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Abstract: We study the structure of approximate solutions of
autonomous variational problems on large finite intervals. In our
previous research, which was summarized in Zaslavski (2006b), we
showed that approximate solutions are determined mainly by the
integrand, and are essentially independent of the choice of time in-
terval and data, except in regions close to the endpoints of the time
interval. In the present paper we establish convergence of approxi-
mate solutions in regions close to the endpoints of the time intervals.
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1. Introduction

The study of variational and optimal control problems defined on infinite (large)
intervals has recently been a rapidly growing area of research. See, for exam-
ple, Baumeister, Leitao and Silva (2007), Blot and Cartigny (2000), Blot and
Cretezz (2004), Blot and Michel (2003), Glizer (2007), Lykina, Pickenhain and
Wagner (2008), Mordukhovich (1990), Mordukhovich and Shvartsman (2004),
Pickenhain and Lukina (2006), Zaslavski (1996, 1998, 1999, 2006a,b, 2008) and
the references mentioned therein. These problems arise in engineering (see An-
derson and Moore, 1971; Leizarowitz, 1986), in models of economic growth (see
Makarov and Rubinov, 1977; Samuelson, 1965; Zaslavski, 2006b), in infinite
discrete models of solid-state physics related to dislocations in one-dimensional
crystals (see Aubry and Le Daeron, 1983) and in the theory of thermodynamical
equilibrium for materials (see Coleman, Marcus and Mizel, 1992; Leizarowitz
and Mizel, 1989; Marcus and Zaslavski, 1999, 2002).
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In this paper we analyze the structure of extremals of the variational prob-
lems

∫ T

0

f(z(t), z′(t))dt → min, z(0) = x, z(T ) = y, (P )

z : [0, T ] → Rn is an absolutely continuous (a. c.) function,

where T > 0 is sufficiently large, x, y ∈ Rn and f : Rn × Rn → R1 is an in-
tegrand. In our research, which was summarized in Zaslavski (2006b) we were
interested in turnpike properties of the extremals that are independent of the
length of the interval, for all sufficiently large intervals. To have this property
means, roughly speaking, that the approximate solutions of the variational prob-
lems are determined mainly by the integrand, and are essentially independent
of the choice of interval and endpoint conditions, except in regions close to the
endpoints of the time interval. In the present paper we establish convergence of
approximate solutions in regions close to the endpoints of the time intervals.

It should be mentioned that turnpike properties are well known in mathe-
matical economics (see Makarov and Rubinov, 1977; Samuelson, 1965; Zaslavski,
2006b). The term was first coined by Samuelson in 1948 (see Samuelson, 1965)
when he showed that an efficient expanding economy would spend most of the
time in the vicinity of a balanced equilibrium path (also called a von Neumann
path). This property was further investigated for optimal trajectories of models
of economic dynamics (see Makarov and Rubinov, 1977). Many turnpike results
can be found in Zaslavski (2006b).

Denote by | · | the Euclidean norm in Rn. Let a be a positive constant and
let ψ : [0,∞) → [0,∞) be an increasing function such that ψ(t) → ∞ as t→ ∞.
Denote by A the set of all continuous functions f : Rn × Rn → R1, which
satisfy the following assumptions:

A(i) for each x ∈ Rn the function f(x, ·) : Rn → R1 is convex;
A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for each (x, u) ∈ Rn ×Rn;
A(iii) for each M, ǫ > 0 there exist Γ, δ > 0 such that

|f(x1, u1) − f(x2, u2)| ≤ ǫmax{f(x1, u1), f(x2, u2)}

for each u1, u2, x1, x2 ∈ Rn, which satisfy

|xi| ≤M, i = 1, 2, |ui| ≥ Γ, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ.

It is easy to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to A
if f satisfies assumptions A(i), A(ii) and if there exists an increasing function
ψ0 : [0,∞) → [0,∞) such that

max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)

for each x, u ∈ Rn.
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For the set A we consider the uniformity, which is determined by the follow-
ing base:

E(N, ǫ, λ) = {(f, g) ∈ A×A : |f(x, u) − g(x, u)| ≤ ǫ

for all u, x ∈ Rn satisfying |x|, |u| ≤ N}

∩{(f, g) ∈ A×A : (|f(x, u)| + 1)(|g(x, u)| + 1)−1 ∈ [λ−1, λ]

for all x, u ∈ Rn satisfying |x| ≤ N},

where N, ǫ > 0 and λ > 1. It was shown in Zaslavski (1996) that the uniform
space A is metrizable and complete.

We consider functionals of the form

If (T1, T2, x) =

∫ T2

T1

f(x(t), x′(t))dt (1)

where f ∈ A, −∞ < T1 < T2 < ∞ and x : [T1, T2] → Rn is an absolutely
continuous (a.c.) function.

For f ∈ A, y, z ∈ Rn and real numbers T1, T2 satisfying T1 < T2 we set

Uf(T1, T2, y, z) = inf{If(T1, T2, x) : x : [T1, T2] → Rn (2)

is an a.c. function satisfying x(T1) = y, x(T2) = z}.

It is easy to see that −∞ < Uf (T1, T2, y, z) <∞ for each f ∈ A, each y, z ∈ Rn

and all numbers T1, T2 satisfying −∞ < T1 < T2 <∞.
Let f ∈ A. For any a.c. function x : [0,∞) → Rn we set

J(x) = lim inf
T→∞

T−1If (0, T, x). (3)

Of special interest is the minimal long-run average cost growth rate

µ(f) = inf{J(x) : x : [0,∞) → Rn is an a.c. function}. (4)

Clearly −∞ < µ(f) < ∞. By a simple modification of the proof of Proposi-
tion 4.4 in Leizarowitz and Mizel (1989) (see Zaslavski, 1996, Theorems 8.1, 8.2)
we obtained the representation formula

Uf(0, T, x, y) = Tµ(f) + πf (x) − πf (y) + θf
T (x, y), (5)

x, y ∈ Rn, T ∈ (0,∞),

where πf : Rn → R1 is a continuous function and (T, x, y) → θf
T (x, y) ∈ R1 is a

continuous nonnegative function defined for T > 0, x, y ∈ Rn,

πf (x) = inf{lim inf
T→∞

[If (0, T, v) − µ(f)T ] : v : [0,∞) → Rn (6)

is an a. c. function satisfying v(0) = x}, x ∈ Rn

and for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θf
T (x, y) = 0.

In the sequel we use the following helpful result.
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Proposition 1 (Zaslavski, 1999, Proposition 2.1). Let f ∈ A. Then πf (x) →
∞ as |x| → ∞.

An a. c. function x : [0,∞) → Rn is called (f)-good (see Zaslavski, 2006b)
if the function T → If (0, T, x) − µ(f)T , T ∈ (0,∞) is bounded. In Zaslavski
(1996) we showed that for each f ∈ A and each z ∈ Rn there exists an (f)-good
function v : [0,∞) → Rn satisfying v(0) = z.

Propositions 1.1 and 3.2 of Zaslavski (1996) imply the following result:

Proposition 2 For any a.c. function x : [0,∞) → Rn either If (0, T, x) −
Tµ(f) → ∞ as T → ∞ or sup{|If(0, T, x) − Tµ(f)| : T ∈ (0,∞)} < ∞.
Moreover, any (f)-good function x : [0,∞) → Rn is bounded.

We denote d(x,B) = inf{|x − y| : y ∈ B} for x ∈ Rn and B ⊂ Rn and
by dist(A,B) the distance in the Hausdorff metric for two sets A ⊂ Rn and
B ⊂ Rn. For every bounded a. c. function x : [0,∞) → Rn define

Ω(x) = {y ∈ Rn : there exists a sequence {ti}
∞

i=1
⊂ (0,∞) (7)

for which ti → ∞, x(ti) → y as i→ ∞}.

We say that an integrand f ∈ A has an asymptotic turnpike property, or
briefly (ATP), if Ω(v2) = Ω(v1) for all (f)-good functions vi : [0,∞) → Rn,
i = 1, 2 (see Marcus and Zaslavski, 1999; Zaslavski, 1996).

In Zaslavski (1996, Theorem 2.1) we established the following result:

Theorem 1 There exists a set F ⊂ A, which is a countable intersection of
open everywhere dense subsets of A such that each integrand f ∈ F possesses
(ATP).

By Proposition 2 for each integrand f ∈ A, which possesses (ATP) there
exists a compact set H(f) ⊂ Rn such that Ω(v) = H(f) for each (f)-good
function v : [0,∞) → Rn. In the sequel we always use this notation.

Let f ∈ A. We say that the integrand f has the strong turnpike property, or
briefly (STP), with a turnpike D ⊂ Rn, where D is a nonempty compact subset
of Rn, if for each ǫ,K > 0 there exist real numbers δ > 0 and l0 > l > 0 such
that the following assertion holds:

For each T ≥ 2l0 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf(0, T, v(0), v(T )) + δ

the inequality

dist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ǫ (8)

holds for each τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (8) holds for all
τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (8) holds for each τ ∈ [l0, T − l].
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Note that (STP) describes the structure of approximate solutions of problem
(P) except in regions close to the endpoints of the time interval [0, T ].

Denote by M the set of all functions f ∈ C1(R2n) which satisfy the following
assumptions:

∂f/∂ui ∈ C1(R2n) for i = 1, . . . , n;

the matrix (∂2f/∂ui∂uj)(x, u), i, j = 1, . . . , n is positive definite for all (x, u) ∈
R2n;

f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for all (x, u) ∈ Rn ×Rn;

there exist a number c0 > 1 and monotone increasing functions φi : [0,∞) →
[0,∞), i = 0, 1, 2 such that

φ0(t)/t→ ∞ as t→ ∞,

f(x, u) ≥ φ0(c0|u|) − φ1(|x|), x, u ∈ Rn,

max{|∂f/∂xi(x, u)|, |∂f/∂ui(x, u)|} ≤ φ2(|x|)(1 + φ0(|u|)),

x, u ∈ Rn, i = 1, . . . , n.

It is easy to see that M ⊂ A. In Zaslavski (1999, Theorem 1.2) we estab-
lished the following result:

Theorem 2 Assume that an integrand f ∈ M has (ATP). Then f possesses
(STP) with the set H(f) being the turnpike.

The following fact was established in Zaslavski (2008):

Theorem 3 Assume that f ∈ M possesses (STP). Then f possesses (ATP).

Let f ∈ A. For each pair of real numbers T2 > T1 and each a. c. function
v : [T1, T2] → Rn set

Γf (T1, T2, v) = If (T1, T2, v) − (T2 − T1)µ(f) − πf (v(T1)) + πf (v(T2)). (9)

By (9), (2) and (5),

Γf (T1, T2, v) ≥ 0

for each T1 ∈ R1, each T2 > T1 and each a. c. function v : [T1, T2] → Rn. (10)

The following useful result was established in Zaslavski (1996, Theorem 8.3).

Proposition 3 For every x ∈ Rn there exists an (f)-good function v : [0,∞) →
Rn such that v(0) = x and Γf (T1, T2, v) = 0 for each T1 ≥ 0 and each T2 > T1.

An (f)-good function v : [0,∞) → Rn is called (f)-perfect if Γf (T1, T2, v)=0
for all T1 ≥ 0 and T2 > T1 (see Marcus and Zaslavski, 2002; Zaslavski, 2006a).

In view of Theorem 1, most integrands of the space A possess (ATP). By
Theorem 2, if an integrand f ∈ M possesses (ATP), then f also possesses (STP)
which describes the structure of approximate solutions of problem (P) in the
region [l0, T − l0] (see the definition of (STP)). In the present paper we study
the structure of approximate solutions in the regions [0, l0] and [T − l0, T ].
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2. Main results

Assume that f ∈ M possesses (ATP) with the turnpike H(f). It means that
Ω(v) = H(f) for any (f)-good v : [0,∞) → Rn. Set

f̄(x, y) = f(x,−y), (x, y) ∈ R2n. (11)

Clearly, f̄ ∈ M. Let v : [0, T ] → Rn be an a.c. function. Put

v̄(t) = v(T − t), t ∈ [0, T ]. (12)

It is easy to see that

∫ T

0

f̄(v̄(t), v̄′(t))dt =

∫ T

0

f(v(T − t), v′(T − t))dt =

∫ T

0

f(v(t), v′(t))dt. (13)

Theorem 4 f̄ possesses (ATP) and for each (f̄)-good function v : [0,∞) → Rn,
Ω(v) = H(f).

Proof. By Theorem 2, f possesses (STP) with the turnpike H(f). In view of
(11)-(13) it is not difficult to see that f̄ possesses (STP) with the turnpike H(f).
Together with Theorem 3 this implies that f̄ possesses (ATP) and Ω(v) = H(f)
for each (f̄)-good function v : [0,∞) → Rn.

In this paper we study problem (P) and the following two problems

If (0, T, z) → min, z : [0, T ] → Rn is an a. c. function such that z(0) = x, (P1)

If (0, T, z) → min, z : [0, T ] → Rn is an a. c. function, (P2)

where T > 0 is sufficiently large and x ∈ Rn.
For g ∈ A, x ∈ Rn and T > 0 put

Ug(T, x) = inf{Ig(0, T, w) : w : [0, T ] → Rn (14)

is an a.c. function satisfying w(0) = x},

Ug(T ) = inf{Ig(0, T, w) : w : [0, T ] → Rn is an a.c. function}. (15)

The following theorem establishes the convergence of approximate solutions
of problem (P) in the regions which contain zero. It will be proved in Section 4.

Theorem 5 Let x, y ∈ Rn, a sequence of positive numbers Ti → ∞ as i → ∞
and let vi : [0, Ti] → Rn, i = 1, 2, . . . be an a. c. function such that

vi(0) = x, vi(Ti) = y, If (0, Ti, vi) − Uf (0, Ti, x, y) → 0 as i→ ∞. (16)

Then there exist an (f)-perfect function w : [0,∞) → Rn and a strictly increas-
ing sequence of natural numbers {ik}

∞

k=1
such that w(0) = x and that for each

T > 0,

vik
→ w as k → ∞ uniformly on [0, T ].
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Theorem 5 and (11)-(13) imply the following result, which establishes the
convergence of approximate solutions of problem (P) in the regions containing
the right end points of the time intervals [0, T ].

Theorem 6 Let x, y ∈ Rn, a sequence of positive numbers Ti → ∞ as i → ∞
and let vi : [0, Ti] → Rn, i = 1, 2, . . . be an a. c. function such that

vi(0) = x, vi(Ti) = y, If (0, Ti, vi) − Uf (0, Ti, x, y) → 0 as i→ ∞.

Then there exist an (f̄)-perfect function w̄ : [0,∞) → Rn and a strictly increas-
ing sequence of natural numbers {ik}

∞

k=1
such that w̄(0) = y and that for each

T > 0,

vik
(Tik

− t) → w̄(t) as k → ∞ uniformly on [0, T ].

The following result establishes the convergence of approximate solutions
of problem (P1) in the regions which contain the right end points of the time
intervals [0, T ]. It will be proved in Section 5.

Theorem 7 Let M > 0, xi ∈ Rn satisfy |xi| ≤ M for all i = 1, 2, . . . , a
sequence of positive numbers Ti → ∞ as i → ∞ and let vi : [0, Ti] → Rn,
i = 1, 2, . . . be an a. c. function such that

vi(0) = xi and If (0, Ti, vi) − Uf(T, xi) → 0 as i→ ∞. (17)

Then there exist an (f̄)-perfect function w̄ : [0,∞) → Rn and a strictly increas-
ing sequence of natural numbers {ik}

∞

k=1
such that for each T > 0,

vik
(Tik

− t) → w̄(t) as k → ∞ uniformly on [0, T ],

πf̄ (w̄(0)) = inf{πf̄ (z) : z ∈ Rn}.

The following theorem establishes the convergence of approximate solutions
of problem (P2) in the regions which contain zero. It will be proved in Section 6.

Theorem 8 Let a sequence of positive numbers Ti → ∞ as i → ∞ and let
vi : [0, Ti] → Rn, i = 1, 2, . . . be an a.c. function such that

If (0, Ti, vi) − Uf (Ti) → 0 as i→ ∞. (18)

Then there exist an (f)-perfect function w : [0,∞) → Rn and s strictly increas-
ing sequence of natural numbers {ik}

∞

k=1
such that for each T > 0,

vik
→ w as k → ∞ uniformly on [0, T ],

πf (w(0)) = inf{πf (z) : z ∈ Rn}.

Theorem 8 and (11)-(13) imply the following result, which establishes the
convergence of approximate solutions of problem (P2) in the regions containing
the right end points of the time intervals [0, T ].
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Theorem 9 Let a sequence of positive numbers Ti → ∞ as i→ ∞ and let vi :
[0, Ti] → Rn, i = 1, 2, . . . be an a.c. function such that If (0, Ti, vi) − Uf(Ti) →
0 as i → ∞. Then there exist an (f̄)-perfect function w̄ : [0,∞) → Rn and a
strictly increasing sequence of natural numbers {ik}

∞

k=1
such that for each T > 0,

vik
(Tik

− t) → w̄(t) as k → ∞ uniformly on [0, T ],

πf̄ (w̄(0)) = inf{πf̄ (z) : z ∈ Rn}.

The following two theorems describe the limiting behavior of the value-
functions Uf(0, T, x, y), Uf (T, x) and Uf (T ) as T → ∞. They will be proved
in Section 7.

Theorem 10 Let K > 0, ǫ ∈ (0, 1). Then there exists T0 > 0 such that for
each T ≥ T0 and each x, y ∈ Rn satisfying |x|, |y| ≤ K the following inequality
holds:

|Uf(0, T, x, y) − (πf (x) + πf̄ (y) + Tµ(f) − inf{πf (z) : z ∈ H(f)})| ≤ ǫ. (19)

Theorem 11 Let K > 0, ǫ > 0. Then there exists T0 > 0 such that the
following assertions hold:

(i) for each T ≥ T0 and each x ∈ Rn satisfying |x| ≤ K,

|Uf (T, x)−(πf (x) + inf{πf̄ (z) : z ∈ Rn} + Tµ(f)−inf{πf(z) : z ∈ H(f)})| ≤ ǫ;

(ii) for each T ≥ T0,

|Uf(T )−(inf{πf (z) : z ∈ Rn} + inf{πf̄ (z) : z ∈ Rn}

+Tµ(f)−inf{πf(z) : z ∈ H(f)})| ≤ ǫ.

3. Auxiliary results

In order to prove our main theorems we need the following auxiliary results.

Proposition 4 Let g ∈ M and M1,M2, c be positive numbers. Then there
exist a number S > 0 such that for each each T1 ∈ R1 and each T2 ∈ [T1 + c,∞)
the following properties hold:

(i) if x, y ∈ Rn satisfy |x|, |y| ≤M1 and if an a.c. function v : [T1, T2] → Rn

satisfies

v(T1) = x, v(T2) = y, Ig(T1, T2, v) ≤ Ug(T1, T2, x, y) +M2, (20)

then

|v(t)| ≤ S, t ∈ [T1, T2]; (21)
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(ii) if x ∈ Rn satisfies |x| ≤ M1 and if an a.c. function v : [T1, T2] → Rn

satisfies v(T1) = x, Ig(T1, T2, v) ≤ Ug(T2−T1, x)+M2, then the inequality (21)
is valid;

(iii) if an a.c. function v : [T1, T2] → Rn satisfies Ig(T1, T2, v) ≤ Ug(T2 −
T1) +M2, then the inequality (21) is valid.

The properties (i) and (ii) were established in Zaslavski (1998, Theorem 1.3).
The property (iii) is proved analogously to the properties (i) and (ii).

Proposition 5 (Zaslavski, 1998, Proposition 2.5). Assume that f ∈ A, M1 >
0, −∞ < T1 < T2 < ∞, xi : [T1, T2] → Rn, i = 1, 2, . . . is a sequence
of a.c. functions such that If (T1, T2, xi) ≤ M1, i = 1, 2, . . . . Then there ex-
ist a subsequence {xik

}∞k=1
and an a.c. function x : [T1, T2] → Rn such that

If (T1, T2, x) ≤ lim infi→∞ If (T1, T2, xi),

xik
→ x(t) as k → ∞ uniformly in [T1, T2] and

x′ik
→ x′ as k → ∞ weakly in L1(Rn; (T1, T2)).

Lemma 1 (Zaslavski, 2006a, Lemma 4.2). Let g ∈ M possess (ATP), ǫ ∈ (0, 1).
Then there exist numbers q, δ > 0 such that for each h1, h2 ∈ Rn satisfying
d(hi, H(g)) ≤ δ, i = 1, 2 and each T ≥ q there exists an a.c. function v :
[0, T ] → Rn, which satisfies v(0) = h1, v(T ) = h2, Γg(0, T, v) ≤ ǫ.

Proposition 6 (Zaslavski, 1998, Theorem 1.2). Let g ∈ A. Then there exists
a a number M > 0 such that for each (g)-good function x : [0,∞) → Rn,
lim supt→∞

|x(t)| < M.

Proposition 7 (Zaslavski, 1996, Proposition 2.5). Let f ∈ A, S0, S1 > 0 and
let x : [0,∞) → Rn be an a.c. function such that |x(t)| ≤ S0 for all t ∈ [0,∞)
and If (0, i, x) ≤ Uf (0, i, x(0), x(i)) + S1,i = 1, 2 . . . . Then x is an (f)-good
funtion.

Proposition 8 Let g ∈ M possess (ATP) and v : [0,∞) → Rn be an a.c.
function such that

sup{|v(t)| : t ∈ [0,∞)} <∞, (22)

Ig(0, T, v) = Ug(0, T, v(0), v(T )) for all T > 0. (23)

Then the function v is (g)-perfect.

Proof. By Proposition 3 there exists a (g)-perfect function u : [0,∞) → Rn such
that

u(0) = v(0). (24)

In view of (22), (23) and Proposition 7, v is (g)-good function.
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Assume that v is not (g)-perfect. Then there is T0 > 0 such that

∆0 := Γg(0, T0, v) > 0. (25)

By Lemma 1 there exist q, δ > 0 such that the following property holds:

(C1) for each h1, h2 ∈ Rn satisfying d(hi, H(g)) ≤ δ, i = 1, 2 and each
T ≥ q there exists an a.c. function ξ : [0, T ] → Rn, which satisfies ξ(0) = h1,
ξ(T ) = h2, Γg(0, T, ξ) ≤ ∆0/4.

Since the integrand g possesses (ATP), there exists

T1 > q + T0 (26)

such that for all t ≥ T1,

d(v(t), H(g)) ≤ δ, d(u(t), H(g)) ≤ δ. (27)

By (25), (9), (10) and (26),

Γg(0, T1, v) ≥ Γg(0, T0, v) = ∆0. (28)

By (C1) and (27), there exists an a. c. function ξ1 : [T1, T1 + q] → Rn such that

ξ1(T1) = u(T1), ξ1(T1 + q) = v(T1 + q), Γg(T1, T1 + q, ξ1) ≤ ∆0/4. (29)

Put

w(t) = u(t), t ∈ [0, T1], w(t) = ξ1(t), t ∈ (T1, T1 + q], (30)

w(t) = v(t), t ∈ (T1 + q,∞).

In view of (29), (30) and (24), w is a well-defined a. c. function. By (30) and
(29),

w(0) = u(0) = v(0), w(T1 + q) = ξ1(T1 + q) = v(T1 + q). (31)

Since u is (g)-perfect, it follows from (9), (31), (29), (30) and (30) that

Ig(0, T1 + q, v) − Ig(0, T1 + q, w) = Γg(0, T1 + q, v) − Γg(0, T1 + q, w)

= Γg(0, T1, v) + Γg(T1, T1 + q, v) − Γg(0, T1, w) − Γg(T1, T1 + q, w)

≥ ∆0 − Γg(0, T1, u) − Γg(T1, T1 + q, ξ1) ≥ ∆0 − ∆0/4.

Combined with (31), this contradicts (23). The contradiction we have reached
proves that the function v is (g)-perfect. Proposition 8 is proved.

Lemma 2 (Zaslavski, 2002a, Lemma 3.3). Let g ∈ M possess (ATP). Then for
each z ∈ H(g) there exists an a.c. function v : R1 → H(g) such that v(0) = z
and Γg(−T, T, v) = 0 for all T > 0.
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Lemma 3 Let g ∈ M possess (ATP). Then, sup{πg(z) : z ∈ H(g)} = 0.

Proof. Let ẑ ∈ H(g) satisfy

πg(ẑ) = sup{πg(z) : z ∈ H(g)}. (32)

By Lemma 2 there exists v̂ : R1 → H(g) such that

v̂(0) = ẑ, Γg(−T, T, v̂) = 0 for all T > 0. (33)

It follows from (33), (6), (9), (ATP) and (32) that

πg(ẑ) ≤ lim inf
T→∞

[Ig(0, T, v̂) − Tµ(g)]

= lim inf
T→∞

[πg(ẑ) − πg(v̂(T ))] = πg(ẑ) − sup{πg(z) : z ∈ H(g)} = 0. (34)

On the other hand, by (6), Proposition 2, (9), (10), (ATP) and (32),

πg(ẑ) = inf{lim inf
T→∞

[Ig(0, T, v) − Tµ(g)] :

v : [0,∞) → Rn is a (g) − good function such that v(0) = ẑ}

≥ inf{lim inf
T→∞

[πg(ẑ) − πg(v(t))] :

v : [0,∞) → Rn is a (g) − good function such that v(0) = ẑ}

≥ πg(ẑ) − sup{πg(z) : z ∈ H(g)} = 0.

Together with (34), this implies that πg(ẑ) = 0. Lemma 3 is proved.

Proposition 9 Let g ∈ M possess (ATP), ḡ(x, y) = g(x,−y), x, y ∈ Rn,

z1, z2 ∈ H(g), πg(z1) = inf{πg(z) : z ∈ H(g)},

πg(z2) = sup{πg(z) : z ∈ H(g)}. (35)

Then µ(ḡ) = µ(g) and

πḡ(z1) = sup{πḡ(z) : z ∈ H(g)}, πḡ(z2) = inf{πḡ(z) : z ∈ H(g)}. (36)

Proof. By Lemma 2 there exists an a.c. function v : R1 → H(g) such that

v(0) = ẑ1, Γg(−T, T, v) = 0 for all T > 0. (37)

Put

ṽ(t) = v(−t), t ∈ R1. (38)

It is easy to see that for all pairs S < T ,

∫ T

S

ḡ(ṽ(t), ṽ′(t))dt =

∫
−S

−T

g(v(t), v′(t))dt (39)
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and that in view of (37), I ḡ(−T, T, ṽ) = U ḡ(−T, T, ṽ(−T ), ṽ(T )), T > 0. Since
ḡ possesses (ATP), it follows from the inequality above and Proposition 3.8 that

Γḡ(−T, T, ṽ) = 0 for all T > 0. (40)

In view of (39)) and (37),

µ(ḡ) = lim
k→∞

(2k)−1I ḡ(−k, k, ṽ) = lim
k→∞

(2k)−1Ig(−k, k, v) = µ(g). (41)

By (40), (9), (10), (41), (39) and (37),

sup{πḡ(ṽ(S)) − πḡ(ṽ(T )) : −∞ < S < T <∞}

= sup{I ḡ(S, T, ṽ) − (T − S)µ(g) : −∞ < S < T <∞}

= sup{Ig(S, T, v) − (T − S)µ(g) : −∞ < S < T <∞} (42)

sup{πg(v(S)) − πg(v(T )) : −∞ < S < T <∞}.

Since the integrands g and ḡ possess (STP) with the turnpike H(g), it follows
from (40), (37), (42) and Lemma 3 that

0 = sup{πg(z) : z ∈ H(g)} = sup{πḡ(z) : z ∈ H(g)}, (43)

inf{πḡ(z) : z ∈ H(g)} = inf{πg(z) : z ∈ H(g)} (44)

and that there exist negative numbers Si → −∞ as i→ ∞ and positive numbers
Ti → ∞ as i→ ∞ such that

lim
i→∞

v(Si) = z1, lim
i→∞

v(Ti) = z2. (45)

By (35), Lemma 3, (45), (37), (39), (41), (40) and (38),

πg(z1) = πg(z1) − πg(z2) = lim
i→∞

[πg(v(Si)) − πg(v(Ti))] (46)

= lim
i→∞

[Ig(Si, Ti, v) − (Ti − Si)µ(g)] = lim
i→∞

[I ḡ(−Ti,−Si, ṽ) − (Ti − Si)µ(g)]

= lim
i→∞

[πḡ(ṽ(−Ti)) − πḡ(ṽ(−Si))] − lim
i→∞

[πḡ(v(Ti)) − πḡ(v(Si))]

= πḡ(z2) − πḡ(z1).

By (46), (15), Lemma 3, (43) and (44),

πḡ(z2) − πḡ(z1) = inf{πg(z) : z ∈ H(g)} − sup{πg(z) : z ∈ H(g)}

= inf{πḡ(z) : z ∈ H(g)} − sup{πḡ(z) : z ∈ H(g)}.

Hence

πḡ(z2) = inf{πḡ(z) : z ∈ H(g)}, πḡ(z1) = sup{πḡ(z) : z ∈ H(g)}.

Proposition 9 is proved.

Proposition 10 (Zaslavski, 1998, Corollary 2.1). For each f ∈ M, each pair
of numbers T1, T2 satisfying T1 < T2 and each z1, z2 ∈ Rn there exists an a.c.
function x : [T1, T2] → Rn such that x(Ti) = zi, i = 1, 2, If (T1, T2, x) =
Uf (T1, T2, z1, z2).
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4. Proof of Theorem 5

By Proposition 4 and (16) there is M0 > 0 such that

|vi(t)| ≤M0 for all t ∈ [0, Ti] and all i = 1, 2, . . . (47)

Since the function Uf (0, T, ·, ·) is continuous for any T > 0 (see Zaslavski, 2006b,
pages 83-87) it follows from (47) and (16) that for any T > 0 the sequence
{If (0, T, vi)}

∞

i=1
is bounded. Now, it follows from Proposition 5 that there exist

a strictly increasing sequence of natural numbers {ik}
∞

k=1
and an a.c. function

v : [0,∞) → Rn such that for each integer m ≥ 1,

vik
→ v as k → ∞ uniformly on [0,m], (48)

If (0,m, v) ≤ lim inf
k→∞

If (0,m, vik
). (49)

Relations (48) and (16) imply that v(0) = x. In view of (49), (16) and (48) for
each integer m ≥ 1,

If (0,m, v) ≤ lim inf
k→∞

Uf (0,m, vik
(0), vik

(m)) = Uf (0,m, v(0), v(m)).

Thus, for each integer m ≥ 1,

If (0,m, v) = Uf (0,m, v(0), v(m)). (50)

By (47) and (48) |v(t)| ≤M0 for all t ≥ 0. Together with (50) and Proposition
8 this implies that v is (f)-perfect. Theorem 5 is proved.

5. Proof of Theorem 7

By (17) and Proposition 4 there is M0 > 0 such that

|vi(t)| ≤M0 for all t ∈ [0, Ti] and all i = 1, 2, . . . . (51)

For i = 1, 2, . . . set

v̄i(t) = v(Ti − t), t ∈ [0, Ti]. (52)

In view of (52), (17), (12) and (13),

I f̄ (0, Ti, v̄i) − U f̄ (0, Ti, v̄i(0), v̄i(Ti)) → 0 as i→ ∞. (53)

It follows from (53), (51) and Proposition 5 that there exists a strictly increasing
sequence of natural numbers {ik}

∞

k=1
and an a. c. function u : [0,∞) → Rn such

that for each integer m ≥ 1,

v̄ik
→ u as k → ∞ uniformly on [0,m], (54)

I f̄ (0,m, u) ≤ lim inf
k→∞

I f̄ (0,m, v̄ik
). (55)
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By (55), (53) and (54) for each natural number m,

I f̄ (0,m, u) ≤ lim inf
k→∞

U f̄(0,m, v̄ik
(0), v̄ik

(m)) = U f̄(0,m, u(0), u(m)). (56)

Relations (54), (51) and (52) imply that

|u(t)| ≤M0, t ∈ [0,∞). (57)

By (56), (57) and Proposition 8, u is (f̄)-perfect.
In order to complete the proof it is sufficient to show that

πf̄ (u(0)) = inf{πf̄ (z) : z ∈ Rn}.

Assume the contrary. Then, by Proposition 1, there is ẑ ∈ Rn such that

πf̄ (ẑ) = inf{πf̄ (z) : z ∈ Rn} < πf̄ (u(0)). (58)

In view of Proposition 3 there is an (f̄)-perfect function û : [0,∞) → Rn such
that

û(0) = ẑ. (59)

Choose a positive number

∆ < (πf̄ (u(0)) − πf̄ (ẑ))/4. (60)

By Lemma 1 there exist q, δ > 0 such that the following property holds:

(C2) for each h1, h2 ∈ Rn satisfying d(hi, H(f)) ≤ δ, i = 1, 2 and each T ≥ q
there exists an a. c. function ξ : [0, T ] → Rn such that ξ(0) = h1, ξ(T ) = h2,
Γf̄ (0, T, ξ) ≤ ∆/4.

Since the functions u, û are (f̄)-perfect and f̄ possesses (ATP), there exists
L0 > q such that

d(û(t), H(f)), d(u(t), H(f)) ≤ δ/8 for all t ≥ L0. (61)

By (17), (54), the continuity of πf̄ and (55), there exists a natural number k
such that

Tik
> 4(L0 + q + 1), If (0, Tik

, vik
) ≤ Uf (Tik

, xik
) + ∆/8, (62)

|v̄ik
(t) − u(t)| ≤ δ/8, t ∈ [0, 4(L0 + q + 1)], (63)

|πf̄ (u(L0 + q)) − πf̄ (v̄ik
(L0 + q))| ≤ ∆/8, (64)

I f̄ (0, L0 + q, v̄ik
) + ∆/8 > I f̄ (0, L0 + q, u). (65)

Relations (61)-(63) imply that

d(v̄ik
(L0 + q), H(f)) ≤ δ/4. (66)
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By (C2), (61) and (66) there is an a. c. function ξ : [L0, L0 + q] → Rn such that

ξ(L0) = û(L0), ξ(L0 + q) = v̄ik
(L0 + q), Γf̄ (L0, L0 + q, ξ) ≤ ∆/4. (67)

Set

w(t) = vik
(t), t ∈ [0, Tik

− L0 − q],

w(t) = ξ(Tik
− t), t ∈ (Tik

− L0 − q, Tik
− L0),

w(t) = û(Tik
− t), t ∈ [Tik

− L0, Tik
]. (68)

By (68), (67), (52) and (17), the a. c. function w : [0, Tik
] → Rn is well-defined,

w(0) = vik
(0) = xik

. (69)

In view of (69) and (62),

If (0, Tik
, w) − If (0, Tik

, vik
) ≥ Uf (Tik

, xik
) − If (0, Tik

, vik
) ≥ −∆/8. (70)

Since the functions u, û are (f̄)-perfect, it follows from (67), (68), (65), (64),
(59), (60) and (9) that

If (0, Tik
, w)−If (0, Tik

, vik
) = If (Tik

−L0 − q, Tik
, w)−If (Tik

−L0 − q, Tik
, vik

)

= If (Tik
−L0−q, Tik

−L0, w) + If (Tik
−L0, Tik

, w)−If(Tik
−L0−q, Tik

, vik
)

= I f̄ (L0, L0 + q, ξ) + I f̄ (0, L0, û) − I f̄ (0, L0 + q, v̄ik
)

≤ I f̄ (L0, L0 + q, ξ) + I f̄ (0, L0, û) − I f̄ (0, L0 + q, u) + ∆/8

= Γf̄ (L0, L0 + q, ξ) + πf̄ (ξ(L0)) − πf̄ (ξ(L0 + q)) + qµ(f)

+Γf̄(0, L0, û) + L0µ(f) + πf̄ (û(0)) − πf̄ (û(L0))

−(Γf̄(0, L0 + q, u) + (L0 + q)µ(f) + πf̄ (u(0)) − πf̄ (u(L0 + q))) + ∆/8

≤ ∆/4 + πf̄ (ξ(L0)) − πf̄ (ξ(L0 + q)) + πf̄ (û(0)) − πf̄ (û(L0))

−πf̄ (u(0)) + πf̄ (u(L0 + q)) + ∆/8

= 8−1(3∆) + πf̄ (û(0) − πf̄ (u(0)) + πf̄ (u(L0 + q)) − πf̄ (vik
(L0 + q))

≤ πf̄ (û(0)) − πf̄ (u(0)) + ∆/2 ≤ −3∆.

This contradicts (70). The contradiction we have reached proves Theorem 7.

6. Proof of Theorem 8

By (18) and Proposition 4 there is M0 > 0 such that

|vi(t)| ≤M0 for all t ∈ [0, Ti] and all i = 1, 2, . . . . (71)
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It follows from (71), (18), Proposition 5 and the continuity of Uf that there exist
a strictly increasing sequence of natural numbers {ik}

∞

k=1
and an a.c. function

u : [0,∞) → Rn such that for each integer m ≥ 1,

vik
→ u as k → ∞ uniformly on [0,m], (72)

If (0,m, u) ≤ lim inf
k→∞

If (0,m, vik
). (73)

By (73), (18), (72) and the continuity of Uf , for each natural number m,

If (0,m, u) ≤ lim inf
k→∞

Uf(0,m, vik
(0), vik

(m)) = Uf(0,m, u(0), u(m)). (74)

Relations (72) and (71) imply that

|u(t)| ≤M0, t ∈ [0,∞). (75)

By (75), (74) and Proposition 8, u is (f)-perfect.
In order to complete the proof it is sufficient to show that

πf (u(0)) = inf{πf (z) : z ∈ Rn}.

Assume the contrary. Then by Proposition 1 there is ẑ ∈ Rn such that

πf (ẑ) = inf{πf (z) : z ∈ Rn} < πf (u(0)). (76)

In view of Proposition 3 there is an (f)-perfect function û : [0,∞) → Rn such
that

û(0) = ẑ. (77)

Choose a positive number

∆ < (πf̄ (u(0)) − πf (ẑ))/4. (78)

By Lemma 1 there exist q, δ > 0 such that the following property holds:

(C3) for each h1, h2 ∈ Rn satisfying d(hi, H(f)) ≤ δ, i = 1, 2 and each T ≥ q
there exists an a.c. function ξ : [0, T ] → Rn such that ξ(0) = h1, ξ(T ) = h2,
Γf (0, T, ξ) ≤ ∆/4.

Since the functions u, û are (f)-perfect and f possesses (ATP), there exists
L0 > q such that

d(û(t), H(f)), d(u(t), H(f)) ≤ δ/8 for all t ≥ L0. (79)

By (18), (72), (73) and the continuity of πf̄ there exists a natural number k
such that

Tik
> 4(L0 + q + 1), If (0, Tik

, vik
) ≤ Uf (Tik

) + ∆/8, (80)

|vik
(t) − u(t)| ≤ δ/8, t ∈ [0, 4(L0 + q + 1)], (81)

|πf (u(L0 + q)) − πf (vik
(L0 + q))| ≤ ∆/8, (82)

If (0, L0 + q, vik
) + ∆/8 > If (0, L0 + q, u). (83)
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By (81) and (79),

d(vik
(L0 + q), H(f)) ≤ δ/4. (84)

By (C3), (84) and (79) there exists an a. c. function ξ : [L0, L0 + q] → Rn such
that

ξ(L0) = û(L0), ξ(L0 + q) = vik
(L0 + q), Γf (L0, L0 + q, ξ) ≤ ∆/4. (85)

Set

w(t) = û(t), t ∈ [0, L0], w(t) = ξ(t), t ∈ (L0, L0 + q],

w(t) = vik
(t), t ∈ (L0 + q, Tik

]. (86)

By (85) and (86) the a. c. function w : [0, Tik
] → Rn is well-defined. By (80),

If (0, Tik
, w) − If (0, Tik

, vik
) ≥ Uf (Tik

) − If (0, Tik
, vik

) ≥ −∆/8. (87)

Since the functions u and û are (f)-perfect, it follows from (86), (83), (85), (77)
and (9) that

If (0, Tik
, w) − If (0, Tik

, vik
) = If (0, L0 + q, w) − If (0, L0 + q, vik

)

= If (0, L0, û) + If (L0, L0 + q, ξ) − If (0, L0 + q, vik
)

≤ If (0, L0, û) + If (L0, L0 + q, ξ) − If (0, L0 + q, u) + ∆/8

= Γf (0, L0, û) + L0µ(f) + πf (û(0)) − πf (û(L0))

+Γf(L0, L0 + q, ξ) + qµ(f) + πf (ξ(L0)) − πf (ξ(L0 + q))

−[Γf(0, L0 + q, u) + (L0 + q)µ(f) + πf (u(0)) − πf (u(L0 + q))] + ∆/8

≤ ∆/4 + πf (û(0)) − πf (ξ(L0 + q)) + πf (u(0)) − πf (u(L0 + q)) + ∆/8

≤ 3∆/8 − 4∆ + ∆/8 ≤ −3∆.

This contradicts (87). The contradiction we have reached proves Theorem 8.

7. Proofs of Theorems 10 and 11

Proof of Theorem 10 We may assume that

K > sup{|z| : z ∈ H(f)} + 1. (88)

By Proposition 4 there exists S0 > K such that the following property holds:

(C4) for each T ≥ 1 and each a. c. function v : [0, T ] → Rn satisfying

|v(0)|, |v(T )| ≤ K, (89)

If (0, T, v) ≤ Uf (0, T, v(0), v(T )) + 1 (90)
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the following inequality holds:

|v(t)| ≤ S0, t ∈ [0, T ]. (91)

By Proposition 3 and Theorem 4 for each x ∈ Rn there exist an (f)-perfect
function vx : [0,∞) → Rn and an (f̄)-perfect function ux : [0,∞) → Rn such
that

vx(0) = ux(0) = x. (92)

By (C4), (88) and (ATP) for the integrands f and f̄ ,

|ux(t)|, |vx(t)| ≤ S0 for all t ∈ [0,∞) and all x ∈ Rn satisfying |x| ≤ K. (93)

Since the functions πf , πf̄ are continuous, there is δ0 ∈ (0, 4−1ǫ) such that for
each x, y ∈ Rn satisfying

|x|, |y| ≤ 4 sup{|z| : z ∈ H(f)}, |x− y| ≤ 8δ0 (94)

the following inequalities hold:

|πf (x) − πf (y)|, |πf̄ (x) − πf̄ (y)| ≤ 16−1ǫ. (95)

By Lemma 1 there are δ ∈ (0, δ0), T1 > 0 such that the following property holds:

(C5) for each x, y ∈ Rn satisfying d(x,H(f)), d(y,H(f)) ≤ δ and each
T ≥ T1 there is an a. c. function ξ : [0, T ] → Rn, which satisfies

ξ(0) = x, ξ(T ) = y, Γf (0, T, ξ) ≤ ǫ/8.

By Theorem 2 f has (STP) with the turnpike H(f) and therefore there exist
T2 > L > 0 such that the following property holds:

(C6) for each T > 2T2, each a. c. function v : [0, T ] → Rn, which satisfies

|v(0)|, |v(T )| ≤ S0, I
f (0, T, v) = Uf (0, T, v(0), v(T ))

and each τ ∈ [T2, T − T2],

dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ δ/2.

Choose

T0 > 8(T1 + T2 + 1). (96)

Let

z0, z1 ∈ H(f), πf (z0) = sup{πf (z) : z ∈ H(f)}, (97)

πf (z1) = inf{πf (z) : z ∈ H(f)}.
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By Lemma 3, Propositions 9 and (97),

πf (z0) = 0, πf̄ (z0) = inf{πf̄ (z) : ∈ H(f)},

πf̄ (z1) = sup{πf̄ (z) : z ∈ H(f)} = 0. (98)

Assume that

T ≥ T0, x, y ∈ Rn, |x|, |y| ≤ K. (99)

We show that (19) holds. By Proposition 8 there exists an a. c. function
v : [0, T ] → Rn such that

v(0) = x, v(T ) = y, If (0, T, v) = Uf (0, T, x, y). (100)

By (99), (100), (96) and (C6) there exist

t0 ∈ [T2, T2 + L], t1 ∈ [T − T2 − L, T − T2] (101)

such that

|v(t0) − z0|, |v(t1) − z1| ≤ δ/2. (102)

We estimate If (0, t0, v), I
f (t0, t1, v) and If (t1, T, v). Relations (9), (10) and

(100) imply that

If (0, t0, v) ≥ t0µ(f) + πf (x) − πf (v(t0)). (103)

By the definition of δ0 (see (94), (95)), (102), (97) and (98),

|πf (v(t0)) − πf (z0)| ≤ ǫ/16, |πf (v(t0))| ≤ ǫ/16, (104)

|πf (v(t1)) − πf (z1)| ≤ ǫ/16, |πf̄ (v(t1)) − πf̄ (z1)| ≤ ǫ/16.

It follows from (103) and (104) that

If (0, t0, v) ≥ t0µ(f) + πf (x) − ǫ/16. (105)

By (9), (10) and (104),

If (t0, t1, v) ≥ (t1 − t0)µ(f) + πf (v(t0)) − πf (v(t1)). (106)

≥ (t1 − t0)µ(f) − πf (z1) − 8−1ǫ.

Finally we estimate If (t1, T, v). Consider the function v̂ : [t1, T ] → Rn defined
by

v̂(t) = v(T − t+ t1), t ∈ [t1, T ]. (107)
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In view of (107), (9), (10), (100), (96) and (104),

If (t1, T, v) = I f̄ (t1, T, v̂) ≥ (T − t1)µ(f) + πf̄ (v̂(t1)) − πf̄ (v̂(T )) (108)

= (T−t1)µ(f) + πf̄ (v(T ))−πf̄ (v(t1)) ≥ (T−t1)µ(f) + πf̄ (y)−πf̄(z1)−ǫ/16

= (T − t1)µ(f) + πf̄ (y) − ǫ/16.

By (100), (105), (106), (108) and (97),

Uf(0, T, x, y) = If (0, T, v) ≥ t0µ(f) + πf (x) − ǫ/16 + (t1 − t0)µ(f)

−πf (z1) − 8−1ǫ+ (T − t1)µ(f) + πf̄ (y) − ǫ/16

Tµ(f) + πf (x) + πf̄ (y) − inf{πf (z) : z ∈ H(f)} − ǫ/4. (109)

Consider an (f)-perfect function vx : [0,∞) → Rn and an (f̄)-perfect function
uy : [0,∞) → Rn such that

vx(0) = x, uy(0) = y. (110)

Define û : (−∞, T ] → Rn by

û(t) = uy(T − t), t ∈ (−∞, T ]. (111)

It is not difficult to see that for each pair of numbers S1, S2 such that S1<S2≤T ,

U f̄(S1, S2, û(S1), û(S2)) = I f̄ (S1, S2, û). (112)

It follows from (111) and (110) that

û(T ) = y. (113)

By (93), (110), (99) and (111),

|û(t)| ≤ S0, t ∈ (−∞, T ], |vx(t)| ≤ S0, t ∈ [0,∞). (114)

Since the function vx is (f)-perfect, it follows from (102), (114), (99), (96) and
(C6) that there are

t0 ∈ [T2, T2 + L], t1 ∈ [T − T2 − L, T − T2] (115)

such that

|vx(t0) − z0| ≤ δ/2, |û(t1) − z1| ≤ δ/2. (116)

By (P5), (116), (97), (115), (96) and (99) there is an a. c. function h : [t0, t1] →
Rn such that

h(t0) = vx(t0), h(t1) = û(t1), Γf (t0, t1, h) ≤ ǫ/8. (117)
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Set

v∗(t) = vx(t), t ∈ [0, t0], v∗(t) = h(t), t ∈ (t0, t1],

v∗(t) = û(t), t ∈ (t1, T ]. (118)

In view of (117) and (118) the a. c. function v∗ : [0, T ] → Rn is well-defined. By
(118), (110) and (113),

v∗(0) = x1, v∗(T ) = y. (119)

Since vx is (f)-perfect and uy is (f̄)-perfect it follows from (119), (118), (110),
(111), (117), (9) and (10) that

Uf(0, T, x, y) ≤ If (0, T, v∗) = If (0, t0, vx) + If (t0, t1, h) + If (t1, T, û)

= t0µ(f) + πf (x) − πf (vx(t0)) + Γf (t0, t1, h) + (t1 − t0)µ(f))

+πf (vx(t0)) − πf (û(t1)) + I f̄ (0, T − t1, uy

≤ t1µ(f) + πf (x) + ǫ/8 − πf (û(t1)) + (T − t1)µ(f)

+πf̄ (uy(0)) − πf̄ (uy(T − t1))

= Tµ(f) + πf (x) + πf̄ (y) + ǫ/8 − πf (û(t1)) − πf̄ (uy(T − t1)). (120)

By (116), the choice of δ0 (see (94), (95)) and (97),

|πf (û(t1)) − πf (z1)| ≤ ǫ/16. (121)

In view of (111) and (116), uy(T − t1) = û(t1) and |uy(T − t1) − z1| ≤ δ/2.
Combined with the choice of δ0 (see (94), (95)), (97) and (98) this implies that

|πf̄ (uy(T − t1))| = |πf̄ (uy(T − t1)) − πf̄ (z1)| ≤ ǫ/16.

Together with (120) and (121) this implies that

Uf(0, T, x, y) ≤ Tµ(f) + πf (x) + πf̄ (y) − πf (z1) + ǫ/4

= Tµ(f) + πf (x) + πf̄ (y) − inf{πf (z) : z ∈ Rn} + ǫ/4.

Combined with (109) this implies (19). Theorem 10 is proved.

Proof of Theorem 11. By Proposition 1 there are z0, z1 ∈ Rn such that

πf (z0) = inf{πf (z) : z ∈ Rn}, πf̄ (z1) = inf{πf̄(z) : z ∈ Rn}. (122)

We may assume that |z0|, |z1| ≤ K. By Proposition 4 there exists S0 > K such
that the following properties hold:

(C7) for each T ≥ 1, each x ∈ Rn satisfying |x| ≤ K and each a. c. function
v : [0, T ] → Rn satisfying v(0) = x and If (0, T, v) ≤ Uf(T, x)+ 1 the inequality
|v(t)| ≤ S0 holds for all t ∈ [0, T ];

(C8) for each T ≥ 1 and each a. c. function v : [0, T ] → Rn satisfying
If (0, T, v) ≤ Uf (T ) + 1 the inequality |v(t)| ≤ S0 holds for all t ∈ [0, T ].

Theorem 11 now follows form Theorem 10 and properties (C7) and (C8).
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