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Abstract: In this paper we study second order sufficient con-
ditions for the strong-local optimality of singular Pontryagin ex-
tremals. In particular, we focus on the minimum-time problem for a
control-affine system with vector inputs. We use Hamiltonian meth-
ods to prove that the coercivity of a suitably-defined second vari-
ation - plus an involutivity assumption on the distribution of the
controlled fields - is a sufficient condition for the strong optimality
of a candidate extremal.
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1. Introduction

We consider the minimum-time problem for a multi-input control affine system
on a smooth n-dimensional manifold M , namely we study the problem

minT (1)

subject to





ξ̇ = (f0 +
∑m

i=1 uifi) ◦ ξ(t)

ξ(0) = x̂0, ξ(T ) = x̂f

u = (u1, . . . , um) ∈ U ⊂ R
m

. (2)

where fi, i = 0, . . . ,m are smooth vector fields on M ; the points x̂0, x̂f ∈ M
are fixed. We remark that for smooth we mean C∞, although the result holds
true for C2 data.

We study the strong-local optimality of a reference triple
(
ξ̂, T̂ , û

)
that sat-

isfies the control system (2), and such that û ∈ int U . Strong optimality means
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that the reference triple is optimal with respect to “neighbouring trajectories”,
independently on the values of control. We consider a type of optimality lo-
cal with respect to both state and final time, i.e. according to the following
definition:

Definition An admissible trajectory ξ̂ : [0, T̂ ] → M is strongly locally optimal

if it is optimal with respect to a neighbourhood of the graph of ξ̂ in R ×M .

Pontryagin Maximum Principle establishes a first-order necessary condition
to be fulfilled by the reference triple. The aim of this paper is to give second-
order sufficient conditions for a totally-singular state-extremal ξ̂ to be a strong-
local minimiser: that is, the reference triple satisfies PMP and the reference
control takes values in the interior of U .

Sufficient second order conditions for weak and Pontryagin minima in the
singular case can be found in Dmitruk (1977, 1983, 2008) and references therein.
For a single-input control-affine system, the strong-local optimality of a Mayer
problem is studied in Stefani (2008), while the strong optimality for the mini-
mum-time problem is studied in Stefani (2004), see also Poggiolini and Stefani
(2008 and 2009).

A classical approach to second order conditions is to consider the so-called
second variation, i.e. an accessory linear-quadratic control problem. See for ex-
ample Hestenes (1966), Páles and Zeidan (1994) for a classical formulation, and
Agrachev et al. (1998a), Agrachev and Sachkov (2004) for an intrinsic version
which can be also used when the systems evolve on a manifold.

For the case under study, both the classical second variation and the intrin-
sic version are totally degenerate; we then require the coercivity of a suitable
extended second variation, obtained starting from the coordinate-free second
variation defined in Agrachev et al. (1998a) and applying an intrinsic version of
the so-called Goh transformation (Goh, 1966; Dmitruk, 2008), in the spirit of
Stefani (2004, 2008).

We prove the result under the further assumption that the controlled vector
fields f1, . . . , fm generate an involutive distribution (see Subsection 2.2 for the
precise definition).

We consider this result as a first step to understand strong-local optimality
of singular trajectory in the multi-input case. It is the opinion of the authors
that the Hamiltonian approach is particularly effective in studying strong opti-
mality; in fact, it consists in lifting singular trajectories to the cotangent bundle
(independently of the values of the associate control) and to use the lifted trajec-
tories to compare the costs. In the standard theory, the trajectory to be lifted
belongs to a neighbourhood of the reference trajectory constituted by a field
of non-intersecting state-extremals, obtained by projecting suitable solutions of
the Hamiltonian system associated to the maximised Hamiltonian Fmax, see for
example Agrachev and Sachkov (2004). When the extremal is singular, Fmax
cannot be used, then we define a Hamiltonian greater than or equal to Fmax,
as suggested by the approach used in Stefani (2004, 2008).
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Remark 1 We do not make any assumption on the control set U . Indeed, U
compact convex assures that an optimal solution exists whenever x̂f is reachable
from x̂0 by means of the solutions of the control system. However, we do not
need the compactness assumption in proving the theorem, and we think that
the result may be useful also in case of unbounded controls, in order to find
minimising trajectory sequences in the spirit of Jurdjevic (see Jurdjevic, 1997,
Chapter 7, and also Remark 15 in Section 7).

The plan of the paper is the following:

2. Notations and preliminary results: here we recall some basic facts on
differential geometry and Hamiltonian formalism, and we state the Pon-
tryagin Maximum Principle.

3. Statement of the results: in this section we state and discuss the main
result of the paper; we, moreover, recall the necessary conditions for op-
timality of a singular extremal and we illustrate the definition and the
properties of the main tool we use in this paper, the second variation.

4. The Hamiltonian approach: here we illustrate the Hamiltonian approach;
we state the sufficient condition for optimality and we define the super-
Hamiltonian. We perform all the proofs in the case of m = 2 controlled
fields.

5. Proof of the Main Theorem: here we complete the proof of Theorem 2.
6. The case with several controls: this section is devoted to the generali-

sation of the proof of the main result to the case of m controls, m ≤ n−1.
7. An example: here we illustrate the result with an example.
8. Final remarks: in this last section we give some remarks on the result and

on possible developments of research in this field.

Some details of the proofs are the subject of the Appendices.

2. Notations and preliminary results

2.1. Notations

For any vector field f on a manifold M , we indicate by Lfϕ(x) its action on
the smooth function ϕ, that is Lfϕ : x ∈M 7→ 〈dϕ(x), f(x)〉, where the symbol
〈·, ·〉 denotes the dual action of T ∗

qM on TqM . We recall, moreover, that the
Lie bracket of two vector fields f, g on M is the vector field [f, g] that acts on
smooth functions on M in the following way:

[f, g](ϕ) := Lf (Lg (ϕ)) − Lg (Lf (ϕ)) , ϕ ∈ C∞(M).

If in coordinates (or in the case M = R
n) we have that if f(q)=

∑n
i=1 fi(q)

∂
∂xi

and g(q)=
∑n

i=1 gi(q)
∂
∂xi

, then [f, g](q)=
∑n

i,j=1

(
fi(q)

∂gj

∂xi
(q)−gi(q)

∂fj

∂xi
(q)
)

∂
∂xj

.

For any smooth manifold M , T ∗M denotes its cotangent bundle, and π :
T ∗M → M the canonical projection onto the base manifold. It is well known
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that the cotangent bundle is a smooth manifold of dimension 2n; if we put
on the manifold local coordinates {q1, . . . , qn} in a neighbourhood of a point
q ∈ M , the 1-forms {dq1(q), . . . , dqn(q)} constitute a basis for the cotangent
space T ∗

q
M , therefore there are induced local coordinates {p1, . . . , pn; q1, . . . , qn}

on T ∗M , in the following way: for any 1-form ω ∈ T ∗M ,

ω ≃ (p1, . . . , pn;x1, . . . , xn) ⇔ ω =

n∑

i=1

pidqi(x).

Obviously, theaction of the projection is π : (p1, . . . , pn; q1, . . . , qn) 7→(q1, . . . , qn).
In the paper we will largely use the symplectic structure of the cotangent

bundle T ∗M ; it is well known, in fact, that to any smooth manifold a skew-
symmetric non-degenerate two form is canonically associated, called the stan-
dard symplectic form, which is constructed in this way: for any ℓ ∈ T ∗

πℓM , we
define the canonical Liouville form

sℓ ∈ T ∗

ℓ (T ∗M) , sℓ := ℓ ◦ π∗, ℓ ∈ T ∗

πℓM,

where we recall that π∗ : Tℓ(T
∗M) → TπℓM . In coordinates, we can write

ℓ = (p1, . . . , pn; q1, . . . , qn) and then we get that sℓ =
∑n
i=1 pidqi.

σ denotes the standard symplectic form σℓ = dsℓ, and possesses the coordi-
nates expression

σℓ =

n∑

i=1

dpi ∧ dqi;

we can prove that it is a skew-symmetric non-degenerate 2-form, thus it en-
dows the cotangent bundle with a symplectic structure. Given the two vec-
tors in Tℓ(T

∗M) written in coordinates as X =
∑n
i=1X

i
q
∂
∂qi

+ X i
p
∂
∂pi

and

Y =
∑n

i=1 Y
i
q
∂
∂qi

+ Y ip
∂
∂pi

, the symplectic form acts as

σℓ (X,Y ) =
n∑

i=1

X i
pY

i
q −X i

qY
i
p .

We recall, moreover, that an n-dimensional subspace V is said to be Lagrangian
if the symplectic form vanishes on it, σ

∣∣
V

= 0. Moreover, an n-dimensional
submanifold Λ is called Lagrangian if TℓΛ is Lagrangian for any ℓ ∈ Λ.

A smooth function F : T ∗M → R is called a Hamiltonian on T ∗M ; we recall
that its associated Hamiltonian vector field ~F is defined by

σℓ(·, ~F ) = dF (ℓ), ℓ ∈ T ∗M ;

in coordinates, ~F (ℓ) =
∑n

i=1
∂F
∂pi

∂
∂qi

− ∂F
∂qi

∂
∂pi

.

Given two smooth functions F,G :T ∗M→R, their Poisson bracket is defined as

{F,G}(ℓ) = σℓ(~F , ~G);
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a straight computation shows that {F,G}(ℓ) =
∑n

i=1
∂F
∂pi

∂G
∂qi

− ∂F
∂qi

∂G
∂pi

.

For any vector field f on M , the lifted Hamiltonian is defined as F (ℓ) =
〈ℓ, f(πℓ)〉, ℓ ∈ T ∗

πℓM ; if f has the coordinate expression f =
∑n

i=1 f
i ∂
∂qi

and

ℓ = (p1, . . . , pn; q1, . . . , qn), then F (ℓ) =
∑n
i=1 pif

i.
In the following, we will use the notation: Fij = {Fi, Fj} and Fijk =

{Fi, {Fj, Fk}}, i, j, k ∈ {0, . . . ,m}, and it turns out that

Fij(ℓ) = 〈ℓ, [fi, fj ](πℓ)〉, Fijk = 〈ℓ, [fi, [fj , fk]](πℓ)〉.

Finally, we recall that a Hamiltonian vector field ~F defines a flow via the
differential equation

ℓ̇(t) = ~F ◦ ℓ(t);

which is the Hamiltonian system associated to F . We will use the script type-
setting to denote the flow generated by the Hamiltonian vector fields, e.g. Ft
(or Ht) denotes the flow generated by ~F (or ~H) from the time 0 to t. We recall
that, for any function F : T ∗M → R and any Hamiltonian H , we have

d

dt
F ◦ exp(t ~H) =

d

dt
F ◦ Ht = {H,F} ◦ Ht.

2.2. Involutive distributions

In this subsection we recall some facts on the properties of the vector distribution
we are going to use. As a reference, we cite the textbooks of Abraham and
Marsden (1978) and Lee (2006).

First of all, let us recall that a smooth vector distribution D of dimension
k is a k-dimensional sub-bundle of the tangent bundle, D ⊂ TM . If we put
Dq = D ∩ TqM, q ∈ M , by definition Dq is a k-dimensional subspace of the
tangent space TqM , and the subspacesDq vary smoothly with respect to q ∈M .

If D is a smooth distribution of dimension k, then we can locally find a
local frame for the distribution; this means that for any q ∈ M there are a
neighbourhood U of q and k smooth vector fields X1, . . . , Xk : U → TM such
that {X1(q), . . . , Xk(q)} is a basis of Dq for any q ∈ U . In this situation, we say
that the distribution D is (locally) spanned by the vector fields X1, . . . , Xk.

A distribution is said to be involutive if for any two smooth local sections of
D (i.e. two locally defined vector fields X,Y : U → TM such that X(q), Y (q) ∈
Dq for any q ∈ U), their Lie bracket is also a local section contained in D; in
other words, if {X1, . . . , Xk} is a local frame for D, then for any pair Y, Z of
vector fields in D we can locally find k smooth functions αi, i = 1, . . . , k, such
that

[Y, Z](q) =
∑

k

αk(q)Xk(q).
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Remark 2 We remark that, given an involutive distribution D locally spanned
by the vectors {X1, . . . , Xk}, it is always possible to find locally some functions
αji : M → R, i, j = 1, . . . , k, such that the vector fields

φi(q) :=

k∑

j=1

αji (q)Xj(q), i = 1, . . . , k,

form a commuting local frame.

It is a well-known consequence of the Frobenius Theorem (see Abraham and
Marsden, 1978; Lee, 2006) that if D is an involutive distribution on M , then M
is foliated by integral manifolds of D: that is, if the distribution is involutive,
then for any q ∈ M there is an immersed k-dimensional submanifold N such
that q ∈ N and Tq′N = Dq′ for any q′ ∈ N .

From now on, we assume that the controlled vector fields f1, . . . , fm span an
m-dimensional distribution, which will be denoted by D.

Proposition 1 These three conditions are equivalent:
1. D is involutive on M ;

2. the set
{
~F1, . . . , ~Fm

}
is involutive on the set {F1 = · · ·=Fm=0} ⊂ T ∗M ;

3. for any i, j = 1, . . . ,m, Fij = 0 on the set {F1 = · · · = Fm = 0}.

Proof. Let us prove that (1) ⇒ (2). Fix i, j = 1, . . . ,m and write, locally,
[fi, fj ](q) =

∑m
k=1 αk(q)fk(q); then Fij(ℓ) = 〈ℓ, [fi, fj](q)〉 =

∑m
k=1 αk(πℓ)Fk(ℓ),

and

dFij(ℓ) =

m∑

k=1

αk(πℓ)dFk(ℓ) +

m∑

k=1

Fk(ℓ)dαk(πℓ);

on the set {F1 = · · · = Fm = 0}, this expression reduces to

dFij(ℓ) =
m∑

k=1

αk(πℓ)dFk(ℓ),

and therefore to

[~Fi, ~Fj ](ℓ) = ~Fij(ℓ) =

m∑

k=1

αk(πℓ)~Fk(ℓ).

Now we prove that (2) ⇒ (3). For ℓ ∈ {F1 = · · · = Fm = 0}, we have

that [~Fi, ~Fj ](ℓ) =
∑m
k=1 αk(ℓ)

~Fk(ℓ) for some functions αk. Since [fi, fj ](πℓ) =

π∗[~Fi, ~Fj ] =
∑m
k=1 αk(ℓ)fk(πℓ), we are done.

Condition (1) obviously implies (3). By contradiction, assume that condition
(3) is satisfied, but there is a pair of indices i, j such that [fi, fj](q) /∈ Dq; in
other words, there is an ℓ belonging to the orthogonal complement of Dq in
T ∗

qM such that 〈ℓ, fij(q)〉 6= 0. The statement is proved by noting that such an
orthogonal complement is given by {F1 = · · · = Fm = 0} ∩ T ∗

qM .
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2.3. Pontryagin Maximum Principle

Let M be a smooth manifold, and let us consider the time-optimal problem
subject to the control system (2). Let us recall that all triples (ξ, T,u), with
ξ : [0, T ] → M and u : [0, T ] → U , that satisfy the control system are called
admissible triples, and the trajectories ξ admissible trajectories.

We assume that there is an admissible triple (ξ̂, T̂ , û), which will be referred
to as the reference triple, that satisfies the Pontryagin Maximum Principle.

We recall Pontryagin Maximum Principle stated in its Hamiltonian form (see
for example Agrachev and Sachkov, 2004). We consider the following Hamilto-
nian functions: the control-dependent Hamiltonian

h(ℓ, u) = 〈ℓ, f0(πℓ)〉 +

m∑

i=1

ui 〈ℓ, fi(πℓ)〉 =

= F0(ℓ) +

m∑

i=1

uiFi(ℓ), ℓ ∈ T ∗M, u ∈ U,

the (time-dependent) reference Hamiltonian F̂t : T ∗M → R, t ∈ [0, T̂ ],

F̂t(ℓ) := F0(ℓ) +

m∑

i=1

ûi(t)Fi(ℓ),

and the maximised Hamiltonian

Fmax(ℓ) := sup
u∈U

h(ℓ, u).

−→
F̂ t denotes the (non-autonomous) Hamiltonian vector field associated to F̂t,

and ℓ 7→ F̂t(ℓ) the solution at the time t of the Hamiltonian system generated

by
−→
F̂ t(ℓ), with initial condition F̂0(ℓ) = ℓ.
The statement of the Pontryagin Maximum Principle is the following

Theorem 1 (PMP) If the triple (ξ̂, T̂ , û) is optimal, then there exist a constant
p0 ≥ 0 and a Lipschitzian curve in the cotangent bundle

t 7→ λ̂(t) ∈ T ∗M, t ∈ [0, T̂ ]

such that

π ◦ λ̂(t) = ξ̂(t) t ∈ [0, T̂ ] (3)

λ̂(t) 6= 0 t ∈ [0, T̂ ] (4)

d

dt
λ̂(t) =

−→
F̂ t ◦ λ̂(t) (5)

F̂t(λ̂(t)) = max
u∈U

h(λ̂(t), u) (6)

F̂t(λ̂(t)) ≡ p0. (7)
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The curve λ̂ is called the Pontryagin extremal associated to the admissible
triple (ξ̂, T̂ , û), and its projection onto the base manifold a state extremal. When

M = R
n, λ̂ = (µ̂, ξ̂), where µ̂ : [0, T̂ ] → R

n∗ is called adjoint covector and

satisfies the adjoint equation ˙̂µ(t) = −〈µ̂(t), D(f0 +
∑m

i=1 ûi(t)fi)(ξ̂(t))〉.
An extremal satisfying PMP is called normal if p0 > 0, while abnormal if

p0 = 0.
We assume that the reference extremal λ̂ is a normal Pontryagin extremal,

and we normalise the term p0 putting p0 = 1. Since the reference control û
belongs to the interior of the control set U , then by (6) we get

Fi(λ̂(t)) = 0 for t ∈ [0, T̂ ], i = 1, . . . ,m. (8)

In the following, we will call ℓ̂0 = λ̂(0) the initial point of the extremal.

3. Statement of the results

3.1. Necessary conditions

The study of second order condition for optimality provides additional necessary
optimality conditions for singular extremals, which are well known in literature
(see e.g. Goh, 1966; Gabasov and Kirillova, 1972, and the textbook by Agrachev
and Sachkov, 2004). In this Subsection we are focusing on them.

First of all, as a direct consequence of PMP and the singularity condition
(equation (8)), we see that:

0=
d

dt
Fi◦λ̂(t)={F̂t, Fi}(λ̂(t))=F0i(λ̂(t))+

m∑

j=1

ûj(t)Fji(λ̂(t)) i=1, . . . ,m. (9)

Moreover, standard theory of singular extremals states the following neces-
sary conditions for the triple (λ̂, T̂ , û) to be optimal (see Goh, 1966; Gabasov
and Kirillova, 1972; Agrachev and Sachkov, 2004):

Goh condition
{
∂h

∂ui
,
∂h

∂uj

}
(λ̂(t), u)

∣∣∣
u=û(t)

=Fij ◦ λ̂(t) =0, i, j=1, . . . ,m, t ∈ [0, T̂ ]; (10)

Generalised Legendre Condition (GLC), the quadratic form

(v1, . . . , vm) 7→





{
h,

m∑

i=1

vi
∂h

∂ui

}
,
m∑

j=1

vj
∂h

∂uj



 (λ̂(t), u)

∣∣∣
u=û(t)

=

=




m∑

i,j=1

vivjFij0(λ̂(t)) +

m∑

i,j,k=1

vivj ûkFijk(λ̂(t))


 ≤ 0,

v ∈ R
m, t ∈ [0, T̂ ]. (11)
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Lemma 1 If the distribution D is involutive, then Goh condition is automati-
cally satisfied and the generalised Legendre quadratic form appearing in equation
(11) reduces to

Lℓ : v = (v1, . . . , vm) 7→ Lℓ[v]
2 =

m∑

i,j=1

vivjFij0(ℓ) (12)

for any ℓ ∈ {Fi = 0, Fij = 0, i, j = 1, . . . ,m}.

Proof. By the involutivity of the distribution, the Lie brackets [fi, fj] and
[fi, [fj , fk]] belong to the distribution D for any i, j, k, therefore, by equation
(8), we get that the Fij vanish along the reference extremal.

In the following we will use Lℓ to indicate both the quadratic form and its
associated matrix.

Summarising, in our case the necessary conditions for the singular extremals
are

• Fi ◦ λ̂ ≡ 0, i = 1, . . . ,m;

• L
λ̂(t)[v]

2 ≤ 0 for t ∈ [0, T̂ ].

3.2. The extended second variation

In this section, we define a suitable second variation for the problem under study,
following the ideas forwarded in Agrachev et al. (1998a), and further developed
in subsequent works (see Agrachev et al., 2002; Poggiolini and Stefani, 2004;
Stefani, 2004, 2008).

For t ∈ [0, T̂ ], we define the evolution function Ŝt : M → M by the action

Ŝt : x0 7→ ξ(t), where ξ satisfies the equation ξ̇ = f0(ξ) +
∑m
i=1 ûifi(ξ) with

ξ(0) = x0 (in particular, Ŝt(x̂0) = ξ̂(t)), and the pull-back fields

git := Ŝ−1
t∗ fi ◦ Ŝt : V (x̂0) → TM, i = 1, . . . ,m, t ∈ [0, T̂ ],

where V (x̂0) is a neighbourhood of x̂0. In coordinates,

git(x) =
[
DŜt(x)

]−1

fi(Ŝt(x)).

We choose, moreover, a function β̂ : M → R that satisfies the following
equality:

dβ̂(x̂0) = −ℓ̂0. (13)

As in Stefani (2004), to compute the second variation we reduce the mini-
mum-time problem to a Mayer problem, in which we take the final time as a
new variable and also the cost.
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Consider the Mayer problem on the fixed time interval [0, T̂ ]:

minT (T̂ )

subject to





Ṫ = 0

ξ̇ = T
T̂

(f0 +
∑m

i=1 vifi) ◦ ξ(t)

ξ(0) = x̂0, ξ(T̂ ) = x̂f , T free

u = (u1, . . . , um) ∈ U ⊂ R
m

.

If (ξ̂, T̂ , û) is the candidate optimal triple of the original minimum-time problem,
then for the Mayer problem the reference control is still û and the state-extremal

is (T̂ , ξ̂), with the associate Pontryagin extremal
((

− t

T̂
, T̂
)
, λ̂
)
, where λ̂ is the

normal Pontryagin extremal associated to ξ̂.
Evaluating the second variation of the Mayer problem, as defined in Agrachev

et al. (1998a) we obtain, thanks to its special form, the second variation, defined
by

J ′′[δu]2 =

∫ T̂

0

m∑

i=1

δuiLδηLgi
t
(β̂(x̂0)) dt, (14)

where δu ∈ L2([0, T̂ ],Rm) and δη(t) ∈ Tx̂0
M satisfy the following system:

{
δ̇η =

∑m
i=1 δui(t)g

i
t(x̂0)

δη(0) = δη(T̂ ) = 0.
(15)

We remark that (15) is the linearisation of the system satisfied by η(t) =

Ŝ−1
t (ξ(t)); in the linearised system, δT = 0, since λ̂ is normal.

We underline that, if the problem is stated on R
n, then the second variation

defined in (14)-(15) and expressed without the pull-back system reduces to the
classical one, as noted in Agrachev et al. (1998a), Corollary 2.

Remark 3 If δη satisfies the system (15), then the expression for the second

variation does not depend on the particular choice of β̂ with the property (13)
(see Agrachev et al., 1998a). Then J ′′ is well-defined and coordinate free.

We now perform an integration by parts, that can be regarded as an intrinsic
version of a Goh transformation (see Goh, 1966; Dmitruk, 2008), to transform
the singular second variation into a non-singular one, which is coordinate-free,
too.

Define for i = 1, . . . ,m

wi(t) :=

∫ T̂

t

δui(s) ds, wi0 = wi(0), (16)
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and the new variable ϕ : [0, T̂ ] ×M 7→ ϕx(t) ∈ TxM as the solution of

ϕ̇x(t) =

m∑

i=1

δui(t)g
i
t(x) ϕx(T̂ ) = 0.

In this way, the control variation δu is represented by the pair (w0, w(·)). Inte-
grating by parts equation (14), we get

J ′′[δu]2 = −

∫ T̂

0

Lϕ̇x(t)Lϕx(t)β̂(x̂0) dt

= −
1

2

∫ T̂

0

L[ϕ̇x(t),ϕx(t)]β̂(x̂0) dt. (17)

We now put Zx(t) ∈ TxM, t ∈ [0, T̂ ], as Zx(t) := ϕx(t) +
∑m
i=1 wi(t)

git(x). Substituting into (17) and integrating by parts, we get

J ′′[δu]2 =
m∑

i,j=1

[
1

2
wi0w

j
0Lfi

Lfj
β̂(x̂0) +

1

2

∫ T̂

0

wi(t)wj(t)L[ġi
t,g

j
t ]β̂(x̂0) dt

]
+

+
m∑

i=1

∫ T̂

0

wi(t)Lζ(t)Lgi
t
β̂(x̂0) dt.

where ζ(t) ∈ Tx̂0
M is defined as ζ(t) := Zx̂0

(t). It is easy to see that ζ(t)
satisfies the equation

ζ̇(t) =

m∑

i=1

wi(t)ġ
i
t(x̂0), (18)

and the boundary conditions

ζ(0) =
m∑

i=1

wi0fi(x̂0), ζ(T̂ ) = 0. (19)

This last expression is the second variation of the linear-quadratic problem
for the state variable ζ; we can write it as:

J ′′[δu]2 =

m∑

i,j=1

1

2
wi0w

j
0Lfi

Lfj
β̂(x̂0) +

1

2

∫ T̂

0

m∑

i,j=1

wi(t)wj(t)Rij(t)+

+ 2
m∑

i=1

wi(t)Qi(t)ζ(t) dt (20)

subject to (19), where

Rij(t) = L[ġi
t,g

j
t ]β̂(x̂0) = −(L

λ̂(t))ij Qi(t) = L(·)Lġi
t
β̂(x̂0).
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Actually, the functional (20) is defined only on those pairs (w0, w) related
with a control variation δu via equation (16). We extend the second variation

to the whole R
m×L2([0, T̂ ],Rm), in order to require coercivity. This is possible

because the functional is continuous and the map δu 7→ (w0, w) stated in (16)

from L2([0, T̂ ],Rm) to R
m × L2([0, T̂ ],Rm) is continuous and has dense image.

Then, from now on, we will consider the extendend second variation, which
is the second variation J ′′ extended by continuity on R

m × L2([0, T̂ ],Rm). We
will refer to it as J ′′

ext, i.e. J ′′

ext[(w0, w)]2 is defined as the right-hand side of (20).

We remark that J ′′

ext is defined on the whole R
m×L2([0, T̂ ],Rm), it is invariant

only on the subspace:

W̃ :={(w0, w) ∈ R
m × L2([0, T̂ ],Rm) that satisfy equations (18) − (19)}, (21)

while its extension on the whole space depends on the choice of β̂.
In the following, when we will speak about coercivity of J ′′

ext we will mean

on W̃, with respect to the norm induced by R
m × L2([0, T̂ ],Rm).

Remark 4 From the above formula, we see that the coercivity of the second
variation implies that the Legendre quadratic form (12) is negative definite, i.e.
that there is an α > 0 such that:

L
λ̂(t)[v]

2 ≤ −α|v|2, v ∈ R
m. (22)

Equation (22) is known as Strengthened Generalised Legendre Condition, or
SGLC (see Agrachev and Sachkov, 2004).

Remark 5 It is not difficult to see that the coercivity of J ′′

ext
on W̃ implies that

the controlled vector fields are linearly independent at x̂0.

Remark 6 We remark that, thanks to the linear independence of the controlled
vector fields at x̂0, R

m is isomorphic to V = span{f1(x̂0), . . . , fm(x̂0)} ⊂ Tx̂0
M ,

therefore the accessory problem associated to J ′′

ext
is a standard one defined on

the finite-dimensional space Tx̂0
M . Sufficient conditions for the coercivity of

such quadratic forms in Hamiltonian setting can be found in Stefani and Zezza
(1997).

3.3. The result

In this section we state our main result and we give the main ideas for the proof
in the Hamiltonian setting.

Theorem 2 Let ξ̂ be a totally-singular state-extremal with associate normal
Pontryagin extremal λ̂ for the minimum time problem (1)-(2). Assume that the
distribution D is involutive. Let the extendend second variation J ′′

ext
, as defined

in Subsection 3.2, be coercive on W̃ (see (21)).

Then ξ̂ is a strict strong-local minimiser, according to Definition 1.
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Remark 7 We remark here that the hypotheses of Theorem 2 imply that the
necessary conditions are automatically satisfied by the reference extremal: in
particular, the involutivity of the distribution D implies Goh condition (see
Lemma 1), and the coercivity of the second variation implies SGLC.

A standard technique to prove the optimality of a candidate extremal is a
generalisation of the method of fields of extremals of the Calculus of Variations
(see Giaquinta and Hildebrandt, 1996); for its use in optimal control see, for
instance, Agrachev and Sachkov (2004). Briefly, this technique usually consists
in covering a neighbourhood of the candidate trajectory with non-intersecting
state-extremals, i.e. with trajectories on M that are the projection of the solu-
tions of the Hamiltonian system associated to the maximised Hamiltonian Fmax
emanating from a suitable Lagrangian submanifold. If it is possible to invert
the projection and lift to the cotangent bundle the admissible trajectories of the
control problem, we can compare the costs evaluated on them (see for instance
Agrachev et al., 1998b, 2002, and references therein).

In the case of singular extremals, the Hamiltonian vector field is multi-valued:
indeed, all the Hamiltonians of the form F0 +

∑m
i=1 uiFi, u ∈ U , coincide and

realise the maximum along the singular extremal. Moreover, no selection of
such multi-valued Hamiltonian vector fields is suitable to construct the field of
non-intersecting state-extremals.

To overcome this problem, we define a Hamiltonian H0 such that F0 ≤ H0

on the set

Σ = {ℓ ∈ T ∗M : F1(ℓ) = · · · = Fm(ℓ) = 0} ,

in such a way that we can find a suitable selection KS of the new multi-valued
super-HamiltonianH0+

∑m
i=1 uiFi, such that the reference extremal is a solution

of the Hamiltonian system associated to KS , and such that the corresponding
vector field is smooth and tangent to Σ. In this way, we can apply the method
used in Agrachev and Sachkov (2004), Agrachev et al. (1998a,b). This super-
Hamiltonian is obtained in the spirit of Stefani (2004, 2008).

4. The Hamiltonian approach

In this section we apply the Hamiltonian approach to sufficient condition, and
use it to the problem under consideration. We perform our construction in the
case of m = 2; the case with general m is a straight generalisation, and will be
illustrated in Section 6.

We remark that in this section we assume the following regularity assump-
tions:

• the distribution D spanned by the controlled vector fields is involutive;
• Strengthened Generalised Legendre condition holds along the reference ex-

tremal, therefore it holds by continuity in a (full-measure) neighbourhood
U of the extremal;
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we recall that these conditions are already included in the hypotheses of Theo-
rem 2.

4.1. Preliminary discussion

In this subsection, we study the geometry of the problem in the neighbourhood
U of the reference extremal.

We recall that

Σ = {ℓ ∈ T ∗M : F1(ℓ) = F2(ℓ) = 0} ,

and we define the subset of Σ

S = {ℓ ∈ T ∗M : F1(ℓ) = F2(ℓ) = F01(ℓ) = F02(ℓ) = 0} ∩ U (23)

(i.e., the set where the Hamiltonians F1, F2, F01, F02 vanish and SGLC holds)

and we further notice that the reference extremal λ̂(t) ∈ S for t ∈ [0, T̂ ]. We
remark that S contains all the singular extremals of the control system under
consideration, which satisfy SGLC.

Lemma 2 In the neighbourhood U, where SGLC is satisfied, the following state-
ments hold:

1. ~F1 and ~F2 are tangent to Σ and linearly independent;

2. ~F1 and ~F2 are transversal to S;

3. ~F01 and ~F02 are transversal to Σ (and therefore to S), and the vectors

{ ~F1, ~F2, ~F01, ~F02} are linearly independent;

4. S is a symplectic submanifold of dimension 2n− 4 contained in Σ.

Proof. First of all, notice that:

TℓΣ = ker(dF1(ℓ)) ∩ ker(dF2(ℓ)) ℓ ∈ Σ

TℓS = ker(dF1(ℓ)) ∩ ker(dF2(ℓ)) ∩ ker(dF01(ℓ)) ∩ ker(dF02(ℓ)) ℓ ∈ S.

Since 〈dFi, ~Fi〉 ≡ 0, i = 1, 2, and 〈dF1, ~F2〉 = −〈dF2, ~F1〉 = F12 = 0 on Σ, we

can deduce that ~F1 and ~F2 are tangent to Σ. They are linearly independent by
SGLC; in fact, assume without loss of generality that for some ℓ ∈ U, ~F1(ℓ) =

−µ~F2(ℓ). Then we have that

F110(ℓ) = σℓ

(
~F1, ~F10

)
= −µ σℓ

(
~F2, ~F10

)
= −µF210(ℓ)

F120(ℓ) = σℓ

(
~F1, ~F20

)
= −µ σℓ

(
~F2, ~F20

)
= −µF220(ℓ),

and then the matrix Lℓ is degenerate, which contradicts SGLC.
(2) follows by the fact that 〈dF01, ~F1〉 = −F110 and 〈dF02, ~F2〉 = −F220 are

nonvanishing on S (by SGLC).
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The same fact implies (3); linear independence is again a consequence of
SGLC (the proof is analogous to the one above).

To complete the proof, we notice that the restriction σ
∣∣∣
TℓS

, ℓ ∈ S, is nonde-

generate; then S is a symplectic submanifold.

Remark 8 Since we proved that the vector fields ~F1, ~F2 are linearly indepen-
dent in U, we call D̃ the distribution (defined on U) spanned by them. We notice

that D̃ is involutive on Σ (see Proposition 1).

Lemma 3 There is a neighbourhood V of the range of λ̂ in Σ such that for any
ℓ ∈ V there is a unique triple (ℓS, t1, t2) ∈ (S ∩ V) × R

2 such that

ℓ = ψ(ℓS, t1, t2) := exp
(
−t2 ~F2

)
◦ exp

(
−t1 ~F1

)
(ℓS); (24)

moreover, there exists an ǫ > 0 such that the map ψ : (S ∩ V) × [−ǫ, ǫ]2 → V is
a global diffeomorphism.

Proof. The whole proof is an easy consequence of Lemma 2, point (3), and the

compactness of the interval [0, T̂ ].

Remark 9 We can use the same argument to prove that the map ψ̃ : Σ ×
R

2 → T ∗M defined as ψ̃(ℓΣ, τ1, τ2) = exp(−τ2 ~F02) ◦ exp(−τ1 ~F01)(ℓΣ) is a local

diffeomorphism; therefore, there are an ǫ′ > 0 and a neighbourhood Ṽ in T ∗M of
the reference extremal such that ψ̃ is a global diffeomorphism from V× [−ǫ′, ǫ′]2

to Ṽ.
Without loss of generality, we can assume that U = Ṽ.

Lemma 4 Under SGLC, every singular Pontryagin extremal belongs to S and
is a Hamiltonian trajectory of the feed-back Hamiltonian

FS(ℓ) = F0(ℓ) + ν1(ℓ)F1(ℓ) + ν2(ℓ)F2(ℓ), ℓ ∈ U, (25)

where the feed-back controls are defined by
(
ν1(ℓ)
ν2(ℓ)

)
= L

−1
ℓ

(
F001(ℓ)
F002(ℓ)

)
, ℓ ∈ S, (26)

and then extended constant to the whole U. With this definition, we have that
L~Fi

νj = 0, i, j = 1, 2.

In particular, ûi(t) = νi(λ̂(t)), i = 1, 2, t ∈ [0, T̂ ], which proves that û is
smooth.

Proof. We define the feed-back controls on S as in (26); then, we choose two
linearly independent commuting vector fields X1, X2 on U that span the dis-
tribution D̃, in such a way that

TℓΣ = TℓS ⊕ RX1(ℓ) ⊕ RX2(ℓ), ℓ ∈ S;
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we can extend νi, i = 1, 2, to V by putting it constant along the integral lines
of X1 and X2.

Analogously, we choose two linearly independent commuting vector fields
Y1, Y2 on U such that

Tℓ(T
∗M) = TℓΣ ⊕ RY1(ℓ) ⊕ RY2(ℓ), ℓ ∈ V,

and we extend νi, i = 1, 2, to U by putting it constant along the integral lines
of Y1 and Y2. The rest of the proof is an easy consequence of the singularity
conditions (9).

Remark 10 The matrix L is symmetric on S, in other words, F120 = F210. In
fact, if ℓ ∈ S, then, for small t, exp(t ~FS)(ℓ) ∈ S, where ~FS is the vector field
associated to the feedback Hamiltonian defined in equation (25); this happens

since ~FS is tangent to S, by definition of ν.
Then we have that

0 =
d

dt
F12

(
exp(t ~FS)(ℓ)

)
= {FS, F12} = F012,

since F112 and F212 vanish on S. By the Jacobi identity, F120 = F210 on S.

4.2. Construction of the modified Hamiltonian

Lemma 5 Possibly restricting V, we can define functions ϑ1 and ϑ2 in such a
way that

exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ) ∈ S ∀ ℓ ∈ V ⊂ Σ. (27)

For any ℓ ∈ S ∩ V we have that

(
Dϑ1(ℓ)
Dϑ2(ℓ)

)
[δℓ] = L

−1
ℓ

(
DF01(ℓ)
DF02(ℓ)

)
(ℓ) [δℓ] ∀ δℓ ∈ TℓΣ. (28)

Extending ϑ1, ϑ2 constant to the whole U, we obtain:

Dϑ1(ℓ) [δℓ] = Dϑ2(ℓ) [δℓ] = 0 ∀ δℓ ∈ R~F01(ℓ) ⊕ R~F02(ℓ), ℓ ∈ S. (29)

Proof. Since ~F1 and ~F2 are tangent to Σ, then equation (27) is satisfied if and
only if

F01(exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ)) = 0 (30)

F02(exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ)) = 0 (31)

and

ϑ1(ℓ) = ϑ2(ℓ) = 0 ∀ ℓ ∈ S.
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We then consider the function Φ : V × R
2 → R

2, defined as

Φ(ℓ, t1, t2) =

(
F01(exp(t1 ~F1) ◦ exp(t2 ~F2)(ℓ))

F02(exp(t1 ~F1) ◦ exp(t2 ~F2)(ℓ))

)
.

We notice that D(t1,t2)Φ
∣∣∣
(ℓ,0,0)

= −Lℓ, which is a non-degenerate matrix in a

neighbourhood of the reference trajectory (by SGLC). Therefore, we can apply
the Implicit Function Theorem to define (locally in a neighbourhood of the
reference trajectory in Σ) the functions ϑ1(ℓ), ϑ2(ℓ) that satisfy (30) and (31),
plus the boundary conditions. We can extend the two functions ϑ1 and ϑ2 to U

with the same technique that we used in Lemma 4.
Let ℓ ∈ V and δℓ ∈ TℓΣ; from equations (30) and (31) we obtain

0 ≡ D
[
F01 ◦ exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ)

]
[δℓ]

0 ≡ D
[
F02 ◦ exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ)

]
[δℓ] ;

after long but straight computations, for ℓS ∈ S we have that

0 ≡ [DF01(ℓS) + F101(ℓS)Dϑ1(ℓS) + F201(ℓS)Dϑ2(ℓS)] [δℓ]

0 ≡ [DF02(ℓS) + F102(ℓS)Dϑ1(ℓS) + F202(ℓS)Dϑ2(ℓS)] [δℓ]

and hence equation (28). Equation (29) comes from the fact that we extended
ϑ1, ϑ2 constant.

Remark 11 By the Implicit Function Theorem it follows that ϑi ≡ 0, i = 1, 2,

on S, and hence Dϑi

∣∣∣
TℓS

= 0, i = 1, 2.

We now define a new smooth Hamiltonian H0 on U that will allow us to use
the Hamiltonian approach. We remark that we are interested only in the values

of H0 on Σ, and that they are obtained by transporting F0

∣∣∣
S

along suitable

trajectories tangent to Σ.

Definition We define the Hamiltonian H0 : U → R as

H0(ℓ) = F0 ◦ exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ), ℓ ∈ U. (32)

We define, moreover, the function χ : U → R as

χ(ℓ) = H0(ℓ) − F0(ℓ) = F0 ◦ exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ) − F0(ℓ). (33)

Theorem 3 Let H0 and χ be the functions defined above. Then:

1. For ℓ ∈ Σ, we have

~H0(ℓ) =
(
exp(−ϑ2(ℓ)~F2) ◦ exp(−ϑ1(ℓ)~F1)

)

∗

~F0

◦
(
exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)

)
(ℓ).
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2. The vector field ~H0 is tangent to Σ.

3. For ℓ ∈ S, Dχ(ℓ) = 0, hence D2χ(ℓ) is well defined and a non-negative
quadratic form on TℓΣ whose kernel is TℓS.

4. F0 ≤ H0 on Σ, and F0 = H0 on S.

Proof. We use the following notation:

Θ(ℓ)=exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ), ℓ ∈ Σ,

in order to make the computations more comprehensible.
In order to prove (1), it is sufficient to prove that

dH0 = dF0(Θ(ℓ)) ◦ exp(ϑ1(ℓ)~F1)∗ ◦ exp(ϑ2(ℓ)~F2)∗ ∀ ℓ ∈ Σ. (34)

In fact, calling X
∣∣
ℓ

a generic vector in Tℓ(T
∗M), we have that

σ
(
X
∣∣
ℓ
, ~H0(ℓ)

)
= 〈dH0(ℓ), X

∣∣
ℓ
〉 =

= 〈dF0(Θ(ℓ)), exp(ϑ1(ℓ)~F1)∗ ◦ exp(ϑ2(ℓ)~F2)∗(X
∣∣
ℓ
)〉 =

= σ
(
exp(ϑ1(ℓ)~F1)∗ ◦ exp(ϑ2(ℓ)~F2)∗(X

∣∣
ℓ
), ~F0

∣∣
Θ(ℓ)

)
=

= σ
(
X
∣∣
ℓ
, exp(−ϑ2(ℓ)~F2)∗ ◦ exp(−ϑ1(ℓ)~F1)∗(~F0

∣∣
Θ(ℓ)

)
)
.

By nondegeneracy of the symplectic form and genericity of X , we got (1).
To prove (34), consider

dH0(ℓ) = dF0(Θ(ℓ)) ◦ exp(ϑ1(ℓ)~F1)∗
∣∣
exp(ϑ2(ℓ)~F2)(ℓ)

◦ exp(ϑ2(ℓ)~F2)∗
∣∣
ℓ
+

+ 〈dF0(Θ(ℓ)), ~F1(Θ(ℓ))〉dϑ1(ℓ)+

+ 〈dF0(Θ(ℓ)), exp(ϑ1(ℓ)~F1)∗

[
~F2(exp(ϑ2(ℓ)~F2)(ℓ))

]
〉dϑ2(ℓ).

The distribution D̃ being involutive, exp(ϑ1(ℓ)~F1)∗ ~F2(exp(ϑ2(ℓ)~F2)(ℓ)) is tan-
gent to the distribution, that is, there are α, β ∈ R such that

exp(ϑ1(ℓ)~F1)∗

[
~F2(exp(ϑ2(ℓ)~F2)(ℓ))

]
= α~F1(Θ(ℓ)) + β ~F2(Θ(ℓ)).

Therefore we can conclude that

dH0(ℓ) = dF0(Θ(ℓ)) ◦ exp(ϑ1(ℓ)~F1)∗
∣∣
exp(ϑ2(ℓ)~F2)(ℓ)

◦ exp(ϑ2(ℓ)~F2)∗
∣∣
ℓ
+

− F01(Θ(ℓ))dϑ1(ℓ) − (αF01(Θ(ℓ)) + βF02(Θ(ℓ))) dϑ2(ℓ) =

= dF0(Θ(ℓ)) ◦ exp(ϑ1(ℓ)~F1)∗
∣∣
exp(ϑ2(ℓ)~F2)(ℓ)

◦ exp(ϑ2(ℓ)~F2)∗
∣∣
ℓ
.

Thesis (2) comes straightforwardly from (1), since we have that ~F0 is tangent

to Σ on S (by straight computations), therefore ~F0

∣∣
Θ(ℓ)

∈ TΘ(ℓ)Σ, and

exp(−ϑ2(ℓ)~F2)∗ ◦ exp(−ϑ1(ℓ)~F1)∗ : TΘ(ℓ)Σ → TℓΣ.
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Point (3) can be proved by means of straight but long computations, that
can be found in Appendix A, Lemma A.2.

A straight consequence of (3) is that χ has a minimum on S; since χ
∣∣
S

= 0,
we get that χ ≥ 0 and hence the thesis of point (4).

Remark 12 We remark here that D2χ(ℓ) coincides with −Lℓ on D̃, in the

following sense: for any X ∈ TℓΣ, ℓ ∈ S, we can write X = XS + α~F1(ℓ) +

β ~F2(ℓ), XS ∈ TℓS, and then we have that

D2χ(ℓ)[X ]2 = −Lℓ[(α, β)]2

(see Appendix A for the proof).

Corollary 1 (see Stefani, 2008) Let vt = (v1
t , v

2
t ) : [0, T̂ ] × U → R

2 be a

function such that vit(λ̂(t)) = ûi(t), t ∈ [0, T̂ ], i = 1, 2. Consider the Hamilto-
nian Hvt = F0 + v1

tF1 + v2
tF2 + χ. Then

1. Hvt ≥ F0 on Σ.

2.
−−→
Hvt is tangent to Σ.

3. λ̂ is a trajectory of the Hamiltonian system associated to
−−→
Hvt .

In particular, these facts hold for the Hamiltonians Ht = F̂t+χ = H0+û1(t)F1+
û2(t)F2 and KS = FS + χ = H0 + ν1F1 + ν2F2.

Remark 13 The problem is symmetric, in the sense that Proposition 3 - and
therefore the whole result - holds also for the super-Hamiltonian

H̃0(ℓ) = F0 ◦ exp(ϑ̃2(ℓ)~F2) ◦ exp(ϑ̃1(ℓ)~F1)(ℓ),

where ϑ̃1, ϑ̃2 are suitably defined by

F01(exp(ϑ̃2(ℓ)~F2) ◦ exp(ϑ̃1(ℓ)~F1)(ℓ)) = 0

F02(exp(ϑ̃2(ℓ)~F2) ◦ exp(ϑ̃1(ℓ)~F1)(ℓ)) = 0 ∀ ℓ ∈ V

and

ϑ̃1(ℓ) = ϑ̃2(ℓ) = 0 ∀ ℓ ∈ S.

4.3. The sufficient condition

As already said, we intend to prove the optimality of the extremal using a
method that generalises the method of Fields of Extremals of Calculus of Vari-
ations. We state and prove this method in this section.

We recall that we denote with KS the Hamiltonian

KS(ℓ) = H0(ℓ) + ν1(ℓ)F1(ℓ) + ν2(ℓ)F2(ℓ), ℓ ∈ U. (35)
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Theorem 4 Let λ̂ be a normal singular Pontryagin extremal for the minimum-
time problem. Let KS be the Hamiltonian defined in equation (35), and let KS

t

denote its flow.

If there exists a Lagrangian submanifold Λ ⊂ Σ such that ℓ̂0 ∈ Λ and

kerπ∗K
S
t∗ ∩ Tℓ̂0Λ = {0}, t ∈ [0, T̂ ], (36)

then (ξ̂, T̂ ) is a strict strong-local minimiser.

Proof. We give the proof by steps:

(i) (36) implies the local invertibility of the map π ◦ KS
t : Λ → M , for any t.

Thanks to the compactness of the interval [0, T̂ ], the map id × π ◦ KS
t :

[0, T̂ ] × Λ → [0, T̂ ] ×M is also a diffeomorphism covering the graph of ξ̂.

That is, we can find a neighbourhood O of ℓ̂0 in Λ and a neighbourhood
U of the range of ξ̂ in M such that the map

(t, ℓ) ∈ [0, T̂ ] × O 7→ (t, π ◦ KS
t (ℓ)) ∈ [0, T̂ ] × U

is invertible, with smooth inverse.
(ii) Recall that s is the canonical Liouville form. Then the 1-form

ω(t, ℓ) = KS∗
t s−KS ◦ KS

t (ℓ) dt

is exact on [0, T̂ ]×Λ (see for instance Agrachev and Sachkov, 2004, Section
17.1.1).

(iii) Assume that there exists a solution (ξ, T,u) of system (2) with T ≤ T̂ ,
whose graph is contained in U.

If we define the following paths in [0, T̂ ] × Λ:

µ̂(t) = (t, ℓ̂0) t ∈ [0, T̂ ]

µ(t) = (t, (π ◦ KS
t )−1ξ(t)) t ∈ [0, T ]

µ0(t) = (t, (π ◦ KS
t )−1(x̂f )) t ∈ [T, T̂ ],

we get

0 =

∫

µ

ω +

∫

µ0

ω −

∫

µ̂

ω. (37)

We call ℓ(t) = (π◦KS
t )−1ξ(t) and λ(t) = KS

t ◦ℓ(t); we notice that ℓ(t) ∈ Λ, ∀ t ∈

[0, T ], and that ℓ(0) = ℓ̂0.
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Equation (37) writes as:

0 =

∫ T

0

〈KS
t ◦ ℓ(t), ξ̇(t)〉 −KS ◦ KS

t (ℓ(t)) dt+

∫

µ0

ω+

−

∫ T̂

0

〈λ̂(t), f0(ξ̂(t)) + û1(t)f1(ξ̂(t)) + û2(t)f2(ξ̂(t))〉 −KS(λ̂(t)) dt ≤

≤

∫

µ0

ω

because

〈KS
t ◦ ℓ(t), ξ̇(t)〉 −KS ◦ KS

t (ℓ(t)) = h(KS
t ◦ ℓ(t), uξ(t)) −KS ◦ KS

t (ℓ(t)) ≤

≤ h(KS
t ◦ ℓ(t), uξ(t)) − Fmax ◦ KS

t (ℓ(t)) ≤ 0,

while 〈λ̂(t), f0(ξ̂(t)) + û1(t)f1(ξ̂(t)) + û2(t)f2(ξ̂(t))〉 = KS(λ̂(t)).
Therefore

0 ≤

∫

µ0

ω = −

∫ T̂

T

KS ◦ KS
t ◦ (π ◦ KS

t )−1(x̂f ) dt = −

∫ T̂

T

(1 +O(t)) dt =

= T − T̂ + o(T̂ − T ),

since KS(λ̂(t)) = Fmax(λ̂(t)) = 1, t ∈ [0, T̂ ]. A contradiction, therefore T = T̂ .
Let us now prove that the minimum is strict: assume that there is an ad-

missible curve ξ(t) that satisfies the system (2), with ξ(0) = x̂0 and ξ(T̂ ) = x̂f .

Define µ, µ0 and µ̂ as above; since T = T̂ ,
∫
µ0
ω ≡ 0 and then equality (37)

reduces to

0 =

∫ T̂

0

〈λ(t), ξ̇(t)〉 −KS(λ(t)) dt−

∫ T̂

0

〈λ̂(t),
˙̂
ξ(t)〉 −KS(λ̂(t)) dt =

=

∫ T̂

0

〈λ(t), ξ̇(t)〉 −KS(λ(t)) dt,

which implies that 〈λ(t), ξ̇(t)〉−KS(λ(t)) ≡ 0, that is – λ(t) ∈ S, since λ(t) ∈ Σ.
Let us now compute the derivative of λ:

λ̇(t) = ~KS ◦ λ(t) + KS
t∗

(
−π ◦ KS

t

)−1

∗

(
π∗ ~K

S
t

)
◦ λ(t) + KS

t∗

(
π ◦ KS

t

)−1

∗
ξ̇(t) =

=
(
~F0 + ν1 ~F1 + ν2 ~F2

)
◦ λ(t)+

+KS
t∗

(
π ◦ KS

t

)−1

∗
(f0 + ν1f1 + ν2f2 − f0 − u1f1 − u2f2) ◦ ξ(t) =

=
(
~F0 + ν1 ~F1 + ν2 ~F2

)
◦ λ(t) + KS

t∗

(
π ◦ KS

t

)−1

∗
((ν1 − u1)f1(ξ(t))+

+(ν2 − u2)f2(ξ(t))) .
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By Lemma B.2 in Appendix B we have that KS
t∗

(
π ◦ KS

t

)−1

∗
fi(ξ(t)) =

~Fi(λ(t)), i = 1, 2.
Therefore

λ̇(t) = ~F0(λ(t)) + u1(t)~F1(λ(t)) + u2(t)~F2(λ(t));

we notice, moreover, that, since λ ∈ S, the control (u1(t), u2(t)) satisfies the

equation of the feedback control (26), which implies that λ̇(t) = ~KS
t (λ(t)), that

is

λ(t) = KS
t ◦ ℓ̂0.

Then it coincides with λ̂(t).

5. Proof of the main theorem

Let us recall that Ht : U → R is defined as

Ht = H0 + û1(t)F1 + û2(t)F2, (38)

and denote with ~Ht and Ht, respectively, its associated Hamiltonian vector field
and Hamiltonian flow. In this section we will prove that if the extended second
variation is coercive, then it is possible to define a Lagrangian submanifold
Λ ⊂ Σ such that ℓ̂0 ∈ Λ and

kerπ∗Ht∗ ∩ Tℓ̂0Λ = 0, t ∈ [0, T̂ ]. (39)

This completes the proof of Theorem 2, thanks to the following Lemma:

Lemma 6 If ker(π∗Ht∗

∣∣∣
T

ℓ̂0
Λ
) = 0, then ker(π∗K

S
t∗

∣∣∣
T

ℓ̂0
Λ
) = 0.

The proof can be found in Appendix B.

5.1. Coercivity of the second variation

Let H ′′

t : T ∗

x̂0
M × Tx̂0

M → R be the quadratic Hamiltonian function associated
to the second variation, defined in Subsection 5.2, and let H′′

t be its associated
linear flow.

In this subsection we prove that the coercivity of J ′′

ext on W̃ allows us to add
a penalty, so that J ′′

ext is coercive on a larger subspace W, which correspond to
a free-fixed problem. We also prove that the coercivity of the second variation
on W is equivalent to the condition

kerπ∗H
′′

t∗ ∩ L = 0 ∀ t ∈ [0, T̂ ],

for a suitably defined subspace L ⊂ T ∗

x̂0
M × Tx̂0

M .
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Thanks to the linear independence of the controlled fields at the point x̂0, we
can define suitable local coordinates, in order to get rid of the finite dimensional
term in equation (20).

Let us in fact define, locally in a neighbourhood of x̂0 in M , a vector field
φ2 such that

[f1, φ2] = 0 and span{f1, φ2} = D;

we can then choose coordinates (q1, . . . , qn) on a neighbourhood of x̂0 in M in
such a way that

x̂0 = (0, . . . , 0)

f1 =
∂

∂q1
φ2 =

∂

∂q2
;

therefore, we can locally write

f2 = µ1
∂

∂q1
+ µ2

∂

∂q2
,

for two locally defined functions µ1, µ2, with µ2(x) 6= 0 for any x in a neigh-
bourhood of x̂0.

Then, we have that the covector ℓ̂0 can be written as ℓ̂0 =
∑n

i=3 p̂idq
i.

Let us now recall that the choice of β̂ is free, provided that dβ̂(x̂0) = −ℓ̂0;
we then choose

β̂(x) =

n∑

i=3

−p̂iqi, (40)

for x in a neighbourhood of x̂0. This choice certainly satisfies the required
condition, and, moreover, we have that the term

∑2
i,j=1

1
2w

i
0w

j
0Lfi

Lfj
β̂(x̂0) in

the second variation vanishes.
By means of the local coordinates chosen above, we define a local function

α : M → R as

α =

n∑

i=3

(
p̂iqi + ρq2i

)
, ρ > 0; (41)

with such definition, we have that

dα(x̂0) =

n∑

i=3

p̂idq
i = ℓ̂0,

Lf1α(y) ≡ Lf2α(y) ≡ 0;

which implies that d(α + β̂)(x̂0) = 0 and therefore

γ′′ := D2(α+ β̂)(x̂0)
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is a well defined quadratic form on Tx̂0
M such that

γ′′[f1(x̂0), Tx̂0
M ] = γ′′[f2(x̂0), Tx̂0

M ] = 0.

Moreover, by setting V = span
{

∂
∂qi , i ≥ 3

}
, we have

γ′′
∣∣∣
V
> 0.

Remark that kerγ′′ = Dx̂0
, and that Tx̂0

M = V ⊕ Dx̂0
.

Lemma 7 If the extended second variation is coercive, then

kerπ∗H
′′

t∗ ∩ L = 0 ∀ t ∈ [0, T̂ ],

where

L = span

{(
−dα(x̂0)

(
∂

∂qi
, ·

)
,
∂

∂qi

)
, i = 1, . . . , n

}
.

Proof. By standard results in the theory of quadratic forms (Theorems 13.2 and
13.3 in Hestenes, 1951), there is a µ > 0 such that 1

2µγ
′′ + J ′′

ext is coercive on
the set W of the pairs

W = {δe = (δx, w) ∈ Tx̂0
M × L2([0, T̂ ],R2)}

such that

ζ̇(t) = w1(t)ġ
1
t (x̂0) + w2(t)ġ

2
t (x̂0)

ζ(0) = δx ζ(T̂ ) = 0. (42)

In other words, ζ(0) is free and ζ(T̂ ) is fixed. With no loss to generality, we can
put µ = 1, so that the modified second variation,

J ′′

α [δe]2 =
1

2
γ′′[(δx, w)]2+

2∑

i,j=1

1

2

∫ T̂

0

wi(t)wj(t)Rij(t)+2wi(t)Qi(t)ζ(t) dt, (43)

is coercive on W.

The coercivity of J ′′

α on W is equivalent to

kerπ∗H
′′

t∗

∣∣∣
L

= {0},

see, for example, Stefani and Zezza (1997).
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5.2. Hamiltonian linear flows

In this subsection we study the relation between the quadratic Hamiltonian
function H ′′

t : T ∗

x̂0
M ×Tx̂0

M → R associated to the second variation, defined in
Subsection 3.2, and the linear Hamiltonian flow defined below. For more details,
see Agrachev et al. (1998a).

Define the pull-back Hamiltonian Gt : T ∗M → R as

Gt =
(
Ht − F̂t

)
◦ F̂t = χ ◦ F̂t,

whose associated Hamiltonian flow is

Gt = F̂
−1
t ◦ Ht

(the relevant proof can be found in Agrachev and Gamkrelidze, 1997).

Since DGt(ℓ̂0) = 0, then D2Gt(ℓ̂0) is well-defined and the flow

Gt∗ :T
ℓ̂0

(T ∗M) → T
ℓ̂0

(T ∗M)

is the Hamiltonian flow associated to 1
2D

2Gt(ℓ̂0) (see for instance Agrachev et
al., 1998a, and references therein for details).

We notice (see Agrachev et al., 1998a) that the tangent space T
ℓ̂0

(T ∗M) is
isomorphic to the product T ∗

x̂0
M × Tx̂0

M , via the anti-symplectic isomorphism

ι : T ∗

x̂0
M × Tx̂0

M → T
ℓ̂0

(T ∗M)

(ω, δx) 7→ −ω + d(−β̂)∗δx.

To define H ′′

t , consider the Hamiltonian h′′t : T ∗

x̂0
M × Tx̂0

M × R
2 → R,

defined as

h′′t (ω, δx,v) =

2∑

i=1

vi〈ω, ġ
i
t(x̂0)〉 + viLδxLġi

t
β̂(x̂0) +

1

2

2∑

i,j=1

vivjL[ġi
t,g

j
t ]β̂(x̂0),

where v = (v1, v2). The minimising Hamiltonian is defined by

∂

∂v
h′′t = 0,

i.e.

(
v1
v2

)
= −R(t)

−1

(
〈ω, ġ1

t (x̂0)〉 + LδxLġ1t β̂(x̂0)

〈ω, ġ2
t (x̂0)〉 + LδxLġ2t β̂(x̂0)

)

(here we remark that the matrix R(t) = −L
λ̂(t) is symmetric).
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Then,

H ′′

t (ω, δx) = h′′t (ω, δx,v(ω, δx))

=−
1

2

(
〈ω, ġ1

t 〉+LδxLġ1t β̂(x̂0), 〈ω, ġ
2
t 〉+LδxLġ2t β̂(x̂0)

)
R(t)

−1
×

×

(
〈ω, ġ1

t 〉 + LδxLġ1t β̂(x̂0)

〈ω, ġ2
t 〉 + LδxLġ2t β̂(x̂0)

)
.

We denote with ~H ′′

t and H′′

t , respectively, the Hamiltonian vector field and the
Hamiltonian flow associated to H ′′

t .

Lemma 8 The two linear Hamiltonian flows Gt∗ and H′′

t are equivalent, i.e.
there hold:

H ′′

t = −
1

2
D2Gt(ℓ̂0) ◦ ι (44)

H′′

t = ι−1 ◦ Gt∗ ◦ ι. (45)

Proof. We split the proof of (44) in two steps: in the first one, we prove that

D2Gt(ℓ̂0)[δℓ]
2 =

2∑

i,j=1

(R−1(t))ij [DF0i(λ̂(t))◦Ht∗δℓ][DF0j(λ̂(t))◦Ht∗δℓ]; (46)

in the second one, that actually

H ′′

t =−
1

2

2∑

i,j=1

(R(t)−1)ij(DF0i(λ̂(t)) ◦ Ht∗ ◦ ι)(DF0j(λ̂(t)) ◦ Ht∗ ◦ ι). (47)

Once (44) proved, (45) follows straightforwardly.

Let us then prove (44). From Gt = χ ◦ F̂t and the fact that DGt(ℓ̂0) = 0,

we get that D2Gt(ℓ̂0) is well defined and D2Gt(ℓ̂0) = D2χ(F̂t ◦ ℓ̂0) ◦ F̂t∗ ⊗ F̂t∗.
Applying Lemma A.2 from Appendix A, we obtain for δℓ ∈ T

ℓ̂0
(T ∗M) that

D2Gt(ℓ̂0)[δℓ]
2 =

2∑

i,j=1

(R−1(t))ij [DF0i(λ̂(t)) ◦ Ft∗δℓ][DF0j(λ̂(t)) ◦ Ft∗δℓ].

Now let δℓ = ι(δω, δx) = −δω + d(−β̂)∗δx, where (δω, δx) ∈ T ∗

x̂0
M × Tx̂0

M .
Since

DF0i(ℓ̂0) [ι(δω, δx)] = L
δ−ω+d(−β̂)∗δx

〈ℓ, [f0, fi]〉
∣∣∣
ℓ=ℓ̂0

=

= 〈−δω, [f0, fi]〉 + L
d(−β̂)∗δx

〈ℓ, [f0, fi]〉
∣∣∣
ℓ=ℓ̂0

=

= 〈−δω, [f0, fi]〉 + Lδx〈−dβ̂(x), [f0, fi]〉
∣∣∣
x=x̂0

,
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then

DF0i(λ̂(t))
[
Ĥt∗ι(δω, δx)

]
=

= L
−Ĥt∗δω+Ĥt∗d(−β̂)∗δx

(
〈ℓ, [f0, fi] ◦ Ŝt(x̂0)〉

) ∣∣∣
ℓ=λ̂(t)

=

=
(
〈−δω, Ŝ−1

t∗ [f0, fi] ◦ Ŝt(x)〉 + Lδx〈F̂td(−β̂)(x), [f0, fi] ◦ Ŝt(x)〉
) ∣∣∣

x=x̂0

=

= −〈δω, ġit(x̂0)〉 − LδxLġi
t
β̂(x̂0).

Hence, equation (47) is satisfied; we get the thesis.

The proof of the main Theorem is completed after the following

Lemma 9 Let α be the function defined in (41), and set

Λ = {dα(x) : x ∈M} .

Λ is a Lagrangian submanifold of Σ containing ℓ̂0 and such that (39) is fulfilled.

Proof. Since Lfi
α ≡ 0, i = 1, 2, Λ ⊂ Σ. Moreover, it is not difficult to see that

the statement is proved after noting that

ιL = Tx̂0
Λ.

Therefore,

kerπ∗H
′′

t

∣∣∣
L

= kerπ∗ι
−1 ◦ Gt∗

∣∣∣
Tx̂0

Λ
= {0},

which implies (39), since π∗F̂
−1
t∗ = Ŝ−1

t∗ π∗.

6. The case with several controls

In this section we show how to adapt the construction of Sections 4 and 5 to
the case of generic m ≤ n− 1.

The proofs are completely analogous to the ones in the case ofm = 2; we just
write here the definition of the objects we construct, and claim their properties,
without repeating the proofs.

Let us notice that the numberm of controlled fields shall be less or equal than
n−1; in fact, by hypothesis we assume that they are linearly independent, there-
fore m ≤ n. Moreover, if m = n, then we can write f0(x̂0) =

∑m
i=1 αifi(x̂0),

and therefore Fmax(λ̂(t)) = F0(λ̂(t)) =
∑m

i=1 αiFi(λ̂(t)) = 0, which contradicts
the fact that the reference extremal is normal.
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6.1. Definition of the super-Hamiltonian

To construct the super-Hamiltonian, we just repeat the same arguments as
above.

First of all, we recall that the coercivity of the second variation implies
that SGLC holds along the reference extremal, and therefore in a full-measure
neighbourhood U of the reference extremal; we define the subset of Σ

S = {ℓ ∈ T ∗M : Fi(ℓ) = 0, F0i(ℓ) = 0, i = 1, . . . ,m} ∩ U.

We claim that the statements of Lemma 2 hold also in this case, that means
that

1. ~Fi is tangent to Σ for any i = 1, . . . ,m;

2. ~Fi is transversal to S for any i = 1, . . . ,m;

3. ~F0i is transversal to Σ (and therefore to S) for any i = 1, . . . ,m;

4. the vectors { ~F1, . . . , ~Fm, ~F01, . . . , ~F0m} are linearly independent;

5. S is a symplectic submanifold of dimension 2(n−m) contained in Σ.

Lemmas 3 and 5 generalise in the following way:

Lemma 10 There is a neighbourhood V of the range of λ̂ in Σ such that for any
ℓ ∈ V there is a unique (m+1)-tuple (ℓS, t1, . . . , tm) ∈ S × R

m such that

ℓ = ψ(ℓS, t1, . . . , tm) = exp
(
−tm ~Fm

)
◦ · · · ◦ exp

(
−t1 ~F1

)
(ℓS);

moreover, there exists an ǫ > 0 such that the map ψ : (S ∩ V) × [−ǫ, ǫ]m → Σ is
a global diffeomorphism (over its image).

Lemma 11 In the neighbourhood V we can define the functions ϑi, i = 1, . . . ,m,
in such a way that

exp(ϑ1(ℓ)~F1) ◦ · · · ◦ exp(ϑm(ℓ)~Fm)(ℓ) ∈ S ∀ ℓ ∈ V,

ϑ1(ℓ) = . . . = ϑm(ℓ) = 0 ℓ ∈ S.

We then define the Hamiltonians H0 : U → R and χ : U → T ∗M as

H0(ℓ) = F0 ◦ exp(ϑ1(ℓ)~F1) ◦ · · · ◦ exp(ϑm(ℓ)~Fm)(ℓ),

χ(ℓ) = H0(ℓ)−F0(ℓ) = F0 ◦ exp(ϑ1(ℓ)~F1) ◦ · · · ◦ exp(ϑm(ℓ)~Fm)(ℓ)−F0(ℓ).

We can show that:

1. For ℓ ∈ Σ, we have

~H0(ℓ) =
(
exp(−ϑm(ℓ)~Fm) ◦ · · · ◦ exp(−ϑ1(ℓ)~F1)

)

∗

~F0

◦
(
exp(ϑ1(ℓ)~F1) ◦ · · · ◦ exp(ϑm(ℓ)~Fm)

)
(ℓ).
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2. The vector field ~H0 is tangent to Σ.

3. For ℓ ∈ S, Dχ(ℓ) = 0, hence D2χ(ℓ) is well defined and a quadratic form
on TℓΣ, whose kernel is TℓS and such that D2χ(ℓ), coincides with −Lℓ on

D̃ = R~F1 ⊕ · · · ⊕ R~Fm.

4. F0 ≤ H0 on Σ, and F0 = H0 on S.

As for the sufficient condition (Theorem 4), its statement holds in this case,
too.

6.2. Proof of the result

As done in the previous case, we can define local coordinates in a neighbourhood
of x̂0 in such a way that

• x̂0 = (0, . . . , 0);

• f1 = ∂
∂q1

and fi =
∑m

j=1 µij
∂
∂qj

, i = 2, . . . ,m, where µij are locally defined

smooth functions;

• the covector ℓ̂0 can be written as ℓ̂0 =
∑n

i=m+1 p̂idqi.

In these coordinates, we can choose the function β̂ as

β̂(x) =

n∑

i=m+1

−p̂iqi,

and this guarantees that the finite-dimensional term in the second variation
vanishes.

We define the local function α : M → R as

α =
n∑

i=m+1

p̂iqi + ρq2i , ρ > 0.

We put γ′′ = D2(α + β̂)(x̂0). Repeating the same argument as above, we
obtain that the modified second variation

J ′′

α[δe]2 =
1

2
γ′′[(δx, w)]2 +

m∑

i,j=1

1

2

∫ T̂

0

wi(t)wj(t)Rij(t) + 2wi(t)Qi(t)ζ(t) dt

is coercive on the set W of the admissible pairs

W = {δe = (δx, w) ∈ Tx̂0
M × L2([0, T̂ ],Rm)}

such that

ζ̇(t) =

m∑

i=1

wi(t)ġ
i
t(x̂0)

ζ(0) = δx ζ(T̂ ) = 0.
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This last condition is equivalent to

kerπ∗H
′′

t∗

∣∣∣
L

= {0},

where

L = span

{(
−dα(x̂0)

(
∂

∂qi
, ·

)
,
∂

∂qi

)
, i = 1, . . . , n

}
.

Putting then

Λ = {dα(x) : x ∈M},

we get the thesis, since Tx̂0
Λ = ιL.

7. An example

In this section we provide an example, illustrating the abstract result. This
example is academic, but useful for making the theory more concrete.

Let us consider the following control problem on R
3:

minT

subject to





ẋ1 = u1 + u2x1

ẋ2 = u2

ẋ3 = 1 − x2
1 − x2

2

, (48)

with the initial condition

x(0) = (0, 0, x0
3), x(T ) = (0, 0, x1

3), x1
3 > x0

3.

The controls may assume values on the whole R
2.

Explicitly, the drift and the controlled vector fields are:

f0(x) =
(
1 − x2

1 − x2
2

) ∂

∂x3
f1(x) =

∂

∂x1
f2(x) = x1

∂

∂x1
+

∂

∂x2
.

Since [f1, f2] = f1, the distribution D is involutive.

7.1. Preliminary analysis of the system

The lifted Hamiltonians are

F0(p,x) = p3

(
1 − x2

1 − x2
2

)
F1(p,x) = p1 F2(p,x) = p1x1 + p2,
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and their Poisson brackets

F01(p,x) = 2x1p3 F02(p,x) = 2(x2
1 + x2)p3.

Therefore, the submanifold Σ is

Σ = {(p,x) : p1 = 0, x1p1 + p2 = 0}

= {(p,x) : p1 = p2 = 0} .

By computations, we can prove that the matrix L(p,x) (equation (12)) is
negative definite in the half-space {p3 > 0}. Then

S = {(p,x) : F1 = F2 = F01 = F02 = 0} ∩ {p3 > 0}

= {(0, 0, p3; 0, 0, x3) : p3 > 0}.

Remark 14 Since any singular optimal trajectory is the projection of an ex-
tremal with values in S, then the minimum-time problem for this dynamics may
have a singular solution only if the end-points lie on x3-axis, with x1

3 > x0
3.

Remark 15 If the control set is the whole R
2, the minimum-time problem be-

tween fixed points has a standard solution if and only if the points belong to the
x3-axis and x1

3 > x0
3. On the other hand, we can easily check that the infimum

of the time needed to join two points belonging to the same plane parallel to the
(x1, x2)-plane, with x1

3 > x0
3, is zero, since the controls may be unbounded (see

also Jurdjevic, 1997, Sec. 2.1, Theorem 6). One could solve the problem between
(x0

1, x
0
2, x

0
3) and (x1

1, x
1
2, x

1
3) allowing jumps, i.e. by jumping from (x0

1, x
0
2, x

0
3) to

(0, 0, x0
3) in “zero time”, then following the system from (0, 0, x0

3) to (0, 0, x1
3),

and finally jumping again from (0, 0, x1
3) to (x1

1, x
1
2, x

1
3) in “zero time”.

7.2. Studying the extremal

It is not difficult to see that the curve

λ̂(t) := (p̂(t), x̂(t)) = (0, 0, 1; 0, 0, x0
3 + t), t ∈ [0, x1

3 − x0
3] (49)

is a singular extremal for the minimum-time problem subject to (48), associ-
ated to the control û = (0, 0). In fact, p satisfies the adjoint equation and

F̂t(p̂(t), x̂(t)) = p3 ≡ 1.
Hence, the pair (p̂(t), x̂(t); û) satisfies PMP, with appropriate boundary con-

ditions.

Lemma 12 The second variation is coercive on the space of admissible varia-
tions W̃.

Proof. Since the reference control is identically null, the reference flow acts as

Ŝt : (x0
1, x

0
2, x

0
3) 7→ (x0

1, x
0
2, x

0
3 + (1 − (x0

1)
2 − (x0

2)
2)t).
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We compute the feedback fields git, i = 1, 2; explicitly, we get

g1
t (x) = x1

∂

∂x1
+ 2x1t

∂

∂x3
g2
t (x) = x1

∂

∂x1
+

∂

∂x2
+ 2(x1 + x2)t

∂

∂x3
,

and

ġ1
t (x) = 2x1

∂

∂x3
ġ2
t (x) = 2(x1 + x2)

∂

∂x3
,

hence ġ1
t (x̂(0)) = ġ2

t (x̂(0)) = 0.
This implies that the admissible ζ(t) satisfies the system

{
ζ̇(t) = 0

ζ(0) = w0
1f1(0) + w0

2f2(0), ζ(T ) = 0, (w0
1 , w

0
2) ∈ R

2,

meaning that ζ(t) ≡ 0. Therefore, the set of admissible variations is W̃ =

{0} × L2([0, T̂ ],R2).
The extended second variation is

J ′′

ext[(w0, w)]2 =

∫ T

0

w2
1(t) + w2

2(t) dt = ‖w‖2
L2 ,

which is coercive on W̃.

8. Final remarks

This paper is a part of a research project, in which we intend to use the Hamilto-
nian approach to establish second-order optimality conditions for optimal con-
trol problems. There are immediate generalisation of this result, that we intend
to study in the future, and also many interesting issues in this research field.

One direct generalisation of this result will concern a further relaxation of
the hypotheses on the controlled fields, that is, the case in which we do not ask
anything on their Lie brackets. This case is quite natural: the minimum-length
problem in subriemannian geometry belongs to this class.

A natural step would be to study the optimality conditions for singular
extremals of the Mayer problem. In this case, sufficient conditions for weak
and Pontryagin optimality of singular extremals have already been obtained in
Dmitruk (1977, 1983, 2008).

Further investigation will concern the statement of second-order optimality
condition for concatenations of bang-singular arcs. For the single-input case,
see Poggiolini and Stefani (2008, 2009).

Another development will be to consider a stronger notion of optimality, that
is, strong state-local optimality of the minimum-time problem, where state-local
means “in a neighbourhood of the range of the reference trajectory”. For precise
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definition, see Poggiolini and Stefani (2004), where this type of local strong
optimality was first considered. In order to obtain this type of optimality we
shall follow the ideas from Poggiolini and Stefani (2009), where the single-input
case is considered and sufficient conditions of strong state-local optimality are
proved.

To obtain the suitable second variation in this case, we have to reduce the
time-optimal problem to a Mayer problem on [0, T̂ ], but in this case we extend
both the state space and the control space: indeed, we add a new variable T ,
which is also the cost and a new control u0 : [0, T̂ ] → (0,∞). With the same
techniques, used in Subsection 3.2, we obtain an extended second variation
defined on R

m+1 × L2([0, T̂ ],Rm) and given by

J ′′

ext[(ε0, ε1, . . . , εm, w)]2 =
1

2
L(ε0f0+

∑
m
i=1 εifi)L(ε0f0+

∑
m
i=1 εifi)β̂(x̂0)+

+
m∑

i=1

∫ 1

0

wi(t)Lζ(t)Lġi
t
β̂(x̂0) +

1

2

m∑

i,j=1

∫ 1

0

wi(t)wj(t)L[gi
t,ġ

j
t ]β̂(x̂0) dt,

where the variable ζ(t) ∈ Tx̂0
M satisfies the following problem:

ζ̇(t) =

m∑

i=1

wi(t)ġ
i
t(x̂0), (50)

ζ(0) = ε0f0(x̂0) +

m∑

i=1

εifi(x̂0), ζ(T̂ ) = 0. (51)

The space of admissible variations is then a subspace W̃(m+1) of R
m+1

×L2([0, 1],Rm) defined as

W̃(m+1) := {(ε0, ε1, . . . , εm, w) ∈ R
m+1 × L2([0, 1],Rm)

that satisfy equations (50) − (51)}.

It is immediate to see that the space W̃ of admissible variations for the time-
optimal problem (given by equation (21)) coincides with the subspace W̃(m+1)∩
{ε0 = 0}.

Appendix A

Lemma A.1 Dχ(ℓ) = 0 for any ℓ ∈ S.

Proof. Recall that

χ(ℓ) = H0(ℓ) − F0(ℓ) = F0 ◦ exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ) − F0(ℓ).

Recall the definition of the map ψ : S × [−ǫ, ǫ]2 → Σ (equation (24)), define
the map φ : Σ ∩ U → S × R

2 (locally in a neighbourhood of the reference
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extremal) by

φ(ℓ) =
(
exp(ϑ1(ℓ)~F1) ◦ exp(ϑ2(ℓ)~F2)(ℓ), ϑ1(ℓ), ϑ2(ℓ)

)
; (52)

notice that φ is the local inverse of ψ. We, moreover, define the projection:

π0 : S × [−ǫ, ǫ]2 → S × [−ǫ, ǫ]2, π0(ℓS, t1, t2) = (ℓS, 0, 0).

We can write χ as

χ = [F0 ◦ ψ ◦ π0 − F0 ◦ ψ] ◦ φ,

therefore

Dχ = DF0 ◦Dψ ◦Dπ0 ◦Dφ−DF0 ◦Dψ ◦Dφ.

Notice that Dπ0 =




id 0 0
0 0 0
0 0 0


 , and that

DF0 ◦Dψ =

(
∂(F0 ◦ ψ)

∂ℓS
,
∂(F0 ◦ ψ)

∂t1
,
∂(F0 ◦ ψ)

∂t2

)
,

therefore

Dχ =

(
∂(F0 ◦ ψ)

∂ℓS

∣∣∣
ψ(ℓS,0,0)

−
∂(F0 ◦ ψ)

∂ℓS

∣∣∣
ψ(ℓS,−t1,−t2)

,

−
∂(F0 ◦ ψ)

∂t1

∣∣∣
ψ(ℓS,−t1,−t2)

,−
∂(F0 ◦ ψ)

∂t2

∣∣∣
ψ(ℓS,−t1,−t2)

)
◦Dφ.

On S we then have

Dχ(ℓS) =

(
∂(F0 ◦ ψ)

∂ℓS

∣∣∣
ℓS

−
∂(F0 ◦ ψ)

∂ℓS

∣∣∣
ℓS
,−F01

∣∣∣
ℓS
,−F02

∣∣∣
ℓS

)

︸ ︷︷ ︸
=0

◦Dφ = 0.

Lemma A.2 D2χ(ℓS) = −L
−1
ℓS

[(〈DF01(ℓS), δℓ〉, 〈DF02(ℓS), δℓ〉)]2 for any ℓS ∈ S

and δℓ ∈ TℓSΣ.

Proof. Let us first prove that D2χ(ℓS)=




0 0 0
0 −F110(ℓS) −F120(ℓS)
0 −F120(ℓS) −F220(ℓS)


[Dφ⊗Dφ]

∣∣∣
ℓS

for any ℓS ∈ S, where φ is defined in (52).
Formally

D2χ(ℓ) = D [DF0 ◦Dφ ◦Dπ0 −DF0 ◦Dψ]
∣∣∣
φ(ℓ)

◦ [Dφ⊗Dφ]
∣∣∣
ℓ
+

+ [DF0 ◦Dψ ◦Dπ0 −DF0 ◦Dψ]
∣∣∣
φ(ℓ)

◦D2φ
∣∣∣
ℓ
,
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and then on S we have

D2χ
∣∣∣
ℓS

= D [DF0 ◦Dψ ◦Dπ0 −DF0 ◦Dψ]
∣∣∣
ℓS

◦ [Dφ⊗Dφ] +

+ [DF0 ◦Dψ ◦Dπ0 −DF0 ◦Dψ ◦Dπ−]
∣∣∣
ℓS︸ ︷︷ ︸

=0

◦D2φ =

= D [DF0 ◦Dψ ◦Dπ0 −DF0 ◦Dψ ◦Dπ−]
∣∣∣
ℓ=ℓS

◦ [Dφ⊗Dφ] .

In other words

D2χ
∣∣∣
ℓS

=






∂2(F0◦ψ)
∂ℓ2

S

0 0

0 0 0
0 0 0


−




∂2(F0◦ψ)
∂ℓ2

S

∂2(F0◦ψ)
∂ℓS∂t1

∂2(F0◦ψ)
∂ℓS∂t2

∂2(F0◦ψ)
∂ℓS∂t1

∂2(F0◦ψ)
∂t21

∂2(F0◦ψ)
∂t2∂t1

∂2(F0◦ψ)
∂ℓS∂t2

∂2(F0◦ψ)
∂t2∂t1

∂2(F0◦ψ)
∂t22






∣∣∣
φ(ℓS)

◦[Dφ⊗Dφ]
∣∣∣
ℓS
.

Let us compute the derivatives:

∂

∂t1
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS) =

= 〈dF0, exp(−t2 ~F2)∗(−~F1)〉
∣∣∣
exp(−t2 ~F2)◦exp(−t1 ~F1)(ℓS)

,

then, on S,

∂

∂t1
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

= σℓS

(
~F0, ~F1

)
= F01(ℓS).

As for t2, we have

∂

∂t2
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

= F02(ℓS).

Moreover

∂2

∂t21
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

= F110(ℓS)

and

∂2

∂t22
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

= F220(ℓS).

The mixed derivative is

∂2

∂t2∂t1
F0◦exp(−t2 ~F2)◦exp(−t1 ~F1)(ℓ)

∣∣∣
t1=t2=0

= σ
(
~F0, [~F2, ~F1]

)
(ℓ) = F120(ℓ);

since F01 and F02 vanish identically on S, we have that
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∂2

∂ℓS∂t1
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

=
∂

∂ℓS
F10(ℓS) ≡ 0

∂2

∂ℓS∂t2
F0 ◦ exp(−t2 ~F2) ◦ exp(−t1 ~F1)(ℓS)

∣∣∣
t1=t2=0

=
∂

∂ℓS
F20(ℓS) ≡ 0.

Let us now compute Dφ:

Dφ(ℓ)[δℓ] =
(

exp(ϑ1(ℓ)~F1)∗ ◦ exp(ϑ2(ℓ)~F2)∗[δℓ] +Dϑ1[δℓ]~F1+

+Dϑ2[δℓ]~F2, Dϑ1[δℓ], Dϑ2[δℓ]
)

=

=
(
δℓS + α~F1 + β ~F2 − α~F1 − β ~F2, Dϑ1[δℓ], Dϑ2[δℓ]

)
=

= (δℓS, Dϑ1[δℓ], Dϑ2[δℓ]) ,

where δℓ = δℓS + α~F1 + β ~F2 is the decomposition of δℓ in TℓS ⊕ D̃.

The statement follows from equation (28) in Lemma 5.

Appendix B

Lemma B.1 The flow of the Hamiltonian Ht preserves the distribution D̃ along
the reference extremal λ̂, and the flow of KS preserves the distribution D̃ along
all its trajectories that are contained in S.

Proof. Let us put Xi(t) = H−1
t∗
~Fi ◦ Ht(ℓ̂0), i = 1, 2; we have that

d

dt
Xi(t) = H−1

t∗

[
~Ht, ~Fi

]
◦ Ht(ℓ̂0) =

= H−1
t∗

[
~H0 + û1(t)~F1 + û2(t)~F2, ~Fi

]
◦ Ht(ℓ̂0) =

= (−1)iûj(t)H
−1
t∗ [~Fi(t), ~Fj(t)] ◦ Ht(ℓ̂0) i 6= j

= αi1(t)X1(t) + αi2(t)X2(t),

for some αij(t), since D̃ is involutive. Indeed,

[ ~H0, ~F1](ℓ)=
[
exp(−ϑ2

~F2)∗ ◦ exp(−ϑ1
~F1)∗ ~F0 ◦ exp(ϑ1

~F1) ◦ exp(ϑ2
~F2), ~F1

]
(ℓ)=

=
[
exp(−t2 ~F2)∗ ◦ exp(−t1 ~F1)∗ ~F0 ◦ exp(t1 ~F1) ◦ exp(t2 ~F2), ~F1

] ∣∣∣
ti=ϑi

(ℓ)+

−L~F1
(ϑ2)(ℓ)

∂

∂t2

(
exp(−t2 ~F2)∗ ◦ exp(−t1 ~F1)∗ ~F0 ◦ exp(t1 ~F1) ◦ exp(t2 ~F2)

) ∣∣∣
ti=ϑi

(ℓ)+

−L~F1
(ϑ1)(ℓ)

∂

∂t1

(
exp(−t2 ~F2)∗ ◦ exp(−t1 ~F1)∗ ~F0 ◦ exp(t1 ~F1) ◦ exp(t2 ~F2)

) ∣∣∣
ti=ϑi

(ℓ) =
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=
[
exp(−t2 ~F2)∗ ◦ exp(−t1 ~F1)∗ ~F0 ◦ exp(t1 ~F1) ◦ exp(t2 ~F2), ~F1

] ∣∣∣
ti=ϑi

(ℓ)+

−L~F1
(ϑ2)(ℓ) exp(−t2 ~F2)∗

[
~F2, exp(−t1 ~F1)∗ ~F0 ◦ exp(t1 ~F1)

]
◦ exp(t2 ~F2)(ℓ)

∣∣∣
ti=ϑi

+

−L~F1
(ϑ1)(ℓ) exp(−t2 ~F2)∗ ◦ exp(−t1 ~F1)∗

[
~F1, ~F0

]
◦ exp(t1 ~F1) ◦ exp(t2 ~F2)

∣∣∣
ti=ϑi

(ℓ).

If ℓ ∈ S, we have that ϑi(ℓ)=0 and from equation (28) we see that L~F1
(ϑ1)(ℓ)=

−1 and L~F1
(ϑ2)(ℓ) = 0, then

[ ~H0, ~F1](ℓ) = [~F0, ~F1](ℓ) + [~F1, ~F0](ℓ) = 0.

Analogously, we prove that [ ~H0, ~F2](ℓ) = 0 on S.

Let now η ∈ T ∗

ℓ̂0
(T ∗M) be a 1-form such that 〈η, ~Fi〉 = 0 ∀ i, and call

zi(t) = 〈η,Xi(t)〉; we have that

(
ż1(t)
ż2(t)

)
=

(
α1

1(t) α2
1(t)

α1
2(t) α2

2(t)

)(
z1(t)
z2(t)

)
,

i.e. the functions zi(t) satisfy a differential first-order linear system with initial

conditions zi(0) = 0. Since this happens for any 1-form that vanishes on D̃, we

shall conclude that Xi(t) ∈ D̃ ∀ t, i = 1, 2. We get the thesis.
The same argument proves that

K
S−1
t∗

~Fi ◦ KS
t (ℓ) ∈ D̃ℓ ∀ ℓ ∈ S, i = 1, 2.

Proof (Proof of Lemma 6). Let us consider the Hamiltonian Pt = (KS−Ht)◦Ht

restricted to Σ, with the associated Hamiltonian flow Pt = H−1
t ◦ KS

t .

Since DPt(ℓ̂0) = 0, then D2Pt(ℓ̂0) is well-defined and it turns out that
Pt∗ = H−1

t∗ ◦ KS
t∗ : T

ℓ̂0
(T ∗M) → T

ℓ̂0
(T ∗M) is the Hamiltonian flow associated

to 1
2D

2Pt(ℓ̂0).
By computation, we get that Pt∗ is the Hamiltonian flow associated to the

vector field

∑

i

〈dνi,Ht∗·〉 H
−1
t∗
~Fi(λ̂(t)) ∈ D̃

ℓ̂0
. (53)

Let now δℓ ∈ T
ℓ̂0

Λ ∩ kerKS
t∗, and write it as δℓ = δℓS + δℓ

D̃
.

By previous lemma and the fact that KS
t preserves S we can conclude that

KS
t∗ : T

ℓ̂0
S → T

ℓ̂0
S and KS

t∗ : D
ℓ̂0

→ D
ℓ̂0
.

This implies that

π∗K
S
t∗δℓS = 0 π∗K

S
t∗δℓD̃ = 0. (54)
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It is easy to show that Pt∗δℓD̃ = δℓ
D̃

, that is, KS
t∗δℓD̃ = Ht∗δℓD̃. Therefore,

since by hypothesis kerHt∗ ∩ Tℓ̂0Λ = 0, then δℓ
D̃

= 0.
Since the flow Pt∗ is generated by the vector field (53), we get that the

component belonging to S of Pt∗δℓS is constant and therefore Pt∗δℓS = δℓS +
δℓ′

D̃
(t). Then

π∗K
S
t∗(δℓS) = π∗Ht∗(δℓS) + π∗Ht∗(δℓ

′

D̃
(t)) =

= π∗Ht∗δℓS +
∑

i

αi(t)fi(ξ̂(t)) =

= π∗Ht∗

(
δℓS +

∑

i

βi(t)Fi(ℓ̂0)

)
,

for some coefficients αi(t), βi(t).

Therefore, if π∗K
S
t∗(δℓS)=0, then it shall be π∗Ht∗

(
δℓS+

∑
i βi(t)Fi(ℓ̂0)

)
=0.

By hypothesis, this can happen only if δℓS +
∑

i βi(t)Fi(ℓ̂0) = 0. Hence it shall
be δℓS = 0.

Lemma B.2 Under the hypotheses of Lemma 6, the following equality holds

(
π ◦ KS

t

)−1

∗
fi(ξ(t)) = K

S−1
t∗

~Fi(λ(t)),

where λ(t) = KS
t ◦ ℓ(t), ℓ(t) ∈ Λ ∩ S, and ξ(t) = π ◦ λ(t).

Proof. First of all we write

fi(ξ(t)) = π∗ ~Fi(λ(t)) =

= π∗ ◦ KS
t∗ ◦ K

S−1
t∗

~Fi(λ(t)).

We know that flow KS
t∗ maps Tℓ(t)S into Tλ(t)S, and, moreover, that it pre-

serves the distribution D̃. Since Fi(λ(t)) ∈ D̃λ(t), we have that K
S−1
t∗

~Fi(λ(t)) ∈

D̃ℓ(t) ⊂ Tℓ(t)Λ.

Since (π ◦ KS
t )∗

∣∣∣
T

ℓ̂0
Λ

is an isomorphism, then also (π ◦ KS
t )∗

∣∣∣
Tℓ(t)Λ

is an

isomorphism for ℓ(t) ∈ Λ close to ℓ̂0, and then we can rewrite the equation
above as

(
π ◦ KS

t

)−1

∗
fi(ξ(t)) = KS−1

t∗
~Fi(λ(t)).
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