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Abstract: Shape variational formulation for Euler flow has al-
ready been considered by the author in (1999a, 2007c). We develop
here the control approach considering the convection (or mass trans-
port) as the “state equation” while the speed vector field is the con-
trol and we introduce the h-Sobolev curvature which turns to be
shape differentiable. The value function defines a new shape metric;
we derive existence of geodesic for a p-pseudo metric, verifying the
triangle property with a factor 2p−1, for any p > 1. Any geodesic
solves the Euler equation for incompressible fluids and, in dimension
3, is not curl free. The classical Euler equation for incompressible
fluid (3), coupled with the convection (1) turns to have variational
solutions when conditions are imposed on the convected tube ζ while
no initial condition has to be imposed on the fluid speed V itself.

Keywords: Sobolev perimeter, Euler flow, morphic metric,
geodesic, topological change.

1. Shape and set metrics

The shape optimization and moving domain analysis has been concerned in the
last 30 years with topologies and metrics on families of sets. For a bounded
open set D in RN the family of compact subsets A ⊂ D is compact for the
Hausdorff metric. This metric and associated compactness property are very
useful for several topics, for example when moving the geometrical domain in
a Laplace-Dirichlet boundary value problem. In morphic viewpoint the con-
vergence of a sequence Ωn in complementary Hausdorff topology is a very weak
concept, it implies the compactivorous property, but if the boundaries ∂Ωn have
no extra constraints, very few shape functionals have nice l.s.c. property. In this
direction we introduce (Delfour and Zolésio, 1994, 2001, 2005) the metrics as-
sociated with the oriented distance function bΩ from which we recover several
compactness results associated with the uniform cusp conditions and more gen-
eral criteria (Delfour and Zolésio, 2007); the concept of geodesic is, nevertheless,
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very difficult. In this direction the image community produced some pragmatic
tools, like the so-called elastic metric between two sets (which is not a metric)
as the norm of the elastic continuous transformation T which would map one set
on the other, say d = ||T − Id||+ ||T−1 − Id|| . In order to derive a metric and a
complete metric space we use the Courant metric developed by A.M. Micheletti
(1972) for smooth domains and extended it in Delfour and Zolésio (2001). The
metric is obtained as an infimum on all transformations T , which are decom-
posable in T = T1oT2oT3o...oTK , the infimum being taken on all T and all K.
(Of course, we understand that the choice of some specific T , beside any math-
ematics considerations, would introduce a prejudice in the candidate to be a
metric. The infimum eliminates any such prejudice in the sense that the result-
ing metric is just depending on the boundaries). This metric extend for families
of submanifolds and geodesic theory can be applied using the Eulerian approach
developed in Delfour and Zolésio (2001). In doing so we find that the Courant
metric and compactness and geodesic can be directly formulated in the Eulerian
framework . As far as we consider only families of measurable subsets in D, the
transformation T is then relaxed by the convection problem (1) and as we then
escape to any flow mapping we are able to enlarge the study to families of sets
with possible different topologies. We replace the notion of transformation by
connecting tubes and the geodesic will be an optimal tube, solution to a varia-
tional problem whose vector field V is solution to Euler equation. In doing so
we also have a clean variational approach for the solution of the Euler equation,
which seems to extend to the compressible situation.

2. Tube metric

We consider a bounded smooth domain D ⊂ RN . We designate by χΩ (or ζΩ, or
simply ζ) the characteristic function of a measurable subset Ω ⊂ D ⊂ RN . We
consider an admissible family Br of measurable subsets with given measure a
(see 3.2). For any pair (Ω0,Ω1) in this family we consider the set of connecting
tubes ζ(t, x) = ζ(t, x)2 ∈ C0([0, 1], L1(D)) such that ζ(i, x) = ζΩi

(x), i = 0, 1,
and verifying ∀t ∈ I,

∫
D
ζ(t, x)dx = a, where I = [0, 1] will designate the time

interval (the final time could be any τ > 0, then we choose τ = 1). The Eulerian
approach consists in considering the connecting tubes ζ as solutions to the weak
convection (1) associated to a free divergence speed vector field V : being given
Ωi, i = 0, 1 subsets in D ⊂ RN with meas(Ωi) = a > 0 ,

ζ2 = ζ,
∂

∂t
ζ + ∇ζ.V = 0, ζ(i) = χΩi, i = 1, 2 . (1)

For any such V the problem (1) may have no solution or several solutions, so
the product space tool (see Zolésio, 2007b) is to consider the closed non convex
non empty connecting set:

T (Ω0,Ω1) = {(ζ, V ) ∈ C0(Ī , L2(D)) × L2
div, verifying (1) } (2)
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where

L2
div = {V ∈ L2(I, L2(D,RN )), divV = 0 }.

2.1. Variational solution for the Euler equation

We minimize a “Tube-Energy” cost functional E , which includes an additive
regularizing term, a surface tension like term, needed in a standard setting in
order to make use of the parabolic compactness of tubes. In fact, we shall
minimize several functionals in the following form, with respect to (ζ, V ) in
some subset Tr(Ω0,Ω1) of T (Ω0,Ω1):

J(ζ, V ) = E(ζ, V ) + σ

∫ 1

0

Ph,r(ζ(t)) dt

where

E(ζ, V ) = 1/2

∫ 1

0

∫
D

(α ζ(t, x) + β) |V (t, x)|2dxdt.

We derive existence result for the minimum and as necessary condition the
extrema solve the Euler incompressible flow:

α ≥ 0, β > 0,
∂

∂t
( (αζ + β)V ) + D( (αζ + β)V ).V + ∇P = σ µh. (3)

For this we introduce the Sobolev perimeter Ph,r(Ωt), associated with L1(I,
Hr(D)) norm of the tube ζ(t, x). The advantage of this Sobolev perimeter is
that it turns to be differentiable under smooth transverse field perturbations ζs
and enable us to define the Sobolev curvature for any domain in this new class
of Sobolev sets, so that µh,r is the Sobolev curvature of the interface associated
with the Sobolev perimeter Ph,r(ζ(t)). These elements are introduced below.
Notice that with the choice of the parameters α = 0, β = 1, equation (3) is
the classical Euler equation for incompressible fluids, with no initial (or final)
conditions, but with the only condition that the solution V will convect ζΩ0

onto ζΩ1
at final time. The tube approach was introduced in Zolésio (2007a,b)

for connecting two given domains, whose characteristic functions have some
“Sobolev smoothness”: ζi ∈ Hr(D), for given r such that 0 < r < 1/2 (this
includes the usual finite perimeter sets).

2.2. The shape morphic metric

We shall consider several energy functionals E(V, ζ) at (13) associated with
several parameters p, 1 < p < ∞, ..... The basic idea to derive a shape metric
is to consider the value function with p = 1. Two main difficulties arise: for
existence of godesics (i.e. compactness results) we need p > 1 so we shall deal
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with pseudo-metric and with complete pseudo metric space or simply metric
space (without existence of geodesic). Also the perimeter term must be replaced
by a time capacity term θh,r in order to obtain the first metric axiom. The
candidate for the morphic metric is then in the form

d(Ω0,Ω1) = INF(ζ,V)∈T (Ω0,Ω1) F(ζ,V)

where

F(ζ, V ) = E(ζ, V ) + σ θh,r(ζ).

3. Tube-variational principle

For a measurable subset Q ⊂ I×D ⊂ RN+1, we shall write ζQ for the character-
istic function and denote by Ωt, a.e.t ∈ I, the measurable subset in D (defined
up to a subset with zero measure) such that ζQ(t, .) = χΩt

. We say that Q is
a tube when we have some continuity, ζ ∈ C0(Ī , L1(D)), more precisely we will
consider Eulerian description for the tube and introduce a minimal regularity
on the speed vector field V , V ∈ Lp

div in order to ensure this continuity. This
continuity enables us to consider connecting tubes: being given two measurable
subsets in D, a tube Q connects Ω0 and Ω1 if we have ζ(i) = χΩi

, i = 0, 1.
We shall consider a framework such that the set T (Ω0,Ω1) is non empty. For
both functionals J and F the optimal solution (ζ, V ) will solve a classical Euler
equation for incompressible fluid, which will not simplify to a Hamilton-Jacobi
equation: the field V will not derive from a potential as its curl will not be zero.
Indeed the new curvature term that we shall introduce in relation with the “Hr-
perimeter” term will lead to a generalized curvature term on the boundary of
the connecting tube, which, in dimension N = 3, generates a curl term.

We adopt the convention that for r = 0 the space Hr(D) stands for the
Banach space BV (D), so that for 0 ≤ r < 1/2, Hr(D) ⊂ L1(D,RN ), with
continuous and compact inclusion mapping. Notice that from the results of Luigi
Ambrosio (2003), the convection problem is uniquely solved under L1(I, BV (D))
like assumption on the field V . This extra regularity on the vector field V would
reduce the set T (V,Ω0,Ω1) to a single element, but would imply some viscosity
modeling (e.g. some Navier-Stokes like flow in the Eulerian perspective). Here
we escape any renormalization benefit, so the solution ζ may be non unique
but the regularity ζ = ζ2 ∈ L1(0, 1,Hr(D)) will be derived from the variational
principle itself (see, e.g., Zolésio, 2001, 2007a,b).

3.1. Speed vector fields

With 1 ≤ p <∞, we introduce

Lp
div = {V ∈ Lp(I ×D,RN) s.t. divV = 0, V.nD = 0 }.
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Proposition 1 Let V ∈ Lp
div and ζ = ζ2 ∈ L∞(I ×D) be solution to

∂

∂t
ζ + ∇ζ.V = 0,

then ζ ∈ C0(I, L1(D)).

Proof. The convection equation implies that: ζt = div( −ζ V ) ∈ W−1,1(D)),
then

ζ ∈ C0(I,W−1,1(D))

and as ζ = ζ2, the L1(D) continuity derives from the following

Lemma 1 Let ζ = ζ2 ∈ L1(I ×D) ∩C0(I,D′(D)), then ζ ∈ C0(I, L1(D)).

Proof. As

||ζ(t+ s) − ζ(t)||L1(D) = ||ζ(t+ s) − ζ(t)||2L2(D)

then it is enough to show that ζ ∈ C0(I, L2(D)). We begin by establishing the
weak L2(D) continuity: for any element f ∈ L2(D) consider

∫
D

(ζ(t+ s)(x) − ζ(t)(x)) f(x)dx =

∫
D

(ζ(t+ s, x) − ζ(t, x)φ(x)dx

+

∫
D

(ζ(t+ s, x) − ζ(t, x)) (f(x) − φ(x))dx.

Let there be given r > 0, by the choice of φ ∈ D(D) (using here the density of
D(D) in L2(D)), we have

|
∫

D

(ζ(t+ s, x) − ζ(t, x)) (f(x) − φ(x))dx| ≤ 2

∫
D

|f(x) − φ(x)|dx ≤ r.

So, we derive the continuity for the weak L2(D) topology. To strong topology
it suffices now to consider the continuity of the mapping

t→
∫

D

|ζ(t, x)|2dx =

∫
D

ζ(t, x)dx = ((ζ(t), 1))L2(D).

This continuity property enables us to define the connecting concept: given two
measurable subsets (defined up to a zero measure subset) Ωi ⊂ D, meas(Ωi) =
a, i = 0, 1 , we consider the family of connecting tubes

Tr(Ω0,Ω1) = {(ζ, V )∈L1(I,Hr(D))×Lp
div, verifying (1), ζ(i) = χΩi

, i = 0, 1 }.
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3.2. Non empty family of connecting tubes

In order to handle non empty tubes, we consider a given measurable subset
Ω ⊂ D, meas(Ω) = a, and its connected family

Br(Ω) = {ω ⊂ D s.t. ∃(ζ, V ) ∈ C0(Ī , L1(D)) ∩ L1(I,Hr(D)) × Lp
div,

s.t. ζ = ζ2, ζt + ∇ζ.V = 0, ζ(0) = χΩ , and χω = ζ(1) }.

It is important to notice that if Ω ∈ Cr, the continuously moving domain Ωt

such that χΩt
= ζ(t, .) is in Cr for almost every t, but not necessarily for t = 1,

so that the family Br(Ω) is not a subfamily of Cr. Moreover, as V ∈ Lp
div, the

moving connecting domain verifies meas(Ωt) =
∫

D
ζ(t, x)dx = a > 0 a.e.t, and

so it is not empty at a.e. time instant.
By construction we have:

Theorem 1 For any pair of sets Ωi ∈ Br(Ω), i = 0, 1, the connecting tube
Tr(Ω0,Ω1) is non empty.

Let (ζi, V i) ∈ Tr(Ω,Ω
i), then the piecewisely defined element

(ζ(t), V (t)) = (ζ0(1 − 2t),−2V 0(1 − 2t)), 0 < t < 1/2,

= (ζ1(2t− 1), 2V 1(2t− 1)), 1/2 < t < 1 (4)

is an element of Tr(Ω0,Ω1).

4. Subsets in D with bounded Sobolev perimeter

We consider families of measurable subsets in D with perimeter-like properties:
let r ∈ [0, 1/2[ and denote by Cr the family of measurable subsets in D with
given measure a, 0 < a < meas(D), defined as follows:

i) for r = 0, C0 = {Ω ⊂ D s.t. χΩ ∈ BV (D), meas(Ω) = a}
ii) for 0 < r < 1/2, as we know (Delfour and Zolésio, 2001) that {ζ = ζ2 ∈

BV (D) } ⊂ Hr(D), we can replace the space BV (D) by Hr(D), then we
set:

Cr = {ζ = ζ2 ∈ Hr(D),

∫
D

ζ(x)dx = a}.

Theorem 2 For 0 < r < 1/2, Cr is weakly closed in Hr(D) and any bounded
part is relatively compact in Cr′ for any r′, 0 < r′ < r < 1/2.

For r = 0, C0 is weakly closed in BV (D) and any bounded part is relatively
compact in L1(D).

For given h > 0 we introduce

|Ω|loc(h,r)=

∫ ∫
D×D∩{|x−y|<h}

(1−|x− y|2
h2

)
|ζΩ(x) − ζΩ(y)|
|x− y|N+2r

dxdy ≤ ||ζΩ||2Hr(D).
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With Ωc = D \ Ω we get:

|Ω|loc(h,r) = 2

∫ ∫
Ω×Ωc∩{|x−y|<h}

(1 − |x− y|2
h2

)
1

|x− y|N+2r
dxdy.

4.1. Sobolev perimeter

In order to define the Sobolev perimeter, we first consider the smooth domain
situation: if the boundary Γ = ∂Ω is a C2 manifold, then with j3z (x) = 1+zH+
z2K (where H and K are the mean and Gauss curvature of the surface Γ, we
assume N = 3), we get

|Ω|loc(h,r) =2

∫
Γ

(

∫ 0

−h

(jN
z (x){

∫
Bh(x+Tz(x))∩Ωc

(1−(|Tz(x)−y|2/h2)+

|Tz(x)−y|N+2r
dy})dz)dΓ(x).

Assuming now that h is small enough compared to the curvatures, we locally
approximate in the ball Bh(x) the piece of boundary Γ ∩ B(x + Tz(x)) by a
linear space. The term

m(h, x, z) =

∫
Bh(x+Tz(x) )∩Ωc

[ 1 − |Tz(x) − y|2/h2 ]+

|Tz(x) − y|N+2r
dy

is no more depending on the point x ∈ Γ, so that we set

m(h, z) :=

∫
Bh(0+Tz(0) )∩Ωc

[ 1 − ((z + y2)
2 + y2

1)/h
2 ]+

((z + y2)2 + y2
1)

N/2+r
dy.

We set

M(h) = 2

∫ 0

−h

m(h, z)dz.

Then we get

|Ω|loc(h,r) = M(h)

∫
Γ

dΓ(x) + o(h), h→ 0.

Necessarily, as ||ζΩ||Hr(D) <∞, this term has a finite limit but this limit is zero:

Proposition 2

|Ω|loc(h,r) → 0, h→ 0.

Proof. With Eh = {|x− y| ≤ h}, meas(Eh) → 0 and ζEh
F ≤ F with

F =
|ζΩ(x) − ζΩ(y)|
|x− y|N+2r

∈ L1(D ×D).
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4.2. Asymptotic analysis when h→ 0

Proposition 3 For any r, 0 < r < 1/2, there exists a constant a(r) such that

M(h)/h1−2r = a(r) + o(1), h→ 0. (5)

Proof. For N = 2, we get:

m(h, z) = 2

∫ √
h2−z2

0

du(

∫ √
h2−u2

0

[1 − ((z + v)2 + u2)/h2]+×

((z + v)2 + u2)−(N/2+r)dv)

M(h) = 2

∫ 0

−h

dz{
∫ √

h2−z2

0

du(

∫ √
h2−u2

0

[1 − ((z + v)2 + u2)/h2]+×

((z + v)2 + u2)−(1+r)dv)}.
With Z = 1/h z, we get

M(h) = 2h

∫ 0

−1

dZ{
∫ h

√
1−Z2

0

du(

∫ √
h2−u2

0

[1 − ((hZ + v)2 + u2)/h2]+×

((hZ + v)2 + u2)−(1+r)dv)}.
With U = 1/h u we get

M(h) = 2h2

∫ 0

−1

dZ{
∫ √

1−Z2

0

dU(

∫ h
√

1−U2

0

[1 − ((hZ + v)2 + h2U2)/h2]+×

((hZ + v)2 + h2 U2)−(1+r)dv)}.
With V = 1/h v we get

M(h) = 2h1−2r

∫ 0

−1

dZ{
∫ √

1−Z2

0

dU(

∫ √
1−U2

0

[1 − ((Z + V )2 + U2)]+×

((Z + V )2 + U2)−(1+r)dV )}.
Notice that as 0 < r < 1/2 we have µ = 1 − 2r > 0 and we consider

M(h)/h1−2r = a(r) + o(1), (6)

where the main part a(r), independent of h, h→ 0, is given by:

a(r) =

∫ 0

−1

dZ{
∫ √

1−Z2

0

dU(

∫ √
1−U2

0

[1 − ((Z + V )2 + U2)]+×

((Z + V )2 + U2)−(1+r)dV )}.
To get the perimeter, we set

Ph,r(Ω) =
1

2a(r) h1−2r
|Ω|loc(h,r). (7)
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Proposition 4 For all r, 0 < r < 1/2, and any open set Ω ⊂ D with C2

boundary Γ, Γ ⊂ D̄ the following asymptotic holds:

Ph,r(Ω) →
∫

Γ∩D

dΓ, h→ 0.

4.3. Perimeter estimate

For r = 0 we have

|ζΩ|BV (D) = |Ω| + |∇ζΩ|M1(D,RN ) ≤ |D| + PD(Ω).

Let 0 < r < 1, h > 0, consider ρh(r) = (1 − r2/h2)+, so that

Ph,r(ζ)(t) =
1

a(r)h1−2r

∫ ∫
Ωt×Ωc

t

ρh(|x − y|)
|x− y|N+2r

dxdy.

and hence we have

Theorem 3 ∀(r, p), 0 < r < 1/2,

||ζΩ||2Hr(D) dt ≤ |D| + (
√

2/h)N+2r|D|2 (Ω) + a(r)h1−2r Ph,r(Ω). (8)

Proof. Notice that

Ph,r(ζ)(t) =
1

a(r)h1−2r

∫ ∫
D×D

ρh(|x− y|) |ζ(x) − ζ(y)|
|x− y|N+2r

dxdy.

Moreover,

||ζ(t)||2Hr(D) = |Ωt|2 +

∫ ∫
D×D

|ζ(x) − ζ(y)|
|x− y|N+2r

dxdy

≤ |D|p +

∫ ∫
{|x−y|>h/

√
2}

|ζ(x) − ζ(y)|
|x− y|N+2r

dxdy

+

∫ ∫
{|x−y|≤h/

√
2}

|ζ(x) − ζ(y)|
|x− y|N+Zr

dxdy.

As ρh(r) > 1/2 for r < h/
√

2 we get

≤ (
√

2/h)N+r|D|2 +

∫
Ω

∫
Ωc

ρh(|x− y|)
|x− y|N+2r

dxdy,

that is,

||ζ(t)||2Hr(D) ≤ (
√

2/h)N+r|D|2 + |Ω|loc(h,r).
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4.4. Sobolev curvature

When ζ ∈ BV (D), the perimeter in D is given by

PD(Ω) = ||∇ζ||M1(D,RN ).

For a given smooth vector field Z the perimeter P (Ωs) of the perturbed domain
Ωs = Ts(Z)(Ω) is not differentiable with respect to s. When the boundary Γ is
a smooth manifold, then it is differentiable and we have:

∂

∂s
PD(Ωs){s=0} =

∫
Γ

∆bΩ < Z(0), n > dΓ,

where H = ∆bΩ is the mean curvature of Γ, so that H appears as the shape
gradient of the perimeter (for smooth domains). The BV perimeter being not
shape differentiable we introduce slight modification in the previous Sobolev
perimeter for shape differentiability and to propose a h-Sobolev curvature. We
first analyse the perimeter shape derivative; this term turns to be always differ-
entiable with respect to the transverse perturbations as follows: let us consider
some “small” parameter s (perturbation parameter) and any smooth vector field,
Z(s, x), Z ∈ C0([0, s0[,D(D,RN )) such that divxZ(s, .) = 0 . As usual, we
designate by Ts(Z) its flow mapping and consider the Sobolev perimeter of the
s-perturbed set:

Ph,r(Ts(Z)(Ω)) = 2

∫
Ω×Ωc

[1 − |Ts(Z)(x) − Ts(Z)(y)|2/h2]+

||Ts(Z)(x) − Ts(Z)(y)||N+2r
dxdy.

So that

∂

∂s
Ph,r(Ts(Z)(Ω) )s=0 = (9)

−2(N + 2r)

∫
Ω×Ωc

[1 − ||x− y||2/h2]+

||x− y||N+2r
<

x− y

||x − y|| ,
Z(x) − Z(y)

||x− y|| > dxdy

−2

∫
Ω×Ωc∩{|x−y|<h}

1

||x− y||N+2r
<
x− y

h2
, Z(x) − Z(y) > dxdy.

As ||x− y|| ≤ h in the previous integrals we have:

Z(x) − Z(y) = DZ(x) + δ(y − x)).(y − x),

and there exists a measure µh(Γ(t) supported by

∆h(Σ) = ∪0<t<1 {t} × (∪x∈∂Ωt
B(x, h) )

such that

< µh, Z >=
∂

∂s
Ph,r(ζ

s)s=0.

When h → 0, the measure converges to the mean curvature of the moving
boundary Γt: indeed at (6) the convergence is uniform with respect to the
family of smooth domains, whose curvature tensor is uniformely bounded.
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5. Transverse field and perturbed tube

Transverse field action preserving tubes and transverse tube analysis has been
developed in Zolésio (1998, 2001, 2002), Dziri and Zolésio (1999b, 2007), Mou-
bachir and Zolésio (2006).

Let us consider a perturbation parameter s ≥ 0 and any smooth horizontal
non autonomeous vector field over RN+1 (s being the evolution parameter for
a dynamic in RN+1)

Z(s, t, x) = (0, z(s, t, x)) ∈ Rt × RN , divxz(s, t, .) = 0

such that

Z(s, 0, x) = Z(s, 1, x) = 0. (10)

For any element (ζ, V ) ∈ T (Ω0,Ω1), we consider the perturbed tube (ζs, V s)
where

ζs(t, x) := ζoTs(Z)(x))−1

V s(t, x) = (D(Ts(Z)−1)−1.( V (t)oTs(Z)−1 − ∂

∂t
(Ts(Z)−1 ) ). (11)

Notice that D(Ts(Z)−1)−1 = D(Ts(Z))oTs(Z)−1.
From classical calculus (Sokolowski and Zolésio, 1991; Zolésio, 1992; De-

Saint and Zolésio, 1997; Delfour and Zolésio, 2001; Kawohl et al., 1998) using
the strong flow mapping Ts(Z) we get the following stability result for the con-
necting family:

Theorem 4 Let there be given z ∈ C0([0, s1] × [0, 1], C1(D̄, RN )), z(s, t).n =
0, on ∂D and Ω a measurable subset in D. Consider any pair Ωi, i = 0, 1 in
B(Ω), then, with Z = (0, z), we have:

∀(ζ, V ) ∈ T (Ω0,Ω1), the elements (ζs, V s) defined at (11) verify (ζs, V s) ∈
T (Ω0,Ω1).

Remark 1 This stability property does not require the function ζ to be a char-
acteristic function. This property still hold true for example for probability
measures.

Remark 2 As V ∈Hp
0 , the moving domain verifies meas(Ωt)=

∫
D ζ(t, x)dx = a

and the s-perturbed moving domain Ωs
t such that χΩs

t
= ζ(t)oTs(Z(t))−1 (or

equivalently Ωs
t = Ts(Z(t))(Ωt) ), verifies meas(Ωs

t ) = a > 0 if divxz(s, t, .) = 0
in D.

6. Tube energy

We shall make use of the following compactness result, see Zolésio (2002, 2007b),
Moubachir and Zolésio (2006):
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Theorem 5 Let p > 1 and 0 ≤ r < 1/2. Consider a sequence ζn ∈ Cr,
bounded in L1(I,Hr(D)) together with ∂

∂tζn bounded in Lp(I, W−1,1(D)), then
there exists a subsequence and an element

ζ ∈ Cr ∩ L1(I, Br(D)) ∩W 1,1(I, W−1,1(D)) ⊂ C0(I, L1(D))

such that ζn strongly converges to ζ in L1(I, L1(D)) with ∂
∂tζ∈Lp(I,M1 (D,R))

verifying

||ζ||L1(I,Hr(D)) ≤ lim inf ||ζn||L1(I,Hr(D))

and

|| ∂
∂t
ζ||Lp(I,W−1,1(D)) ≤ lim inf || ∂

∂t
ζn||Lp(I,W−1,1(D)).

Moreover, if we define the “r-perimeters“ as

P0(ζ)(t) := ||∇xζ(t)||M1(D,RN ),

r > 0, Ph,r(ζ)(t) =

∫ ∫
D×D

ρh(|x − y|)|ζ(x) − ζ(y))|/|x− y|(N+2r) dxdy

then ζ(t, x) = ζ2(t, x), a.e.(t, x) ∈ I ×D and ζ ∈ C0(I, L1(D)) imply that the
mapping

t ∈ Ī → Ph,r(ζ)(t) is l.s.c. (12)

6.1. Existence of minimizing tube

Being given α ≥ 0, β > 0, σ > 0, we consider the following Tube-Energy func-
tional:

Ep
r (ζ, V ) = 1/2

∫ 1

0

∫
D

(α ζ(t, x) + β) |V (t, x)|pdxdt+ σ

∫ 1

0

pr(ζ)(t) dt. (13)

Theorem 6 Let 0 ≤ r < 1. For any Ω ∈ BP and any pair of sets Ωi ∈
B(Ω), i = 0, 1, the functional Ep

r reaches its minimum on Tr(Ω0,Ω1).

Proof. We consider a minimizing sequence (ζn, Vn) ∈ T (Ω0,Ω1). There exist
subsequences such that Vn ⇀ V , weakly in Lp(I ×D) and ζn → ζ strongly in
L1(I ×D). In fact, as (ζn)t = div( −ζn Vn ), we have p > 1 and:

||ζn||L1(I,Br(D)) ≤ M1, ||(ζn)t||Lp(I, W−1,1(D)) ≤ M2,

the conclusion derives from the compacity result. From this strong L1 con-
vergence we derive that ζ2 = ζ . We consider the weak formulation for the
convection problem (1):

∀ψ ∈ C1(I × D̄, RN ), ψ(0, .) = 0,∫ 1

0

∫
D

ζn ( −ψt −∇ψ.Vn ) dxdt = −
∫

Ω1

ψ(0, x)dx
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in which we can pass to the limit and we conclude that (ζ, V ) ∈ T (Ω0,Ω1).
Moreover the element (ζ, V ) is a classic minimizer as the two terms are weakly
lower semi continuous, respectively, for each of the weak topologies, as we have

∫ 1

0

∫
D

ζ(t, x) |V (t, x)|pdxdt =

∫ 1

0

∫
D

|ζ(t, x)V (t, x)|pdxdt

and

ζn Vn weakly converges in Lp(I ×D) to ζ V.

(Indeed, for any φ ∈ Lp∗

(I ×D) we have |φ (ζn − ζ)|p∗ ≤ 2p∗ |φ|p∗ ∈ L1(I ×D)
while φ (ζn(t, x)− ζ(t, x)) → 0, a.e.(t, x), so that φ ζn → φ ζ strongly inLp∗

(I×
D)). Now, as Vn weakly converges to V , we get

∫ 1

0

∫
D

φ Vn ζn dxdt →
∫ 1

0

∫
D

φ V ζ dxdt;

so that Vn ζn weakly converges in Lp(I ×D) to V ζ.

6.2. Euler equation solved by the minimizer

In order to analyse the necessary conditions associated with any minimizer of
Ep over the set T (Ω0,Ω1) we introduce transverse transformations of the tube.
Without any loss of generality and in order to simplify the calculus we consider
here the specific quadratic situation:

Transverse derivative, quadratic case (p = 2)

Assume that divxZt = 0, then
∫

D

(αζs(t, x) + β) |V s(t, x)|2 dx =

∫
D

(αζ(t, x)+β) |V s(t)oTs(Zt)(x)|2 dx,

so that the optimality of the element (ζ, V ) writes:

1/s ( E(ζs, V soTs) − E(ζ, V ) ) ≥ 0.

Now the following quotient has a strong limit in L2(I ×D):

V soTs − V

s
=

d

ds
[V soTs(Zt) ]s=0

=
d

ds
[ (D(Ts(Zt)−1)−1.( V (t) − ∂

∂t
(Ts(Zt)−1 )oTs(Zt) )]s=0

=
d

ds
[ (D(Ts(Zt)oTs(Zt)−1.( V (t) − ∂

∂t
(Ts(Zt)−1 )oTs(Zt) )]s=0

=
∂

∂t
Z(t) + DZ(t).V (t) ∈ L2(I ×D,RN ),
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where we always denote Z(t)(x) = Z(t, x) := Zt(0, x) (that is, at s = 0). Indeed,
we know that if V were smoother, say V ∈ L2(H1(Ω)), we would have:

∂

∂s
[V s ]s=0 = Zt + [Z(t), V (t)] := HV .Z,

where the Lie bracket is [Z, V ] = DZ.V −DV.Z, so we would get the previous
expression for the derivative of V soTs(Zt), as (V soTs)s = (V s)s +DV s.DZ(t).
This analysis in strong form is used in the non cylindrical shape analysis (or
dynamical domains analysis) in several previous works, see, e.g. Dziri and Zolé-
sio (1999a,2007), Cannarsa, Da Prato and Zolésio (1990), Da Prato and Zolésio
(1988a,b).

6.3. Necessary condition

Quadratic term E2 (p = 2)

As

∫ 1

0

∫
D

( (αζs + β) |V s|2 − (αζ + β)|V |2)/s dxdt

=

∫ 1

0

∫
D

( (αζ + β) ( |V soTs|2 − |V |2)/s dxdt

=

∫ 1

0

∫
D

( (αζ + β) (V soTs + V ) (V soTs − V )/s dxdt

→ 2

∫ 1

0

∫
D

( (αζ + β)V. (
∂

∂t
Z(t) + DZ(t).V (t) ) dxdt

= −2 <
∂

∂t
((αζ + β)V ) + ”D( (αζ + β)V ).V ” , Z >D′×D

where

”D( (αζ + β)V ).V ”i = ∂j( (αζ + β) Vi Vj ) ∈ W−1,1(D).

6.4. h-perimeter in E

In the interesting case, where Hr(D) = Hr(D), we consider, for any given
“small” h > 0 the L1(I) norm of the perimeter:

ph,r(ζ) :=

∫ 1

0

(

∫
D×D

ρh(||x− y||) | ζ(x) − ζ(y) |
||x− y||N+2r

dxdy) dt (14)

so that is is enough to choose the surface tension term in the form σ ph(ζ). This
term turns to be always differentiable with respect to the transverse perturba-
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tions as follows:

ph,r(ζoTs(Z)−1)

=

∫ 1

0

∫
D×D

ρh(||Ts(Z)(x) − Ts(Z)(y)||) |ζ(x) − ζ(y)|
||Ts(Z)(x) − Ts(Z)(y)||N+2r

dxdydt.

So, for a.e. t in I we have

∂

∂s
ph,r(ζ

s(t))s=0 = (15)
∫

D×D

ρh(||x− y||) |ζ(x) − ζ(y)|
||x− y||N+2r

<
x− y

||x− y|| ,
Z(t, x) − Z(t, y)

||x− y|| > dxdy

+

∫
D×D

ρ′h(||x− y||) |ζ(x) − ζ(y)|
||x− y||N+2r

< x− y, Z(t, x) − Z(t, y) > dxdy.

As ||x− y|| ≤ h in the previous integrals, we have:

Z(t, x) − Z(t, y) = DZ(t, x) + δ(t)(y − x)).(y − x)

and there exists a measure µh(Γ(t) supported by

∆h(Σ) = ∪0<t<1 {t} × (∪x∈∂Ωt
B(x, h) )

such that

< µh, Z >=
∂

∂s
Ph,r(ζ

s(t))s=0.

In some sense, when h → 0, the measure converges to the mean curvature of
the moving boundary Γt.

7. Variational solution to incompressible Euler-convection
problem

We have the

Theorem 7 Let Ω be any given element in B. Then any minimizer (ζ, V ) to the
functional E2 over the family of tubes T (Ω0,Ω1) solves the following problem:

∂

∂t
ζ + ∇ζ.V = 0, ζ(0) = χΩ0

, ζ(1) = χΩ1
(16)

divV = 0, ζ = ζ2 (17)

∃P s.t.
∂

∂t
( (αζ + β)V ) + D( (αζ + β)V ).V + ∇P = µh. (18)
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Note, see Zolésio (1999a), that equation (18) writes

(αζ + β) (
∂

∂t
V + DV.V ) + ∇P = 1/2µh. (19)

More generally, we have:

Theorem 8 Let Ω be any given element in B . Then any minimizer (ζ, V ) to
the functional Ep over the family of tubes T (Ω0,Ω1) solves the following problem:

∂

∂t
ζ + ∇ζ.V = 0, ζ(0) = χΩ0

, ζ(1) = χΩ1
(20)

divV = 0, ζ = ζ2 (21)

∃P s.t.
∂

∂t
((αζ+β)||V ||p−2V ) +D((αζ + β)||V ||p−2V ).V + ∇P = 1/pµh. (22)

We could also consider

Ẽp(ζ, V ) =

∫ 1

0

∫
D

||V (t, x)||pdxdt +

∫ 1

0

||ζ(t)||B(D)dt

and we would have got the

Theorem 9 Let Ω be any given element in B and p > 1. Then any minimizer
(ζ, V ) to the functional Ẽp over the family of tubes T (Ω0,Ω1) solves the following
problem:

∂

∂t
ζ + ∇ζ.V = 0, ζ(0) = χΩ0

, ζ(1) = χΩ1
(23)

divV = 0, ζ = ζ2 (24)

∃P s.t.
∂

∂t
(||V ||p−2 V ) + D(||V ||p−2 V ).V + ∇P = 1/p µh. (25)

The Euler equation does not reduce to Hamilton-Jacobi equation for
a scalar potential

It is an important point that the right hand side in the previous Euler flow
equation is not curl free, so it does not derive from a potential, and the geodesic
field V does not reduce to a gradient term as in an incompressible perfect fluid.
Indeed, the support of curlV is included in the boundary of the moving set Ωt.
In the very simple situation of B(D) = BV (D) and Γt being a smooth surface
we would get

< curl(µh), Z >=< µh, curlZ >=

∫ 1

0

∫
Γt

Htnt.curlZ(t) dΓt(x)dt

=

∫ 1

0

∫
Γt

HtdivΓt
(nt × Z(t) ) dΓt(x)dt

= −
∫ 1

0

∫
Γt

(∇Γt
Ht × nt).Z(t) dΓt(x)dt,
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and γt being the trace operator on the manifold Γt:

curlµ(t) = γ∗Γt
.(∇Γt

Ht × nt)

which is zero if and only if the surface Γt has a constant mean curvature. Still
assuming the interface Γt to be a smooth manifold we would get the restrictions
of V to the open domains Ωt and Ωc

t as gradients so that would be in the
following form: V = χΩt

∇φ1(t) + (1 − χΩt
)∇φ2(t).

8. Shape-morphing pseudo-metric on B(Ω)

The minimum of any of the previous energy terms cannot be a metric as it would
violate the first axiom: indeed if the two domains are equal, Ω1 = Ω2 = Ω, the
term

σ
∫ 1

0 p(ζ(t)) dt = ||∇χΩ||M1(D,Rn) or
∫ ∫

Ω×Ωc ρh(||x−y||)||x−y||−N−2rdxdy
is not zero.

The idea would be to consider the following expression for the shape metric:

d̄p(Ω0,Ω1) = INF{ (ζ,V )∈Tr(Ω0,Ω1)}∫ 1

0

∫
D

(α+ βζ)||V (t, x)||pdxdt + “

∫ 1

0

|Ph,r(ζ)
′(t)|p dt′′. (26)

Indeed, the last term is not finite in general as it would imply Ph,r(ζ)(t) to be
time continuous, which is known to be false (the perimeter is l.s.c. as in the
celebrate “camembert entamé ” example: take a circular cheese camembert and
subtract a radial triangular part with angle α, if the perimeter is p(α) then
p(0) = 2π < liminfα→0p(α) = 2π + 2R).

We relax this term by introducing (see Zolésio, 2007a) the “time capacity”
term

θp(ζ) = INF{µ∈Kp(ζ) }

∫ 1

0

|µ′(t)|p dt (27)

with the closed convex set

Kp(ζ) = { µ ∈ W 1,p(I) s.t. ||∇xζ(t)||M1(D,RN ) ≤ µ(t) a.e.t ∈ I }. (28)

Then the metric is

dp(Ω0,Ω1) := INF{(ζ,V )∈T p(Ω0,Ω1)}

∫ 1

0

∫
D

(α + βζ)||V (t, x)||pdxdt+ θp(ζ). (29)

Theorem 10 For p ≥ 1, σ ≥ 0, α > 0, β ≥ 0, dp is a p-quasi metric on B(Ω):
∀(Ω0,Ω1,Ω1) ∈ Bp(Ω)3,

dp(Ω0,Ω1) = 0 iff Ω0 = Ω1, dp(Ω0,Ω2) = dp(Ω0,Ω2)

dp(Ω0,Ω2) ≤ 2p−1 ( dp(Ω0,Ω1) + dp(Ω1,Ω2) ).

Notice that with p = 1, σ ≥ 0, d1 is a metric on B(Ω).
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Theorem 11 Let p > 1, σ > 0, α > 0, β ≥ 0, then, equipped with dp, the
family B(Ω) is a complete quasi-metric space.

8.1. Metric with geodesic

In order to get differentiable energy term we first choose 0 < r < 1/2 and
Hr = Hr(D) but again we correct the energy term ph(ζ) as we need to reach
zero when the two sets Ωi are equal. Again we relax this term by introducing:

θp
h,r(ζ) = INF{ν∈Kp

h,r
(ζ) }

∫ 1

0

|ν′(t)|p dt (30)

with the closed convex set, with r < 1,

Kp
h,r(ζ) = {ν ∈W 1,p(I),

∫ ∫
D×D

ρh(|x− y|) |ζ(t, x) − ζ(t, y)|
|x− y|N+2r

dxdy

≤ ν(t) a.e.t ∈ I}. (31)

Then the metric is

dp
h,r(Ω0,Ω1) := INF{ (ζ,V )∈T p

h
(Ω0,Ω1) }

∫ 1

0

∫
D

(α+ βζ)||V (t, x)||pdxdt

+ θp
h,r(ζ), (32)

and a similar definition holds for the family of connecting tubes Tr(Ω0,Ω1).

Theorem 12 For p ≥ 1, 0 < r < 1/2, σ ≥ 0, dp
h,r is a p-quasi metric on

Br(Ω): ∀(Ω0,Ω1,Ω1) ∈ Bp(Ω)3,

dp
h,r(Ω0,Ω1) = 0 iff Ω0 = Ω1, dh,r

p (Ω0,Ω2) = dp
h,r(Ω0,Ω2)

dp
h,r(Ω0,Ω2) ≤ 2p−1 ( dp

h,r(Ω0,Ω1) + dp
h,r(Ω1,Ω2) ).

Notice that with p = 1, σ ≥ 0, d1
h,r is a metric on B(Ω).

Theorem 13 Let p > 1, σ > 0, then equipped with dp,r
h the family B(Ω) is a

complete quasi-metric space. Moreover, the geodesic (ζ, V ) between to elements
Ωi, i = 0, 1 solves the following Euler problem for some “pressure” term P

(where the measure µh is as defined previously)

∂

∂t
ζ + ∇ζ.V = 0, ζ(0) = χΩ0

, ζ(1) = χΩ1
(33)

divV = 0, ζ = ζ2 (34)

∂

∂t
( (αζ + β)||V ||p−2 V ) + D( (αζ + β)||V ||p−2 V ).V + ∇P

= |ν′(t)|p−2 ν′(t) µh. (35)
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Proof. We consider the derivative of the capacity term θp
h,r(ζ

s), where ζs =
ζ(t)oTs(Z). The idea is to use the derivative of a minimum in the form f(s) =
Min{λ∈K}F (s, λ) where the set K is compact for some topology T and not
depending on the parameter s while F is differentiable with derivatives l.s.c.
with respect to T , see Cuer and Zolésio (1988), Delfour and Zolésio (2001). To
obtain this setting we write

θp
h,r(ζ

s) = Min{λ∈Kp

h,r
(ζ)}

∫ 1

0

| ∂
∂t

(λ+ as(t))|pdt

where

as(t) =

∫ ∫
D×D

(
ρh(|Ts(x) − Ts(y)|
|Ts(x) − Ts(y)|N+r

− ρh(|x− y|
|x− y|N+r

) |ζ(t, x)− ζ(t, y)| dxdy,

which turns out to be differentiable with respect to s, and at s = 0 we have

∂

∂s
(||Ts(x) − Ts(y)||)s=0 =<

x− y

||x− y|| , Z(x) − Z(y) >

so that we get

ȧ(t) :=
∂

∂s
as(t)s=0 =

∫ ∫
D×D

{ ∇ρh(|x− y|) < x− y

|x− y| , Z(x) − Z(y) >

−αρh(|x− y|) < x− y

|x− y| ,
Z(x) − Z(y)

|x− y| > } |ζ(t, x) − ζ(t, y)|
|x− y|N+α

dxdy.

Then, we get:

∂

∂s
θp

h,r(ζ
s)s=0 =

∫ 1

0

p|ν′(t)|p−2 ν′(t) ȧ(t) dt.

Now, the point is to prove the convergence of any Cauchy sequence such that
dp

h,r(Ωp,Ωq) → 0 as p, q → ∞. To begin with we obtain the existence of a

minimizing element (ζ̄n, V̄n) in Tr(Ω0,Ω1).
As ph,r(ζn(0)) = ph,r(ζΩ0

), we have ph,r(ζn(.)) bounded in W 1,p(0, 1) ⊂
C0([0, 1]), then θ(ζn) ≤ M1 and then from (8) we get ||ζn||Lp(I,W r,p(D)) ≤ M2

and the existence of the minimizing element derives as in the previous energy
minimization, except for the specific care for the term

ph,r(ζn) =

∫ 1

0

| ∂
∂t

[

∫
D×D

ρh(||x − y||) | ζn(x) − ζn(y) |
||x− y||N+2r

dxdy]|p dt.

The analysis is as follows: ph(ζn(.)) weakly converges in W 1,p(0, 1) to some
element µ ∈ W 1,p(0, 1), ζn strongly converges in Lp(I×D)∩C0(Ī , Lp(D)) to an
element ζ. From Fatou Lemma (applied at each time t) we have θ(ζ(t)) ≤ µ(t),
but we wonder if µ = ph,r(ζ(.)).
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Let ψ ∈ D(0, 1), then we have:

∫ 1

0

∂

∂t
ph(ζn(t))ψdt = −

∫ 1

0

(

∫
D×D

ρh(||x−y||) | ζn(t, x) − ζn(t, y) |
||x−y||N+2r

dxdy)
∂

∂t
ψdt

=

∫ 1

0

||ζn(t)||pW r,p(D)

∂

∂t
ψdt

−
∫ 1

0

(1 − ρh(||x − y||) )
| ζn(t, x) − ζn(t, y) |

||x− y||N+2r
dxdy)

∂

∂t
ψdt,

the second term converges (as n → ∞) from the Lebesgue Theorem as the
kernel is not singular and is dominated by a constant together with the pointwise
convergence of subsequence of ζn. For any η > 0 we consider

θh,η(ζ(t)) =

∫ ∫
{(x,y)∈D×D, ||x−y|>η}

ρh(||x− y||) |ζ(t, x) − ζ(t, y)|
|x− y|N+2r

dxdy

ζn → ζ, ph(ζn) → µ, σ −W 1,p(0, 1)

then ph(ζn) is bounded in Lp(I,W 1,p(0, 1)). This morphic metric can be han-
dled numerically. In this direction we developed several Galerkin approaches
based on level set parametrization for the moving domain (Zolésio, 2007a, 2009).
In several experiments the geodesic turns out to be numerically stable (Blan-
chard and Zolésio, 2008, 2009; Toniolo and Zolésio, 2009).

9. Asymptotic analysis

An important issue is the asymptotic analysis when α + β → 0, (see Zolésio,
2009): for p = 1 the vector field just appears through the speed boundary
element v(t) =< V (t), nt > on ∂Ωt so that

|| ∂
∂t
ζ||L1(I,M1(D)) =

∫ 1

0

∫
Ωt

|v(t, x)| dΓt(x)dt

and the metric takes the following intrinsic form: the Eulerian vector field is no
more necessary (in the limit it would solve, formally, some eikonal equation).
We simply consider the set of characteristic functions

C = { ζ = ζ2 ∈ L1(I ×D) }, C0 = C ∩ C0(I, L1(D)), (36)

the family of connecting tubes

T 0(Ω0,Ω1) = {ζ ∈ C0 s.t. ζ(i) = χΩi
, i = 0, 1 }, (37)

considering the Banach space of bounded measure M1(D) we set

p ≥ 1, Cp = { ζ ∈ C s.t. ∂
∂t
ζ ∈ Lp(I,M1(D)) } (38)
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that is

Cp = C ∩ Lp(I, BV (D)) ⊂ C0(I, L1(D)) (39)

p ≥ 1, Cp = { ζ ∈ C0 s.t.
∂

∂t
ζ ∈ Lp(I,M1(D)) }. (40)

Corollary 1 Let p ≥ 1, then

dp(Ω0,Ω1) = Inf{ζ∈Cp, ζ(i)=χΩi
}

∫ 1

0

|| ∂
∂t
ζ(t)||pM1(D)dt (41)

is a quasi metric. When p = 1, d1 is a metric.

In level set representation, let Ωi = {x ∈ D, φi(x) > 0 }, then the moving
domain Ωt is sought in the form Ωt = {x ∈ D, φ(t, x) > 0 } for some smooth
function φ verifying the connection property: φ(i, x) = φi(x), i = 1, 2, and it
turns out that

|| ∂
∂t
ζ(t)||M1(D) =

∫
{x∈D, φ(t,x)=t}

∂

∂t
φ(t, x)| ||∇φ(t, x)||−1dΓt(x).

Using an “ad hoc” Galerkin approximation we obtain geodesic connecting do-
mains with different topologies.
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