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Abstract: This paper studies particle swarm optimization ap-
proach enriched by two versions of an extension aimed at gather-
ing information during the optimization process. Application of
these extensions, called memory mechanisms, increases computa-
tional cost, but it is spent to a benefit by incorporating the knowl-
edge about the problem into the algorithm and this way improving
its search abilities. The first mechanism is based on the idea of
storing explicit solutions while the second one applies one-pass clus-
tering algorithm to build clusters containing search experiences. The
main disadvantage of the former mechanism is lack of good rules for
identification of outdated solutions among the remembered ones and
as a consequence unlimited growth of the memory structures as the
optimization process goes. The latter mechanism uses other form of
knowledge representation and thus allows us to control the amount
of allocated resources more efficiently than the former one. Both
mechanisms have been experimentally verified and their advantages
and disadvantages in application for different types of optimized en-
vironments are discussed.
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1. Introduction

Effective optimization in dynamic environments with heuristic algorithms al-
ways requires modifications and extensions in the base versions of the algorithms
to cope with dynamics present in the environment. There is a large group of
modifications, which introduce diverse forms of learning from the experiences
gained during optimization. One of these forms is a memory mechanism. In-
formation about the past can be stored in the memory structures in implicit
or explicit form. The mechanism with implicit memory can be represented
as some extra strategies, based on statistical factors updated according to the
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current progress in the optimization process. The factors can define, for ex-
ample, directions of further search in the search space. The mechanism with
explicit memory stores complete solutions and makes use of them according
to rules defined for remembering, recalling and forgetting. The latter form
of memory has already been tested in evolutionary algorithms (Mori et al.,
1997; Trojanowski, Michalewicz and Xiao, 1997; Branke, 1999; Trojanowski
and Michalewicz, 1999) or immune based optimization algorithms (Trojanowski
and Wierzchoni, 2002a,b,c). These approaches proved their efficiency especially
in the case of cyclic or semi-cyclic changes in the optimized problem. In case of
random changes, however, their influence was negligible. Besides, they introduce
additional computation cost because for every of these mechanisms the step of
recalling procedure always includes reevaluation of the entire memory content.
This extra computational cost is hard to ignore, especially with regard to the
assumption that the number of evaluation function calls between subsequent
changes should be constant. Execution of the recalling procedure consumes a
significant share of the given limit of calls, and so the more solutions to reevalu-
ate in the memory, the smaller the number of evaluation function calls between
subsequent changes. Although this assumption limits the search capabilities of
the algorithm, it is usually respected because it allows for a fair comparison of
efficiency of different algorithms.

In this paper we present a novel approach, avoiding additional evaluation
function calls in the recalling procedure. The proposed rules of memory man-
agement calculate just the distance between solutions and no function evaluation
is needed. So the limit of evaluation function calls between subsequent changes
remains untouched. There are two types of memory mechanisms studied in
this paper: with explicit and implicit form of information stored in the mem-
ory structures. The first type of the mechanisms uses a buffer with selected
complete solutions accumulated during the ongoing optimization. Mechanism
of the second type creates, first, a number of clusters and then continuously
adapts them by absorption of solutions selected during the optimization. Both
mechanism are discussed and experimentally verified in this paper.

In the presented research memory mechanisms are applied to particle swarm
optimization (PSO). Our PSO algorithm is an extension of the constriction
model (Clerc and Kennedy, 2002) with the following modifications useful for
coping with dynamic optimization tasks:

1. particles are split into sub-swarms (Blackwell and Branke, 2004),

2. two types of particles are applied in the sub-swarms: classic (Clerc and
Kennedy, 2002) and quantum ones (Blackwell and Branke, 2006),

3. exclusion mechanism (Blackwell and Branke, 2006) protects sub-swarms
against following the same optimum.

There are two novelties proposed and studied in this paper: application of
distance between solutions instead of the evaluation function value in memory
management rules (a), and application of clusters as a representation of infor-
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mation gathered during the optimization process (b). The paper is organized
as follows. A brief description of PSO algorithm and particularly of the selected
version of PSO is given in Section 2. Section 3 describes the two proposed
memory mechanisms: explicit memory structures (Section 3.1) and memory
structures with clusters (Section 3.2). In Section 4, we present the performance
measure and the benchmark. Section 5 includes the results obtained with the
first type of the memory mechanism, while Section 6 — the results obtained
with the second type of the memory mechanism. Section 7 concludes.

2. Quantum multi-swarm

Particle swarm optimization is one of approaches in the field of metaheuristics.
The idea proposed by Kennedy and Eberhart (1995) originates from observa-
tions of behavior of school of fish or flock of birds searching for food. In PSO, a
swarm of particles just like a flock moves throughout the domain of possible so-
lutions in search for optimum and changes location and velocity of its members
by means of linear kinematic laws.

2.1. Basic scheme

The basic scheme of PSO is given below. The algorithm works with a set of
particles x; where ¢ € 1,... N represent solutions in an [-dimensional real valued
search space D. The quality of particles is evaluated with a function f(-) defined
on D. The best solution found by x; is denoted by y; (the personal best solution
called the particle attractor), whereas the best solution found by the swarm is
denoted by y* (the neighborhood best solution called the swarm attractor).

Algorithm 1 the particle swarm optimization algorithm
1: Create and initialize the swarm
2: repeat
3: fori=1to N do
if f(x;) > f(y,) then
Yi =X
end if
if f(y;) > f(y") then
Y=y,
end if
10:  end for
11:  update velocity and location of all the particles
12: until stop condition is satisfied

In the main loop of Algorithm 1, values of attractors are updated first. Then,
the step "update the velocity and location" involves two main actions: first, the
velocity of each of the particles is updated, then all the particles change their
location in the search space. According to the constriction model proposed by
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Clerc and Kennedy (2002), both the velocity and the coordinates of the location
undergo the following transformation in every iteration ¢:

Vi = Xy + U0, el (y5 — @) + U0, eaf(y;" — ) (1)
7t o= gt (2)
where vt = (vi,...,v}) is particle velocity in ¢-th iteration, and x* = (2,...,z})

is particle location. UJ0,¢1]% and U[0,co]} are random variates uniformly
distributed on [0,¢1] and [0, co], respectively, generated for the j-coordinate
j € 1,...1 in the t-th iteration. The factor c¢; controls the attraction to the
personal best, and ¢z to the global best, and y is the constriction factor, x < 1.
The constriction model has been selected because of its advantageous feature,
that is, convergence to stable states when the parameters y, ¢; and co have the
appropriate values, namely ¢; = ¢ = 2.05, x = 0.7298.

2.2. Our PSO algorithm

In our version of PSO, we have extended the basic idea presented in Algorithm 1
by mechanisms suitable for dynamic optimization. The selected mechanisms are
briefly discussed below.

Multi-swarm There have been proposed solutions both with adaptive (Li,
2004; Li, Branke and Blackwell, 2006; Parrot and Li, 2006) and static
number of subs-warms (Blackwell and Branke, 2004, 2006). In our re-
search, we selected the version with the number of sub-swarms specified in
advance (Blackwell and Branke, 2004). In this approach, the sub-swarms
are defined before the beginning of optimization. The sub-swarms have
their own sub-swarm attractors and there is no exchange of information
between the sub-swarms.

Exclusion This mechanism was proposed for the multi-swarm version of PSO.
The exclusion (Blackwell and Branke, 2006) guarantees the appropriate
distribution of the sub-swarms over the entire search space by elimination
of sub-swarms being located too close to each other. When the sub-swarms
attractor are closer than the distance reyc, the occupation of the same
optimum is most likely to occur. In this case, one of the sub-swarms is
selected to be eliminated and a new one is generated from scratch.

Quantum swarm In our research, sub-swarms consist of two types of parti-
cles governed by different movement rules: the location of the first type
of particles is evaluated according to the constriction model principles
(Clerc and Kennedy, 2002), that is, eq. (2), whereas the remaining ones
are treated as quantum particles (Trojanowski, 2009) and change their
location according to the analogy with the quantum dynamics of parti-
cles. At the beginning of each subsequent execution of the main loop the
new swarm-attractor is selected based on the solutions found by both the
classic and quantum particles.
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Our model (Trojanowski, 2009) of quantum particle movement extends the
one originally proposed by Blackwell and Branke (2004). As in the original
model, the swarm attractor takes the role of the current location of moved
particle, however, the new location is evaluated with a two-phase mechanism.
In the first phase, a new point from a uniform distribution inside the quantum
cloud of the range § = r - (Dy/2) is found, where r is a control parameter and
D,, is a width of the feasible part of the domain, that is, a distance between
the lower and the upper boundary of D. In the second phase, the new point is
moved forward according to the direction defined by the original location and
the point. The new point is located in the new distance d’ from the current
location, which is calculated as follows:

d =d-exp(—f'(x;)) - SaS(0,1), (3)

where d is a distance from the origin obtained in the first phase, f’(x;) is the
value of the i-th solution x; normalized in [0, 1] with respect to the values of all
the solutions in P, and Sa.S(0, 1) is an a-stable symmetric distribution variate !.
This method returns an isotropic distribution, where locations are distributed
equally in all directions, that is, none of directions is distinctive in any sense.

The a-stable distribution is controlled by four parameters: stability index o
(o € (0,2]), skewness parameter (3, scale parameter o and location parameter p.
In the symmetric version of this distribution (called Sa.S, that is, symmetric a-
stable distribution), 3 is set to 0. In the practical implementation the Chambers-
Mallows-Stuck method of generation of the a-stable symmetric random variables
(Chambers, Mallows and Stuck, 1976) can be used. For a = 2 the SaS(u,0)
distribution reduces to the Gaussian N (p,0), and for aw = 1 the Cauchy C(u, o)
is obtained.

2.3. Feasible and unfeasible solutions

The principles of quantum particle movement allow us to generate new location
candidates outside D. Therefore, we need to make the algorithm ready for
appearance of such a situation, that is, we need to enrich the algorithm by a
constrained optimization mechanism. For more information about constrained
optimization with PSO the reader is referred to, for example, the publications
by Pulido and Coello (2004); Munoz Zavala, Aguirre and Villa Diharce (2005);
Lu and Chen (2006); Paquet and Engelbrecht (2007). We are not particularly
interested in studying constrained optimization in this research, therefore, we
selected just a very simple procedure of immediate repairing unfeasible particles.
Clearly, the j-th coordinate of the solution x, violating its box constraints is
trimmed to the exceeded limit, that is:

if z; <lo then z; =lo, and if x; > hi then z; = hi, (4)

La-stable laws were introduced by Paul Levy during his investigations of behavior of sums
of independent random variables in the early 1920s. For a computer software see the web page
by J. P. Nolan: http://academic2.american.edu/~jpnolan/stable/stable.html
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where o is the lower boundary of the search space and hi — the upper one. The
coordinates of both quantum and classic particles are repaired in the same way.
In case of neutral particles, the velocity vector v of the repaired particle remains
unchanged, even if it still leads the particle outside the acceptable search space.

3. Memory mechanisms

There are two novelties proposed and studied in this paper: the memory mech-
anism for explicit solutions and the mechanism for solutions stored in implicit
form, that is, in the form of clusters. The two mechanisms are discussed below.

3.1. Memory structures for explicit solutions

The mQSO algorithm equipped with memory structures for explicit solutions
(mQSOgxpiMem) Stores complete solutions in a form of an unordered set. At the
very beginning the structure for solutions, that is, the memory buffer is empty.

3.1.1. Rules of reminding

When the change occurs in the environment, current values of the particles
are most probably out of date and reevaluation is needed. Just before the
reevaluation, however, it is the most appropriate moment for injection of the
solutions from the memory buffer into the sub-swarms. More precisely, in this
step randomly selected solutions from the memory replace some of the solutions
in each of the sub-swarms. Only one solution is selected to be replaced within
each of the sub-swarms. For the minimal loss of information in the sub-swarm we
select a pair of solutions being the closest to each other among all the solutions
in the sub-swarm. Then random solution from the memory buffer is selected and
its copy takes place of one of the solutions from the pair. The copy overwrites
that one from the pair, which is located closer to the solution from the memory
buffer.

3.1.2. Rules of remembering

Eventually, when the step of reminding is finished, we can reevaluate all the
solutions in the sub-swarms and write the swarm attractors to the memory
buffer. Keeping all the versions of attractors in the memory during the entire
optimization process would cost lots of resources and in fact is not necessary. A
suboptimal solution or even a solution being quite far from the optimum, but
remaining in its basin of attraction, gives the swarm sufficient information to
find the right way to the optimum. Therefore, when a new solution is to be
written into the memory, a solution in the buffer is searched, which would be
the closest to the newcomer. If the distance is less than a defined neighborhood
threshold v, it is assumed that both solutions belong to the basin of attraction of
the same optimum. The threshold v has to be tuned with regard to the severity
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of changes. When the solution in the memory buffer is found, it is probable
that it represents the area of the previous location of the optimum, whereas the
newcomer represents the area of its current location. If so, there is no sense to
keep the outdated information and the remembered solution is replaced by the
new one. In the opposite case, when no solutions in the range of v have been
found, the new solution is simply added to the buffer. In this case, it is assumed
that a new local optimum appeared in the search space.

The strategy of memory update described above allows us to refresh the
information about existing peaks in the memory every time the change occurs,
but also to extend the stored set of solutions when the new peak appeared.
It is important to stress that the proposed strategy assumes specific type of
changes, that is, the changes of limited severity. This means that it is expected
that reallocation of each of the optima should be always of limited range and
especially no catastrophic changes, which completely reconstruct the optimized
environment are expected. The value of v is based on this maximum range of
reallocations.

3.1.3. Some additional remarks

The first remark concerns the issue of forgetting. The procedures described
above do not specify any step where the number of solutions in the buffer is
verified. So, theoretically, the remembered information can expand its volume
continuously and to infinity. This phenomenon of unconstrained growth could
be under control with use of the threshold v, which defines maximum density
of points stored in the memory. The optimal value of v should be close to
the maximum range of a single change of the moving optimum location. After
some time, points stored in the memory fill the area of the feasible search space
where the optima appear. When the remembered points saturate the area with
themselves, almost all the newly remembered points usually replace the existing
ones and do not increase their overall number.

The next remark is about the computational cost of memory operations.
The cost is concerned only with computation of distances between points. The
cost grows as the number of remembered solutions increases. However, the pro-
cedures do not involve evaluation function calls, so we can assume that the full
number of evaluation function calls between subsequent changes is still available.

3.2. Structures for implicit solutions — clusters

Problems with continuous increase of allocated memory resources accompany-
ing the memory approach make this approach useless for long lasting dynamic
optimization processes. Therefore, another idea of learning from previous ex-
periences is proposed. The idea originates from the algorithm for clustering
evolving data streams (Aggarwal et al., 2003). This is a one-pass clustering al-
gorithm, able to accept large volumes of data arriving in a stream and continu-
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ously evolving in time. Consequently, the output clusters also vary considerably
with time respectively to the current state of the optimization. Aggarwal et al.
(2003) proposed the stream clustering algorithm consisting of two parts: micro-
and macro-clustering. In our approach, just the the micro-clustering part was
applied. For simplicity, all the micro-clusters are called just clusters in the entire
further text.

The novelty in the mQSO algorithm equipped with cluster structures (la-
beled as mQSOc¢istrm) comes from the combination of the two algorithms into
one. The cooperation between them is based on the use of the data selected to
remember as an input data stream for the clustering algorithm. There are many
similarities with the explicit memory mechanism described in the previous sec-
tion. The step of remembering conforms to the one-pass clustering algorithm.
The memory structure storing explicit solutions conforms to the structure with
clusters evolving respectively to the current state of optimization and the as-
sumed time horizon. There is also a recalling procedure, which is adjusted to
the current structure with clusters. Detailed description how the clusters look
like, how to calculate them, and how to make use of them is given below.

3.2.1. Cluster structure

Clusters are defined in exactly the same way as by Aggarwal et al. (2003). A
single cluster aggregates information for a selected set of points in the search
space. A cluster for a set of points xi,...,X,, with time-stamps t1,...,%,, is
defined as a tuple (CF2*, CF1*, CF2!, CF1!, m), wherein the components
are defined as follows:

e CF2” consists of the sum of the squares of data values, i.e., CF2; =
i (24i)?,

e CF1” consists of the sum of data values, i.e., CF1] = Yo T

CF2! consists of the sum of the squares of the time-stamps, i.e., CF2t =

Ezil(ti)z’

e CF1” consists of the sum of the time-stamps, i.e., CF1* =" ¢,

e m equals the number of points assigned to the current cluster.

Besides, for every cluster, a centroid M is assigned. The centroid represents a
geometrical center of the set of points, that is, M; =1/m Zﬁl Zji.-

3.2.2. Absorption of new solutions

At the very beginning of the optimization process the memory is empty, that
is, there are no clusters. They have to be created before the initial phase of
the process is over. The initial phase lasts as long as the value of offline er-
ror calculated on-line has an extremely high level. Usually, a few preliminary
experiments allow to estimate the number of first iterations of the algorithm
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necessary to reach a reasonably low level of off-line error. Within these itera-
tions there is no point to calculate offline error, however, information about the
progress of optimization can be successfully gathered. More precisely, within
this period all the sub-swarm attractors and particles are collected in a stream
buffer. They are saved in the buffer every time a change occurs in the environ-
ment. When the initial phase is over, the initial set of clusters is generated with
a standard k-means clustering algorithm based on the data in the buffer. The
initial number of clusters is given to the algorithm before the experiment starts
and depends on the size of available memory resources.

In the main phase of the experiment the clusters are updated at every change
in the environment. When the change occurs, all the sub-swarm attractors are
copied into the input stream of the clustering algorithm. Then, the solutions
in the stream are treated one by one. First, Euclidean distance between the
input solution and each of the cluster centroids is found. For the closest cluster,
we check if the point falls within the cluster maximum boundary, that is, if
the distance to the point is less than Rcjuster- In our experiments, Rcluster iS
by default set to 10 when the cluster has just one point assigned, otherwise it
equals RMS deviation of the cluster points from the centroid M, that is:

n

Rcluster - Z(l/mZ(M] _:Eji)2)' (5)

Jj=1

Every solution in the stream can be absorbed by existing clusters or con-
stitute a new one. When the solution belongs to the closest cluster maximum
boundary, it is absorbed by the cluster. More precisely, both all the components
of the tuple representing the cluster and its centroid are updated, that is, m is
incremented and sums are increased by respective data and a time-stamp of the
solution. In the opposite case, that is, when none of the clusters is close enough
to the input solution, a new cluster has to be created.

3.2.3. Cluster validation

Just after the absorption of the input solution the clusters are validated. There
are two types of validation. The first one check the size of clusters, whereas
the second one checks if they represent no outdated information. Depending on
the case, the number of clusters can be increased or decreased. Both cases are
discussed below.

First, the size of the cluster, which absorbed the input solution is compared
with the limit M AXg;,e. If the size exceeds the limit, the cluster has to be split
into two. Two points with the biggest Euclidean distance to each other, are
found in the cluster, and then used as initializers for two new clusters. The
remaining points are divided into two groups, the first one with points closer to
the first initializer, and the other one with points closer to another initializer.
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Then, for each of the two groups their centroids are calculated and eventually
new clusters are generated.

The next validation verifies the age of data in the cluster. For each of the
clusters we find the time of arrival of the gpelev-th quantile of the solutions,
assuming that their time-stamps are normally distributed:

Qrelev = { 0.5 otherwise. o

The obtained value of arrival time is called relevance stamp Syelev. When Spejev
is below a user-defined threshold ¢ — t,c1ev Where t is the current time, the cluster
is regarded as too old and can be eliminated to make room for other clusters.

3.2.4. Drawing on the cluster knowledge

Application of continuously updated clusters allows us to draw on the knowledge
collected during the optimization process by injection of solutions originating
from the clusters into sub-swarms. This is done just after the change but before
the reevaluation of solutions in the sub-swarm. In the first step, we need to find
a solution to remove. This can be done according to the same principle as for
the memory with explicit solutions. Simply, we select a pair of two solutions
being the closest to each other among all the solutions in the sub-swarm. Then a
copy of centroid from the randomly selected cluster overwrites this one from the
two in the pair which is located closer to the centroid. The overwritten solution
is lost. The procedure of data transfer is repeated for each of the sub-swarms
in the manner, which does not allow to select any of the centroids more than
once during a single step of reminding.

3.3. Parameters

Application of clusters requires a few parameters to be defined. The first pa-
rameter is the range of the cluster maximum boundary Rcjuster Which is equal
to 10 when the cluster consists of just one solution, and calculated with eq. (5)
for clusters with number of solutions greater than one. Then, we need to define
also the relevance threshold for the time window t,ejev, the minimum number of
points in the cluster | = 10, which is used in calculation of gyelev (eq. (6)), and
maximum size of a cluster M A Xiye.

4. Plan of experiments
4.1. Measure of results applied

For evaluation of the algorithm effectiveness we used the offline error measure
(Branke, 1999, 2002) called briefly oe. The offline error represents the average
deviation from the optimum value of the best individual evaluated since the last
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change of the optimized environment. As mentioned earlier, during the opti-
mization process oe starts to be evaluated only after some number of changes in
the environment. We thus minimize the measurement error caused by extremely
big values of oe appearing in the initial phase.

4.2. Benchmark

As a dynamic test-bed the MPB generator (Branke, 1999) was selected. In MPB
the environment is built of a set of unimodal functions. Appropriate tuning of
the function parameters allows for generation of diverse types of changes in the
environment. In our research we were particularly interested in studying two
types of them, requiring completely different response from the optimizer. The
first one is the case when a global optimum hill actually occupied by the particles
moves, however, it still remains the global optimum and some of the particles
remain in its basin of attraction after the change. The second one occurs when
after the change the occupied hill stops to be the global optimum and none of
the hills currently controlled by the other particles takes over the role of the
global optimum. In the latter case, the immediate extensive exploration of the
search space is needed.

Intensity of appearance of both types of situations in the search space can
be controlled by the number of peaks in the environment and their maximum
shift distance. Since the number of sub-swarms is constant and is set to ten, the
first situation appears for ten moving peaks in the search space. In this case, it
is expected that every peak is controlled by another sub-swarm and all we need
is to make the sub-swarms able to follow their hills. The second type of changes
occurs when the number of moving peaks is much higher than the number of
sub-swarms, for example, there are 50 moving peaks and ten sub-swarms. Every
change causes not only a move of the peaks but also changes of their elevation
so it hardly even happens that the highest peak remains the highest after the
change.

The remaining parameters of MPB were set exactly the same as specified in
scenario 2 of this benchmark. The evaluation function was defined for the five-
dimensional search space with boundaries for each of dimensions set to [0; 100].
For the search space there exist a set of moving peaks of randomly varying
altitude within the interval [30; 70], width within [1;12], and coordinates of the
peak by one.

4.3. Static parameter settings for the algorithm

The algorithm parameter settings applied for the experiments presented below
originate from Blackwell and Branke (2006). Those authors present results
of experiments obtained for different configurations of mQSO, tested with the
MPB benchmark. Among many tested configurations the best results for the
optimization problem with ten moving peaks were obtained when there were ten
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sub-swarms and each of them consisted of five neutral particles and five quantum
ones (see Table III in Blackwell and Branke, 2006). The total population of
particles consisted of 100 solutions divided equally into ten sub-swarms. The
values of pure PSO parameters were: c; o = 2.05 and x = 0.7298. The QSO
parameter rex. depends on the number of peaks and the volume of the search
space in the benchmark (Blackwell and Branke, 2006). For ten moving peaks
Texel = 31.55, whereas for 50 moving peaks rexe = 22.87.

4.4. Initialization and re-initialization of particles

At the beginning of each subsequent experiment, all the particles are random-
ized. First, all the particle coordinates are generated within feasible search space
boundaries with a uniform random number generator. Then, the velocity vector
coordinates are also randomly generated within the range [—1,1]. Eventually,
particle attractors are initialized with coordinates of their locations, whereas
sub-swarm attractors are initialized with coordinates of the best solution in
sub-swarms.

Our algorithm has no embedded strategy for detecting changes in the fitness
landscapes. We assumed that such a strategy would just introduce another
unnecessary bias into the obtained values of oe, and make their analysis more
difficult. Therefore, our optimization system is informed of the change as soon
as it occurs, and no additional computational effort for its detection is needed.
When the change appears, all the solutions stored in both classic and quantum
particles are reevaluated. Then, classic particle attractors are overwritten by
the current solutions represented by these particles, and sub-swarm attractors
are overwritten by the current best solutions in the sub-swarms.

For better compatibility with experiments published in the literature, we use
the limit of 5000 evaluation function calls between the subsequent changes in
the fitness landscape. Every experiment was performed for 110 changes in the
environment, however, it is important to stress that oe was not evaluated from
the beginning but just after the tenth change. Every experiment was repeated
50 times, and then the average value of oe was calculated.

5. Results of experiments with explicit memory structures

Four cases were selected for comparing: two versions of the algorithm (the base
version — mQSOpase, and the version with memory — mQSOgxpiMem) and two
versions of the optimized environment (with 10 and 50 moving peaks). A set
of tests was performed for each of the cases. Each set was based on the same
variation of values of two parameters: « and r. The former parameter varied
from 0.05 to 2 with step 0.05 while the latter — from 0.001 to 0.15 with step
0.001. This gives 6000 configurations of the two parameters per set and allows
us to build reliable graphs with characteristics of the search engines. The graphs
are presented in Figs. 1 and 2.
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Figure 1. Characteristics of oe for mQSO without (graph on the left) and with
(graph on the right) memory for the case with 10 moving peaks

ity

fvﬁ”vﬂyﬁ?wym,rq,r n rrf\r -1~

i “?rw%,f ! P!
]

Figure 2. Characteristics of oe for mQSO without (graph on the left) and with
(graph on the right) memory for the case with 50 moving peaks

For the case, where the number of sub-swarms is comparable with the num-
ber of peaks the results obtained with mQSOy,se are the best. In the other case,
mQSOgxpiMem outperformed mQSOpase. The best mean values of oe for each
of the four cases are presented in Table 1. In case of high number of peaks, the
best value of the scale parameter in SaS is higher for mQSOp,se because the
global optimum can be lost easily after every change. Therefore, sub-swarms
have to exploit current area of their residence and explore for new promising
areas as well. When the memory is added, however, the optimal value of r goes
back down because the memory takes over just the exploration part.

Unfortunately, a harmful side effect of continuous increase of allocated mem-
ory during the optimization process accompanies the memory mechanism. Sam-
ple graphs with mean sizes of volume allocated are presented in Fig. 3. Fig. 3
shows the sizes for a series of ten repeated experiments for the two best config-
urations of mQSOgxpiMem from Table 1.
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Figure 3. Number of solutions stored in the memory buffer after subsequent
changes for two types of environment: with 10 and with 50 moving peaks

Table 1. The best mean values of oe obtained for each of the six groups of
experiments

no. of peaks; version of mQSO oe std. dev. r o

10 peaks; mQSOpase 1.4293 0.371 0.016 | 1.65
10 peaks; mQSOgxpiMem 1.7389 0.334 0.018 | 1.75
50 peaks; mQSOpase 3.1321 0.472 0.031 | 0.80
50 peaks; mQSOgxpiMem 2.3060 0.303 0.018 | 1.05

In the case of ten moving peaks, usually seven of ten newcomers replace
the older members. In the case of 50 moving peaks, the replacement level is
even higher — nine per ten. However, in both cases the volume never stabilizes
until the end of the experiment. This continuous increase of allocated memory
can be explained by the large volume of the entire search space in comparison
to the volume of a point neighborhood. The distance between lower and upper
boundaries of the search space equals 100, whereas the neighborhood threshold v
of the point is set to one. The volume of such a search space equals 100°, whereas
the volume of the neighborhood equals 872 /15, which makes this neighborhood
approximately 19 - 10® smaller than the entire search space.

6. Results of experiments with clusters

For mQSO¢istrm, two groups of experiments were conducted: with 10 and 50
moving peaks in the optimized environment. In both cases, we applied such
configurations of the algorithm parameters which gave the best values of oe
for mQSOp,se (Table 1). The cluster memory mechanism was controlled by
two parameters: M AXg,e and tc1eyv. We varied these parameters within some
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Figure 4. Mean values of oe for mQSO¢istym with varying number of clusters.
Two cases: for ten (left figure) and 50 (right figure) moving peaks

ranges, and evaluated oe for each of the parameter configurations. As in the
case of mQSOgxpiMem, the configurations were uniformly distributed over the
subspace of feasible configurations, which was as a result covered by a uniform
grid of testing points. The configurations were defined as follows: M AXg;,e
varied from 5 to 30 with step one, and t,cev varied from 2 to 40 with step one.
The means of oe obtained for series of 50 experiments are depicted in Fig. 4.

The best mean values of oe are equal to: 1.888 for 10 moving peaks (obtained
for M AXgi,e = 22 and treley = 39), and 2.332 for 50 moving peaks (obtained
for MAXg,e = 23 and treev = 38). For the case with 10 moving peaks, the
performance of mQSOcistrm is always worse than of mQSOy,se (Table 1). It is
worth noting, however, that the performance is directly dependent on the t,cjey-
For the case with 50 moving peaks, the performance of mQSOcistrm is worse
than of mQSOgxpiMem, but still much better than of mQSOpase.

7. Conclusions

This paper studies the properties of the multi-swarm approach extended by the
memory mechanisms of two types: with explicit memory structure and with
memory represented as a set of clusters. Performance of mQSO equipped with
both mechanisms was experimentally verified. For the case, where the number
of moving peaks is close to the number of sub-swarms, the best results were
returned by mQSOp,se. For the case, where the number of moving peaks is
much higher than the number of sub-swarms, both proposed versions of mQSO
equipped with memory structures outperformed the base version of mQSO. The
best results were obtained with mQSOgxpimem. Unfortunately, application of
this version of mQSO is accompanied with disadvantageous side effect of contin-
uous increase of allocated resources. The results returned by mQSOcistrm are
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worse than by mQSOgxpimem, but this time the number of allocated resources
remains under control. In spite of the fact that in mQSOgstrm the number of
clusters is not limited, the proposed principles of cluster validation allow us to
stabilize the number of clusters on a fixed level.
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