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Abstract: The field of Intelligent Manufacturing Systems (IMS)
has been generally equated with the use of Artificial Intelligence and
Computational Intelligence methods and techniques in the design
and operation of manufacturing systems. Those methods and tech-
niques are now applied in many different technological domains to
deal with such pervasive problems as data imprecision and nonlin-
ear system behavior. The focus in IMS is now shifting to a broader
understanding of the intelligent behavior of manufacturing systems.
The questions debated by researchers today relate more to what kind
and what level of adaptability to instill in the structure and oper-
ation of a manufacturing system, with the discussions increasingly
gravitating to the issue of system self-organization. This paper ex-
plores the changing face of IMS from the perspective of the pattern
recognition domain. It presents design criteria for techniques that
will allow us to implement manufacturing systems exhibiting adap-
tive and intelligent behaviour. Examples are given to show how in-
corporating pattern recognition capabilities can help us build more
intelligence and self-organization into the manufacturing systems of
the future.

Keywords: Intelligent Manufacturing Systems, pattern recog-
nition, computational intelligence, neural networks, distributed sys-
tems, spatial filtering, feature selection, dimensionality reduction,
supervised classification.

1. Introduction

What has defined Intelligent Manufacturing Systems (IMS), especially in the
initial stages of the emergence of this technology, has been the very fact of em-
ployment of methods and techniques of Artificial Intelligence (expert systems)
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and Computational Intelligence (predominantly neural networks, fuzzy logic and
genetic algorithms) in the design and operation of manufacturing systems. For
decades now, the power of those methods and the need to effectively deal with
such pervasive problems as data imprecision and nonlinear system behaviour
have sustained research on their application in many different technological do-
mains.

Most of the problems involved in the design of manufacturing systems are,
by nature, combinatorial and NP-hard. In order to perform combinatorial opti-
mization, various meta-heuristics such as genetic algorithms, simulated anneal-
ing, and tabu search, have been extensively studied and reported. Results of a
survey of recently published literature on assembly-line balancing, including ge-
netic algorithms, were compiled by Tasan and Tunali (2008). A computer-aided,
intelligent programming system based on genetic algorithms (GA) for selection
of numerically controlled cutting tools, tool sequence planning and optimiza-
tion of cutting conditions was designed and described in Balic, Kovacic and
Vaupotic (2006). Adaptive Hierarchical Ant Colony Optimization (AHACO)
was proposed to resolve the traditional machine loading problem in Flexible
Manufacturing Systems (FMS). This problem is formulated in terms of mini-
mizing the system unbalance and maximizing the throughput by considering job
sequencing, optional machines and technological constraints (Prakash, Tiwari
and Shankar, 2008).

Neural network methods have been of particular interest, and they have
been investigated in the context of a large number of applications. The pre-
diction of surface roughness in Electrical Discharge Machining was proposed by
Markopulos, Manolakos and Vaxevanidis (2008). A method based on a two-layer
dynamic Elman neural network for detecting faults in the assembly of thread-
forming screws was presented by Chumakov (2008). The applicability of neural
networks for the selection of all possible operations for machining rotationally
symmetrical components, by pre-structuring the neural network with prior do-
main knowledge in the form of heuristic fuzzy-logic rules was investigated by
Deb, Ghosh and Paul (2006).

Given that pattern recognition deals with automatic detection of any re-
lations, regularities or structure inherent in data sources, a number of opera-
tions encountered in manufacturing system design are closely related to pattern
recognition problems. The main tasks in pattern recognition are pattern repre-
sentation, pattern classification, and reference model learning and adaptation.
An example of a direct application of pattern classification using image pro-
cessing is a case-based evolutionary identification model developed for printed
circuit board (PCB) inspection and defect classification (Chang, Chen and Fan,
2008). The segmentation of PCB images is performed in two phases. In the first
phase, a set of defect images of several existing basic patterns is stored to form
a concept space. In the second phase, a new pattern is generated evolution-
ally by calculating the relative position of several similar cases in the concept
space. The features, required to deliver new patterns so that user requirements



Intelligence in manufacturing systems: the pattern recognition perspective 235

are satisfied, are then determined by a case-based reasoning system drawing on
past experience within the domain database. Broad areas of the application of
pattern recognition are non-destructive testing (Chen, 1999) and diagnosis of
manufacturing processes (Ding, Ceglarek and Shi, 2002).

Pattern recognition problems are closely related to data mining technology
(Wang, 2007). In many modern manufacturing plants, data that characterize
the manufacturing process are electronically collected and stored in the orga-
nization’s databases. Thus, data mining tools can be used for automatically
discovering interesting and useful patterns in the manufacturing processes. The
literature presents several studies that examine the implementation of data min-
ing tools in manufacturing (Kusiak and Smith, 2007). The discovered patterns
can be subsequently exploited to enhance the whole manufacturing process by
improving, for example, product quality. However, data accumulated in manu-
facturing plants often have unique characteristics, such as unbalanced distribu-
tion of the target attribute, and a small training set relative to the number of
input features. Thus, conventional methods are inaccurate in quality improve-
ment cases. A feature set decomposition methodology (Rokach and Maimon,
2006), tested on various real-world manufacturing datasets, was shown to be
capable of dealing with the manufacturing data characteristics associated with
quality improvement.

The process of classification and interpretation of patterns often employs
Artificial Intelligence (AI) techniques. This process is involved and was shown
beneficial in the design and planning stages of manufacturing. It can assist in
solving scheduling and control problems, and can be used in manufacturing inte-
gration. A variety of AI techniques and methods can be applied: symbolic rep-
resentations and expert systems, geometric reasoning, abstraction-based search,
intelligent agents, machine learning, etc. Consequently, a question arises con-
cerning selection of the appropriate method for the task at hand. The present
paper addresses this issue from the perspective of pattern recognition theory,
whereas the comprehension of system intelligence is approached from the stand-
point of achieving system goal. The paper casts the problem of designing opti-
mal feature selection and classification systems against the background of the
computer science theory that establishes the link between the feature selection
and the classification problem on the one hand and cognitive aspects of machine
intelligence on the other.

A multi-level framework for the design of Intelligent Manufacturing Systems,
presented in the context of AI, is outlined in Section 2. An introduction to the
issues associated with the employment of pattern recognition methods is given
in Section 3. Section 4 discusses problems associated with initial stages of a
pattern recognition system design, i.e., data representation and preprocessing.
The issue of feature extraction and selection is presented in Section 5. Section 6
discusses the classification problem in more detail. Architectures pertaining to
the design and implementation of intelligent systems are discussed in Section 7.
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2. Framework for IMS design

The notion of intelligence in the design and operation of a manufacturing sys-
tem has been subject to various interpretations, since it relates to the particular
comprehension of the concept of machine intelligence. There are several defi-
nitions of intelligence. The most important or widely used can be grouped as
follows:

1) Implicit definitions based on tests. The tests can explore the capability of
a system to generate alternatives and select one of them properly, extract
the meaning of a paper, match two sets of interrelated objects, etc.

2) Definitions based on descriptive enumeration of the required properties of
an intelligent system. For example, the property of recognizing a scene or
constructing a correct response from a perceived situation.

3) Definitions linking intelligence with cognition (Newell, 1990).
4) Pragmatic definitions, stating, for example, that if a system uses fuzzy

logic and neural networks, then it is considered intelligent.

In current practice, the pragmatic definition has been predominant in defin-
ing Intelligent Manufacturing Systems. We find, and this will be demonstrated
further in the paper, that Newell’s definition corresponds best to the practice of
intelligent system design, particularly in the context of solving pattern recogni-
tion problems. The definition postulates that

the essence of being an intelligent system is that the system’s behav-
ior can be predicted based only on the content of its representations
plus its knowledge of its goals.

Intelligent system operation is technically achieved through implementation
of the principles, methods and technologies of AI and Computational Intelligence
(CI). Implementation of those technologies in manufacturing systems can be
addressed at two levels:

Direct level - relates to the application of AI/CI methods and techniques in
manufacturing systems.

Meta-level - relates to the issue of how one can best exploit the capabili-
ties made available by a variety of AI/CI methods and techniques to construct
goal-oriented IMS operating in a wide range of environments.

A hierarchical framework introduced by Davedzic and Radovic (1999), pri-
marily for the development of software architectures, is also relevant to IMS
design. It defines five levels of abstraction: the primitives level, the components
level, the blocks level, the system level, and the integration level. Table 1 de-
picts some concepts, processes, methods, approaches and tools typical of each
of the abstraction levels. The component techniques, such as expert systems,
neural networks or genetic optimization, used in the design and development of
intelligent behaviour of manufacturing systems can be combined in many ways,
depending not only on the technological application, but also on the type of the
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process in terms of the level of its abstraction. The diversity of the techniques,
methods and tools extends toward the higher levels of abstraction.

In relation to manufacturing systems, the components at the lowest levels
are generic and can be applied in various IMSs. With an increase in abstraction
level, the use of pattern recognition techniques becomes increasingly domain-
dependent. The problem-solving approach may be geared more to the needs of
an assembly line control, a robotic cell or a Computer-Aided Production and
Planning system.

Newell’s cognition-based definition of intelligence, unlike other definitions,
embraces the meta-level by placing the issues of integration and knowledge
organization in the perspective of achieving system goals. It also puts the role
of intelligence in engineering systems in the right perspective. Application of
AI methods, including pattern recognition and interpretation methods, should:

• focus on problems that otherwise cannot be solved;
• provide a tool for fighting complexity;
• employ cognitive properties of intelligence: generalization, attention fo-

cusing, etc.
Typical pattern recognition tasks span all abstraction levels to some ex-

tent, but weigh more heavily on the lower levels. The lowest level is associated
with template matching tasks. Pattern identification and statistical learning
methods operate mostly at the components level. The blocks level incorporates
more complex tasks, such as learning techniques included in problem solving
strategies. The system level employs heuristic classification methods for the
interpretation of an entire scene. The integration level calls for a multi-agent
approach to content-based search in integrated problem solving.

3. Pattern recognition problems

Proper design of a pattern recognition system requires a thorough investigation
of several specific theoretical and practical issues:

Immense search space: The exponential growth of the search space with
a corresponding increase in the number of features makes any direct search
method impractical.

Noise-contaminated observations: The training set may contain unreliable
or missing data.

Multiple representations: Multiple sources of data as well as multi-level
data/knowledge structures applied in a complex recognition system require fo-
cusing of attention on subspaces of different resolution and representation.

Multi-modal and non-linear objective function: The objective function may
contain many local minima.

Discrete/continuous search space: A complete pattern recognition system
usually embodies both discrete and continuous optimization problems.
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These issues are normally addressed in the context of two typical pattern
recognition problems: supervised and unsupervised. The aim of supervised
learning and classification is to build a classifier from a set of pre-classified
instances. In unsupervised problem (clustering), the pattern is assigned to a
hitherto unknown class. The classes are learned based on the similarity of
patterns. The pattern recognition process can be broadly illustrated as in Fig. 1.

Solution

Supervised Unsupervised

Feature extraction 
and selection 

Selection of the 
clustering method 

Data clustering

Training  
and testing 

Data collection and 
preprocessing 

OK?

OK?

Selection of the
classifier 

Figure 1. Structure of the pattern recognition process

The information to solve the supervised problem usually comes in the form
of a labeled data set Z = {z1, . . . , zN} defined in the n-dimensional feature
space ℜn. The feature values for a given object are arranged as a vector x =
[x1, . . . , xn]T ∈ ℜn. Let us denote the class label of zj by λ(zj) ∈ Λ, j =
1, . . . , N . A classifier is any function:

D : ℜn → Λ. (1)

Class labels are assigned to the classified objects x using c discriminant functions
G = {g1(x), . . . , gc(x)},

gi : ℜn → ℜ, i = 1, . . . , c. (2)



240 M.B. ZAREMBA

If each discriminant function gi yields a score for the i-th class, and x is labeled
in the class with the highest score, then the classifier

D(x) = λi ∈ Λ ↔ gi(x) = max
i=1,...,c

{gi(x)} (3)

follows the maximum membership rule. The discriminant functions partition
the feature space ℜ into c classification (decision) regions:

Ri = {x|x ∈ ℜn, gi(x) = max
l=1,...,c

{gl(x)} (4)

enclosed by the classification boundaries. If the classes in the object set Z can
be separated from each other by the classification boundaries in the form of a
hyperplane, the classes are called linearly separable.

The unsupervised (clustering) problem explores an unlabeled data set Z and
searches for groups of data similar to one another. A clustering method produces
a partition P = (Z1, . . . ,Zc), Zi ⊆ Z. Unsupervised classification algorithms
are optimal in cases where detailed knowledge such as ground truth data is not
readily available. Based on user-defined parameters, data are iteratively grouped
together in clusters. Classes can be determined by distinctions inherent in the
data.

The effective use of multiple features and the selection of a suitable classi-
fication method are especially significant for improving classification accuracy.
There is a variety of classification and learning algorithms. Let us address the
issue of feature selection and the selection of the classifier from the machine
learning theory perspective, again in the broader context of the purpose and
the goal of the application of the particular algorithm.

As shown by Watanabe (1969) in the Ugly Duckling theorem (UDT), “From
the formal point of view there exists no such thing as a class of similar objects
in the world, insofar as all predicates (of the same dimension) have the same
importance. Conversely, if we acknowledge the empirical existence of classes
of similar objects, it means that we are attaching nonuniform importance to
various predicates, and that this weighting has an extralogical origin.” In other
words, in the absence of assumptions there is no “best” feature representation
of the objects classified. If the similarity is judged by the number of predicates
the patterns share, then any two patterns are equally similar. A twin theorem,
the No Free Lunch (NFL) theorem (Wolpert and Macready, 1995), states that
learning and classification algorithms cannot be universally good, i.e., any two
algorithms are equivalent when their performance is averaged across all possible
problems.

There are many implications of the above two theorems. The results indicate
that matching algorithms to problems gives higher average performance than
does applying a fixed algorithm to all. Statements indicating that a learning
algorithm a1 is better than a learning algorithm a2 are ultimately statements
about the relevant target functions. The two fundamental theorems imply that
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there is no problem-independent optimal learning machine. Comparisons be-
tween the algorithms should therefore include a sufficiently diverse set of al-
ternative algorithms and should cover a number of real world benchmark data
sets. In practical terms, experience with a broad range of techniques is the best
insurance for solving arbitrary new pattern classification problems. The UGT
and NFL theorems are consistent with Newell’s definition of AI given in Sec-
tion 2 in their emphasis on the goal of the pattern recognition task. They assert
that classification is impossible without some bias coming from the knowledge
of the goals of the intelligent system under design.

The main components of the pattern recognition process in Fig. 1, i.e., data
preprocessing, feature selection, and classification, are addressed in more detail
in the next sections.

4. Data representation and preprocessing

Designing a suitable image preprocessing procedure is a prerequisite for suc-
cessful classification. Some of the crucial problems encountered in practice with
processing of sensory data are:

– spatial sparseness and multi-resolution data sources,
– nonlinearity of data,
– high dimensionality of data.

A) Spatial data sparseness

There are several sources of sparseness in spatial data. The data may be
acquired in the form of a sparse image due to the discrepancy between the spatial
resolution of the sensor and the size and distribution of the objects of interest.
The results of unsupervised classification tend to produce salt-and-pepper-like
effects. The output of a change-detection algorithm where decisions are made
independently at different scales is often in the form of sparse, noisy data.
Examples of sparse data are shown in Fig. 2. They range from planar shape
images acquired under poor conditions (Fig. 2a) through point cloud data, such
as those generated by a LiDAR (Light Detection And Ranging) sensor depicted
in Fig. 2b, to the results of the segmentation of terrain data obtained from a
Synthetic Aperture Radar (SAR) satellite image (Fig. 2c).

Conventional image processing techniques perform poorly on sparse shapes,
due to the anisotropy and noncontiguity of the shape regions. Drawing on
the human vision analogy, attention-based analysis, including wavelet operators
with such wavelet types as curvelets and ridgelets (Starck, 1998), offers tools
for effectively addressing the above issues. In contrast to the standard isotropic
image analysis, attention operators incorporate multi-scale analysis (essential
for processing of data obtained from sources with different resolution) of the
anisotropy of objects of interest. In addition, statistical approaches, based on
the maximum likelihood strategy, have been reported for directed attention
during visual search (Tagare, Toyama and Wang, 2001).
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a) b) c)

Figure 2. Data sparseness: a) sparse planar shape; b) projection of a cloud of
altimetry data; c) result of multichannel SAR classification

A probabilistic Bayesian approach, called the relevance function approach
(Palenichka, Zaremba and Missaoui, 2006), can be successfully used in various
situations to effectively deal with multi-scale and sparse data. The point that
is located at the centre of an object of interest and corresponds to the maximal
value of a certain likelihood function allows for an optimal location of the object
of interest. The relevance function is an image local operator (a non-linear
spatial filter) that has local maximal values at centres of location of the objects of
interest or their salient parts. The operator typically processes data obtained by
an image transformation that involves extraction of an image property relevant
to the determined objects. The result of such a transformation, f(i, j), is called
object property map. This approach works especially well if the image conforms
to the underlying model, i.e., when the image intensity and the object shape
satisfy certain explicit constraints.

An implementationof the relevance function, theMulti-Scale IsotropicMatch-
ed Filter (MIMF) (Eq. 5) accounts for four saliency conditions (tokens) of a
sparse image: contrast between the object O and the background B, local non-
homogeneity of the scene f(i, j), radial symmetry, and scale S. The spatial scale
is a measure of the size of the filtered region, expressed in the number of pixels.
In general, the MIMF is computed within the given scale range (Smax, Smin) at
a point (i, j) as:

MIMF{f(i, j), Sk} = c(i, j, Sk)−α · d(i, j, Sk)+β · s(i, j, Sk)+γ · p(i, j, Sk) (5)

where:
c(i, j, Sk) is an estimate of the symmetric local contrast at point (i, j) and

the current scale Sk,
d(i, j, Sk) is an estimate of the object homogeneity, defined as the mean

intensity deviation in the object region,
s(i, j, Sk) is the difference between the current scale and the minimal possible

scale Smin,
p(i, j, Sk) is the object shape symmetry (compactness), and
α, β, γ are weight coefficients relative to the first saliency token.
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In general, any object-relevant feature can be used as an object property to-
ken. Equation (6) provides an example of a more detailed form of (5) defined for
a discrete (raster) property map, and for two tokens: contrast and homogeneity.

M{f(i, j)} =





1

|O|

∑

(m,n)∈O(i,j)

f(m, n) −
1

|B|

∑

(m,n)∈B(i,j)

f(m, n)





2

−γ ·



a −
1

|O|

∑

(m,n)∈O(i,j)

f(m, n)





2

(6)

Fig. 3 illustrates the topological relationship between the object O and back-
ground B regions used to calculate (6).

Object region 

O = Sk Sk-1

Background 

region  

B = Sk+1\ Sk

Current 

point

Figure 3. Object and background regions

Detection of features of interest in an image is optimal at a certain scale
(Jähne, 2002). So, efficient processing of an image requires processing at dif-
ferent scales. Typically, multi-scale methods are based on multi-grid represen-
tations, such as Gaussian or Laplacian pyramids, or wavelets. In the MIMF
method, the scale can be estimated for a given image on a single grid in
an adaptive way by maximizing local contrast with a homogeneity constraint
(Palenichka and Zaremba, 2007):

Ŝ(i, j) = arg max
0≤k≤N−1

{c(i, j, Sk) − α d(i, j, Sk)} (7)

where N is the total number of scales in the given scale range. Fast recursive
algorithms have been developed to time-efficiently implement the formula.

Although particularly efficient for filtering spatially sparse data, the MIMF
method also offers several advantages in detecting objects of interest invariant
to size and orientation changes, through its use of the multi-scale model-based
approach and optimal decision making, since the approach is based on the max-
imum likelihood rule. Figs. 4 and 5 illustrate two examples of the application
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of the MIMF method: for image representations for content retrieval (Fig. 4)
and for the diagnosis of the quality of photodetector surfaces (Fig. 5).

a)  b)    c) 

Figure 4. Image content representation by a set of feature vectors in salient
locations: (a) original image; (b) property map calculated over the whole scale
range; (c) detected salient locations

a)    b) 

Figure 5. Defect detection in photodetector surfaces. a) original image of a
photoreceptor surface; b) defect regions

B) Nonlinear data relationships

Linear patterns can be detected efficiently by classical techniques such as
least square regression. The use of those well-known tools for discovering non-
linear patterns requires mapping of the data into a suitable feature space. Map-
ping of nonlinear relations into linear ones without the explicit computation of
feature mapping is made feasible through the employment of kernels (Shawe-
Taylor and Cristianini, 2004). Many linear parametric models for classification,
regression and novelty detection can be reformulated in terms of a dual repre-
sentation in which the predictions are based on linear combinations of a kernel
function:

K(x,x’) =< φ(x), φ(x’ >, (8)

where φ is a mapping from X to a feature space F for all x,x’ ∈ X .
Kernel functions perform mapping from an initial nonlinear space to an in-

ner product, possibly high-dimensional, feature space. This technique of kernel
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substitution (the so-called kernel trick) can be applied in the development of
nonlinear variants of several methods used in pattern recognition, such as Prin-
cipal Component Analysis, nearest-neighbour classifier or Fisher discriminant
analysis. The kernel concept (Aizerman, Braverman and Rozonoer, 1964) was
re-introduced into machine learning in the context of large-margin classifiers
(Vapnik, 1998) and Support Vector Machines (SVM). Since then, there has
been considerable research interest in kernel methods, both in terms of theoret-
ical investigations and practical applications (Bishop, 2006).

The advantage of using a kernel function is that, since the number of tune-
able parameters no longer depends on the number of attributes used, mapping
to high-dimensional feature space does not increase the number of these param-
eters. This provides a solution to the curse of dimensionality problem. Different
kernel functions can be used:

K(x,x’) = (< x,x’ > +R)d — polynomial kernel

K(x,x’) = exp(− | x − x’ |2 /2σ2) — Radial Basis Function kernel

K(x,x’) =

n
∏

i=1

(1 + aixix
′
i) — all-subsets kernel

K(x,x’) = tanh(axTx′ + b) — sigmoidal kernel,

and other that satisfy Mercer’s condition (Schölkopf and Smola, 2002). Selection
of the best kernel for a particular problem is a question that arises in many
applications. In the context of SVM theory, a means of comparing different
kernels is the evaluation of the upper bound of the Vapnik-Chervonenkis (VC)
dimension (Hastie, Tibshirani and Friedman, 2001). The VC dimension of the
class of functions {f(x, α)}, indexed by a parameter vector α, is defined to be
the largest number of points that can be shattered by members of {f(x, α)}. A
set of points is said to be shattered by a class of functions if, no matter how
we assign a binary label to each point, a member of the class can perfectly
separate them. The VC approach fits a sequence of models (in this case, kernel
functions) of increasing VC dimensions, and then chooses the model with the
smallest value of the upper bound. Recent research has focused on developing
efficient, specialized kernel optimization algorithms (Tsang and Kwok, 2006;
Zien and Ong, 2007).

A method that uses kernel functions consists of two phases: kernel mapping
into the feature space and a learning phase that aims at discovering linear
patterns in that space. The kernel approach is modular and flexible. What
is of practical importance, it has been extended to handle strings of symbols
(including text), trees, and general structured data.
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C) Immense search space and data complexity

A defining feature of a large class of information systems in manufactur-
ing, especially in multi-sensor systems, is the high complexity of data, which
influences the performance of the classification techniques that use the data.
Such techniques as fusion of multi-sensory or multi-resolution data, the use of
multi-temporal data or image transforms data used for improving classification
accuracy contribute to the rapid increase of data dimensionality in a variety of
problems. The curse of dimensionality is a well-known but not entirely well-
understood phenomenon. The relationship between the expected classification
accuracy and the number of training samples and the measurement complexity
was initially investigated in Hughes (1968). The results show that for a fixed
number of training samples there is an optimal measurement complexity. The
analysis process applied in low-dimensional spaces is in most cases not appro-
priate in spaces with higher dimensionality. A problem with distance metrics in
a high-dimensional space is that distance is typically measured across volume.
Volume increases exponentially as dimensionality increases, and points tend to
become equidistant. A closely related problem is the issue of the high dimen-
sionality of data, regarded in more general terms as the dimensionality of the
feature space, which is addressed in the next section.

5. Feature extraction and selection

Classifiers can be built on different sets of features, the number of which can be
very large, particularly in such applications as machine vision or multi-sensor di-
agnostic systems. In order to improve the generalization capability, smaller sets
of features are generated from the original input variables. Several approaches
and methods have been developed to reduce feature dimensionality. They can
be broadly categorized as feature extraction and feature selection. Feature ex-
traction implies generation of new features as a function of the original inputs,
whereas feature selection techniques aim at improving the performance of a
pattern recognition system by discarding bad or irrelevant features from the
available set of features.

Table 2 compares typical dimensionality reduction methods (Zaremba, 2008)
that apply to the feature extraction approach: Principal Component Analy-
sis (Cooley and Lohnes, 1971), Self-Organizing Maps (Kohonen et al., 1996),
ISOMAP (Tenenbaum, de Silva and Langford, 2000), and Locally Linear Em-
bedding (Roweis and Soul, 2000). It should be noted that the extracted features
lose the physical meaning of their original counterparts, which can be disadvan-
tageous in certain applications.

A widely used feature selection procedure consists in the forward or backward
selection method using a selection criterion. In backward selection, we start
from a large set of features and consecutively delete those, which impair the
selection criterion the least. In forward selection, we start from a minimum set
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of features and consecutively add those, which improve the selection criterion the
most. Since the selection criteria usually apply local optimization techniques,
global optimality of feature selection is not guaranteed. Backward selection
tends to be slower but more stable in selecting optimal features than forward
selection. Many feature selection algorithms use CI techniques: neural networks
(Verikas and Bacauskiene, 2002; Liu et al., 2004), genetic algorithms (Oh, et
al., 2004; Zhang, Verma and Kumar, 2005), fuzzy logic (Bhatt and Gopal,
2005), with applications ranging from diagnosis (Jack and Nandi, 2002) to target
discrimination in Synthetic Aperture Radar images (Bhanu and Lin, 2003).
Specialized methods have also been developed to deal with feature selection for
very large dimensional data sets (Liu and Lu, 2005).

An important practical consideration is that in the classification problem,
the complexity of feature selection is closely related to the degree of imbalance
of the learning set and our a priori knowledge of the distribution of (z|y). With
an unbalanced number of positive versus negative examples in the learning set,
significant evidence is required to demonstrate that a feature is not meaningful.
If the learning set is balanced, features are more easily selected. A framework to
overcome high dimensionality in unbalanced problems was proposed by Evan-
gelista, Embrechts and Szymanski (2006). The framework explores subspaces
of the data, training a separate model for each subspace, and then fusing the
decision variables produced by the test data for each subspace.

6. Pattern classification and learning

A great amount of research has been directed toward developing advanced classi-
fication approaches and techniques for improving classification accuracy. Many
classification approaches, such as artificial neural networks, discriminant analy-
sis, tree classifiers and expert systems, have been widely applied. Fig. 6 provides
a taxonomy of classification methods including representative examples for each
type of method.

We can distinguish two major groups of methods. The first group assumes
true prior probabilities, P (λi), for a set of class labels Λ = {λi}, i = 1, . . . , c,
where c denotes the number of classes, as well as class-conditional probability
density functions (pdf), p(x|λi), estimated from the data set. In general terms,
Bayes decision theory is applied when class-conditional densities are known.
Both parametric and non-parametric methods can be used. If the classes are
normally distributed, then either LDC or QDC is the optimal classifier. The
parameters (e.g., mean vector and covariance matrix) are often generated from
training samples. In nonparametric designs, p(x|λi) has to be estimated in the
vicinity of x in a certain region R ⊂ ℜn. In order to derive the multi-modal
classifier, the feature space is divided into cells (bins), and the probabilities are
calculated based on the number of points contained in the cells which belong to
different classes. Group A (Fig. 6) classifiers may often produce noisy results.
Another major drawback is that it is difficult to integrate ancillary data, spatial
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Group A
Methods applying class-conditional 

probability distribution (pdf) models 

Group B
Methods applying discriminant function 

(classification boundaries Ri)

Parametric   
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Nonparametric   

-  k-nn 
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 - multinomial 

   (histogram)
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Non-linear   
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- piecewise    

  linear 

   discriminator 

   LDA 

Structural

- tree 

classifiers 

- prototype- 

  based 

  classifiers 

Semiparametric   

- mixture  

modelling 

Linear

- perceptron 

- Fisher’s 

Figure 6. Classification methods

and contextual attributes, and non-statistical information into a classification
procedure. Those types of data and information often have to be handled in
engineering systems.

There is a variety of classification and learning methods applying discrim-
inant functions algorithms: generalized linear discriminators, neural networks,
fuzzy (soft) classifiers (Bezdek et al., 1999), and Support Vector Machines, SVM
(Abe, 2005), just to name a few. Their detailed analysis and comparison is be-
yond the scope of this paper. Let us just mention the most typical methods.
A broad class of classifiers in this group is constructed around neural network
architectures. The main characteristics of neural networks are that they have
the ability to learn complex nonlinear input-output relationships, use sequen-
tial training procedures, and adapt themselves to the data. SVM are generally
recognized as powerful tools for various machine learning problems, performing
structural risk minimization, which minimizes an upper bound on the gener-
alization error in contrast to empirical risk minimization, employed by neural
networks, which minimizes the error on the training data. This is obtained by
mapping the training data into a higher-dimensional feature space via kernel
mapping (see Section 4B), and constructing a separating hyperplane with a
maximum margin. One potential disadvantage of the SVM is that the resulting
classifier is often not as compact as other classifiers. Solutions have been pro-
posed in the form of sparse large margin classifiers or the reduced set method.
In order to obtain both a good kernel and a compact representation of the SVM,
integrating multiple-kernel learning with the sparse kernel SVM was presented
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in Hu, Chen and Kwok (2009). Tree-based methods are conceptually simple yet
powerful. They divide the feature space into a set of nodes, and then classify the
observations in each node into the majority class. A key advantage of the tree-
based methods is their interpretability, a characteristic important in diagnostic
systems. A similar hierarchical method, the object-based structural classifica-
tion (Repaka and Truax, 2004), attempts to describe classes in terms of several
categories of characteristics, each of which may be assigned weighting factors.
Class-related features involve a connection to nearby objects, e.g., super- and
sub-objects in a hierarchy. Standard segmentation can be further augmented
by knowledge-based partitioning and the construction of sub-objects for special
classification tasks. Segmented sets of one class can be merged at the same
level or grouped beneath a new, higher level. Relationship-based classification
is possible as each object is aware of its neighbor, and of sub- and super-objects.

Many factors, such as different sources of the data and variations in their
spatial resolution, the classification system, and the availability of classification
software must be taken into account when selecting a classification method for
practical use. Each classification method has its own merits, and different clas-
sification results may be obtained depending on the classifier(s) chosen. Full
knowledge required to properly assess the information needed for optimal clas-
sification or learning is rarely, if at all, available. What insight can we get in
order to find criteria that can guide us in selecting the best algorithm? Let
us first explore the nature of the generalization error, i.e., the prediction error
of the selected trained model on new data, in the context of bias-variance de-
composition. Achieving good generalization requires finding the right balance
between the estimation error (low bias) and the approximation error (low vari-
ance). In general, bias is associated with underfitting the data, that is, the
classifier cannot match well the optimal model. Variance, in turn, is associated
with overfitting, that is, the performance of the classifier depends on the data
set drawn from the distribution of the problem. Typically, the more complex
the model, the lower the bias obtained, but at the cost of higher variance. A
widely used method for estimating the prediction error is cross-validation. How-
ever, cross-validation yields meaningful results if the validation set and test set
are drawn from the same population. In many applications, the structure of
the system being studied evolves over time. This can introduce systematic dif-
ferences between the training and validation sets. More accurate classification
decision can be obtained by designing multiple classifier systems. There are two
main strategies in combining classifiers: fusion and selection (Kuncheva, 2004).
In the first one, each component classifier has access to the whole feature space.
In classifier selection, each classifier employs a part of the feature space and is
responsible for objects in this part.

As far as the training of the multiple classifier systems is concerned, there
are three approaches:
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a) The system does not need training, once the individual classifiers have
been trained;

b) Additional training is performed at the classifier combiner level;

c) The combiner is developed during the training of the individual classifiers.

In the first approach, a voting scheme applied on classifier outputs or prior
probabilities for individual classes (e.g., näıve Bayes combination) is frequently
used to obtain the final classification decision. The second approach typically
uses the decision profile DP (x) obtained from L classifier outputs. If we denote
by di,j(x) the support that classifier Di gives the hypothesis that x comes from
class cj , the decision profile can be presented as matrix:

DP (x) =





d1,1(x) ... d1,j(x) ... d1,c(x)
di,1(x) ... di,j(x) ... di,c(x)
dL,1(x) ... dL,j(x) ... dL,c(x)



 (9)

where rows correspond to outputs of classifier Di(x), and columns to the clas-
sifier support for class cj . The classifier combiner calculates the overall support
for each class cj , finds the class with the largest support, and labels the input
accordingly. With sufficient amount of data available, the designer can make
use of the whole DP (x), i.e. of all the L × c degrees of support, rather then
using the L supports for each class separately. Methods such as Decision Tem-
plates (DT) or Dempster-Shafer theory can be used for that purpose. In the
third approach, a powerful method that enhances the classification process by
aggregating weak classifiers into a strong combination of models (the so-called
committees) is boosting. The most widely used boosting algorithm is AdaBoost
(Freund and Shapire, 1997), short for “adaptive boosting”. The interpretation
of boosting as the sequential optimization of an additive model under an expo-
nential error opens the door to a variety of boosting-like algorithms by altering
the form of the error function, including multiclass and regression problems
(Friedman, 2001).

7. System integration

An essential feature of a majority of modern IMSs that has to be accounted for
during their design and development is the distributed nature of their operation,
both in terms of the geographical distances and the computing architectures. An
example of a large-scale, geographically and functionally distributed architec-
ture is the Technoinfra (Technological Information Infrastructure) architecture
for virtual enterprises investigated in the VIPNET IMS project (Seki, 2004)
and shown in Fig. 7. The internal knowledge representation model used in the
project was the General Process Model (GPM), a semantic network model de-
veloped in Japan (Yoon et al., 2002). The GPM class library was further inves-
tigated for the design of a nuclear power plant (Cho and Park, 2005). The GPM
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class library is composed of two object libraries: the class object library, and
the association object library. Two types of class objects are defined, in order to
represent geometry (Location base definition, Topology, etc.) and non-geometry
product data. Relationships between classes in the GPM class library are repre-
sented by several association objects, such as is assembled from, is classified as,
is placed on, possesses, is represented by, has property of, is qualified as, and
is connected to.

Figure 7. Distributed architecture of the Visual Production Enterprise Network
(VIPNET) using Technoinfra

Distributed manufacturing architectures deal with two categories of industry
data: geography-related data and resource data. In the case of IMS, the resource
data of interest are the resources related to the intellectual capacity of the
system. An example of the design process, which illustrates the main phases of
creating and implementing a concurrent task system, as well as the architecture
of the programming environment geared to a wide-area distributed system, is
illustrated in Fig. 8.

Different stages in the process of design and implementation of a system
of concurrently running tasks are shown using the example of a heterogeneous
form recognition and classification application incorporating CI procedures. The
Functional Task Architecture defines the tasks at the higher functional level,
such as classification or optimization. This architecture is decomposed and de-
fined in terms of specific, predominantly machine intelligence methods (neural
network, fuzzy logic, SVM, k-means classification, etc.), at the Method Archi-
tecture Level. The rows depict different levels of the generalization of the design
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system and tools. The columns correspond to successive stages of system design
and implementation, from the definition of the functional task architecture to
the physical process allocation architecture.

The essential capability that distinguishes this technological approach from
other types of communication schemes is the inherent support for entirely dy-
namic communications, where concurrent agents can establish multi-channel,
multi-directional communication without a priori restrictions on their location
(Zaremba and Fraczak, 2001). The support for this intelligent process com-
munication and synchronization is implemented as the Internal Representation
Level applying the mechanisms of process algebra (Bergstra, Ponse and Smolka,
2001).

The illustrated design methodology and the tool set were developed to im-
plement the design of distributed, heterogeneous intelligent systems. The task
architecture incorporates processes that execute both general-purpose tasks re-
quiring the use of a communication library and dedicated programs with built-in
communication support.

8. Conclusions

The issue of intelligence embedded in IMS design and operation was addressed
from the standpoint of pattern recognition methodology. It was argued that it
is not sufficient that an IMS be defined simply as a system designed or operated
using an Artificial Intelligence technique. An essential component of the design
of an intelligent system should be a link with cognition, given that – from the
perspective advocated in this paper – system behaviour can be predicted based
on knowledge of its goals and content of its representations. All key elements
of intelligence: the ability to predict, the ability to adapt, and the ability to
take appropriate action require the detection and interpretation of patterns.
A hierarchical model for intelligent system architecture with components at
five levels of abstraction was adopted as a framework for IMS design. Pattern
recognition techniques are situated mainly at the level of components and blocks.
Criteria for selection of these techniques come from the system and integration
levels.

The main components of the pattern recognition process, i.e., data prepro-
cessing, feature selection, and classification are addressed in more detail in the
paper. The specific issues concerning the preliminary stages in the design of a
pattern recognition system for manufacturing systems were identified as high di-
mensionality and nonlinearity of the feature space, and the sparseness of data.
The MIMF method, which provides an efficient tool for isotropic analysis of
sparse data at different scales, was presented in more detail. Selection of both
features and classification method was cast against the theoretical background
formalized by the UDT and NFL theorems. The importance of knowledge about
the goal of the system is particularly evident in the problem of classifier selection.
Methods for increasing classification accuracy by combining pattern classifiers
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were discussed. Finally, an example of the design of a distributed intelligence
system was provided.

References

Abe, S. (2005) Support Vector Machines for Pattern Classification. Springer-
Verlag, London.

Aizerman,M.A., Braverman,E.M. and Rozonoer,L.I. (1964) The prob-
ability problem of pattern recognition learning and the method of potential
functions. Automation and Remote Control 25, 1175-1190.

Alt, H., Mehlhorn, H., Wegener, H. and Welzl, E. (1988) Congruence,
similarity and symmetries of geometric objects. Discrete Comput. Geom-
etry 3, 237-256,

Balic, J., Kovacic, M. and Vaupotic, B. (2006) Intelligent programming
of CNC turning operations using genetic algorithm. J. Intelligent Manuf.
17, 331-340.

Bergstra, J.A., Ponse, A. and Smolka, S.A., eds. (2001) Handbook of
Process Algebra. North-Holland, Amsterdam.

Bezdek, J.C, Keller, J., Krisnapuram, R. and Pal, N.R. (1999) Fuzzy
Models and Algorithms for Pattern Recognition and Image Processing.
Kluwer Academic Publishers, Norwell, MA.

Bhanu, B. and Lin, Y. (2003) Genetic algorithm based feature selection for
target detection in SAR images. Image and Vision Computing 21 (7),
591-608.

Bhatt, R.B. and Gopal, M. (2005) On fuzzy-rough sets approach to feature
selection. Pattern Recognition Letters 26 (7), 965-975.

Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer
Science, Singapore.

Chang, P.C., Chen, L.Y. and Fan, C.Y. (2008) A case-based evolutionary
model for defect classification of printed circuit board images. J. Intelli-
gent Manufacturing 19 (2), 203-214.

Chen, C.H. (1999) Pattern recognition in non-destructive evaluation of ma-
terials. In: Handbook of Pattern Recognition & Computer Vision. World
Scientific, Hackensack, NJ, 455-472.

Chumakov, R. (2008) An artificial neural network for fault detection in the
assembly of thread-forming screws. J. Intelligent Manufacturing 19(3),
327-333.

Cho, K.J. and Park, C.C. (2005) Implementation of the KNGR class library
based on the GPM and semantic networks for co-design. Computer-Aided
Design & Applications 2 (1-4), 165-172.

Cooley, W.W. and Lohnes, P.R. (1971) Multivariate Data Analysis. John
Wiley & Sons, Inc., New York.



256 M.B. ZAREMBA

Deb, S., Ghosh, K. and Paul, S. (2006) A neural network based methodol-
ogy for machining operations selection in Computer-Aided Process Plan-
ning for rotationally symmetrical parts. J. Intelligent Manufacturing 17

(5), 557-569.
Devedzic, V. and Radovic, D. (1999) A framework for building Intelligent

Manufacturing Systems. IEEE Trans. Systems, Man, and Cybernetics –
Part C 29 (3), 422-439.

Ding, Y., Ceglarek, D. and Shi, J. (2002) Fault Diagnosis of Multistage
Manufacturing Processes by Using State Space Approach. J. of Manufac-
turing Science and Engineering 124 (2), 313-322.

Evangelista, P.F., Embrechts, M.J. and Szymanski, B.K. (2006) Tam-
ing the curse of dimensionality in kernels and novelty detection. In: A.
Abraham et al., eds., Applied Soft Computing Technologies: The Chal-
lenge of Complexity. Springer Verlag, Berlin.

Freund, Y. and Schapire, R.E. (1997) A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences 55 (1), 119-139.

Friedman, J.H. (2001) Greedy function approximation: A gradient boosting
machine. Annals of Statistics. 29 (5), 1189-1232.

Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Sta-
tistical Learning. Springer-Verlag, New York.

Hu, M., Chen, Y. and Kwok, J.T.Y. (2009) Building sparse multiple-kernel
SVM classifiers. IEEE Trans. on Neural Networks 20 (5), 827-839.

Hughes, G.F. (1968) On the mean accuracy of statistical pattern recognizers.
IEEE Trans. on Information Theory 14 (1), 55-63.

Jähne, B. (2002) Digital Image Processing. Springer-Verlag, Berlin.
Jack, L.B. and Nandi, A.K. (2002) Fault detection using support vector

machines and artificial neural networks, augmented by genetic algorithms.
Mechanical Systems and Signal Processing, 16 (2-3), 373-390.

Kohonen, T., Oja, E., Simula, O., Visa, A. and Kangas, J. (1996) En-
gineering applications of the self-organizing map. Proc. of the IEEE, 84,
1358-1384.

Kuncheva, L.I. (2004) Combining Pattern Classifiers. John Wiley & Sons,
Hoboken, NJ.

Kusiak, A. and Smith M. (2007) Data mining in design of products and pro-
duction systems. IFAC Annual Reviews in Control 31 (1), 147-156.

Liu, H. and Yu, L. (2005) Towards integrating feature selection algorithms
for classification and clustering. IEEE Trans. on Knowledge and Data
Engineering 17 (4), 491-502.

Markopoulos, A.P., Manolakos, D.E. and Vaxevanidis, N. (2008) Ar-
tificial neural network models for the prediction of surface roughness in
electrical discharge machining. J. Intelligent Manufacturing 19 (3), 283-
292.



Intelligence in manufacturing systems: the pattern recognition perspective 257

Newell, A. (1990) Unified Theories of Cognition. Harvard University Press,
Cambridge, Massachussets.

Oh, I.S., Lee, J.S. and Moon, B.R. (2004) Hybrid genetic algorithms for
feature selection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (11), 1424-1437.

Palenichka, R.M., Zaremba, M.B. and Missaoui, R. (2006) Multi-scale
model-based feature extraction in structural texture images. Journal of
Electronic Imaging 15 (2), 1-15.

Palenichka, R.M. and Zaremba, M.B. (2007) Multiscale isotropic matched
filtering for individual tree detection in LiDAR images. IEEE Trans. on
Geoscience and Remote Sensing 45 (12), 3944-3956.

Prakash, A., Tiwari, M. and Shankar, R. (2008) Optimal job sequence
determination and operation machine allocation in flexible manufacturing
systems: an approach using adaptive hierarchical ant colony algorithm.
J. Intelligent Manufacturing 19 (2), 161-173.

Repaka, S.R. and Truax, D.D. (2004) Comparing spectral and object based
approaches for classification and transportation feature extraction from
high resolution multispectral imagery. Proc. ASPRS Annual Conference,
Denver, Colorado, May 2004, 11-22.

Revesz, P.Z. (1993) On the semantics of theory change: Arbitration between
old and new information. Proc. 12th ACM SIGACT Symp. on Principles
of Database Systems, 71-79.

Rokach, L. and Maimon, O. (2006) Data mining for improving the quality
of manufacturing: a feature set decomposition approach. J. Intelligent
Manufacturing 17 (3), 285-299.

Roweis, T. and Saul, L. (2000) Nonlinear dimensionality reduction by lo-
cally linear embedding. Science 290, 2323-2326.

Seki, H. et al. (2005) Virtual Production Enterprise Network (VIPNET). IMS
0431 Summary Report, IMS Promotion Center, Seoul, Korea.

Shawe-Taylor, J. and Cristianini, N. (2004) Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge, UK.

Schölkopf, B. and Smola, A.J. (2002) Learning with Kernels. The MIT
Press, Cambridge, Mass.

Starck, J.L., Murtagh, F. and Bijaoui, A. (1998) Image Processing and
Data Analysis: The Multiscale Approach, Cambridge University Press,
Cambridge, UK.

Tagare, H.D., Toyama, K. and Wang, J.G. (2001) A maximum-likelihood
strategy for directing attention during visual search. IEEE Trans. Pattern
Analysis and Machine Intelligence 23 (5), 490-500.

Tasan, S.O. and Tunali, S. (2008) A review of the current applications of
genetic algorithms in assembly line balancing. J. Intelligent Manufactur-
ing 19 (1), 49-69.



258 M.B. ZAREMBA

Tenenbaum, J.B., de Silva, V. and Langford, J.C. (2000) A global geo-
metric framework for nonlinear dimensionality reduction. Science 290,
2319-2323.

Tsang, I.W. and Kwok, J.T. (2006) Efficient hyperkernel learning using se-
cond-order cone programming. IEEE Trans. on Neural Networks 17 (1),
48-58.

Vapnik, V. (1998) Statistical Learning Theory. John Wiley & Sons, Inc., New
York.

Verikas, A. and Bacauskiene, M. (2002) Feature selection with neural net-
works. Pattern Recognition Letters 23 (11), 1323-1335.

Wang, K. (2007) Applying data mining to manufacturing: The nature and
implications. J. Intelligent Manufacturing 18 (4), 487-495.

Watanabe, S. (1969) Knowing and Guessing: A Quantitative Study of Infer-
ence and Information. John Wiley & Sons, New York.

Wolpert, D.H. and Macready, W.G. (1995) No free lunch theorems for
search. Technical Report SFI-TR-05-010, Santa Fe Institute. Santa Fe,
NM.

Yoon, T., Oota, Y., Naka, Y., Yoshinaga, T., Shibao, K., Igoshi, M.,
Matsushima, K. and Suzuki, T. (2002) Knowledge fusion among the
Virtual Production Enterprises within the Technology Information Infras-
tructure Environment. Proc. IEEE Engineering Management Conference,
Cambridge, UK, 1, 35-40.

Zaremba, M.B. and Fraczak, W. (2001) Dynamic task communication for
concurrent processing in distributed systems. Concurrent Engineering:
Research and Applications 9 (2), 155-165.

Zaremba, M.B. (2008) Remote sensing applications – New vistas for measure-
ment and control. Journal of Automation, Mobile Robotics & Intelligent
Systems 2 (3), 3-12.

Zhang, P., Verma, B. and Kumar, K. (2005) Neural vs. statistical classi-
fier in conjunction with genetic algorithm based feature selection. Pattern
Recognition Letters 26 (7), 909-919.

Zien, A. and Ong, C.S. (2007) Multiclass multiple kernel learning. Proc.
24th Int. Conf. Machine Learning. Cornvallis, OR, 1191-1198.


