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Abstract: A discrete-time stochastic control problem for gen-
eral (nonlinear in state, control, observation and noise) models is
considered. The same noise can enter into the state and into the
observation equations, and the state/observation does not need to
be affine with respect to the noise. Under mild assumptions the
joint distribution function of the state/observation processes is ob-
tained and used for computing the Gateaux and Fréchet derivatives
of the cost function. Under partial observation the control actions
are restricted by the measurability requirement and we compute the
Lagrange multiplier associated with this ”information constraint”.
The multiplier is called a ”dual”, or ”shadow” price, and in the
literature of the subject is interpreted as an incremental value of
information . The present and the future are two factors appearing
in the multiplier and we study how they are balanced as time goes
on. An algorithm for computing extremal controls in the spirit of
R. Rishel (1985) is also obtained.
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1. Introduction

For F : R
n+m × R

p × R
q → R

n+m being some measurable function, called
sometimes the dynamic function, let us define a stochastic control system via
the iterative scheme

zi+1 = F
(
zi,ui, ξi+1

)
, zi=0 = z0, i = {0, 1, ..., N − 1} (1)

where z0, ξ1, ..., ξN , is a sequence of stochastically independent random elements
on the probability space (Ω,F , P), taking values in R

n+m, R
q, respectively, with
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densities of distribution functions ρ for z0, and g for ξi, i = 1, ..., N . Denote
z = col (x, y), F = col

(
F 1, F 2

)
, where x, F 1 ∈ R

n, and y, F 2 ∈ R
m. Then (1)

takes the form
[

xi+1

yi+1

]
=

[
F 1

(
xi,yi,ui, ξi+1

)

F 2
(
xi,yi,ui, ξi+1

)
]

,

[
xi=0

yi=0

]
=

[
x0

y0

]
. (2)

Next, we assume that the coordinates (xi; i = 0, 1, ...) of the state process (zi;
i = 0, 1, ...), are not observable, while the coordinates (yi; i = 0, 1, ...) are. The
control action at time i, i.e., ui, can use only the previous observations Yi =
(y0, ..., yi), i.e., ui = vi (Yi), where vi : R

m(i+1) → R
p are measurable mappings.

Denote Ui = (u0, ..., ui), Vi = (v0, ..., vi) and V = {VN−1; (v0 (Y0 ) , ..., vN−1

(YN−1))} and introduce a cost functional

J (UN−1) = E

[
r (zN ) +

N−1∑

i=0

ri (zi,ui)

]
(3)

where E denotes expectation with respect to the measure P. Suppose that
r, ri, i = 0, ..., N − 1 are measurable and bounded from below. The problem is
to find

inf {J (VN−1) ; VN−1 ∈ V } . (4)

Notation 1 We use two kinds of symbols: (1) bold (examples are x,y,u, ξ),
to denote random variables, (2) italic (examples are x, y, u, v), for deterministic
objects such as numbers, variables, mappings, etc. Capital letters are used for
sequences; (1) of random variables (for example Zi = (z0, ..., zi)), (2) determin-
istic objects (for example Zi = (z0, ..., zi)).

Remark 1 If F 1 ≡ 0, then (2) takes the form

yi+1 = F 2
(
x0,yi,ui, ξi+1

)
, yi=0 = y0

and we see that the classical adaptive control problem is a special case of our
model.

Remark 2 The Gaussian noise case with the dynamic function affine in ξi+1

and xi was considered by R.S. Liptser and A.N. Shiryiaev (1999). They showed
that when the initial conditions are Gaussian, then the conditional law is Gaus-
sian as well.

Remark 3 From the equivalence theorem of J. Zabczyk (1996), Ch. 3, Th.
3.1.1, p. 26) it follows that without loss of generality one can choose as the
space (Ω,F , P) the basic probability space

(
[0, 1) ,B ([0, 1)) , λ[0,1)

)
, and for the

noise, a sequence ξ1, ..., ξN of independent uniformly distributed random vari-
ables on [0, 1).
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Remark 4 The system in the form (2) can be also viewed as a fully observable
dynamic system with the state process (yi; i = 0, 1, ...) and with two kind of dis-
turbances; colored, represented by (xi; i = 0, 1, ...) and non-colored, represented
by (ξi; i = 0, 1, ...), respectively.

The control problem (2)(4), considered in this paper, is a partially observed
variation of the fully observed general nonlinear problem considered in Zabczyk
(1996). For this version we obtain a recursion for joint measures of the state
process (zi; i = 0, 1, ...) in Section 2. In Section 3 we compute weak variations
and Gateaux derivatives of the cost functional and identify them as Lagrange
multipliers in Section 5. The multiplier is called a ”dual”, or ”shadow” price,
and is interpreted as an Incremental Value of Information, a concept with a long
history. See Remark 7 for more information. The present and the future are
two factors appearing in the multiplier and we study how they are balanced as
time goes on. Finally, in Section 6 the approach of R. Rishel (1995) is used to
compute extremal controls.

2. Filtering

For Zi = (z0, ..., zi), zi = (xi,yi), define the measure

µi (A) = P (Zi ∈ A) , A ∈ B
(

R
(n+m)(i+1)

)
. (5)

Let h : R
n(i+2) × R

m(i+2) → R, be a bounded Borel function. Then

Eh (Zi+1) =

∫
h (Zi+1)µi+1 (dZi+1) . (6)

However, from (2), and stochastic independence assumptions, we also have

Eh (Zi+1) = Eh
(
Zi, F

(
zi,ui, ξi+1

))

=

∫ [∫
h (Zi, F (zi, ui, ξ)) g (ξ) dξ] µi (dZi) . (7)

When q ≤ n+m, the change of variables formula of H. Federer (1996, Th. 3.2.6,
p. 245) applies, and

∫
h (Zi, F (zi, ui, ξ)) g (ξ) dξ =

=

∫ ∑

ξ∈{G(zi,ui,zi+1)}

h (Zi, F (zi, ui, ξ)) g (ξ) JG (zi, ui, zi+1)H
q (dzi+1) (8)

where Hq (Rn) is a q− dimensional Hausdorff measure in R
n, and G (z, u, ·) is

the inverse function of F (z, u, ·), JG (zi, ui, zi+1) is the Jacobian, where

JG (a, u, z) =

√[
∂ (G)

∂ (z)

] [
∂ (G)

∂ (z)

]T

(a, u, z) (9)
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(see Evans and Gariepy, 1992, Ch. 3, Th. 3, p. 88). When for any fixed (zi, ui) ∈
R

n+m×R
p, the inverse image of the ξ i.e., the set {G (zi, ui, zi+1)} is a singleton,

then the sum in the integral above reduces to one single term and the right hand
side of (8) now reads

=

∫
h (Zi+1) IFi

(zi+1) g (G (zi, ui, zi+1)) JG (zi, ui, zi+1)H
q (dzi+1) (10)

where Fi = {F (zi, ui, {supp g})}, and IF is the set function of F . Substitute
(10) into (7). Since h is arbitrary, comparison the right hand sides of (6) and
(7) gives

µi+1 (dZi+1) = g (G (zi, ui, zi+1)) IFi
(zi+1) JG (zi, ui, zi+1)H

q (dzi+1)µi (dZi)

and by induction we get the joint measure

µi (dZi)=
i−1∏
j=0

g (G (zj, uj , zj+1)) IFj
(zj+1) JG (zj , uj, zj+1)H

q (dzj+1) ρ (z0) dz0.

(11)

In conclusion we have

Theorem 1
Assume dim ξ = q ≤ n + m = dim z. Denote Dzu = {F (z, u, {supp g})}.
Suppose, that for any (z, u) ∈ R

n+m × R
p, there exists an inverse to F (z, u, ·),

denoted by G (z, u, ·), i.e., the mapping G (z, u, ·) : Dzu → R
q, such that the

Jacobian JG (a, u, b) ∈ (0,∞) for (a, u, b) ∈ R
n+m × R

p × R
n+m, and that the

set {G (a, u, b)} is a singleton for any (a, u, b) ∈ R
n+m ×R

p ×Dau. Then, µi is
given by (11).

Remark 5 Note that µi given by (11) depends on the sequence of control actions

Ui = (u0, ..., ui). So, we denote this measure by µ
(U)
i , instead of µi, and E

(U)

in place of E if needed.

Remark 6 The joint measure can be used for computing conditional probabili-
ties

Py (C) , P [xi ∈ C |Yi =y ] =
µi

(
R

ni × C × {y}
)

µi

(
Rn(i+1) × {y}

) , if µi

(
R

n(i+1) × {y}
)
6= 0

(12)

and in the form convenient for integration in dynamic programming algorithms

Py (da) , P [xi∈ da |Yi =y ]=
µi

(
R

ni × da × {y}
)

µi

(
Rn(i+1) × {y}

) , if µi

(
R

n(i+1) × {y}
)
6= 0

Qy (db) , P [yi+1 ∈ db |Yi = y ] =
µi+1

(
R

n(i+2) × {y} × db
)

µi+1

(
Rn(i+2) × {y} × Rm

) ,

if µi+1

(
R

n(i+2) × {y} × R
m

)
6= 0.
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The examples below show applications of (12) and (11) for computing con-
ditional expectations. We shall use them in the algorithm given in the last
section.

Example 1 For h : R
n × R

m(i+1) → R

E [h (xi,Yi) |Yi = y ] =

∫

Rn

h (a, y)Py (da)

=

∫

Rn

h (a, y)
µ

(U)
i

(
R

ni × da × {y}
)

µ
(U)
i

(
Rn(i+1) × {y}

) , H
(U)
i (y) .

Hence

E [h (xi,Yi) |Yi ] = H
(U)
i (Yi) .

Example 2 For h : R
m(i+2) → R

E
[
h

(
Yi,yi+1

)
|Yi = y

]
=

∫
h (y, b)Qy (db)

=

∫
h (y, b)

µi+1

(
R

n(i+2) × {y} × db
)

µi+1

(
Rn(i+2) × {y} × Rm

) , G
(U)
i+1 (y) .

Hence

E
[
h

(
Yi,yi+1

)
|Yi

]
= G

(U)
i+1 (Yi) .

Example 3 The same quantity as above can be computed in a different way.
For h : R

m(i+2) → R

E
[
h

(
Yi,yi+1

)
|Yi = y

]
=

∫ [∫
h

(
y, F 2 (a, yi, ui, ξ)

)
g (ξ) dξ

]
Py (da)

=

∫ [∫
h

(
y, F 2 (a, yi, ui, ξ)

)
g (ξ) dξ

]
µi

(
R

ni × da × {y}
)

µi

(
Rn(i+1) × {y}

) , R
(U)
i (y) .

Hence

E
[
h

(
Yi,yi+1

)
|Yi

]
= R

(U)
i (Yi) .

3. Weak variations and Gateaux derivatives

Using results from the previous section we can express the performance criteria
in the form

J (UN−1) = E

[
N∑

i=0

ri (zi,ui)

]
=

N∑

i=0

∫
ri (a, b,ui)µ

(U)
i

(
R

ni × da × R
mi × db

)
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where we put rN (a,b, u) = r (a, b). Now, in order to obtain the necessary condi-
tion for optimality of the control V ⋆

N−1, the common practice (see Rishel, 1985,
for instance) is to take the weak variations of J (UN−1). Let j ∈ {1, ..., N − 1},

and let V
(j)
N−1 be an admissible control, which satisfies

vi (y0, ..., yi) = 0 if i 6= j.

Consider the control V ⋆
N−1 + ǫV

(j)
N−1. Since V ⋆

N−1 is an optimal control, J
(
V ⋆

N−1

+ǫV
(j)
N−1

)
must have a minimum at ǫ = 0, and if J

(
V ⋆

N−1 + ǫV
(j)
N−1

)
is differ-

entiable with respect to ǫ, its derivative (the Gateaux derivative) must vanish
there. If i < j + 1, then

µ
(V ⋆+ǫV (j))
i (dZi) = µ

(V ⋆)
i (dZi)

but when i ≥ j + 1, then

µ
(V ⋆+ǫV (j))
i (dZi) = (13)

= g
(
G

(
zj, u

⋆
j + ǫvj, zj+1

))
IF ǫ

j
(zj+1) JG

(
zj, u

⋆
j + ǫvj , zj+1

)
Hq (dzj+1)

×
i−1∏

p=0,p6=j

g
(
G

(
zp, u

⋆
p, zp+1

))
IFp

(zp+1) JG
(
zp, u

⋆
p, zp+1

)
Hq (dzp+1) ρ (z0) dz0

where F ǫ
j = F

(
zj , u

⋆
j + ǫvj , {supp g}

)
. Hence

[
∂

∂ǫ
µ
(V ⋆+ǫV (j))
i (dZi)

]

ǫ=0

= (14)

=






0 if i < j + 1

vT
j

{
∇u

[
ln g

(
G

(
zj , u

⋆
j , zj+1

))
IFj

(zj+1) JG
(
zj , u

⋆
j , zj+1

)]}
µ

(V ⋆)
i (dZi)

if i ≥ j + 1

.

Theorem 2 Assume: (!) F ∈C (Rn+m×R
p×R

q, Rn+m), ri ∈Cb (Rn+m×R
p),

∇uri ∈ Cb (Rn+m × R
p, Rp), r ∈ Cb (Rn+m), g ∈ C1 (Rq), (!!) q = n + m,

(!!!) F (z, u, ·) is one-to-one for (z, u) ∈ R
q × R

p, its inverse G (z, u, ·) and
the Jacobi determinant JG ∈ C0,1,0 (Rq × R

p × R
q), JG ∈ (0, M) , M < ∞,

(!!!!) ∇u [ln g (G) JG] ∈ Cb (Rn+m × R
p × R

q, Rp), then J
(
V ⋆

N−1 + ǫV
(j)
N−1

)
is

ǫ−differentiable, and

[
∂

∂ǫ
J

(
V ⋆

N−1 + ǫV
(j)
N−1

)]

ǫ=0

= (15)
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∫
vT

j ∇urj

(
a, b,u⋆

j

)
µ

(V ⋆)
j

(
R

nj × da × R
mj × db

)

+

∫
vT

j ∇u ln
[
g

(
G

(
a, u⋆

j , b
))

JG
(
a, u⋆

j , b
)]

×

N∑

i=j+1

ri (a, b,u⋆
i )µ

(V ⋆)
i

(
R

ni × da × R
n(N−i) × R

mj × db × R
m(N−i)

)

which is nothing but the Gateaux derivative. Equivalently

[
∂

∂ǫ
J

(
V ⋆

N−1 + ǫV
(j)
N−1

)]

ǫ=0

= EvT
j

{
∇urj

(
zj ,u

⋆
j

)
+ (16)




N∑

i=j+1

ri (zi,u
⋆
i )



∇u ln
[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]
}

.

Proof. From (!!) and (!!!) follows that IF ǫ
j

(z)≡1, for z∈R
q, and i=j, ..., N −1.

Now (15), (16) follows from (14), (13) and the product rule for differentiation,
i.e., taking into account (14) and ǫ−differentiating the expression

J
(
V ⋆

N−1 + ǫV
(j)
N−1

)
=

∫
rj

(
a, b,u⋆

j + ǫvj

)
µ
(V ⋆

N−1)
j

(
R

nj × da × R
mj × db

)

+
N∑

i=j+1

∫
ri (a, b,ui)µ

(
V ⋆

N−1+ǫV
(j)

N−1

)

i

(
R

ni × da × R
mi × db

)

gives the results.

4. Subspace constraints and Lagrange multipliers

In this section we select in short some facts from Davis, Dempster and Elliott
(1991). Let X be a Banach space with dual space X⋆, and let S be a linear
subspace of X . We define

S⊥ = {x⋆ ∈ X⋆ : 〈x⋆, x〉 = 0, ∀x ∈ S}

where 〈x⋆, x〉 denotes the pairing between x ∈ X and x⋆ ∈ X⋆.
Let φ : X → R be a Fréchet differentiable functional and suppose that

φ achieves its minimum over S at x0 ∈ S. The Fréchet derivative is a map
φ′ : X → X⋆ such that for h, x ∈ X

φ (x + h) = φ (x) + 〈φ′ (x) , h〉 + o (‖h‖) .

Lemma 1 If φ achieves its minimum over S at x0 ∈ S, then φ′ (x0) ∈ S⊥.
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Proof. If φ′ (x0) /∈ S⊥ then there exists h ∈ S such that 〈φ′ (x0) , h〉 = δ > 0.
But then φ (x0 − ǫh) = φ (x0) − ǫ (δ + o (ǫ) /ǫ), so that φ (x0 − ǫh) < φ (x0) for
small ǫ.

Theorem 3 If φ : X → R is Fréchet differentiable and achieves its minimum
over S at x0 ∈ S, then there exists λ ∈ S⊥ such that Lagrange functional

L (x) = φ (x) + 〈λ, x〉

is stationary at x0, i.e., L′ (x0) = 0.

Proof. We have only to set λ = −φ′ (x0).

5. Application to stochastic control

To apply the above results to our problem, we take X to be the space Lθ
p (N×

(Ω,F , P)), θ > 1, of all controls W = {WN−1; (w0 (Z0) , ..., wN−1 (ZN−1))}
satisfying

E

N−1∑

i=0

‖wi (Zi)‖
θ < ∞

where ‖·‖ is the Euclidean norm in R
p and S a subspace of X of all controls

V = {VN−1; (v0 (Y0) , ..., vN−1 (YN−1))}. It is clear that S is a linear subspace
of X . Then, X⋆ is the space Lη

p (N × (Ω,F , P)), where η = θ/ (θ − 1) and

S⊥ = {λ ∈ X⋆ : E 〈λ, V 〉 = 0, ∀V ∈ S} .

The relationship between Gateaux and Fréchet derivative of φ is that if the
Gateaux derivative takes the form

E

∑
λjvj (17)

for some λ = col (λ0, ..., λN−1)∈X⋆ = Lη
p (N × (Ω,F , P)), then φ is Fréchet

differentiable and φ′ (u) = λ. Hence, from (16)(17) we obtain

Theorem 4 Under the notations and assumptions of Theorems 1 and 2

λj =∇urj

(
zj ,u

⋆
j

)
+ (18)




N∑

i=j+1

ri (zi,u
⋆
i )



∇u ln
[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]

for j = 0, 1, ..., N − 1.

Proof. The RHS of (18) is bounded, hence it belongs to Lη (Ω,F , P) for any
η ≥ 0.
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Remark 7 (Incremental value of information) In stochastic optimization prob-
lems one can encounter at least two approaches to defining the value of infor-
mation. The first, leading to the so called Incremental Value of Information
was initiated by M.H.A. Davis, M.A.H. Dempster and R.J. Elliott (1991) and
it uses an idea of R.J.-B. Wets (1975). The second, initiated by T. Banek
and R. Kulikowski (2003) and independently by M. Schweizer and D. Becherer
(2003) is based on the idea that information can be the object of trade and
its value for a particular agent is a consequence of its utility. In this paper
we follow the former way. First, by introducing the Lagrange multiplier, we
turn the optimization problem into the one global minimization over all controls
from W ⊂ Lθ

p (N × (Ω,F , P)) which are Z = col (z0, ..., zN−1)−measurable,
i.e., take the form W = {WN−1; (w0 (Z0) , ..., wN−1 (ZN−1))}. Second, the La-
grange multiplier has an interpretation as a price system for small violations
of the constraint, in our case, small Zi−measurable perturbations of the con-
trols. To understand this approach the best way is perhaps to recall the beautiful
idea of Joseph Louis de Lagrange in classical mechanics. In order to extend
the Newtonian dynamics of free particles to the general case where the particles
are allowed to move on some surfaces only, Lagrange introduced a new force, a
”reaction” of the surface. If there is no friction, then the reaction must be or-
thogonal to the surface. Thus, to determine the reaction it is enough to find its
length. It appears that this can be defined uniquely so that a free particle keeps
moving on the surface only if it is affected by this reaction. Hence, the prob-
lem with constraints was reduced to the known problem with forces (but without
constraints). To find analogy with our problem replace the free particles by the
Z−measurable control actions, the surface of permissible movement by the linear
space V = {VN−1; (v0 (Y0) , ..., vN−1 (YN−1))} and the reaction by λ. Under ac-
tion of λ, the Z−measurable controls (the elements of W ) will stay in the space
V , exactly as the particles in the Lagrangian mechanics do. For economic inter-
pretation, used here, one has to remember the form of the Lagrange functional
appearing in Theorem 3. Additional term 〈λ, x〉, the second term in the sum, can
be viewed as an extra cost, a penalty for small violation of the constraint by the
unfair control action. Due to the linearity of the term, the multiplier is a cost
”per capita”, i.e., the ”dual” price. It is worth mentioning that the violations
considered here are in contrast with anticipative (allowed to know the future)
perturbations considered by Davis, Dempster and Elliott (1991). Finally, our
price system perhaps may have some practical value for a controller who has an
extra option, for instance he can buy the observations X = col (x0, ...,xN−1), or
for creating a technical device, an observation system able to produce X. The
question interesting for the controller is to know what is the right price for buy-
ing the observations X = col (x0, ...,xN−1)? Our price system tells only how
much a small violation of the constraint costs and thus can serve as a linear
approximation.

Conclusion 1 The necessary condition of optimality given in Theorem 2 now
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takes the form

E {λj |Yj } = 0

for j = 0, 1, ..., N − 1. Indeed, since vj in Theorem 2 is an arbitrary Yj-
measurable function, a standard argument using the definition of conditional
expectation implies the last expression follows from (16)(18).

Remark 8 The RHS of (18) expresses what can be understood as the right
balance in the information pricing process between the present and the future.
To see this just observe that the ratio ∇urj

(
zj ,u

⋆
j

)
/rj

(
zj ,u

⋆
j

)
is equal to

∇u ln rj

(
zj ,u

⋆
j

)
, which suggests the following representation

λj = wjrj

(
zj ,u

⋆
j

)
+ wj+1rj+1

(
zj+1,u

⋆
j+1

)
+ ... + wNrN (zN ,u⋆

N )

of λj, where weights are

wj = ∇u ln rj

(
zj ,u

⋆
j

)
the present

wj+1 = ... = wN = ∇u ln
[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]
the future.

Hence, there are two different weights; at present time j, the weight wj, which
appears to depend on the present cost rj, but not depend on the system dynamics
function F , and the weights responsible for the future wj+1, ..., wN , which (1)
appear to be equal i.e., wj+1 = ... = wN , (2) depend on the system function F
and the variables zj ,u

⋆
j , zj+1, but does not depend on the costs rj+1, ..., rN .

Conclusion 2 Let

ηj

(
ZjN ,U⋆

jN

)
=

rj

(
zj ,u

⋆
j

)
∑N

i=j ri (zi,u⋆
i )

where ZjN = (zj , ..., zN ), UjN = (uj , ...,uN ), then

λj∑N

i=j ri

(
ZjN ,U⋆

jN

) = ηj

(
ZjN ,U⋆

jN

)
∇u ln

(
rj , zj ,u

⋆
j

)

+
[
1 − ηj

(
ZjN ,U⋆

jN

)]
∇u ln

[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]

which shows that the normalized Lagrange multipliers are convex linear com-
binations of the present and the future weights. Moreover, the combination
coefficients (ηj , 1 − ηj) are the ratios of the present and remaining costs per the
total cost, respectively. Since the game played between the present and the future
is expressed via the combination coefficients (ηj , 1 − ηj), j = 0, 1, ..., N , we may
observe how dominant is the role of the future (here it means how valuable is
the missing information) at the beginning of control actions and how this role
decreases as time goes on.
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6. An algorithm for computing extremal controls

We call a control extremal if it satisfies the necessary condition for optimality
expressed in Conclusion 1, that is, if for each j = 0, 1, ..., N − 1,

E

{
∇urj

(
zj ,u

⋆
j

)
+ (19)

+




N∑

i=j+1

ri (zi,u
⋆
i )



∇u ln
[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]
|Yj

}
= 0.

Following Rishel (1985) we use this condition to compute u. To begin, define

Vj (Zj) = E





N∑

i=j

ri (zi,u
⋆
i ) |Zj



 .

From the law of iterated conditional expectation

Vj (Zj) = rj

(
zj ,u

⋆
j

)
+ E





N∑

i=j+1

ri (zi,u
⋆
i ) |Zj





= rj

(
zj ,u

⋆
j

)
+ E



E




N∑

i=j+1

ri (zi,u
⋆
i ) |Zj+1



 |Zj





= rj

(
zj ,u

⋆
j

)
+ E {Vj+1 (Zj+1) |Zj } (20)

with the terminal condition

VN (ZN ) = r (zN ) . (21)

Now, the law of iterated conditional expectation and (1) imply that the LHS of
(19) is given by

E

{
∇urj

(
zj ,u

⋆
j

)
+ (22)

+Vj+1

(
Zj , F

(
zj ,u

⋆
j , ξj+1

))
∇u ln

[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]
|Yj

}
.

By using the Examples 1 and 2, given in Section 2 we have

E
{
∇urj

(
zj ,u

⋆
j

)
|Yj

}
=

∫
∇urj

(
a,yj , u

⋆
j

) µ
(U)
j

(
R

nj × da × {Yj}
)

µ
(U)
j

(
Rn(i+1) × {Yj}

) (23)
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and

E
{
Vj+1

(
Zj , F

(
zj ,u

⋆
j , ξj+1

))
∇u ln

[
g

(
G

(
zj ,u

⋆
j , zj+1

))
JG

(
zj ,u

⋆
j , zj+1

)]
|Yj

}
=

∫ [∫
Vj+1

(
Xj ,Yj , F

(
xj ,yj , u

⋆
j ,ξ

))
g′ (ξ) dξ

]

×∇uG
(
xj ,yj , u

⋆
j , xj+1, yj+1

) µ
(U)
j+1 (dXj+1 × {Yj} × dyj+1)

µ
(U)
j+1 (dXj+1 × {Yj} × dyj+1)

+

∫ [∫
Vj+1

(
Xj ,Yj , F

(
xj ,yj , u

⋆
j ,ξ

))
g (ξ) dξ

]

×∇u ln JG
(
xj ,yj , u

⋆
j , xj+1, yj+1

) µ
(U)
j+1 (dXj+1 × {Yj} × dyj+1)

µ
(U)
j+1 (dXj+1 × {Yj} × dyj+1)

, (24)

hence, substitution of (24) into (22) gives an integral expression for the neces-
sary condition, moreover, it suggest the following algorithm, which uses back-
ward induction to compute u⋆

j and Vj (Zj) such that u⋆
j satisfies the optimality

condition (14).

Step 0:

Set VN (ZN ) = r (zN) and j = N − 1.

Step 1:

Given Vj+1 (Zj+1), put

Ṽj+1 (Zj , uj, ξj+1) = Vj+1 (Zj , F (xj , yj , uj,ξj+1)) .

Step 2:

Evaluate (24) and denote the sum (23) + (24) by Z (Yj , uj).

Step 3:

Solve

Z (Yj , uj) = 0 for u⋆
j .

Step 4:

Compute

Vj (Zj) = rj

(
zj , u

⋆
j

)
+

∫
Ṽj+1

(
Zj , u

⋆
j , ξ

)
g (ξ) dξ .

Step 5:

If j = 0, stop. Otherwise, decrease j by 1 and go to Step 1.
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