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Abstract: The aim of this paper is to present the shape deriva-
tive for a wide array of objective functions using the incompressible
Navier–Stokes equations as a state constraint. Most real world ap-
plications of computational fluid dynamics are shape optimization
problems in nature, yet special shape optimization techniques are
seldom used outside the field of elliptic partial differential equations
and linear elasticity. This article tries to be self contained, also pre-
senting many useful results from the literature. We conclude with a
comparison of different objective functions for the shape optimiza-
tion of an obstacle in a channel, which can be done quite conveniently
when one knows the general form of the shape gradient.
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1. Introduction

Optimal control of fluids has seen much attention due to its importance for
many technical, scientific, and engineering applications. A good overview on
fluid control can, for example, be found in Gunzburger (2003). However, the
problem is seldom treated from a pure shape optimization perspective. Notable
exceptions are Pironneau (1973) and one section of Mohammadi and Pironneau
(2001). When the problem is treated from a shape optimization approach, usu-
ally only one very specific type of objective function is considered: the volume
dissipation of the kinetic energy of the fluid into heat. In the limit of the Stokes
equations, this results in a self-adjoint problem, allowing for an elegant analy-
sis. A more general volume objective function for the Navier–Stokes equations
is considered in Ito et al. (2008), where the existence is shown using surprisingly
weak regularity assumptions.
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Although many objective functions of practical relevance are defined on the
surface of the flow obstacle alone, such objectives are seldom considered. On
the one hand, the shape sensitivity analysis for surface functionals is much more
complex in itself, but on the other hand, a surface functional often features a
dependence on the geometry that adds to the difficulties in deriving the correct
gradient expression in Hadamard form. The Hadamard form enables a very
efficient computation of the gradient without the need to compute the so called
“mesh sensitivity” Jacobian. This is especially true for aerodynamic quantities
such as drag, lift, or matching a target surface pressure distribution. The shape
derivative for such quantities can, for example, be found in Schmidt et al. (2008)
for a compressible fluid model. Since many auxiliary results from a special shape
analysis background are needed to derive the Hadamard expression, this paper
seeks to be self-contained, listing them from multiple literature sources such
as Amrouche, Nečasova and Sokolowski (2007), Boisgérault and Zolésio (1993),
Delfour and Zolésio (2001) and Sokolowski and Zolésio (1992).

As such, the present work seeks to derive the expression for the shape deriva-
tive of a general objective function using an incompressible Navier–Stokes flow
that is as general as possible, combining both a volume part and a surface
objective function. A dependence on the geometry is also included.

This article is structured as follows: Section 2 presents the problem under
consideration in more detail. Subsequently, Section 3 is used to give a detailed
overview about shape sensitivity analysis from the literature, especially Delfour
and Zolésio (2001), Sokolowski and Zolésio (1992). Finally, Section 4 presents
the adjoint calculus, which in combination with the results from Section 3 leads
to Theorem 4, the Hadamard representation of the shape derivative. Theorem 4
is the main purpose of this article and new to the best of our knowledge. Since
the pressure in an incompressible fluid has an artificial character and usually
no boundary condition on the fluid obstacle, there will be some restriction on
the surface part of the objective function such that the adjoint state exists.
For more detailed existence results we would like to refer to Plotnikov, Ruban
and Sokolowski (2008) and Plotnikov and Sokolowski (2005, 2008). Section 5
concludes with the comparison of different objective functions for the shape
optimization of an obstacle in a channel. When knowing the general form of the
shape gradient for a Navier–Stokes fluid, such a comparison can be done quite
conveniently.

2. The optimization problem

The aim of this paper is to show the structure of the shape derivative of a
general objective function under a PDE constraint describing an incompressible
Navier–Stokes fluid:
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min
(u,p,Ω)

J(u, p,Ω) :=

∫

Ω

f(u,Du, p) dA+

∫

Γ0

g(u,Dnu, p, n) dS (1)

subject to

−µ∆u+ ρu∇u+ ∇p = ρG in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn− µ
∂u

∂n
= 0 on Γ−.

(2)

Here, f : R
d × R

d×d × R → R and g : R
d × R

d × R × R
d → R are assumed to

be continuously differentiable in each argument. Also, d is the dimension of the
bounded domain Ω ⊂ R

d and in the following Γ := ∂Ω is used to denote the
whole boundary of Ω. Furthermore, u : Ω → R

d is the velocity of the fluid and
p : Ω → R is the pressure. The viscosity is given by µ, and ρ denotes the density,
which is constant in an incompressible fluid. The outflow boundary condition on
Γ− is the finite element “do nothing” outflow condition that naturally arises due
to integration by parts during the finite element matrix assembly. Additionally,
Γ+ denotes the inflow boundary and Γ0 is the fluid obstacle or the channel wall,
using the no-slip boundary condition. The shape Γ0 is the unknown to be found.
Also, n is the normal vector with components ni and ρGi are the outside body
forces, i.e. the forces per unit volume acting on the fluid. Due to the no-slip
boundary condition on Γ0 it is sufficient to consider the derivative in normal
direction Dnu := Du · n on Γ0 since the tangent derivative of the velocities is
zero anyway. The domain is sketched in Fig. 1.

Figure 1. Exemplified domain under consideration. Solid lines denote the no-slip
boundary Γ0, dotted lines represent inflow Γ+ and outflow Γ−.

The control we are considering is the shape of the Dirichlet boundary Γ0.
As such, Γ0 is the unknown and we seek the total derivative of the above with
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respect to Γ0. The inflow direction is considered constant and independent of the
shape of the boundary. Since the outflow boundary has an artificial character
anyway, we also consider the shape of the outflow boundary to be fixed. In order
to keep the notation readable we refer to the Jacobian components as follows:

Du =: [aij ]ij ∈ R
d×d

Dnu = Du · n =
∂u

∂n
=: [bi]i ∈ R

d. (3)

Since the pressure has no explicit boundary condition on Γ0, but is implicitly
linked with the velocity, we need to impose the following restriction on g, the
boundary part of the objective, such that we can later arrive at a consistent
adjoint boundary condition: we choose g such that there exists a functional
λ : Ω → R

d satisfying the following conditions on Γ0:

λi =
1

µ

∂g

∂bi
∀i = 1, . . . , d

〈λ, n〉 = −∂g
∂p
.

This is less restrictive than it might appear. A consequence is that for a force
minimization, the forces should be chosen in line with the state equation, i.e.
since the state equation describes a viscous fluid, the objective function should
also include the viscous forces. For drag minimization at zero angle of attack,
we have

g(u,Dnu, p, n) = µ
∂u1

∂n
− pn1,

which leads to

∂g

∂p
= −n1

∂g

∂bi
= µδ1,i

and the above is satisfied with λi = δ1,i, where

δi,j :=

{

1 if i = j

0 else

is the Kronecker symbol. The inclusion of higher derivatives on the velocities
within the objective (1) is straightforward, but further limits the allowed surface
functionals g and will not be considered here.

3. Review on shape calculus

Since we are interested in a gradient with respect to the shape of Γ0, we first
define a one parametric family of bijective mappings Tt : (t, x) 7→ Tt(x). A de-
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formed domain Ωt is then given by

Ωt := {Tt(x0) : x0 ∈ Ω} .

Usually, the mapping Tt is either given by the perturbation of identity

Tt(x) = x+ tV (x) (4)

or implicitly by the speed method

dx

dt
= V (t, x), x(0) = x0,

where V is a vector field of appropriate smoothness. For first order calculus, it
can be shown that both approaches are equivalent. Here, however, we will focus
on the perturbation of identity (4). We seek to derive a formula for the shape
derivative as defined in Sokolowski and Zolésio (1992) that can be computed
very efficiently:

Definition 1 (Shape differentiability, shape derivative) Let D ⊂ R
d

be open and Ω ⊂ D measurable. Let V be a continuous vector field. A shape
functional J is called shape differentiable at Ω, if the Eulerian derivative

dJ(Ω)[V ] := lim
t→0+

J(Ωt) − J(Ω)

t
, Ωt := Tt(Ω)

exists for all directions V and the mapping V 7→ dJ(Ω)[V ] is linear and con-
tinuous. The expression dJ(Ω)[V ] is called the shape derivative of J at Ω in
direction V .

Parameterization based approaches usually require knowledge of some “mesh
sensitivity” for the gradient computation: suppose the Navier–Stokes state equa-
tion (2) is given in abstract form by c(u, p, q) = 0, where q is some design pa-
rameter defining the shape, e.g. b-splines or Bézier-curve parameters. Without
taking into account the shape optimization nature of the problem, a formal
Lagrangian approach results in:

dJ

dq
=
∂J

∂q
− λT

∂c

∂q
[

∂c

∂(u, p)

]T

λ =
∂J

∂(u, p)
.

Thus, computing this expression requires knowledge of the “mesh sensitivity”
Jacobian ∂c

∂q
, i.e. the derivative of the solution procedure of the PDE with respect

to perturbations in the mesh discretizing the domain. The key to avoid this
expression is the so-called Hadamard theorem, a consequence of the Delfur–
Zolésio structure theorem (Delfour and Zolésio, 2001; Sokolowski and Zolésio,
1992).
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Theorem 1 (Hadamard Theorem) Let J be shape differentiable as in Defi-
nition 1. Then the relation

dJ(Ω)[V ] = dJ(Γ)[〈V, n〉n]

holds for all vector fields V ∈ Ck(D̄; Rd).

Proof. See Proposition 2.26, pages 59–60, in Sokolowski and Zolésio (1992).

The consequence of the Hadamard formula is that under some mild smooth-
ness assumptions, the shape derivative dJ has the structure of a scalar product
with the normal component 〈V, n〉 of the prescribed perturbation V of the do-
main Ω. One can thus use the shape gradient directly as an update for the
boundary, which results in the steepest descent direction and can be applied
without knowledge of the costly mesh sensitivity Jacobian ∂c

∂q
.

Remark 1 (Shape gradient) In Sokolowski and Zolésio (1992), the Hada-
mard theorem actually states the existence of a scalar distribution

g(Γ) ∈ D−k(Γ),

such that the shape gradient G(Ω) ∈ D−k(Ω,Rd) is given by

G(Ω) = γ∗Γ(g · n),

where γ∗Γ is the adjoint of the trace operator on Γ. Here, however, it is al-
ways assumed that G(Ω) is an integrable function, i.e. Ω has piecewise smooth
boundaries. Then the shape gradient g is much more conveniently expressed by

dJ(Ω)[V ] =

∫

Γ

〈V, n〉 g dS.

In order to find the shape gradient for the general Navier–Stokes problem
we are considering, we need some additional results. Most of them are known
from the literature (Amrouche, Nečasova and Sokolowski, 2007; Boisgérault and
Zolésio, 1993; Delfour and Zolésio, 2001; Sokolowski and Zolésio, 1992), but we
think that listing them here will create a much more self-contained derivation
of the Navier–Stokes gradient.

3.1. Shape derivative for volume objectives

We start with recapitulating the Hadamard formula for objective functions,
which are defined over the whole domain Ω, such as the first part of the mixed
objective function (1):
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Lemma 1 (Derivative of deformation determinant) The derivative of
the determinant of the perturbation of identity approach is given by:

d

dt t=0

detDTt(x) = div V (x). (5)

Proof. For a matrix A(t) ∈ R
m×m where each entry is a differentiable function

such that A(t)−1 exists for some interval I ⊂ R, the derivative of the determinant
with respect to t is given by

d

dt
detA(t) = tr

(

dA(t)

dt
A(t)−1

)

detA(t).

Since DT0(x) = I, we have

d

dt t=0

detDTt(x) = tr

(

dDTt(x)

dt t=0

)

= tr (DV (x))

= div V (x).

Lemma 2 (Hadamard formula for volume objective functions) For
a general volume objective function f : Ω → R, not depending on a PDE
constraint, i.e.

J(Ω) =

∫

Ω

f dA,

the shape derivative is given by

dJ(Ω)[V ] =

∫

Γ

〈V, n〉f dS.

Coincidentally, the shape gradient is already given by f in this case.

Proof. See Proposition 2.46 in Sokolowski and Zolésio (1992), or Theorem 4.1
in Delfour and Zolésio (2001).

3.2. Definitions and lemmas

Before we recapitulate the Hadamard formula for objective functions, which are
defined on the boundary of the domain Ω, such as the second part of (1), some
definitions and lemmas should be presented from the literature:

Definition 2 (Submanifold of R
m, parameterization, chart, co-

dimension) A set Ω ⊂ R
m is called d-dimensional submanifold of R

m if for
each x ∈ Ω there exists an open neighborhood U1(x) ⊂ R

m and a differentiable
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function h : U2 → R
m with U2 ⊂ R

d open and with injective Jacobian and with
continuous inverse mapping h−1 : h(U2) → U2 such that

h(U2) ⊂ U1 ∩ Ω.

Furthermore, h is called (local) parameterization, h−1 is called map, and the
pair (h−1, h(U2)) is called chart. Thus, x ∈ Ω ⊂ R

m is given by x = h(ξ1, ..., ξd)
for (ξ1, ..., ξd) ∈ U2 ⊂ R

d. The value m− d is called co-dimension.

Definition 3 (Integral over submanifolds) Let Ω be a d-dimensional
compact submanifold in R

m with finite open atlas

Ω ⊂
l
⋃

j=1

hj(Mj)

such that Ωj := hj(Mj) and a corresponding partition of unity

l
∑

j=1

rj(x) = 1

with rj infinitely continuously differentiable with compact support for all j.
Then, the integral over Ω is defined by

∫

Ω

g dΩ :=

l
∑

j=1

∫

Ωj

grj dΩ :=

l
∑

j=1

∫

Mj

g(hj(s))rj(hj(s))

√

det(Dhj
TDhj)(s) ds

=:

∫

M

g(h(s))
√

det(DhTDh)(s) ds, (6)

where Dhj is the Jacobian of hj.

Lemma 3 (Integral over the surface of submanifolds) Let Ω be as in
Definition 3. The integral over the surface of Ω is then given by

∫

∂Ω

g dS =

∫

B0

g(h(s))| detDh|‖ (Dh)
−T

ed‖ ds, (7)

where B0 = {ξ ∈ R
d : ‖ξ‖ ≤ 1, ξd = 0} is the intersection of the open d-

dimensional unit ball with the ξd = 0 hyperplane and ed is the d-th unit vector.

Proof. Let B := {ξ ∈ R
d : ‖ξ‖ ≤ 1} ⊂ R

d be the open unit ball in R
d. The unit

ball is segmented by a cut with the ξd = 0 hyperplane in

B+ := {ξ ∈ B : ξd > 0}
B− := {ξ ∈ B : ξd < 0}
B0 := {ξ ∈ B : ξd = 0}.
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Without loss of generality, one can assume that the interior of Ωj is given by

int Ωj = hj(B+)

and, consequently, the boundary is given by

∂Ωj = hj(B0),

i.e. ∂Ωj = {hj(ξ, 0) : (ξ, 0) := (ξ1, ..., ξd−1, 0) ∈ B0}. Hence, for a proper
computation of the surface integral it is necessary to project the integration
density

det(Dhj
TDhj)

of the volume case above to the (ξ, 0)-hyperplane, i.e. dropping the last column
and last row from the matrix, which is the dd-minor [Dhj

TDhj ]dd of Dhj
TDhj .

By the definition of the cofactor-matrix, the determinant of the dd-minor is
exactly the mdd-entry of the cofactor-matrix M(Dhj

TDhj). Thus, the proper
integration density for the surface integral is given by

√
mdd =

√

eTdM(Dhj
TDhj)ed

=

√

eTdM(Dhj
T )M(Dhj)ed

=
√

‖M(Dhj)ed‖2
2

= ‖M(Dhj)ed‖2

= | det(Dhj)|‖Dh−Tj ed‖2,

where in the last line the property M(A) = det(A)A−T was used. Hence, the
corresponding boundary integral is given by

∫

∂Ω

g dS :=

l
∑

j=1

∫

∂Ωj

grj dS

=

l
∑

j=1

∫

B0

grj(hj(s))| detDhj |‖ (Dhj)
−T

ed‖ ds

= :

∫

B0

g(h(s))| detDh|‖ (Dh)
−T

ed‖ ds,

where s = (ξ, 0) = (ξ1, ..., ξd−1, 0).

Lemma 4 (Unit normal field on ∂Ω) For a regular surface ∂Ω, the unit
normal field at x = h(ξ, 0) on ∂Ω is given by

n(x) =
Dh(ξ, 0)−T ed

‖Dh(ξ, 0)−T ed‖
.
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Proof. The tangent space is given by

TxΩ = span(Dh(ξ, 0)ei, i = 1, ..., d− 1),

i.e. one (non-unit) tangent direction is given by τi := Dh(ξ, 0)ei. Hence,

〈τi, Dh(ξ, 0)−T ed〉 = 〈Dh(ξ, 0)ei, Dh(ξ, 0)−T ed〉
= 〈Dh(ξ, 0)−1Dh(ξ, 0)ei, ed〉
= 〈ei, ed〉
= 0 ∀i = 1, ..., d− 1

is normal to the tangent space.

Remark 2 (Alternative representations) Since M(A) = det (A)A−T ,
the boundary integral can also be expressed as

∫

∂Ω

g dS =

∫

B0

g(h(s))‖M(Dh(s))ed‖ ds.

Analogously, the outer normal is given by

n(x) =
M(Dh(ξ, 0))ed

‖M(Dh(ξ, 0))ed‖2
. (8)

The structure of the normal can now be used in the definition of the surface
integral. Using the above, the integral over the perturbed surface Γt can now
be expressed with respect to the unperturbed surface Γ:

Lemma 5 (Perturbed surface integral) The surface integral over the per-
turbed surface Γt is given by

∫

Γt

g dΓt =

∫

Γ

g(Tt(x))‖M(DTt(x))n(x)‖2 dΓ(x),

where n is the unit normal of the unperturbed boundary Γ.

Proof. The perturbed submanifold Γt can be described by

ht(ξ, 0) := Tt(h(ξ, 0)). (9)

According to Remark 2, the surface integral is given by

∫

∂Ωt

g dSt =

∫

B0

g(ht(s))‖M(Dht(s))ed‖2 ds.
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The chain rule results in

Dht(ξ, 0) = D[Tt(h(ξ, 0))] = DTt(h(ξ, 0))Dh(ξ, 0) (10)

and

M(Dht(ξ, 0)) = M(DTt(h(ξ, 0)Dh(ξ, 0)))

= M(DTt(h(ξ, 0)))M(Dh(ξ, 0)).

Using the alternative representation of the normal, equation (8),

‖M(Dht(s))ed‖2 = ‖M(DTt(h(ξ, 0)))M(Dh(ξ, 0))ed‖2

= ‖M(DTt(h(ξ, 0)))‖M(Dh(ξ, 0))ed‖2n(h(ξ, 0))‖2

= ‖M(Dh(ξ, 0))ed‖2‖M(DTt(h(ξ, 0)))n(h(ξ, 0))‖2.

Thus,

∫

∂Ωt

g dSt =

∫

B0

g(Tt(h(s))‖M(DTt(h(s)))n(h(s))‖2‖M(Dh(s))ed‖2 ds

=

∫

∂Ω

g(Tt(x))‖M(DTt(x))n(x)‖2 dΓ(x),

where again s = (ξ, 0) and x = h(s).

Remark 3 (Alternative representation) Due to the definition of the co-
factor matrix, the perturbed surface integral can also be written as

∫

∂Ωt

g dSt =

∫

∂Ω

g(Tt(x))‖M(DTt(x))n(x)‖2 dΓ(x)

=

∫

∂Ω

g(Tt(x))| detDTt(x)|‖(DTt(x))−Tn(x)‖2 dΓ(x).

Since we assume that the deformation mapping Tt does not change the orienta-
tion of Ωt relative to Ω, we can assume detDTt > 0 in subsequent considera-
tions.

Remark 4 (Derivative through matrix inverse) Let A(t) ∈ R
m×m be a

matrix where each entry is a differentiable function such that A(t)−1 exists for
some interval I ⊂ R. The derivative of the matrix inverse with respect to t is
then given by

d

dt
A(t)−1 = −A(t)−1 dA(t)

dt
A(t)−1.



688 S. SCHMIDT, V. SCHULZ

Before the preliminary shape derivative for surface objectives is presented,
some elements from tangential calculus are needed.

Definition 4 (Tangential gradient, tangential divergence, curva-
ture) For a d-dimensional submanifold Ω ⊂ R

m and a function f ∈ C2(Ω,R),
the tangential gradient of f is defined as the orthogonal projection of the classical
gradient onto the tangent space:

∇Γf := PT (∇f) =

d−1
∑

i=1

∂f

∂τi
τi ∈ R

d−1,

where τi forms an orthonormal basis of the tangent space. For a differentiable
vector field V , the tangential divergence is defined by

divΓ V :=

d−1
∑

i=1

〈

∂V

∂τi
, τi

〉

∈ R.

This definition is independent of the choice of the orthonormal basis of the
tangent space. Furthermore, the curvature is defined as the tangential divergence
of the unit normal field:

κ := divΓ n.

Remark 5 In the following, we assume that all submanifolds Ω are of co-
dimension 1, such that the normal is unique and {n, τ1, ..., τd−1} forms an or-
thonormal basis of R

d. The gradient ∇f can then be expressed in this basis:

∇f = 〈∇f, n〉n+
d−1
∑

i=1

〈∇f, τi〉τi.

Assuming f also exists in a neighborhood of Ω, such that ∂f
∂n

exists, then the
tangential gradient is equivalently given by

∇Γf = ∇f − ∂f

∂n
n

and likewise

divΓ V = div V − 〈DV n, n〉.

Remark 6 Similar to Remark 5, there also exists the equality

DΓV =

[

d−1
∑

k=1

∂Vi
∂τk

τk

]T

i

=

[

∇Vi −
∂Vi
∂n

n

]T

i

= DV −DV nnT

should the required derivative in normal direction exist. This property is needed
later in Lemma 9.
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Definition 5 (Tangential Jacobian matrix) Similar to Definition 4, the
tangential Jacobian matrix for a differentiable vector valued function V is defined
as

DΓV = [∇ΓVi]
T
i ,

i.e. the rows of the tangential Jacobian are the tangential gradients of the re-
spective component functions.

Lemma 6 (Preliminary shape derivative for surface objectives) For
g : Ω → R, such that ∇g is defined on Γ, the preliminary shape derivative not
yet in Hadamard form for the surface integral is given by

d

dt t=0

∫

Γt

g dSt =

∫

Γ

〈∇g, V 〉 + g · (div V − 〈DV n, n〉) dS

=

∫

Γ

〈∇g, V 〉 + gdivΓ V dS.

Proof. For simplicity reasons, perturbation of identity is assumed. The alterna-
tive representation from Remark 3 provides:

d

dt t=0

∫

∂Ωt

g dSt

=

∫

∂Ω

d

dt t=0

(g(Tt(x)) detDTt(x)‖(DTt(x))−Tn(x)‖2) dΓ(x).

Furthermore,

γ(t) := DT−T
t n = ((I + tDV )T )−1n

gives

d

dt t=0

‖γ(t)‖2 =
d

dt t=0

(

d
∑

i=1

γi(t)
2

)

1
2

=
1

‖γ(0)‖2

(

γT (0)
d

dt t=0

γ(t)

)

.

Due to Lemma 4 one has

γ(0) = n

d

dt t=0

γ(t) = −I−1 d

dt t=0

(I + tDV )T I−1n

= −DV Tn.
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Thus,

d

dt t=0

‖γ(t)‖2 = −nTDV Tn = −〈DV n, n〉.

Using detDT0 = det I = 1 and the product rule, the above results in

d

dt t=0

∫

∂Ωt

g dSt =

∫

∂Ω

[

d

dt t=0

(g(Tt) detDTt)

]

n− g · 〈DV n, n〉 dS

=

∫

∂Ω

〈∇g, V 〉 + g · (div V − 〈DV n, n〉) dS,

where formula (5) for the determinant was used again. The final expression
follows with Remark 5.

3.3. Shape derivatives of geometric quantities

The derivative of the unit normal field with respect to shape perturbations is
very often needed. Many objective functions stemming from physics, such as
the fluid forces we are also considering, or any PDE constraint of the Neumann
type require this knowledge.

Lemma 7 (Unit normal on perturbed domain) The unit normal on the
perturbed domain Ωt is given by

nt(Tt(x)) =
(DTt(x))

−Tn(x)

‖(DTt(x))−Tn(x)‖2
.

Proof. According to Lemma 4, the unit normal on the perturbed domain is
given by

nt(x) =
Dht(ξ, 0)−T ed

‖Dht(ξ, 0)−T ed‖
.

Using equations (9) and (10) results in

nt(Tt(x)) =
(DTt(h(ξ, 0)))−T (Dh(ξ, 0))−T ed
‖(DTt(h(ξ, 0)))−T (Dh(ξ, 0))−T ed‖

=
(DTt(x))

−Tn(x)

‖(DTt(x))−Tn(x)‖ ,

where Lemma 4 was used again for the unperturbed domain.

Lemma 8 (Preliminary shape derivative of the unit normal) The
preliminary shape derivative of the unit normal is given by

dn[V ](x) :=
d

dt t=0

nt(Tt(x)) = 〈n, (DV (x))Tn(x)〉n(x) − (DV (x))Tn(x).
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Proof. Since DT0(x) = I, the quotient rule simplifies to

dn[V ](x) :=

(

d

dt t=0

[

(DTt(x))
−Tn(x)

]

)

− n(x)

(

d

dt t=0

‖(DTt(x))−Tn(x)‖2

)

.

Using Lemma 4, the above transforms to

dn[V ](x) = n(x)

(

d

dt t=0

‖(DTt(x))−Tn(x)‖2

)

− (DV (x))Tn(x).

For any vector v(t), where the components are differentiable functions, the chain
rule gives

d

dt t=0

‖v(t)‖2 =
d

dt t=0

(

∑

i

vi(t)
2

)
1
2

=
〈v(0), v′(0)〉
‖v(0)‖2

.

Hence, for v(t) = (DTt(x))
−Tn(x) one has v(0) = n(x) and again due to

Lemma 4 we have v′(0) = (DV (x))Tn(x), resulting in

d

dt t=0

‖DTt(x)n(x)‖2 = 〈n(x), (DV (x))Tn(x)〉,

which gives the desired expression.

Unfortunately, Lemma 8 does not yet fulfill the Hadamard form, and additional
transformations using tangential Jacobians from Definition 5 are required.

Lemma 9 The shape derivative of the normal is equivalently given by

dn[V ] = − (DΓV )
T
n.

Proof. Assuming that the perturbation field V extends into a neighborhood, we
have

DΓV = DV −DV nnT

due to Remark 6. Likewise,

(DΓV )
T
n = (DV )

T
n− n (DV n)

T
n = −dn[V ]

due to Lemma 8.

Remark 7 The tangential Jacobian of the unit normal field n(x) at a point x
lies in the tangent space TxΩ, i. e.

0 = DΓ1 = DΓ

(

n(x)Tn(x)
)

= 2 (DΓn(x))n(x) = 2〈∇Γn, n〉,

meaning DΓn ⊥ n. This result is needed in the following lemma 10.
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Lemma 10 For a perturbation normal to the boundary Γ, i.e. Ṽ := 〈V, n〉n or
equivalently 〈Ṽ , τ〉 = 0 for a vector τ ∈ TxΩ with x ∈ Γ, we have

dn[Ṽ ] = −∇Γ〈Ṽ , n〉.

Proof. For x ∈ Γ let {τi ∈ TxΩ : 1 ≤ i ≤ d− 1} be an orthonormal basis of the
tangent space and let the unit normal be given by n with components nk. By
Definition 4 one has

∇Γ〈Ṽ , n〉 =

d−1
∑

i=1

∂〈Ṽ , n〉
∂τi

τi

=

d−1
∑

i=1

∂

∂τi

[

d
∑

k=1

Ṽknk

]

τi

=

d−1
∑

i=1

[

d
∑

k=1

∂Ṽk
∂τi

nk + Ṽk
∂nk
∂τi

]

τi.

According to Remark 7, the variation of the normal in tangent directions is
perpendicular to the normal, and with the particular choice of Ṽ , the second
part vanishes. This results in

∇Γ〈Ṽ , n〉 =

d−1
∑

i=1

d
∑

k=1

∂Ṽk
∂τi

nkτi

= (DΓṼ )Tn = −dn[Ṽ ].

The idea now is to apply the preliminary shape derivative of Lemma 6 to
both sides of the divergence theorem, see below.

Theorem 2 (Divergence theorem) Let Ω be compact with piecewise smooth
boundary Γ. If F is a continuously differentiable vector field on a neighborhood
of Ω, then the following relation holds:

∫

Ω

div F dA =

∫

Γ

〈F, n〉 dS.

Proof. The expression follows immediately from integration by parts. See also
Proposition 7.6.1 and Theorem 13.1.2 in Atkinson and Han (2007).

However, the preliminary gradient expression requires certain derivatives for
which the functional under consideration must extend into a neighborhood of Γ.
Unfortunately, this is not true for the outer normal n, so that an extension of
the normal into a neighborhood is needed.
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Remark 8 When considering the shape functional

J(g,Γ) =

∫

Γ

g(ϕ, n) dS,

where

g : R
d × R

d → R

(ϕ, ψ) 7→ g(ϕ, ψ)

is a sufficiently smooth function, the preliminary gradient for surface objectives,
Lemma 6, requires the existence of the total derivative 〈∇g(ϕ, ψ), V 〉. For the
expression g(ϕ, n) this existence is not given and a smooth unitary extension N
of the unit normal n into a neighborhood of Γ is needed. Just as in Remark 7,
this extension satisfies

0 = D 1 = D
(

N (x)TN (x)
)

= 2 (DN (x))N (x) = 2〈∇N ,N〉

in the domain Ω. For more details, see Sokolowski and Zolésio (1992). A popu-
lar choice for this extension N is the normalized gradient of the signed distance
function ∇b/‖∇b‖ due to the applicability in level-set methods, Hintermüller
and Ring (2004).

The tangential Stokes formula can now be used to perform an integration by
parts on surfaces, in order to arrive at more convenient expressions for surface
shape functionals.

Lemma 11 (Tangential Stokes formula) Let g be a real valued differen-
tiable function on Γ and v be a differentiable vector valued function on Γ. Then
the following relation holds:

∫

Γ

gdivΓ v + 〈∇Γg, v〉 dS =

∫

Γ

κ g 〈v, n〉 dS.

Proof. Applying the Hadamard formula for volume objectives, Lemma 2, to the
left side of the divergence theorem, Theorem 2 and the preliminary gradient
expression of Lemma 6 to the right side, the expression

∫

Γ

〈V, n〉div F dS =

∫

Γ

〈∇〈F,N〉, V 〉 + 〈F, n〉 (divΓ V ) + 〈F, dn[V ]〉 dS

is created. The shape derivative of the normal dn[V ] enters due to the chain
rule. Choosing V = N and applying Lemma 9 result in

∫

Γ

div F dS =

∫

Γ

〈∇〈F,N〉,N〉 + 〈F,N〉 (divΓ N ) dS,
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because DNN = 0. The above now transforms into
∫

Γ

div F dS =

∫

Γ

〈DFn, n〉 + 〈F, n〉κ dS.

Because divΓ F = div F −〈DFn, n〉, the desired expression is created by choos-
ing F := g · v for a scalar g and a vector v.

3.4. Shape derivative for surface objectives

Using the tangential Stokes formula, the preliminary gradient expression from
Lemma 6 for surface functionals such as the second part of (1) can now be
brought into Hadamard form.

Lemma 12 (Hadamard formula for surface objectives) For a general
surface objective function g : Γ → R, which is independent of the shape and for
which ∂g

∂n
exists, the shape derivative for the surface objective

J(Ω) :=

∫

Γ

g dS

is given by

dJ(Ω)[V ] =

∫

Γ

〈V, n〉
[

∂g

∂n
+ κg

]

dS,

where κ = divΓ n is the tangential divergence of the normal, i.e. the additive
mean curvature of Γ.

Proof. Starting from the preliminary gradient of Lemma 6, the derivative is
given by

d

dt t=0

∫

∂Ωt

g dSt =

∫

∂Ω

〈∇g, V 〉 + g (div V − 〈DV n, n〉) dS

=

∫

∂Ω

〈∇g, V 〉 + gdivΓ V dS.

The desired expression is immediately obtained due to the tangential Stokes
formula, Lemma 11 and the tangential quantities from Definition 4 and Re-
mark 5.

Lemma 13 (Hadamard formula of the shape derivative of the nor-
mal) Let the objective function be given by

J(g,Γ) :=

∫

Γ

g(ϕ,Dϕ, n) dS,
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where g : R
d × R

d×d × R
d → R, (ϕ, ζ, ψ) 7→ g(ϕ, ζ, ψ) is a sufficiently smooth

functional. The shape derivative of the above expression is then given by

dJ(g,Γ)[V ]=

∫

Γ

〈V, n〉[DϕgDϕn+DζgD
2ϕ n+κ (g−Dψg n)+divΓ (Dψg)

T
] dS.

Proof. To ensure applicability of the Hadamard formula for boundary integrals,
Lemma 12, the objective

J(g,Γ) :=

∫

Γ

g(ϕ,Dϕ,N ) dS

is considered. Here, N is a unitary extension of the normal into Ω just as in
Remark 8. By construction, the extension fulfills N = n and dN [V ] = dn[V ]
on Γ. The chain rule and Lemma 12 then yield

dJ(g,Γ)[V ] =

∫

Γ

〈V, n〉 [〈∇g(ϕ,Dϕ,N ), n〉 + κg(ϕ,Dϕ, n)]

+Dψg(ϕ,Dϕ, n) dn[V ] dS.

The chain rule also leads to

〈∇g(ϕ,Dϕ,N ), n〉 = Dg(ϕ,Dϕ,N )n

= (Dϕg(ϕ,Dϕ,N )Dϕ+ (Dζg(ϕ,Dϕ,N )D2ϕ

+Dψg(ϕ,Dϕ,N )DN )n

= Dϕg(ϕ,Dϕ,N )Dϕ n+Dζg(ϕ,Dϕ,N )D2ϕ n

+Dψg(ϕ,N )DNN
= Dϕg(ϕ,Dϕ,N )Dϕ n+Dζg(ϕ,Dϕ,N )D2ϕ n,

where the second part vanishes due to Remark 8. Let Ṽ := 〈V, n〉n be the
perpendicular component of V . Applying Lemma 10 and inserting the above
results in

dJ(g,Γ)[Ṽ ] =

∫

Γ

〈Ṽ , n〉
[

DϕgDϕ n+DζgD
2ϕn+ κg

]

−Dψg∇Γ〈Ṽ , n〉 dS.

The tangential Stokes formula, Lemma 11, gives
∫

Γ

−Dψg∇Γ〈Ṽ , n〉 =

∫

Γ

−κ〈Ṽ , n〉Dψg n+ 〈Ṽ , n〉divΓ (Dψg)
T
dS,

which results in

dJ(g,Γ)[Ṽ ] =

∫

Γ

〈Ṽ , n〉[DϕgDϕ n+DζgD
2ϕ n

+ κ (g −Dψg n) + divΓ (Dψg)
T ] dS.



696 S. SCHMIDT, V. SCHULZ

According to the Hadamard Theorem 1, the shape derivative depends only on
the normal component of V . Hence, one has

dJ(g,Γ)[Ṽ ] = dJ(g,Γ)[V ],

and the above becomes the desired expression.

3.5. Shape derivatives under a state constraint

In the presence of a state constraint, i.e.

min
(ϕ,Ω)

J(ϕ,Ω) :=

∫

Ω

f(ϕ) dA+

∫

Γ

g(ϕ) dS

subject to

L(ϕ) = ϕf in Ω

Lb(ϕ) = ϕb on Γ,

where f and g do not depend on the geometry Ω (respective Γ), the chain rule
immediately results in

dJ(ϕ,Ω) :=

∫

Γ

〈V, n〉
[

f(ϕ) +
∂g(ϕ)

∂n
+ κg(ϕ)

]

dS +

+

∫

Ω

∂f(ϕ)

∂ϕ
ϕ′[V ] dA+

∫

Γ

∂g(ϕ)

∂ϕ
ϕ′[V ] dS

subject to

L(ϕ) = ϕf in Ω

∂L(ϕ)

∂ϕ
ϕ′[V ] = 0 in Ω,

which does not yet fulfill the Hadamard form. The Hadamard form for such
a problem can now be found by the adjoint approach. Crucial for the adjoint
approach is the knowledge of the boundary conditions of the linearized problem,
which determines the local shape derivative ϕ′[V ] of the state.

A straightforward linearization of the PDE boundary conditions usually re-
sults in an expression for the so called “material derivative”. However, the
general strategy when deriving shape derivatives is to first transfer the prob-
lem back to the original boundary before computing the limit, resulting in the
need to compute the “local shape derivative”, i.e. the linearization of the state
ϕ alone, without considering that the point where the state is being evaluated
has moved:

Definition 6 (Material derivative, local Derivative) Let ϕt solve the
PDE constraint on the perturbed domain Ωt = Tt(Ω) and let xt := Tt(x) be
a shifted boundary point. The material derivative is then defined as the total
derivative
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dϕ[V ](x) :=
d

dt t=0

ϕt(xt)

and the local shape derivative is defined as the partial derivative

ϕ′[V ](x) :=
d

dt t=0

ϕt(x).

Remark 9 The chain rule combines both by the relation

dϕ[V ] = ϕ′[V ] + 〈∇ϕ, V 〉.

Thus, if the right hand side of the boundary condition does not depend on the
geometry, one has

dϕb[V ] = 〈∇ϕb, V 〉 on Γ.

Lemma 14 (Shape derivative of the Dirichlet boundary condition)
Suppose the state ϕ is given as the solution of a PDE of the form

L(ϕ) = ϕf in Ω

ϕ = ϕb on ∂Ω,

such that ϕf and ϕb do not depend on the geometry of Ω, e.g. the unit normal
n, etc. The local shape derivative under the perturbation V is then given as the
solution of the problem

∂L(ϕ)

∂ϕ
ϕ′[V ] = 0 in Ω

ϕ′[V ] = 〈V, n〉∂(ϕb − ϕ)

∂n
on Γ,

where Γ is the variable part of the boundary of ∂Ω.

Proof. The linearization in Ω is straightforward. Taking the total derivative of
the boundary condition results in

dϕ[V ] = dϕb[V ] on Γ.

Using Remark 9 the above can be transformed to

ϕ′[V ] + 〈∇ϕ, V 〉 = dϕ[V ] = dϕb[V ] = 〈∇ϕb, V 〉
⇒ ϕ′[V ] = 〈∇ (ϕb − ϕ) , V 〉 .

The usual orthogonality argument gives the desired expression

ϕ′[V ] = 〈V, n〉
(

∂ (ϕb − ϕ)

∂n

)

.
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Lemma 15 (Shape derivative of the Neumann boundary condition)
Suppose the state ϕ is given as the solution of a PDE of the form

L(ϕ) = ϕf in Ω

∂ϕ

∂n
= ϕb on ∂Ω,

such that ϕf and ϕb do not depend on the geometry of Ω, e.g. the unit normal
n, etc. The local shape derivative under the perturbation V is then given as the
solution of the problem

∂L(ϕ)

∂ϕ
ϕ′[V ] = 0 in Ω

∂ϕ′[V ]

∂n
= 〈∇ϕb, V 〉 − 〈D2ϕV, n〉 − 〈∇Γϕ, dn[V ]〉

= 〈V, n〉
[

∂ϕb
∂n

− ∂2ϕ

∂n2

]

+ 〈∇Γϕ,∇Γ〈V, n〉〉,

where the second identity holds for the orthogonal component of the perturbation
field only.

Proof. The Neumann boundary condition at xt = Tt(x) on the deformed domain
Ωt reads

ϕb ◦ xt = 〈∇ϕt, nt〉 ◦ xt
= 〈∇ϕt, nt〉 ◦ Tt(x)
= 〈(∇ϕt) ◦ Tt(x), nt(xt)〉.

The chain rule results in

∇(ϕt ◦ Tt(x)) = ((∇ϕt) ◦ Tt(x))T ·DTt(x)
= (DTt(x))

T · [(∇ϕt) ◦ Tt(x)]

and the boundary condition becomes

ϕb(xt) = 〈(DTt(x))−T ∇(ϕt ◦ Tt(x)), nt(xt)〉
= (∇(ϕt(xt)))

T
DTt(x)

−1 · nt(xt).

The total derivative with respect to t now yields the material derivative of
ϕt(xt). Using Remark 4 we get:

dϕb[V ] = (∇dϕ[V ])
T
n+ (∇ϕ)

T
(−DV )n+ 〈∇ϕ, dn[V ]〉,

which results in

∂dϕ[V ]

∂n
= dϕb[V ] − 〈∇ϕ, (−DV )n〉 − 〈∇ϕ, dn[V ]〉. (11)
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Using the relationship from Remark 9,

dϕ[V ] = ϕ′[V ] + 〈∇ϕ, V 〉,

we have in addition to equation (11) also the relation

∂dϕ[V ]

∂n
=
∂ϕ′[V ]

∂n
+ 〈D2ϕV, n〉 + 〈∇ϕ,DV n〉. (12)

Thus, taking (11) and (12) together, one obtains

∂ϕ′[V ]

∂n
=
∂dϕ[V ]

∂n
− 〈D2ϕV, n〉 − 〈∇ϕ,DV n〉

= dϕb[V ] + 〈∇ϕ,DV n〉 − 〈∇ϕ, dn[V ]〉 − 〈D2ϕV, n〉 − 〈∇ϕ,DV n〉
= dϕb[V ] − 〈∇ϕ, dn[V ]〉 − 〈D2ϕV, n〉,

an equation for the local shape derivative. Since in addition one has

dϕb[V ] = 〈∇ϕb, V 〉
dn[V ] = −∇Γ〈V, n〉,

the above can also be expressed as

∂ϕ′[V ]

∂n
= 〈∇ϕb, V 〉 − 〈D2ϕV, n〉 − 〈∇ϕ, dn[V ]〉.

Since 〈∇ϕ, n〉 = 0, we have ∇ϕ = ∇Γϕ, and with the usual orthogonality
argument the boundary condition can be expressed as

∂ϕ′[V ]

∂n
= 〈V, n〉

[

∂ϕb
∂n

− ∂2ϕ

∂n2

]

+ 〈∇Γϕ,∇Γ〈V, n〉〉, (13)

where the last part can be brought into Hadamard form using Lemma 11.

Remark 10 Note that a much simpler formula than (13) can be given in the
special case of the standard Laplace problem

−∆ϕ = ϕf in Ω

∂ϕ

∂n
= ϕb on ∂Ω.

The Laplace-Beltrami operator

∆Γϕ := divΓ ∇Γϕ = ∆ϕ− κ
∂ϕ

∂n
− ∂2ϕ

∂n2

provides

∂2ϕ

∂n2
= −∆Γϕ− ϕf − κϕb,
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which results in

∂ϕ′[V ]

∂n
= divΓ (〈V, n〉∇Γϕ) + 〈V, n〉

(

∂ϕb
∂n

+ κϕb + ϕf

)

.

For more details see Sokolowski and Zolésio (1992).

Instead of conducting the adjoint calculus in a general setting, we now return
to the Navier–Stokes problem.

4. Shape derivative and adjoint calculus for the general

Navier–Stokes Problem

We begin with the shape derivative of (1) and (2) in sensitivity formulation:

Theorem 3 (Shape derivative in sensitivity formulation) The shape
derivative of (1) and (2) in sensitivity formulation is given by:

dJ(u, p,Ω)[V ] =
∫

Γ0

〈V, n〉f(u,Du, p) dS (14)

+

∫

Ω

(

d
∑

i=1

∂f

∂ui
u′i[V ]

)

+





d
∑

i,j=1

∂f

∂aij

∂u′i[V ]

∂xj



+
∂f

∂p
p′[V ] dA (15)

+

∫

Γ0

〈V, n〉
[

D(u,b,p)g(u,Dnu, p, n) · n+ κg(u,Dnu, p, n)
]

dS (16)

+

∫

Γ0

(

d
∑

i=1

∂g

∂ui
u′i[V ]

)

+





d
∑

i,j=1

∂g

∂bi

∂u′i[V ]

∂xj
nj



+
∂g

∂p
p′[V ] dS (17)

+

∫

Γ0

d
∑

i=1

∂g

∂ni
dni[V ] dS. (18)

See also equation (3). The local shape derivatives u′[V ] and p′[V ] are given as
the solution of the linearized Navier–Stokes equations

−µ∆u′[V ] + ρ (u′[V ]∇u + u∇u′[V ]) + ∇p′[V ] = 0 in Ω

div u′[V ] = 0,

with boundary conditions

u′i[V ] = −〈V, n〉∂ui
∂n

on Γ0

u′i[V ] = 0 on Γ+

p′[V ]ni − µ〈∇u′i[V ], n〉 = 0 on Γ−. (19)
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Proof. Formal shape differentiation of (1) and (2) is done according to Section 3.
The boundary condition on Γ0 is given by Lemma 14. Since the other boundaries
are considered fixed, one does not have to consider differences between the
material and the local shape derivative and a linearization is straightforward.

For the adjoint formulation of the shape derivative we need further discus-
sions including adjoint functionals λ : Ω → R

d and λp : Ω → R.

Lemma 16 For a sufficiently smooth arbitrary λ : Ω → R
d and λp : Ω → R the

relation

0 =

∫

Ω

d
∑

i=1



−µ∆λi − ρ





d
∑

i,j=1

∂λj
∂xi

uj +
∂λi
∂xj

uj



− ∂λp
∂xi



u′i[V ] dA (20)

−
∫

Ω

d
∑

i=1

∂λi
∂xi

p′[V ] dA (21)

+

∫

Γ

d
∑

i=1



µ
∂λi
∂n

+ ρ
d
∑

j=1

(λjujni + λiujnj)



u′i[V ] dS (22)

+

∫

Γ

λp

d
∑

i=1

u′i[V ]ni dS +

∫

Γ

d
∑

i=1

λinip
′[V ] dS +

∫

Γ

d
∑

i=1

−µλi
∂u′i[V ]

∂n
dS

(23)

holds.

Proof. Multiplying the volume part of the linearized Navier–Stokes equations
with arbitrary λ and λp results in

0 =

∫

Ω

d
∑

i=1

λi



−µ∆u′i[V ] + ρ





d
∑

j=1

u′j [V ]
∂ui
∂xj

+ uj
∂u′i[V ]

∂xj



+
∂p′[V ]

∂xi



 dA

+

∫

Ω

λpdiv u′[V ] dA.

Integration by parts gives

∫

Ω

d
∑

i=1

−µλi∆u′i[V ] dA =

∫

Γ

d
∑

i=1

−µ
(

λi
∂u′i[V ]

∂n
− u′i[V ]

∂λi
∂n

)

dS

+

∫

Ω

d
∑

i=1

−µu′i[V ]∆λi dA
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and likewise, due to div u′[V ] = 0:

∫

Ω

d
∑

i,j=1

λiu
′

j [V ]
∂ui
∂xj

dA =

∫

Γ

d
∑

i,j=1

λiu
′

j [V ]uinj dS −
∫

Ω

d
∑

i,j=1

∂λi
∂xj

u′j[V ]ui dA.

Note that in the above equation the index of the local shape derivative is j and
not i. To derive the desired expression, the indices i and j must be switched.
Integration by parts of the second part of the linearized convection results in

∫

Ω

d
∑

i,j=1

λiuj
∂u′i[V ]

∂xj
dA =

∫

Γ

d
∑

i,j=1

λiuju
′

i[V ]nj dS −
∫

Ω

d
∑

i,j=1

∂λi
∂xj

uju
′

i[V ] dA.

The pressure variation provides

∫

Ω

d
∑

i=1

λi
∂p′[V ]

∂xi
dA =

∫

Γ

λinip
′[V ] dS −

∫

Ω

d
∑

i=1

∂λi
∂xi

p′[V ] dA

and the divergence constraint provides

∫

Ω

λp

d
∑

i=1

∂u′i[V ]

∂xi
dA =

∫

Γ

λp

d
∑

i=1

u′i[V ]ni dS −
∫

Ω

d
∑

i=1

∂λp
∂xi

u′i[V ] dA.

Summarizing the above yields the desired expression.

Using Lemma 16, it is now possible to derive the adjoint right hand side in the
volume:

Lemma 17 (Adjoint Right Hand Side, Volume) The adjoint equation
must fulfill in the domain Ω:

−µ∆λi − ρ

d
∑

j=1

(

∂λj
∂xi

uj +
∂λi
∂xj

uj

)

− ∂λp
∂xi

=
∂f

∂ui
−

d
∑

j=1

∂

∂xj

∂f

∂aij

div λ =
∂f

∂p
.

Proof. Due to equations (20) - (23) summing to zero, they can be added to the
preliminary gradient (14) - (18). Integration by parts of equation (15) yields

∫

Ω

(

d
∑

i=1

∂f

∂ui
u′i[V ]

)

+





d
∑

i,j=1

∂f

∂aij

∂u′i[V ]

∂xj



+
∂f

∂p
p′[V ] dA

=

∫

Γ

d
∑

i,j=1

∂f

∂aij
u′i[V ]nj dS (24)
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+

∫

Ω

d
∑

i=1





∂f

∂ui
−

d
∑

j=1

∂

∂xj

∂f

∂aij



 u′i[V ] dA+

∫

Ω

∂f

∂p
p′[V ] dA (25)

and a direct comparison between the above and equations (20) and (21) reveals
the required adjoint right hand side in Ω. Note that this has introduced a new
boundary term.

Lemma 18 (Adjoint boundary condition at inflow) The adjoint bound-
ary condition on the inflow boundary Γ+ is given by

λ = 0

λp free.

Proof. Since the inflow velocity is fixed and independent of the shape of the
fluid obstacle, we have u′[V ] = 0 on Γ+. Hence, the only term appearing on Γ+

is the normal variation of u′[V ] and the pressure variation p′[V ] from equation
(23):

∫

Γ+

d
∑

i=1

λinip
′[V ] dS +

∫

Γ+

d
∑

i=1

−µλi
∂u′i[V ]

∂n
dS,

which is removed by λ = 0 on Γ+.

Lemma 19 (Adjoint Boundary Condition at No-Slip)The adjoint bound-
ary condition on the no-slip boundary Γ0 is given by

λi =
1

µ

∂g

∂bi
∀i = 1, . . . , d

〈λ, n〉 = −∂g
∂p

λp free.

Proof. The sensitivities on Γ0 are equations (24), (17), (22), and (23):

∫

Γ0

d
∑

i,j=1

∂f

∂aij
u′i[V ]nj dS

+

∫

Γ0

(

d
∑

i=1

∂g

∂ui
u′i[V ]

)

+





d
∑

i,j=1

∂g

∂aij

∂u′i[V ]

∂xj



+
∂g

∂p
p′[V ] dS

+

∫

Γ0

d
∑

i=1



µ
∂λi
∂n

+ ρ

d
∑

j=1

(λjujni + λiujnj)



 u′i[V ] dS
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+

∫

Γ0

λp

d
∑

i=1

u′i[V ]ni dS +

∫

Γ0

d
∑

i=1

λinip
′[V ] dS +

∫

Γ0

d
∑

i=1

−µλi
∂u′i[V ]

∂n
dS.

Using the no-slip boundary condition and the boundary condition for the local
shape derivative, the above transforms to

∫

Γ0

〈V, n〉



−
d
∑

i=1





∂g

∂ui
+ µ

∂λi
∂n

+ λpni +

d
∑

j=1

∂f

∂aij
nj





∂ui
∂n



 dS

+

∫

Γ0

(

d
∑

i=1

∂g

∂bi

∂u′i[V ]

∂n

)

+

(

∂g

∂p
+

d
∑

i=1

λini

)

p′[V ] dS

+

∫

Γ0

d
∑

i=1

−µλi
∂u′i[V ]

∂n
dS,

where the first part now also enters the gradient (14) - (18). Expressing ∇ui in
local coordinates on the boundary results in

∇ui = 〈∇ui, n〉n+

d
∑

j=1

〈∇ui, τj〉τj ,

hence

∂ui
∂xj

=
∂ui
∂n

nj ⇒ 0 = λp

d
∑

i=1

∂ui
∂n

ni

due to the mass conservation on Γ0. Hence, λp does not receive a boundary
condition. The remaining sensitivities can be eliminated by

λi =
1

µ

∂g

∂bi
∀i = 1, . . . , d

〈λ, n〉 = −∂g
∂p
.

In order to arrive at a complete adjoint system, we also need the boundary
conditions for the adjoint variables at the outflow boundary:

Lemma 20 (Adjoint boundary condition at outflow) The adjoint
boundary condition on the outflow boundary Γ− is given by

µ
∂λi
∂n

+ ρ





d
∑

j=1

λjujni + λiujnj



+ λpni = 0.
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Proof. After inserting equation (19) into equations (20) - (23), the remaining
sensitivity is

∫

Γ
−

d
∑

i=1



µ
∂λi
∂n

+ ρ

d
∑

j=1

(λjujni + λiujnj)



u′i[V ] dS +

∫

Γ
−

λp

d
∑

i=1

u′i[V ]ni dS.

Hence, the required boundary condition is

µ
∂λi
∂n

+ ρ





d
∑

j=1

λjujni + λiujnj



+ λpni = 0.

Theorem 4 (Shape derivative for the general Navier–Stokes prob-
lem) The shape derivative in Hadamard form for the problem under considera-
tion is given by

dJ(u, p,Ω)[V ] =
∫

Γ0

〈V, n〉f(u,Du, p) dS

+

∫

Γ0

〈V, n〉
[

D(u,b,p)g(u,Dnu, p, n) · n+ κg(u,Dnu, p, n)
]

dS

+

∫

Γ0

〈V, n〉



−
d
∑

i=1





∂g

∂ui
+ µ

∂λi
∂n

+

d
∑

j=1

∂f

∂aij
nj





∂ui
∂n



 dS

+

∫

Γ0

〈V, n〉 [(divΓ ∇ng) − κ〈∇ng, n〉] dS,

where ∇ng denotes the vector consisting of components ∂g
∂ni

. Furthermore, u
and p solve the incompressible Navier–Stokes equations

−µ∆u+ ρu∇u+ ∇p = ρG in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn− µ
∂u

∂n
= 0 on Γ−,

and λ and λp solve the adjoint incompressible Navier–Stokes equations

−µ∆λi − ρ

d
∑

j=1

(

∂λj
∂xi

uj +
∂λi
∂xj

uj

)

− ∂λp
∂xi

=
∂f

∂ui
−

d
∑

j=1

∂

∂xj

∂f

∂aij
in Ω

div λ =
∂f

∂p
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with boundary conditions

λ = 0 on Γ+

λi =
1

µ

∂g

∂bi
on Γ0

〈λ, n〉 = −∂g
∂p

on Γ0

µ
∂λi
∂n

+ ρ





d
∑

j=1

λjujni + λiujnj



+ λpni = 0 on Γ−.

Proof. The adjoint boundary conditions are derived in Lemma 18, 19, and 20.
The adjoint right hand side is derived in Lemma 17, and removing the shape
derivative of the normal is described in Lemma 13.

5. Application

5.1. Volume and surface formulations

For theoretical considerations on optimal shapes in a Navier–Stokes fluid, the
conversion of kinetic energy into heat is usually studied. This objective function
is a volume integral, which is more accessible for analytic studies (Mohammadi
and Pironneau, 2001; Pironneau, 1974). When we use the Stokes equation to
model the flow, the expression is even self-adjoint and optimal shapes are known
analytically (Pironneau, 1973). However, since the objective is integrated over
the whole flow domain, the objective function value depends on the size of the
simulation area. Also, the total dissipation of kinetic energy into heat cannot
be split in the coordinate axis directions, meaning that lift and drag of the
shape under consideration cannot easily be treated separately. Therefore, in
actual aerodynamic design, the total force vector the fluid exerts on an obstacle
is almost always computed as a boundary integral, which is then also non-
dimensionalized to make the resulting lift and drag values applicable to a wider
array of flow situations.

With the general formulation of the Navier–Stokes shape derivative at hand,
it appears to be natural to compare both formulations with respect to their
performance when actually computing optimal shapes discretely.

Remark 11 (Volume formulation: energy dissipation) Using the same
notation as in Theorem 4, the viscous dissipation of kinetic energy into heat in
two dimensions is given by

f(u,Du, p) = µ

2
∑

i,j=1

(

∂ui
∂xj

)2

g(u,Dnu, p, n) = 0,
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which results in

∂f

∂aij
= 2µaij = 2µ

∂ui
∂xj

∂f

∂ui
= 0.

According to Theorem 4, the adjoint equation is given by

−µ∆λi − ρ

d
∑

j=1

(

∂λj
∂xi

uj +
∂λi
∂xj

uj

)

− ∂λp
∂xi

=
∂f

∂ui
−

d
∑

j=1

∂

∂xj

∂f

∂aij

= −2µ∆ui in Ω

div λp =
∂f

∂p
= 0

with boundary conditions

λ = 0 on Γ+

λi =
1

µ

∂g

∂bi
= 0 on Γ0

〈λ, n〉 = −∂g
∂p

= 0 on Γ0

µ
∂λi
∂n

+ ρ





2
∑

j=1

λjujni + λiujnj



+ λpni = 0 on Γ−.

Both conditions on Γ0 are satisfied by λ = 0 and, consequently, the gradient is
given by

dJ(u, p,Ω)[V ] =

∫

Γ0

〈V, n〉



µ

2
∑

i,j=1

(

∂ui
∂xj

)2


 dS

+

∫

Γ0

〈V, n〉



−
2
∑

i=1



µ
∂λi
∂n

+

2
∑

j=1

∂f

∂aij
nj





∂ui
∂n



 dS

=

∫

Γ0

〈V, n〉
[

µ

2
∑

i=1

(

∂ui
∂n

)2
]

dS

+

∫

Γ0

〈V, n〉



−
2
∑

i=1



µ
∂λi
∂n

+

2
∑

j=1

2µ
∂ui
∂xj

nj





∂ui
∂n



 dS

=

∫

Γ0

〈V, n〉
[

−µ
2
∑

i=1

∂λi
∂n

∂ui
∂n

+

(

∂ui
∂n

)2
]

dS.
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Remark 12 (Surface formulation: fluid forces) When considering flow
around an airfoil or any other obstacle, one does not want to make a new mesh in
case the airfoil has a different angle of attack. Instead, most flow solvers rotate
the coordinate system internally. For drag at angle of attack α, the incident
vector a is given by

a := (cosα, sinα)
T
.

The drag force an incompressible Navier–Stokes fluid exerts on Γ0 is given by

FD :=

∫

Γ0

−µ 〈Dnu, a〉 + p〈n, a〉 dS.

The gradient of FD is then given by

dFD(u, p,Ω)[V ] =

∫

Γ0

〈V, n〉
[

−µ(Dn)
2ua+

∂p

∂n
〈a, n〉 −

2
∑

i=1

µ
∂λi
∂n

∂ui
∂n

]

dS

+

∫

Γ0

〈V, n〉 [divΓ (−µDua+ pa)] dS

with adjoint boundary condition λ = −a on Γ0.

Proof. Here, the function g is given by

g := −µ〈Dnu, a〉 + p〈n, a〉.
Furthermore,

〈∇g, n〉 = −µ(Dn)
2ua+

∂p

∂n
〈n, a〉

∂g

∂ui
= 0

∇ng = −µDua+ pa

∂g

∂p
= 〈a, n〉

∂g

∂b
= −µa,

where (Dn)
2ua refers to the second normal derivative tensor of u, e.g.

(Dn)
2ua =

2
∑

i,j,k=1

ni
∂2uk
∂xi∂xj

njak.

The structure of the gradient and the adjoint boundary conditions are a di-
rect consequence of Theorem 4. Note that for this specific function, the terms
κg(u,Dnu, p, n) and κ〈∇ng, n〉 cancel each other.
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5.2. Results

Here, the numerical performance of both formulations, i.e. the volume formu-
lation from Remark 11 and the surface formulation from Remark 12, will be
compared. The Navier–Stokes equations are discretized using mixed Taylor–
Hood finite elements. The resulting non-linear system of equations is solved
using Newton’s method. The adjoint solver is constructed discretely out of the
Newton iteration. Computation of the gradients requires knowledge of first and
second order normal derivatives of the flow states, which are computed using fi-
nite differences. The tangential divergence is approximated discretely according
to the definition

divΓ g =

d−1
∑

i=1

〈

∂g

∂τi
, τi

〉

,

where τi are the tangent vectors. The tangent derivative is computed using
second order central finite differences.

The initial shape is a circle in a channel at Reynolds number Re = 80. The
shape of the circle is subject to the no-slip boundary condition and is to be
optimized using a constant volume constraint. The circle surface is discretized
using 100 nodes, which are the design parameters. Due to the Taylor–Hood
discretization, each edge mid-point also features a velocity value, such that there
exist other 100 velocity-only nodes on the circle surface that are not shape design
parameters. The channel walls are modeled as farfield. The initial shape is also
shown in Fig. 2. For both versions, surface formulation and volume formulation,
the optimization procedure is based on an approximative SQP method, where

Figure 2. The initial shape. Flow around a circle with Reynolds number Re =
80. Speed and streamlines visualized. The apparent dissymmetry stems from
the automatic generation of the seed points for the streamline integration.
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the actual update JS is computed from the shape gradient J according to

J = (k∆Γ + I)JS ,

meaning the discrete shape Hessian is approximated by k∆Γ+I, where ∆Γ is the
Laplace–Beltrami operator, I is the identity, and k is a smoothing parameter.
For more details see Schmidt and Schulz (2009). Here, the parameter k =
0.05 was chosen as a constant in all following computations. Fig. 3 shows
how both drag and energy dissipation evolve when optimizing according to the
drag gradient. Likewise, Fig. 4 shows the same quantities when optimizing
according to the energy dissipation shape gradient. Although optimization with
respect to the volume objective function appears to be slightly faster, one has to
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Figure 3. Optimization history for both energy dissipation and aerodynamic
drag when using the gradient for the surface quantity “drag”.
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Figure 4. Optimization history for both energy dissipation and aerodynamic
drag when using the gradient for the volume quantity “energy”.
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take into account that both optimizations were conducted using a constant step
length of 0.03 for the drag optimization and 0.08 for the energy optimization.
Furthermore, the surface version requires knowledge of second order normal
derivatives of the flow quantities. Since the solver is based on standard Taylor–
Hood finite elements, the computation of second order finite differences can
be problematic. The velocities are discretized using second order polynomials
inside each of the six-noded Taylor–Hood elements, making the second order
derivatives of the velocity constant within each element. Likewise, the same is
true for first order pressure derivatives.

Fig. 5 shows the respective optimal shapes. Using the energy dissipation
gradient, the rear end appears slightly rounder, which results in less separation
and probably explains the slight difference in the objective functions. Since

Figure 5. Speed and streamlines for the optimized shapes. Top figure shows
the optimized shape when using the drag gradient, bottom shows the optimized
shape when using the energy dissipation gradient.
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the perimeter of the circle increases during the optimization, the number of
variable boundary nodes is increased automatically during optimization. As
such, the optimized shape with respect to the drag gradient has 135 variable
nodes, while the optimized shape with respect to energy has 137 variable nodes.
Since the number of surface nodes is allowed to be adapted during optimization,
the volume mesh is re-created between each iteration.

6. Summary

The main purpose of this work has been the derivation of the Hadamard form
of the shape derivative for a wide class of objective functions in a Navier–Stokes
flow, especially also considering boundary integrals as the objective. The Hada-
mard form enables a very efficient computation of the gradient, since knowledge
of the “mesh sensitivity” Jacobian is not required. Being an analytic expression,
the Hadamard form must be re-derived for each problem unless a generic ob-
jective is considered as it is in this paper. Due to the artificial nature of the
pressure in an incompressible flow, some restrictions appear on the surface part
of the objective function. Otherwise one cannot formulate a consistent adjoint
equation, since the pressure does not have a boundary condition but is implicitly
given so that mass is conserved. We also list many important literature results
from shape analysis and geometry, such that the paper is self contained and can
easily be adapted to other kinds of shape problems. Having the general expres-
sion for the shape derivative at hand, we conclude with a comparison of two
different approaches for the optimization of a fluid obstacle in a channel. One is
based on the volume objective functional using the fluid energy, while the other
is based on the surface objective functional of the aerodynamic drag. With the
general form of the gradient at hand, such a comparison can be conducted quite
conveniently.
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