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Abstract: The problem of stabilization of fractional positive
linear continuous-time linear systems with delays by state-feedbacks
is addressed. The gain matrix of the state feedback is chosen so that
the zeros of the closed-loop polynomial are located in a sector of
the left half of complex plane. Necessary and sufficient conditions
for the solvability of the problem are established and a procedure
for computation of a gain matrix of the feedback is proposed. The
considerations are illustrated by a numerical example.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-negative
values. Examples of positive systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage systems, compart-
mental systems, water and atmospheric pollution models. A variety of models
having positive linear systems behaviour can be found in engineering, manage-
ment science, economics, social sciences, biology and medicine, etc. Positive
linear systems are defined on cones and not on linear spaces. Therefore, the
theory of positive systems is more complicated and less advanced. An overview
of state of the art in positive systems is given in the monographs of Farina and
Rinaldi (2000)and Kaczorek (2002).

The first definition of the fractional derivative was introduced by Liouville
and Riemann at the end of the 19th century (Nishimoto, 1984; Oustaloup, 1993;
Podlubny, 1999). This idea has been used by engineers for modelling differ-
ent processes in the late 1960s (Nishimoto, 1984; Oldham and Spanier, 1974;
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Ortigueira, 1997; Ostalczyk, 2000, 2004a,b, 2008; Oustaloup, 1993, 1995; Pod-
lubny, 1999, 2002; Podlubny, Dorcak and Kostial, 1999; Sierociuk, 2007; Siero-
ciuk and Dzieliński, 2006; Vinagre, Monje and Calderon, 2002). Mathematical
fundamentals of fractional calculus are given in Nishimoto (1984), Oldham and
Spanier (1974), Ostalczyk (2008) and Oustaloup (1993). The fractional order
controllers have been developed in Oustaloup (1993) and Podlubny, Dorcak
and Kostial (1999). A generalization of the Kalman filter for fractional order
systems has been proposed in Sierociuk and Dzieliński (2006). Some other
applications of fractional order systems can be found in Ortigueira (1997),
Ostalczyk (2000, 2004a,b), Podlubny (2002), Podlubny, Dorcak and Kostial
(1999), Sierociuk (2007), Sierociuk and Dzieliński (2006) and Vinagre, Monje
and Calderon (2002). Fractional polynomials and nD systems have been inves-
tigated in Gałkowski and Kummert (2005), and the stability of the fractional
continuous-time system with delay in Busłowicz (2008). The concept of posi-
tive fractional discrete-time linear systems was introduced in Kaczorek (2008b)
and the reachability and controllability to zero of positive fractional system was
investigated in Kaczorek (2007). The concept of fractional positive continuous-
time linear systems was introduced in Kaczorek (2008c). The stabilization prob-
lem of fractional discrete-time linear systems by state-feedback was considered
in Kaczorek (2009a). The problem of positivity and stabilization of 2D linear
systems by state-feedbacks have been analysed in Kaczorek (2009c).

In this paper the problem of stabilization of fractional positive linear
continuous-time systems with delays by state-feedbacks will be addressed. The
gain matrix of the state feedback will be chosen so that the zeros of the closed-
loop polynomial are located in a sector of the left half of complex plane.

The paper is organized as follows. The basic definitions and theorems con-
cerning the positive fractional systems are recalled in Section 2 and for positive
fractional systems with delays in Section 4. The main results of the paper are
presented in Sections 3 and 5. In Section 3 the stability of the positive fractional
continuous-time linear systems is discussed and the equilibrium point of the sys-
tems is introduced. The stabilization problem by state-feedbacks is formulated
and solved in Section 5. Concluding remarks are given in Section 6.

The following notation will be used in the paper. The set of n × m real
matrices will be denoted ℜn×m and ℜn := ℜn×1. The set of m×n real matrices
with nonnegative entries will be denoted by ℜm×n

+ and ℜn
+ := ℜn×1

+ . A matrix
A (a vector x) with positive entries (positive components) will be denoted by
A > 0 (x > 0). The set of nonnegative integers will be denoted by Z+ and the
n × n identity matrix by In.

2. Positive fractional continuous-time linear systems

In this paper the following Caputo definition of the fractional derivative will be
used (Ostalczyk, 2008; Podlubny, 1999; Vinagre, Monje and Calderon, 2002):
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c
0D

α
t f(t) =

dα

dtα
f(t) =

1

Γ(n − α)

∫ t

0

f (n)(τ)

(t − τ)α+1−n
dτ,

n − 1 < α ≤ n ∈ N = {1, 2, ...} (1)

where α ∈ ℜ is the order of fractional derivative and f (n)(τ) = dnf(τ)
dτn .

Consider the fractional continuous-time linear system described by the state
equations

dαx(t)

dtα
= Ax(t) + Bu(t), 0 < α ≤ 1 (2a)

y(t) = Cx(t) + Du(t) (2b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are, respectively, the state, input and
output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m.

Theorem 1 The solution of equation (2a) is given by

x(t) = Φ0(t)x0 +

∫ t

0

Φ(t − τ)Bu(τ)dτ, x(0) = x0 (3)

where

Φ0(t) = Eα(Atα) =

∞
∑

k=0

Aktkα

Γ(kα + 1)
(4)

Φ(t) =

∞
∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
(5)

and Eα(Atα) is the Mittage-Leffler matrix function, Γ(x) =
∫

∞

0 e−ttx−1dt is the
gamma function.

Proof is provided in Kaczorek (2008c).

Remark 1 From (4) and (5) for α = 1 we have Φ0(t) = Φ(t) =
∑

∞

k=0
(At)k

Γ(k+1) =

eAt.

Definition 1 The fractional system (2) is called (internally) positive if and
only if x(t) ∈ ℜn

+ and y(t) ∈ ℜp
+ for t ≥ 0 for any initial conditions x0 ∈ ℜn

+

and all inputs u(t) ∈ ℜm
+ , t ≥ 0.

A square real matrix A = [aij ] is called the Metzler matrix if its off-diagonal
entries are nonnegative, i.e. aij ≥ 0 for i 6= j (Farina and Rinaldi, 2000; Kac-
zorek, 2002). The set of n × n Metzler matrices will be denoted Mn.

Lemma 1 (Kaczorek, 2008c) Let A ∈ ℜn×n and 0 < α ≤ 1. Then

Φ0(t) =

∞
∑

k=0

Aktkα

Γ(kα + 1)
∈ ℜn×n

+ for t ≥ 0 (6)
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and

Φ(t) =

∞
∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
∈ ℜn×n

+ for t ≥ 0 (7)

if and only if A is a Metzler matrix, i.e. A ∈ Mn.

Theorem 2 The fractional continuous-time system (2) is internally positive if
and only if

A ∈ Mn, B ∈ ℜn×m
+ , C ∈ ℜp×n

+ , D ∈ ℜp×m
+ . (8)

Proof is provided in Kaczorek (2008c).

3. Stability of the positive fractional systems

Definition 2 The positive fractional system

dαx(t)

dtα
= Ax(t), A ∈ Mn, 0 < α ≤ 1 (9)

is called asymptotically stable (shortly: stable) if and only if

lim
t→∞

x(t) = lim
t→∞

Φ0(t)x0 = 0 (10)

for all x0 ∈ ℜn
+.

The characteristic polynomial of (9) has the form

det[Insα − A] = (sα)n + an−1(s
α)n−1 + ... + a1s

α + a0. (11)

Substitution of

λ = sα (12)

into (11) yields

det[Inλ − A] = λn + an−1λ
n−1 + ... + a1λ + a0. (13)

Let us denote arg s = φ and arg λ = ϕ. Then from (12) we have

ϕ = αφ. (14)

From (11), (13) and (14) for ϕ = π
2 we have the following corollary:

Corollary 1 If the zeros of the characteristic polynomial (13) are located in
the left half of complex plane then the zeros of the characteristic polynomial (11)
are located in the sector defined by φ = π

2α
in the left half complex plane (see

the Fig. 1).
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Figure 1. Illustration for the Corollary 1

Theorem 3 The zeros of the characteristic polynomial (11) are located in the
sector φ = π

2α
if and only if one of the following equivalent conditions is satisfied:

1) All coefficients of the characteristic polynomial (13) are positive, i.e. ai ≥
0 for i = 0, 1, ..., n− 1.

2) All leading principle minors of the matrix

−A =









a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann









(15)

are positive, i.e.

|a11| > 0,

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

> 0, ... , det [−A] > 0 (16)

3) There exists a strictly positive vector λ > 0 (λ ∈ ℜn
+) such that

Aλ < 0 (strictly negative). (17)

Proof. For a positive fractional system A ∈ Mn it is well known (Kaczorek,
2002, p. 64) that the system is stable if and only if the polynomial (13) has
positive coefficients ai, i = 0, 1, ..., n− 1.

In Kaczorek (2008a) it was also shown that conditions 1) and 2) are equiv-
alent. It is also well known (Kaczorek, 2002, 2008a) that if A ∈ Mn then the
conditions 2) and 3) are also equivalent.

Definition 3 The vector xe ∈ ℜn
+ is called the equilibrium point of the stable

positive system (2a) for constant input u ∈ ℜm
+ (u(t) = u) if and only if

Axe + Bu = 0. (18)
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If Bu = 1n = [1 ... 1]T ∈ ℜn
+ (T denotes the transpose) then from (18) we

have

xe = −A−11n > 0 (19)

since for a stable system −A−1 ∈ ℜn×n
+ (Kaczorek, 2002).

Remark 2 As strictly positive vector λ in (17) the equilibrium point (19) can
be chosen since

Aλ = A(−A−11n) = −1n. (20)

4. Stability of positive continuous-time systems with

delays

Consider a continuous-time linear system with q delays in state and inputs

ẋ(t) =

q
∑

k=0

[Akx(t − dk) + Bku(t − dk)] (21a)

y(t) = Cx(t) + D(u(t) (21b)

where x(t) ∈ ℜn, u(t) ∈ ℜm and y(t) ∈ ℜp are, respectively, the state, input
and output vectors, Ak, Bk, k = 0, 1, ..., q, C, D are real matrices of appropriate
dimensions and dk, k = 1, 2, ...q, are the delays (dk ≥ 0, d0 = 0).

Initial conditions for (21a) have the form

x(t) = x0(t) for t ∈ [−d, 0], d = max
k

dk (22)

where x0(t) is a given vector function.
The system (21) is called (internally) positive if and only if x(t) ∈ ℜn

+,
y(t) ∈ ℜp

+, t ≥ 0 for any x0(t) ∈ ℜn
+ and for all inputs u(t) ∈ ℜm

+ , t ≥ −d.

Theorem 4 The system (21) is (internally) positive if and only if

A0 ∈ Mn, Ak ∈ ℜn×n
+ , k = 1, ...q, Bl ∈ ℜn×m

+ , l = 0, 1, ...q,

C ∈ ℜp×n
+ , D ∈ ℜp×m

+ . (23)

The proof is provided in Kaczorek (2009b).

Theorem 5 The positive system (21) is asymptotically stable if and only if
there exists a strictly positive vector λ ∈ ℜn

+ satisfying the equality

Aλ < 0, A =

q
∑

k=0

Ak. (24)

The proof is provided in Kaczorek (2009b).
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Theorem 6 The positive system with delays (21) is asymptotically stable if and
only if the positive system without delays

ẋ = Ax, A =

q
∑

k=0

Ak ∈ Mn (25)

is asymptotically stable.

The proof is provided in Kaczorek (2009b).

It follows from Theorem 6 that the checking of the asymptotic stability of
positive systems with delays (21) can be reduced to checking the asymptotic
stability of corresponding positive systems without delays (25). To check the
asymptotic stability of positive systems (21) the following theorem can be used
(Kaczorek, 2002, 2008a).

Theorem 7 The positive system with delays (21) is asymptotically stable if and
only if one of the following equivalent conditions holds:

1) Eigenvalues s1, s2, . . . , sn of the matrix A have negative real parts, Re sk <

0, k = 1, ..., n.

2) All coefficients of the characteristic polynomial of the matrix A are posi-
tive.

3) All leading principal minors of the matrix

−A =







a11 . . . a1n

... . . .
...

an1 . . . ann






(26)

are positive, i.e.

|a11| > 0,

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

> 0, ... , det[−A] > 0. (27)

Theorem 8 The positive system with delays (21) is unstable for any matrices
Ak, k = 1, ..., q, if the positive system ẋ = A0x is unstable.

The proof is provided in Kaczorek (2009b).

Theorem 9 If at least one diagonal entry of matrix A0 is positive then the
positive system (21) is unstable for any Ak, k = 1, ..., q.

The proof is provided in Kaczorek (2009b).

5. Stabilization of the fractional linear systems with

delays by state-feedbacks

Consider the fractional linear system

dαx(t)

dtα
=

q
∑

k=0

[Akx(t − dk) + Bku(t − dk)] (28)



790 T. KACZOREK

with the state-feedback

u(t) = Kx(t) (29)

where K ∈ ℜm×n is a gain matrix.
By substituting (29) in (28) we obtain the closed-loop system

dαx(t)

dtα
=

q
∑

k=0

(Ak + BkK)x(t − dk), 0 < α ≤ 1. (30)

The positive system with delays (30) is asymptotically stable if and only if
the positive system without delays is asymptotically stable. This follows from
the fact that stability of positive continuous-time linear systems with delays is
independent of the number and values of delays (Kaczorek, 2009b) and the fact
that asymptotic stability is considered in the sectors of the left half complex
plane

dαx(t)

dtα
= (A + BK)x(t), A =

q
∑

k=0

Ak, B =

q
∑

k=0

Bk, (31)

is asymptotically stable.
We are looking for a gain matrix K such that the closed-loop system (30) is

positive and the zeros of the characteristic polynomial

det[Insα − (A + BK)] = (sα)n + ān−1(s
α)n−1 + . . . + ā1s

α + ā0 (32)

are located in the sector φ = π
2α

.

Theorem 10 The closed-loop fractional system (30) is positive and the zeros
of the polynomial (32) are located in the sector φ = π

2α
if and only if there exists

a diagonal matrix

Λ = diag[λ1, ..., λn] with λk > 0, k = 1, ..., n (33)

and a real matrix D ∈ ℜm×n such that the following conditions are satisfied

AΛ + BD ∈ Mn (34)

(AΛ + BD)1n < 0. (35)

The gain matrix K is given by the formula

K = DΛ−1. (36)

Proof. First, we shall show that the closed-loop system (30) is positive if and
only if (34) holds. Using (30), (31) and (36) we obtain

q
∑

k=0

(Ak + BkK) = A + BK = A + BDΛ−1 = (AΛ + BD)Λ−1 ∈ Mn (37)
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if and only if the condition (34) is satisfied.
Taking into account that

KΛ1n = DΛ−1Λ1n = D1n and Λ1n = λ = [λ1, . . . , λn]T (38)

and using (17) we obtain

(A + BK)λ = (A + BK)Λ1n = (AΛ + BD)1n < 0. (39)

Therefore, by Theorem 3, the zeros of the characteristic polynomial (32) are
located in the sector φ = π

2α
if and only if the condition (35) is met.

If the conditions of Theorem 10 are satisfied then the problem of stabilization
can be solved by using the following procedure:

Procedure

Step 1. Choose a diagonal matrix (33) with λk > 0, k = 1, ..., n and a real
matrix D ∈ ℜm×n satisfying the condition (34) and (35).

Step 2. Using the formula (36) compute the gain matrix K.

Example

Given is the fractional system (21a) with α = 0.8, q = 2 and the matrices

A0 =





0.5 0.3 −0.2
0.2 −1 0
0 −0.2 1



 , A1 =





0.3 0.4 −0.3
0.1 −0.5 0
0 −0.1 1



 , A2 =





0.2 0.3 −0.5
0.7 −1.5 0
0 −0.7 0.5



 ,

B0 =





0 0.1
0 0

0.2 0



 , B1 =





0 0.5
0 0

0.3 0



 , B2 =





0 0.4
0 0

0.5 0



 . (40)

Find a gain matrix K ∈ ℜ2×3 such that the closed-loop system is positive and
the zeros of its characteristic polynomial are located in the sector φ = 5

8π.
Note that the fractional system with (40) is not positive since the matrices

A0, A1 and A2 have negative off-diagonal entries. In this case

A =

2
∑

k=0

Ak, =





1 1 −1
1 −3 0
0 −1 2.5



 , B =

2
∑

k=0

Bk =





0 1
0 0
1 0



 . (41)

Using Procedure and (41) we obtain the following

Step 1. We choose

Λ =





1 0 0
0 2 0
0 0 1



 , D =

[

0.5 2 −3.5
−4 0 1.4

]

(42)
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and check condition (34)

AΛ + BD =





1 1 −1
1 −3 0
0 −1 2.5









1 0 0
0 2 0
0 0 1



 +





0 1
0 0
1 0





[

0.5 2 −3.5
−4 0 1.4

]

=

=





−3 2 0.4
1 −6 0

0.5 0 −1



 ∈ M3

and condition (35)

(AΛ + BD)1n =





−3 2 0.4
1 −6 0

0.5 0 −1









1
1
1



 =





−0.6
−5
−0.5



 .

Therefore, the conditions are satisfied.

Step 2. Using (36) we obtain the gain matrix

K = DΛ−1 =

[

0.5 2 −3.5
−4 0 1.4

]





1 0 0
0 2 0
0 0 1





−1

=

[

0.5 1 −3.5
−4 0 1.4

]

.

The closed-loop system is positive, since the matrix

Ac = A + BK =





−3 1 0.4
1 −3 0

0.5 0 −1





is a Metzler matrix.
The characteristic polynomial

det [Inλ − Ac] =

∣

∣

∣

∣

∣

∣

λ + 3 −1 −0.4
−1 λ + 3 0
−0.5 0 λ + 1

∣

∣

∣

∣

∣

∣

= λ3 + 7λ2 + 13.8λ + 7.4

has positive coefficients. Therefore, zeros of the characteristic polynomial of the
closed system are located in the desired sector φ = 5

8π.
These considerations can be extended to the fractional system

dαx(t)

dtα
=

q
∑

k=0

Akx(t − dk) + Bu(t) (43)

with the state-feedbacks of the form

u(t) =

q
∑

k=0

Kkx(t − dk). (44)
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Substituting (44) into (43) we obtain

dαx(t)

dtα
=

q
∑

k=0

Ākx(t − dk) (45)

where

Āk = Ak + BKk.

6. Concluding remarks

The problem of stabilization of fractional positive linear continuous-time sys-
tems with delays by state-feedbacks so that the zeros of the closed-loop polyno-
mial are located in the sector of the left half of complex plane has been addressed.
Necessary and sufficient conditions for the solvability of the problem have been
established. A procedure for computation of a gain matrix of the feedback has
been proposed and illustrated by a numerical example. These considerations can
be easily extended for fractional positive 2D hybrid linear systems. An exten-
sion of this approach for fractional positive 2D continuous-time linear systems
is an open problem.
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