +15(0),v;(-)) = 0. )

And then we must mix the control functions proportionally to (84 p(6),e6+
B+ p(0)), i.e., construct the following mix:

M(0+P(9),EB+B+E(0),6) (ﬂ(), UO(')? Ul(')v e 7vm('))'

Then, we have to choose d so small that the modified Newton’s sequence starting
from the point (T + 0.,y (-) + 7(0), M(g4 p(0),c5+5+500),5) (@), vo (), v1 (), - - -,
vm(+)) and varying x(-) and 3 converges to the solution of the equation F(Z(-)+
02y (-) + 0(8), Mgy p0y,5(u(-),v(-))) = 0. Then one can finish the proof as it

was done in the main theorem.

5. Comments

The notion of differentiability appears for the first time in the papers by Newton
(in the 1660s) (Newton, 1736) and Leibniz (1684). The modern definition was
introduced by Cauchy (1823). The concept of differentiability of functions of
many variables is due to Weierstrass (1880s, see Weierstrass, 1903). Derivatives
for functions of infinitely many variables were defined by Frechet (1912). The
idea of strong differentiability is due to Leach (1961).

Newton’s method (and inverse function theorem for one variable) goes back
to Newton (dated 1676), the implicit function theorem goes back to Dini.
Infinite-dimensional versions of the inverse map theorem go back to Lyusternik
(1934), Graves (1950) and Robinsson (1976), among others.

A necessary condition of extremum for smooth problems without constraints
goes back to Fermat (1638) (see Fermat, 1891). Actually, the theory of extremal
problems was born with the letter of Fermat. Stationary conditions in terms
of derivatives appear in the first papers on calculus (see Newton, 1736, and
Leibniz, 1684). In the infinite-dimensional case, a stationarity condition goes
back to Frechet (1912).

A classical calculus of variations was born in 1696 when John Bernoulli
(1696) posed the brachistochrone problem. The Euler equation for the sim-
plest problem of calculus of variations was obtained by Euler (1744). He also
deduced a necessary condition for isoperimetric problem. Euler’s equation for
multidimensional problems was derived by Gauss and Ostrogradsky.

Lagrange started the study of problems with constraints. The Lagrange
multipliers rule was formulated in the book Lagrange (1797). He used it as
a heuristic method from the beginning of the 1770s. Rigorous (in the sense
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of the end of the 19th century) proofs of the Lagrange multipliers rule were
given for the finite-dimensional case after proving the inverse map and implicit
function theorems, when finite-dimensional linear algebra was created. For the
first time a rigorous proof of the Lagrange multipliers method was given by
Mayer. (Hilbert also proposed a rigorous proof of this result.) Before that,
many particular cases have been treated. Necessary conditions for isoperimetric
problems were given by Weierstrass, necessary conditions for the derivatives
of higher order were given by Poisson; moreover, necessary conditions for the
problems with non-stationarity ends have been found, and so on. In the 19th
century this was the main subject of all textbooks on the calculus of variation.

Convex problems appeared at the end of the 1930s: Kantorovich (1939),
Karush (1939), John (1948), Kuhn and Tucker (1951) and others. The phe-
nomenon of the convexity of integral maps was discovered by Lyapunov (1940).

Optimal control appeared in 1687 (before the classical calculus of variations)
when Newton, in his “Principia” posed and solved the problem of minimal
resistance of a solid of revolution in the discrete space, but nobody noted that.

The optimal control theory was elaborated in 1950s by Pontryagin and his
collaborators. The results of the first stage of the theory were summarized
in Pontryagin (1959). This paper stimulated a great growth of the extremum
theory.

The paper by Dubovitsky and Milyutin (1965) made an impact on the ex-
tremum theory. It may be regarded as the first paper on extremum problems
theory. The developments of this theory for ten years were set out in the book
by IToffe and Tikhomirov (1979). The results of Milyutin’s work on Pontryagin’s
maximum principle were partially exposed in the book by Milyutin, Dmitruk
and Osmolovsky (2004).

Almost all results on necessary extremum conditions contained in the papers
referred to correspond to the Lagrange principle given in this paper. The ma-
jority of the results on necessary conditions for extremum, in particular, all the
results on necessary conditions contained in Ioffe and Tikhomirov (1979), Alek-
seev, Tikhomirov and Fomin (1987), Magaril-Ilyaev and Tikhomirov (2003),
Brinkhuis and Tikhomirov (2005) and Arutyunov, Magaril-Tlyaev and Tikhomi-
rov (2006), follow directly from the main theorem.
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