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Abstract: Results are presented for optimal layout of materials
in the spatial and temporal domains for a 1D structure subjected
to transient wave propagation. A general optimization procedure is
outlined including derivation of design sensitivities for the case when
the mass density and stiffness vary in time. The outlined optimiza-
tion procedure is exemplified on a 1D wave propagation problem
in which a single gaussian pulse is compressed when propagating
through the optimized structure. Special emphasis is put on the use
of a time-discontinuous Galerkin integration scheme that facilitates
analysis of a system with a time-varying mass matrix.
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1. Introduction

The method of topology optimization is a popular method for obtaining the op-
timal layout of one or several material constituents in structures and materials
(Bendsge and Kikuchi, 1988; Bendsge and Sigmund, 2003). The methodology
has within the last two decades evolved into a mature and diverse research field
involving advanced numerical procedures and various application areas such as
fluids (Borrvall and Petersson, 2003), waves (Sigmund and Jensen, 2003), elec-
tromagnetism (Cox and Dobson, 1999), as well as various coupled problems
such as e.g. fluid-structure interaction (Yoon, Jensen and Sigmund, 2007). Ad-
ditionally, industrial applications in the automotive and aerospace industries are
established and widespread. The success has been facilitated by the large design
freedom inherently associated with the concept, but also by efficient numerical
techniques such as adjoint sensitivity analysis for rapid computation of gradi-
ents (Tortorelli and Michaleris, 1994), various penalization and regularization
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techniques for obtaining both meaningful and useful designs (Sigmund and Pe-
tersson, 1998) and the close integration with mathematical programming tools,
such as the method of moving asymptotes (MMA) (Svanberg, 1987).

Recently it was suggested to apply (and somewhat extend) the standard
topology optimization framework to design a 1D structure in which the stiffness
could change both in space and time (Jensen, 2009). As an example, an opti-
mized “dynamic structure” that prohibits wave propagation was designed and
manifested itself as a moving bandgap structure with layers of stiff inclusions
moving with the propagating wave. The dynamic structure was demonstrated
to reduce the transmission of a wave pulse by about a factor of three compared
to an optimized static structure. The present paper extends the described work
by allowing materials that have not only time-varying stiffness but also a time-
varying mass density. This extension requires special attention to the choice of
time-integration scheme since many standard schemes fail. However, it allows
for extended manipulation of the wave propagation as illustrated in the exam-
ple in the present paper, in which a single gaussian wave pulse is compressed
when propagating through the optimized structure. Preliminary results for this
design problem in the case of time-varying stiffness were presented in Jensen
(2008).

The basic setting for obtaining optimal space and time distributions of mate-
rials for problems governed by the wave equation was first presented in Maestre,
Miinch and Pedregal (2007), Maestre and Pedregal (2009). These papers an-
alyze 1D and 2D problems with a strong focus on the mathematical aspects
of the optimization problem. Both the present paper and the aforementioned
works root in the fundamental concept of dynamic materials. This concept was
introduced by Lurie and Blekhman (Lurie, 1997; Blekhman and Lurie, 2000;
Blekhman, 2008) who unfolded the rich and complex behavior of materials with
properties that vary in space and time. The dynamics of structures with space
and time varying properties was also studied in the work by Krylov and Sorokin
(Krylov and Sorokin, 1997) and later in Sorokin, Ershova and Grishina (2000),
Sorokin and Grishina (2004).

The basis for the presented optimization problem is time-integration of the
transient model equation coupled with adjoint sensitivity analysis. Thus, the
problem closely resembles previous studies that have been carried out for topol-
ogy optimization of static structures using a transient formulation, e.g. Min et
al., (1999), Turteltaub (2005), Dahl, Jensen and Sigmund (2008).

The outline of the paper is as follows. In Section 2 the governing equation is
presented and the basic setup defined. In Section 3 the design parametrization
is defined and design sensitivities are derived. Section 4 is devoted to numerical
analysis of the transient direct and adjoint equations and numerical simulation
results are presented. In Section 5 an optimization problem is defined and
examples of optimized designs are presented. Section 6 summarizes and gives
conclusions.
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2. Governing equation

The starting point for the analysis and subsequent optimization study is a time-
dependent FE model in which the mass matrix (M(t)) and the stiffness matrix
(K(t)) are allowed to vary in time:

%(M(f)v) +Cv+K(t)u=1£(t) (1)
in which C is a constant damping matrix and f(¢) is the transient load. The
vector u(t) contains the unknown nodal displacements and the notation v =
Ou/0t has been used to denote the unknown velocities. It is assumed that the
mass matrix is diagonal, e.g. obtained by a standard lumping procedure. This
will be of importance when choosing a proper time-integration routine but it
should be emphasized that all formulas derived in the following hold also for
the case of M being non-diagonal.

The governing equation is solved in the time domain with the trivial initial
conditions:

u(t)=v(t)=0 (2)

which imposes only limited loss of generality and facilitates the sensitivity anal-
ysis as shown later.

It should be noted that although the terms mass matrix/mass density and
stiffness matrix/stiffness are used here and in the following presentation, the
equations could just as well apply to an electromagnetic or an acoustic problem
with proper renaming of involved parameters. However, the terminology from
elasticity will be kept throughout this paper.

3. Parameterization and sensitivities

The density approach to topology optimization (Bendsge, 1989) is adapted to
the present problem. With this approach a single design variable z. (”den-
sity”) is assigned to each element in the FE model. As in Jensen (2009) this
is expanded to the space-time case by defining a vector of continuous design
variables:

x; = {z}, 27 ...,xé—V}T (3)

for each of a predefined number M of time intervals (such that j € [1, M]), for
which the design will be allowed to change. In Eq. [B]) NV is the number of spatial
elements in the FE model. Thus, for a 1D spatial structure, as considered in the
example in Section 5, the corresponding design space is two-dimensional with
dimension N x M.

The value of the density variable x¢ will determine the material properties of

J
that space-time element by an interpolation between two predefined materials
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1 and 2, where the variable is allowed to take any value from 0 to 1 (z§ € [0;1]).
By rescaling the equations with respect to the material properties of material
1, the mass and stiffness matrices can be written as:

] =

M; =) (1+z5(p—1))M° (4)

1

o
Il

] =

K;=)» (1+z5(F—-1))K* (5)

e=1

such that p, E denote the contrast between the two materials for the mass
density and stiffness, respectively. In Eqs. [@)—(E), M and K¢ are local mass
and stiffness matrices expressed in global coordinates.

Analytical expressions for the design sensitivities are now derived. The op-
timization is based on an objective that is assumed to be written as:

T
6= / c(u)dt (6)

in which ¢ is a real scalar function of the time-dependent displacement vector
and 7 is the total simulation time. It should emphasized that more complicated
objective functions, e.g. with a dependence on the velocities or an integration
different from the total simulation time, can be treated with minor modification
of the following derivation.

The derivative wrt. a single design variable in the j’th time-interval and e’th
spatial variable is denoted ()" = 0/0x§ and thus the sensitivity of ¢ wrt. to z§
is:

T
/ a !
0] 2/0 —8lclu dt (7)

Eq. ([@) involves the term u’ which is difficult to evaluate explicitly. However,
the adjoint method can be used to circumvent this problem in an efficient way
(Arora and Holtz, 1997). For this purpose the residual vector R:

0 Mv) 4+ Cv + Ku — f(t) (8)

is differentiated wrt. x5

R’ = %(M’v +Mv') + Cv' + K'u + Ku/ (9)

in which it has been used that f (the transient load) and C (the damping matrix)
are both independent of the design.
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With the aid of Eq. [@), Eq. (@) is reformulated as:

¢’/T(@u’+>\TR’)dt (10)
~Jo Ou

in which A denote an unknown vector of Lagrangian multipliers to be determined
in the following.

Expanding the expression in Eq. (I0) and using integration by parts leads
to the following equation:

¢ = T()\TK’u— TM'v)dt foe, 0 ™) —~TC+ ATK)u'dt
=, v M'v) +O(au+at(7 )= C+ Ju

+ [AT(M'v + MV + Cu') — 4" M) (11)

in which the notation v = OA/9Jt has been introduced.

Now the unknowns (A, ) can be chosen so that the last integral in expression
() vanishes along with the bracketed term that originates in the boundary
contribution from integrating by parts (if the trivial initial conditions in Eq. (2])
are applied as well). This leads to the following adjoint equation:

ﬁ T N _ T T 7_%T
(M)~ €Ty + KTA = —(50) (12)

along with the following terminal conditions:

The sensitivities can then be computed from the remaining expression:

T 7"
¢ = / ATK'a—~TM'v)dt = / ATK'a — ~yTM'v)dt (14)
0 T
in which the integral can be reduced to the j'th time interval ranging from 'Z}_
to 'Z}Jr simply because K’ and M’ vanish outside the interval belonging to the
specific design variable.
The expression can be further reduced to element level as follows:

7*]_+
o = / U (E-1)X)TK E — (p - 1)(v¢)TMEve) dt (15)
Tj

by using the material interpolations defined in Eqgs. (@)—(l).
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4. Numerical analysis

Special care has to be taken to solve the direct and adjoint problems in Eqgs. ({I)—
@) and Egs. (I2)—(13) in the case where M is not constant. In this case, v and v
are not continuous and the numerical integration scheme must be able to handle
this difficulty. A time-discontinuous Galerkin procedure (Wiberg and Li, 1999)
allows for discontinuous field variables in time domain and is applicable for this
case. An explicit version of the scheme is applied. The choice of an explicit
solver (in combination with a lumped mass matrix) is essential for an efficient
solution of the equations.

The basic numerical procedure is described shortly in the following for the
direct problem of solving for u(t),v(t). The adjoint problem for A(t),~(¢) is
solved in a similar way. The total simulation time 7 is divided into N; equidis-
tant intervals and a discrete set of displacement and velocity vectors u;, v; is
obtained for i € [1, N} 4+ 1] including the initial conditions. Each time interval
(k € [1,NVy]) is treated as a time element and an inner-loop iterative procedure
is used to obtain a velocity vector at the beginning of the interval denoted v
and one at the end of the interval denoted v5. For the n'” inner-loop iteration
the updates of v§ and v§ are:

M(vi)" = (Mv)* "'+ £H(f1 — f)
2
+ SRV —2vp)" T - GO - vh)! (16)
MEE)" = (Mvo)F ! — Ay(Ku)F 1) + &L(f; + fo)
2
— B K(@vh - vt - Ate(vh 4 vt (17)

in which f; and £, is the load vector evaluated at the beginning and end of the
time interval, respectively. The values of (v¥)"~! and (v5)"~! for the initial
iteration (n = 1) are taken to be equal to the value of V];*l. These inner
loop iterations are continued until v§ and v& do not change more than some
predefined small tolerance (usually 2-3 iterations are performed).

Based on the converged time element values the recorded velocity and dis-

placement vector at discrete time ¢ is then:

vi = vb (18)
u' = ul+ AL+ V). (19)

4.1. Test problem

The explicit time-discontinuous Galerkin formulation is now compared to a stan-
dard explicit central difference scheme as previously employed in Jensen (2009).
The model problem is depicted in Fig. [l and the setting is described in the fol-
lowing. A sine-modulated gaussian pulse propagates in a homogeneous medium
with material properties p = E = 1 and at t = 3 the material properties change
instantaneously to p = pp and E = FEy. As a result the propagating wave splits
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p=1
E 1t<to
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Figure 1. Propagation of a sine-modulated gaussian pulse in a homogeneous
medium with an instant change of material properties at t = tg.

up into a forward and a backward travelling wave. It can be shown analytically
that the relative change in wave energy at the moment of change of material
properties is given as:

AE 1
?:%(EOJF%)—L (20)

In Fig. [2 the wave energy is plotted as a function of time. Both plots in
the figure correspond to the case where the material properties are changed at
to = 0.85s. In the first plot the material properties are pg = 1 and Fy = 1.5,
which correspond to a relative energy jump of 0.25 and as appears from the plot,
this jump is accurately predicted by the time-discontinuous Galerkin procedure
but also with a normal central difference scheme. In the second plot pp = 2 and
Ey = 1.5 are chosen and thus zero energy jump should occur. From the plot we
can see that the time-discontinuous scheme correctly captures the behavior as
opposed to the central difference scheme.

It should be mentioned that the time-discontinuous scheme is computation-
ally more expensive than the straightforward central-difference scheme, since
it involves inner loop iterations. The computational overhead depends on the
specific value of the tolerance set for the inner-loop iterations (see Wiberg and
Li, 1999, for more details). It is possible that more efficient schemes could be
developed.

5. Example: pulse compression

The optimization algorithm is now demonstrated on the particular design prob-
lem illustrated in Fig. Bl A single gaussian pulse is sent through a one-
dimensional structure and the transmitted wave is recorded. Wave propagation
in the bar is simulated by applying a time-dependent load at the left boundary
and adding absorbing boundary conditions in the form of simple dampers at
both ends.
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Figure 2. Simulation values of the wave energy in the homogeneous structure
with an instantaneous change of material properties at to = 0.85s. a) pp = 1
and Eyp = 1.5 and b) pg = 2 and Ey = 1.5.
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Figure 3. Design problem. A single gaussian pulse is to be compressed when

propagating through the design domain by a suitable stiffness and mass density
distribution in space and time.
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The purpose of the optimization problem is to design the structure so that
that the difference between the recorded output and a specified target is mini-
mized. Thus, the following objective function is considered:

T
¢=A<%m—@m%t (21)

in which weyt is the displacement history of the output point, u},; is the output
point target, and 7 is the total simulation time.

The wave pulse is generated by applying the following force at the input
point:

F(t) = —4uod(t — t)e 00—10)* (22)

in which ¢ determines the width of the pulse, t( is the time center for the pulse,
and wug is the amplitude of the resulting input wave pulse:

u(t) = uge3(t=t0)” (23)
As the target output pulse we choose

ul () = Gige~e(t—to)? (24)

out

in which ¢ represents the specified compression of the pulse.

5.1. Auxiliary design variables

In Eq. ([24) the pulse time center at the output point is specified as £y and the
amplitude of the output wave is specified to be @g. Instead of fixing these values,
they are included in the optimization problem via extra design variables.

It is obvious that a reshaping of the wave leads to some delay of the pulse
and the best value of #y is not known a priori and it is thus natural to include
it in the design problem. The value of £, is given as:

to = (tO)min + xl((tO)max - (tO)min) (25)

so that the corresponding extra design variable z; takes values from 0 to 1.
The minimum and maximum values are simply chosen large enough so that the
value of 1 does not reach the 0 or 1 limit during the optimization process.

The extra design variable x5 associated with the output wave amplitude ug
is defined as follows:

ﬁ40 = (ﬂO)min + x2((ﬂ0)max - (ﬁO)min) (26)

where the minimum and maximum values are specified as values close to ug, e.g.
(To)min = 0.8ug and (@o)max = 1.2ug. In this way the optimization problem is
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relaxed somewhat in order to allow the optimization algorithm to find an optimal
compression of the pulse without a too strict constraint on the pulse amplitude.
It should be emphasized that obtaining an output pulse with an amplitude larger
than the input pulse is possible also for an uncompressed pulse, since the energy
is not conserved due to the external control of the material properties.

The sensitivities with respect to the auxiliary design variables can be ob-
tained in a straightforward manner from Eqs. (21I), (24)-(28).

5.2. Optimization problem

The optimization problem can now be written as:

. T
M 2q,20 ¢ = f() (uOUt - uzut)zdt

st.r Z(M(t)v) +Cv+K(t)u=f(t)

te0;7]

u(0) =v(0) =0
0<x; <1, jel[l,M]
nglgl
OS.IQSl

(27)

and is solved using the derived expressions for the design sensitivities in combi-
nation with the method of moving asymptotes (Svanberg, 1987).

5.3. Results and discussion

In the following, results are presented for the optimization problem described
above. The model and simulation details are as follows. A unit length design
domain is split into N = 500 spatial elements. The total simulation time is
chosen to be 7 = 1.8s and the numerical time-integration is performed using
Ny = 9000 time steps. The input pulse is defined via the parameters ug = 1,
5§ =100s"2 and ty = 0.3s.

The optimization problem is defined by specifying the target pulse with
a compression corresponding to ¢ = 3.5. The limits for the auxiliary design
variables are chosen to be (fo)min = 1.25, (£0)max = 1.358, (tg)min = 0.8ug and
(Uo)max = 1.2up. The design is allowed to change M = 36 times during the
simulation time and in order to keep the designs simpler, the spatial elements
are grouped into 20 patches. Thus, the total number of design variables in the
model becomes 20 x 36 + 2 = 722.

Fig. @ shows an example of a pulse that is compressed when propagating
through a space-time optimized structure obtained with material parameters
p =1 and F = 1.75. The curves in Fig. M additionally illustrate how the
pulse, apart from being compressed, is delayed in the optimized structure when
compared to the pulse propagating in the homogeneous structure. In this case
the optimized value of the delay parameter is £y ~ 1.25s, whereas the optimized
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Figure 4. Left: input wave pulse. Right: optimized compressed wave pulse and
for comparison the uncompressed output wave pulse.
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Figure 5. Four examples of output pulse through the optimized structure and the
corresponding target pulse. The material parameters are: a) p = 1, £ = 1.25,
b)p=1, E=1.75,¢) p=1.33, E=1.25,d) p=0.75, E = 1.25.

value of the output pulse amplitude g is very close to the input pulse amplitude
Uy = 1.

In Fig. [l four plots are presented, each showing a compressed output pulse
compared to the target output pulse, each for a different set of material param-
eter contrasts p and E. Note that the targets are different for the four plots
since they depend on the optimized values of the auxiliary design variables 1
and xs.

Figs. Bh,b are obtained for structures that are optimized with a constant
value of p = 1 but two different values of F (stiffness contrast). For low E
(E = 1.25) it is evident that the target compression of the pulse cannot be
obtained. There is a discrepancy between the curves near the tip and at the
pulse front and tail where the pulse has not been compressed enough. However,
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when the contrast is increased (E = 1.75), a much better match to the target is
obtained. The pulse front (corresponding to the part of the curve near ¢t = 1.1s)
is still somewhat off the target.

In Figs. Bk,d the stiffness contrast is kept at the lower value (F = 1.25), but
now the mass density contrast is changed to p = 1.33 and p = 0.75, respectively.
It is evident from Fig. Bk that for this material property combination (p = 1.33)
the targeted pulse compression is not possible at all, whereas for p = 0.75 the
compression of the pulse is nearly perfect (with the pulse front still being slightly
off). Thus, it is clear that the combined effect of the two material parameters
is very important and they should be chosen carefully in order to obtain the
desired compression effect.

In the examples shown, the corresponding design variables range broadly
from 0 to 1 (see Fig.[6h) which implies that the corresponding material properties
in the structure should be interpolations of material 1 and material 2. There is
nothing in the optimization formulation as stated that forces a binary 0-1 design
that could be created with only the two materials available. If it is required
that the structure can be fabricated with only the two specified sets of material
properties, an explicit penalization scheme can be employed (e.g. Borrvall and
Petersson, 2001). Hence, the objective is appended with a penalizing term:

M N
¢= /u o) dt+ed D a5l —af) (28)
j=le=1

and in this way intermediate values of the design variables (between 0 and 1) are
expensive and the design will inevitably be pushed toward a binary 0-1 design
if the parameter ¢ is sufficiently large.

In Fig.[Bh the space-time design variables in the optimized designs are plotted
for the case of p = 0.75, E = 1.25, and in Fig. [Bb the design variables are
plotted with the optimization performed on the new objective function with
explicit penalization from Eq. (28]). The penalization has been employed by
using the non-penalized structure as a staring point and increasing the value of
€ in a number of steps using a continuation approach until most of the design
variables take values that are 0 or 1. As it appears from the figure only a few of
the design variables are now intermediate. However, Fig. [[lshows that the almost
perfect 0-1 design has been obtained at some cost in terms of performance of the
structure. Especially, near the pulse tail the output pulse for the 0-1 optimized
structure is quite different from the target.

Finally, in order to further illustrate the space-time distribution of the ma-
terial properties, Fig. [l show snapshots of the design variables along with the
wave profile at four different time instances. The plots are for the non-penalized
structure of Fig. [Gh.
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Figure 6. Space-time plot of the material distribution in the optimized struc-
ture. a) without penalization of intermediate densities, b) with penalization of
intermediate densities.
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Figure 7. Target output pulse and output pulse for the optimized design without
and with penalization of intermediate design variables.
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Figure 8. Illustration of pulse compression as the pulse propagates through the
optimized dynamic structure corresponding to Fig. [Gh.
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6. Summary and conclusions

This paper reports on a topology optimization procedure for the distribution
of material in space and time. The procedure is applied to a 1D transient
wave propagation problem in which a gaussian wave pulse is compressed when
propagating through the structure which is composed of materials with different
mass and stiffness parameters.

Expressions for the design sensitivities are derived using the adjoint method.
This leads to a terminal value transient problem. The direct and the adjoint
discretized equations are solved using a time-discontinuous Galerkin procedure.
This allows for the correct simulation of the system when the mass matrix is not
constant in time, however, at the expense of extra computational effort. The
performance of the numerical scheme is demonstrated on a wave propagation
problem in which the material properties change instantly. It is shown that the
time-discontinuous scheme correctly simulates the problem, whereas a standard
central difference scheme fails if the mass matrix is not constant in time.

The optimization procedure is demonstrated on a 1D wave propagation prob-
lem in which a single gaussian pulse is compressed through an optimized space
and time distribution of two materials with different mass density and stiffness.
The optimization problem is formulated as a minimization problem in which the
difference between the output pulse and a specified target output is minimized.
Two auxiliary design parameters are introduced to relax the problem. They
control the temporal location of the output pulse and its amplitude, which are
allowed to vary within some predefined limits. The optimization problem is
solved with the mathematical programming tool MMA.

It is shown that is it possible to compress the pulse depending on the specific
values of mass and stiffness contrasts but that the designs will be composed of
material properties that are mixtures of two predefined materials. An explicit
penalization scheme is finally introduced in order to eliminate intermediate de-
sign variables so that the designs are primarily composed of the two available
materials. This is shown to compromise the performance to some extend. The
example clearly demonstrates that the pulse compression can be accomplished
by using the presented scheme and indicates promising perspectives for using
space-time topology optimization to create devices for more complex pulse shap-
ing.
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