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Abstract: This paper studies the output tracking and almost
disturbance decoupling problem of nonlinear control systems with
uncertainties via fuzzy logic control and feedback linearization ap-
proach. The main contribution of this study is to construct a con-
troller, under appropriate conditions, such that the resulting closed-
loop system enjoys for any initial condition and bounded tracking
signal the following characteristics: input-to-state stability with re-
spect to disturbance inputs and almost disturbance decoupling, i.e.,
the influence of disturbances on the L2 norm of the output tracking
error can be arbitrarily attenuated by increasing some adjustable pa-
rameters. The underlying theoretical approaches are the differential
geometry approach and the composite Lyapunov approach. One ex-
ample, which cannot be solved by the approach from the first paper
(Marino et al., 1989) on the almost disturbance decoupling problem,
is proposed in this paper to exploit the fact that the almost distur-
bance decoupling and the convergence rate performances are easily
achieved by virtue of our approach. In order to demonstrate the
practical applicability, the paper takes up the study of an inverted
pendulum control system.

Keywords: fuzzy logic control, almost disturbance decoupling,
feedback linearization approach, composite Lyapunov approach, in-
verted pendulum control system.

∗Submitted: January 2008; Accepted: May 2010.



1070 T.L. CHIEN, C.C. CHEN, Y.C. CHEN, S.L. WU

1. Introduction

A recent development in nonlinear control design is that of feedback lineariza-
tion, which transforms the original nonlinear system into an equivalent control-
lable linear system. Feedback linearization is an approach to nonlinear control
design, which has attracted a great deal of research interest in recent years
(Slotine and Li, 1991; Yang and Calise, 2007). Moreover, feedback lineariza-
tion approach has been applied successfully to many real control cases (Yang
and Calise, 2007). These include control of hydraulic cylinder system (Hahn et
al., 1992, 1994), pharmacogenomics system (Floares, 2005, 2006), continuously
stirred tank reactor (Guo, 2006), electromagnetic suspension system (Joo and
Seo, 1997), pendulum system (Corless and Leitmann, 1981), spacecraft (Sheen
and Bishop, 1994), electrohydraulic servosystem (Alleyne, 1998), car-pole sys-
tem (Bedrossian, 1992) and bank-to-turn missile system (Lee et al., 1997).

In the past few years, the differential geometry approach (Banks, 1988; Ni-
jmeijer and Van Der Schaft, 1990) proved to be an effective means of analysis
and design of nonlinear control systems, as it was in the past for the Laplace
transform, complex variable theory and linear algebra in relation to linear con-
trol systems. The main concept of this approach is to algebraically transform
the nonlinear control system into an equivalent linear system, such that the
conventional linear control techniques can be utilized (Isidori, 1989).

For many practical control systems, it is difficult to obtain completely ac-
curate mathematical models. Thus, there are inevitable uncertainties in their
models. Therefore, the design of a robust controller that deals with uncertain-
ties of a control system is a significant subject for the design of an excellent
control system. In this paper, we present a systematic analysis and a simple
design scheme that guarantees the globally asymptotical stability of feedback-
controlled uncertain system and achieves output tracking performance for a class
of nonlinear control systems with uncertainties.

Fuzzy logic control appears to have attracted a great deal attention in
the past two decades. Despite the success, many fundamental issues remain
unanswered. Almost disturbance decoupling analysis and systematic design are
among the most important issues to be further addressed. The almost distur-
bance decoupling problem, that is the design of a controller which attenuates
the effect of the disturbance on the output terminal to an arbitrary degree
of accuracy, was originally developed for linear and nonlinear control systems
by Willems (1981) and Marino et al. (1989), respectively. Henceforward, the
problem has attracted considerable attention and many significant results have
been developed for both linear and nonlinear control systems (see Marino et
al., 1989; Weiland and Willems, 1989; Marino and Tomei, 1999; Qian and Lin,
2000). Marino et al. (1989) demonstrated that for nonlinear SISO system the
almost disturbance decoupling problem may not be solvable, as the following
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example shows:

ẋ1(t) = x2 + θ1(t)

ẋ2(t) = x3
2θ2(t) + u

y = x1

where u, y denote the input and output, respectively, and θ1, θ2 are the distur-
bances. This example, though, can be easily solved via the approach proposed
in this paper.

Fuzzy logic control has been applied not only to cement kiln or to subway
train, but also to other industrial processes. In terms of inference process there
are two main classes of fuzzy inference systems (FIS): the Mamdani-type FIS
(Mamdani and Assilian, 1975) and the Takagi-Sugeno-Kang (TSK) type FIS
(see Takagi and Sugeno, 1985, and Mendel, 2001). In many decision support
applications it is important to guarantee the expressive power, easy formal-
ization and interpretability of Mamdani-type FIS. The Mamdani FIS is more
widely used, particularly for decision support applications, mostly because of
the intuitive and interpretable nature of the rule base. Its design procedure is as
follows. First, representing the nonlinear system as the famous Takagi-Sugeno
fuzzy model offers an alternative to the conventional model. The control design
is carried out based on an aggregation of linear controllers constructed for each
local linear element of the fuzzy model via the parallel distributed compensation
scheme (Wang et al., 1996). For the stability analysis of the fuzzy system, a lot
of studies are reported (see, e.g., Tanaka and Sugeno, 1990, 1992; Lam et al.,
2000; Tanaka et al., 2003, and the references therein). The stability and con-
troller design of the fuzzy system can be mainly discussed by Tanaka-Sugeno’s
theorem (Tanaka and Sugeno, 1990). However, it is difficult to find the common
positive definite matrix P for linear matrix inequality (LMI) problem, even if
P is a second order matrix (Kawamoto et al., 1992). Moreover, the stability
guarantee of the “directly” used fuzzy control for the desired control system is
always a debatable point.

Therefore, we propose the acceptable viewpoint that based on the feedback
linearization approach a tracking control is proposed in order to guarantee the
almost disturbance decoupling property and the uniform ultimate bounded sta-
bility of the tracking error system response within an adjustable global final
attractor of the zero state. Once the tracking errors are driven to touch the at-
tractor with the desired radius, the Mamdani fuzzy logic control is immediately
applied via human expert’s knowledge to improve the convergence rate. To
overcome the difficulty of finding the common positive definite matrix P for the
fuzzy model approach, we propose a new method to guarantee that the closed-
loop systems is stable and the almost disturbance decoupling performance is
achieved. The design structure is as follows. First, based on the feedback lin-
earization approach a tracking control is proposed in order to guaranteed the
almost disturbance decoupling property and the uniform ultimate bounded sta-
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bility of the tracking error system response within an adjustable global final
attractor of the zero state, i.e., such response enters a neighborhood of zero
state in finite time and remains within it thereafter. Once the tracking errors
are driven to touch the attractor with the desired radius, the conventional fuzzy
logic control is immediately applied via human expert’s knowledge to improve
the convergence rate.

To show the significant applicability of the approach, this paper also de-
scribes a successfully derived tracking controller with almost disturbance de-
coupling for the famous inverted pendulum control system. Throughout the
paper, notation ‖ · ‖ denotes the usual Euclidean norm or the corresponding
induced matrix norm.

2. Controler design

2.1. Feedback linearization controller design

In this paper, we consider the following nonlinear control system with uncer-
tainties and disturbances:











ẋ1

ẋ2

...
ẋn











=











f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)











+











g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gn(x1, x2), . . . , xn











u

+











∆f1

∆f2

...
∆fn











+











∆g1

∆g2

...
∆gn











u +

p
∑

i=1

q∗i θi (2.1a)

y(t) = h(x1, x2, . . . , xn) (2.1b)

i.e.,

Ẋ = f(X(t)) + g(X(t))u + ∆f + ∆g · u +

p
∑

i=1

q∗i θi

y(t) = h(X(t))

where X(t) := [ x1(x) x2(t) . . . xn(t) ]T ∈ ℜn is the state vector, u ∈ ℜ1 is the
input, y ∈ ℜ1 is the output, θ := [ θ1(t) θ2(t) . . . θn(t) ]T is a bounded time-
varying disturbances vector and ∆f := [ ∆f1 ∆f2 . . . ∆fn ] ∈ ℜn, ∆g :=
[ ∆g1 ∆g2 . . . ∆gn ] ∈ ℜn are the system uncertainties; f, g, q∗1 , . . . , q∗p are
smooth vector fields on ℜn, and h(X(t)) ∈ ℜ1 is a smooth function. The
nominal system is then defined as follows:

Ẋ = f(X(t)) + g(X(t))u (2.2a)

y(t) = h(X(t)) (2.2b)
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The nominal system (2.2) possesses relative degree r (Henson and Seborg,
1991), i.e., there exists a positive integer 1 ≤ r < ∞

LgL
k
fh(X(t)) = 0, k < r − 1 (2.3)

LgL
r−1
f h(X(t)) 6= 0 (2.4)

for all X ∈ ℜn and t ∈ [0,∞), where the operator L is the Lie derivative
(Isidori, 1989). The desired output trajectory yd(t) and its first r derivatives
are all uniformly bounded and

∥

∥

∥

[

yd(t), y
(1)
d (t), . . . , y

(r)
d (t)

]
∥

∥

∥
≤ Bd, (2.5)

where Bd is some positive constant. For the uncertainties, there exist smooth
functions δ1(·), δ2(·) : ℜn → ℜ such that the uncertainties ∆f and ∆g in (2.1)
satisfy ∆f(X) = g(X)δ1(X) and ∆g(X) = g(X)δ2(X).

Under the assumption of well-defined relative degree, it has been shown
(Isidori, 1989) that the mapping

φ : ℜn → ℜn (2.6)

defined as

φi(X(t)) := ξi(t) = Li−1
f h(X(t)), i = 1, 2, . . . , r (2.7)

φk(X(t)) := ηk(t), k = r + 1, r + 2, . . . , n (2.8)

and satisfying

Lkφk(X(t)) = 0, k = r + 1, r + 2, . . . , n (2.9)

is a diffeomorphism onto image. For the sake of convenience, define the trajec-
tory error to be

ei(t) := ξi(t) − y
(i−1)
d (t), i = 1, 2, . . . , r (2.10)

e := [ e1(t) e2(t) . . . er(t) ]T ∈ ℜr (2.11)

the trajectory error with parameterization

ēi(t) := εi−1ei(t), i = 1, 2, . . . , r (2.12)

ē := [ ē1(t) ē2(t) . . . ēr(t) ]T ∈ ℜr (2.13)

where ε is some adjustable constant, and

ξ(t) := [ ξ1(t) ξ2(t) . . . ξr(t) ]T ∈ ℜr (2.14a)

η(t) := [ ηr+1(t) ηr+2(t) . . . ηn(t) ]T ∈ ℜn−r (2.14b)

q(ξ(t), η(t)) := [ Lfφr+1(t) Lfφr+2(t) . . . Lfφn(t) ]T

:= [ qr+1 qr+2 . . . qn ]T (2.14c)
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Define a phase-variable canonical matrix Ac to be

Ac :=















0 1 0 . . . 0
0 0 1 0 . . . 0

...
...

0 0 0 . . . 1
−α1 −α2 −α3 . . . −αr















r×r

(2.15)

where α1, α2, . . . , αr are any chosen parameters such that Ac is Hurwitz and the
matrix B is to be

B := [ 0 0 . . . 0 1 ]Tr×1 (2.16)

To facilitate the forthcoming discussion, a coordinate transformation is in-
troduced here. Since the pair (Ac, B) is controllable, there exist matrices
M ∈ ℜr×(r−1) and K ∈ ℜ1×r (Sinswat and Fallside, 1977) such that

(Ac + BK)M = MD

where D ∈ ℜ(r−1)×(r−1) is an adjustable diagonal matrix

D :=















−λ1 0 0 . . . 0
0 −λ2 0 0 . . . 0

...
...

0 0 0 . . . 0
0 0 0 . . . −λr−1















(2.17)

where λi, i = 1, 2, . . . , r−1 are positive constants and λmin := min(λ1, . . . , λr−1).
Based on the procedures of Elghezawi et al. (1983) we can construct the gener-
alized inverses Bg ∈ ℜ1×r, Mg ∈ ℜ(r−1)×r of matrices B and M such that

BgB = 1, BgM = 0, MgM = I(r−1)×(r−1), MgB = 0. (2.18)

Define the associated tracking error ẽ as

ẽ :=

[

ẽ1

ẽ2

]

=

[

Mg

Bg

]

ē := Wē, W :=

[

Mg

Bg

]

(2.19a)

where W is invertible with

W−1 = [MB]r×r (2.19b)

and

‖Mgē‖ ≥ ‖ē1‖. (2.19c)
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Assumption 1 For all t ≥ 0, η ∈ ℜn−r and ξ ∈ ℜr, there exists a positive
constant L such that the following inequality holds:

‖q22(η, ẽ) − q22(η, 0)‖ ≤ L(‖ẽ1‖ + ‖ẽ2‖) (2.20)

where q22(η, ẽ) := q(ξ, η).

Assumption 2 There exist known functions β1(·), β2(·) : ℜn → ℜ+ such that

1 + δ2(X) ≥ β1 (2.21a)
∥

∥

∥
δ2y

(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c + Bg ē
∥

∥

∥
≤ β2‖ẽ2‖ (2.21b)

where

d := LgL
r−1
f h(X(t)) (2.22a)

c := Lr
fh(X(t)) (2.22b)

¯̄e = α1ē1 + α2ē2 + . . . + αr ēr. (2.22c)

Definition 1 (Khalil, 1996) A continuous function α : [0, a) → [0,∞) is said
to belong to class K if it is strictly increasing and α(0) = 0.

Definition 2 (Khalil, 1996) A continuous function β : [0, a)× [0,∞) → [0,∞)
is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → ∞.

Definition 3 (Khalil, 1996) Consider a system ẋ=f(t, x, θ), where f : [0,∞)×
ℜn × ℜn → ℜn is piecewise continuous in t and locally Lipschitz in x and θ.
This system is said to be input-to-state stable if there exist a class KL function
β, a class K function γ and positive constants k1 and k2 such that for any initial
state x(t0) with ‖x(t0)‖ < k1 and any bounded input θ(t) with sup

t≥t0

‖θ(t)‖ < k2,

the state exists and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(

sup
t0≤τ≤t

‖θ(τ)‖
)

(2.23a)

for all t ≥ t0 ≥ 0.

Now we formulate the tracking problem with almost disturbance decoupling
as follows:

Definition 4 (Marino and Tomei, 1999) The tracking problem with almost
disturbance decoupling is said to be globally solvable by the state feedback con-
troller u for the transformed-error system by a global diffeomorphism (2.6) and
coordinate transformation (2.18), if the controller u enjoys the following prop-
erties:
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i) It is input-to-state stable with respect to disturbance inputs.

ii) For any initial value x̃e0 :=
[

ẽ1(t0) ẽ2(t0) η(t0)
]T

, for any t ≥ t0
and for any t0 ≥ 0

|y(t)−yd(t)| ≤ β11(‖x(t0)‖, t− t0)+
1√
β22

β33

(

sup
t0≤τ≤t

‖θ(τ)‖
)

(2.23b)

and

∫ t

t0

[y(τ) − yd(τ)]
2
dτ ≤ 1

β44

[

β55 (‖x̃e0‖) +

∫ t

t0

β33

(

‖θ (τ)‖2
)

dτ

]

(2.23c)

where β22, β44 are positive constants, β33, β55 are class K functions and β11 is
a class KL function.

Definition 5 Consider the following dynamical system

ż(t) = f(t, z(t)), z ∈ ℜp, z(t0) := z0

where z ∈ ℜp is the state and f(·) is a smooth function. We use z(t; t0, z0) to
denote the solution of system with z(t0; t0, z0) = z0. A closed set S is called a
global final attractor for the trajectories z(·) : [t,∞) → ℜp, z(t0) = z0 of the
system, if for any initial state z0, there exists a finite constant T (z0, S) ∈ [0,∞)
such that

z(t0; t0, z0) ∈ S, ∀t ≥ t0 + T (z0, S).

Now we present our main result.

Theorem 1 Suppose that there exists a continuously differentiable function
V0ℜn−r → ℜ+ such that the following three inequalities hold for all η ∈ ℜn−r:

(a) k1‖η‖2 ≤ V0(η) ≤ k2‖η‖2, k1, k2 > 0 (2.24a)

(b) (∆ηV0)
T q22(η, 0) ≤ k3‖η‖2, k3 > 0 (2.24b)

(c) ‖∆ηV0‖ ≤ k4‖η‖, k4 > 0, (2.24c)

then the tracking problem with almost disturbance decoupling is globally solvable
by the controller defined by

ufeedback =
[

LgL
r−1
f h(X(t))

]−1 {

− Lr
fh(X) + y

(r)
d − 2ε−rα1

[

L0
fh(X) − yd

]

−2ε1−rα2

[

L1
fh(X)−y

(1)
d

]

−. . .−2ε−1αr

[

Lr−1
f h(X)−y

(r−1)
d

]

−mBgē
}

(2.25)

where m is an adjustable positive constant and the influence of disturbances on
the L2 norm of the tracking error can be arbitrarily attenuated by increasing the
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following adjustable parameter N2 > 1:

N2 = min{k11, k22, k33} (2.26a)

k11 :=
αλmin

ε
− 1

2
−
(α

ε
‖Mgφξ‖

)2

(2.26b)

k22 := −
(

α

ε
‖MgAcB‖ +

1

ε
‖BgAcM‖

)2

− 1

ε
‖BgAcB‖

+εr−1 + εr−1mβ1 −
1

16
−
(

1

ε
‖Bgφξ‖

)2

− β2ε
r−1 (2.26c)

k33 := µk3 − 5(µLk4)
2 − (µLk4‖φη‖)2 (2.26d)

φξ :=













ε
∂

∂X
hq∗1 · · · ε

∂

∂X
hq∗p

...
...

εr ∂

∂X
Lr−1

f hq∗1 · · · εr ∂

∂X
Lr−1

f hq∗q













(2.26e)

φη :=













∂

∂X
φr+1q

∗
1 · · · ∂

∂X
φr+1q

∗
p

...
...

∂

∂X
φnq∗1 · · · ∂

∂X
φnq∗q













(2.26f)

N1 :=
3

4

(

sup
t0≤τ≤t

‖θ (τ)‖
)2

(2.26g)

where α ≥ 2 and µ are strictly positive constants to be adjusted. Moreover, the
output tracking error of system (2.1) is exponentially attracted into a sphere Br,

r =
√

N1

N2
, with an exponential rate of convergence

1

2

(

N2

ω2
− N1

ω2r2

)

:=
1

2
α∗. (2.26h)

Proof. Applying the co-ordinate transformation (2.6) yields

ξ̇1(t) =
∂φ1

∂X

dX

dt
=

∂h(X(t))

∂X

[

f + g · u + ∆f + ∆g · u +

p
∑

i=1

q∗i θi

]

= L1
fh(X(t)) + LgL

0
fh(X(t))u +

∂h(X)

∂X
(∆f + ∆g · u) +

∂h(X)

∂X

p
∑

i=1

q∗i θi

= L1
fh(X(t)) +

∂h(X)

∂X
(∆f + ∆g · u) +

∂h(X)

∂X

p
∑

i=1

q∗i θi
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= ξ2(t) +
∂h

∂X
g(X)δ1(X) +

∂h

∂X
g(X)δ2(X)u +

∂h(X)

∂X

p
∑

i=1

q∗i θi

= ξ2(t) +

p
∑

i=1

∂h(X)

∂X
q∗i θi (2.27)

ξ̇r−1(t) =
∂φr−1

∂X

dX

dt
=

∂Lr−2
f h(X(t))

∂X

[

f + g · u + ∆f + ∆g · u +

p
∑

i=1

q∗i θi

]

= Lr−1
f h(X(t)) + LgL

r−2
f h(X(t))u +

∂Lr−2
f h(X(t))

∂X
(∆f + ∆g · u)

+
∂Lr−2

f h(X(t))

∂X

p
∑

i=1

q∗i θi

= Lr−1
f h(X(t)) +

∂Lr−2
f h(X(t))

∂X
(∆f + ∆g · u) +

∂Lr−2
f h(X(t))

∂X

p
∑

i=1

q∗i θi

= ξr(t) +
∂

∂X
Lr−2

f h(X)g(X)δ1(X) +
∂

∂X
Lr−2

f h(X)g(X)δ2(X)u

+
∂Lr−2

f h(X(t))

∂X

p
∑

i=1

q∗i θi

= ξr(t) +

p
∑

i=1

∂Lr−2
f h(X(t))

∂X
q∗i θi (2.28)

ξ̇r(t) =
∂φr

∂X

dX

dt
=

∂Lr−1
f h(X(t))

∂X

[

f + g · u + ∆f + ∆g · u +

p
∑

i=1

q∗i θi

]

= Lr
fh(X) + LgL

r−1
f h(X(t))u +

∂Lr−1
f h(X(t))

∂X
(∆f + ∆g · u)

+
∂Lr−1

f h(X(t))

∂X

p
∑

i=1

q∗i θi

= Lr
fh(X) + LgL

r−1
f h(X)u +

∂

∂X
Lr−1

f h(X)g(X)δ1(X)

+
∂

∂X
Lr−1

f h(X)g(X)δ2(X)u +
∂Lr−1

f h(X(t))

∂X

p
∑

i=1

q∗i θi

= Lr
fh(X) + LgL

r−1
f h(X) [(1 + δ2(X))u + δ1(X)]

+

p
∑

i=1

∂Lr−1
f h(X(t))

∂X
q∗i θi (2.29)
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η̇k =
∂φk(X)

∂X

dX

dt
=

∂φk(X)

∂X

[

f + g · u + ∆f + ∆g · u +

p
∑

i=1

q∗i θi

]

=
∂φk(X)

∂X
f +

∂φk(X)

∂X
gu +

∂φk(X)

∂X
(∆f + ∆g · u) +

∂φk(X)

∂X

p
∑

i=1

q∗i θi

= Lfφk(X) +
∂φk(X)

∂X
(∆f + ∆g · u) +

∂φk(X)

∂X

p
∑

i=1

q∗i θi

= Lfφk +
∂φk

∂X
g(X)δ1(X) +

∂φk

∂X
g(X)δ2(X)u +

∂φk(X)

∂X

p
∑

i=1

q∗i θi

= Lfφk +

p
∑

i=1

∂φk(X)

∂X
q∗i θi (2.30)

k = r + 1, r + 2, . . . , n

Since

c(ξ(t)η(n)) := Lr
fh(X(t)) (2.31)

d(ξ(t)η(t)) := LgL
r−1
f h(X(t)) (2.32)

qk(ξ(t), η(t)) = Lfφk(X), k = r + 1, r + 2, . . . , n (2.33)

the dynamic equations of system (2.1) in the new co-ordinates appear as follows:

ξ̇i(t) = ξi+1(t) +

p
∑

i=1

∂

∂X
Li−1

f hq∗i θi, i = 1, 2, . . . , r − 1 (2.34)

ξ̇r(t) = c(ξ(t)η(n)) + d(ξ(t)η(t)) [(1 + δ2(X))u + δ1(X)]

+

p
∑

i=1

∂

∂X
Li−1

f hq∗i θi, (2.35)

η̇k(t) = qk(ξ(t), η(t)) +

p
∑

i=1

∂

∂X
φk(X)q∗i θi, k = r + 1, . . . , n (2.36)

y(t) = ξ1(t). (2.37)

Define

v := y
(r)
d − 2ε−rα1

⌊

L0
fh(X) − yd

⌋

− 2ε1−rα2

⌊

L1
fh(X) − y

(1)
d

⌋

− . . . − 2ε−1αr

⌊

Lr−1
f h(X) − y

(r−1)
d

⌋

− mBg ē (2.38)

According to equations (2.7), (2.10), (2.31) and (2.32), the tracking controller
can be rewritten as

u = d−1[−c + v] (2.39)
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By substituting equation (2.39) into (2.35), the dynamic equations of system
(2.1) can be written as follows:















ξ̇1(t)

ξ̇2(t)
...

ξ̇r−1(t)

ξ̇r(t)















=















0 1 0 . . . 0
0 0 1 0 . . . 0

...
...

0 0 0 . . . 1
0 0 0 . . . 0





























ξ̇1(t)

ξ̇2(t)
...

ξ̇r−1(t)

ξ̇r(t)















+















0
0
...
0
1















{δ1d − δ2c + (1 + δ2)v} +





























+

p
∑

i=1

∂

∂X
hq∗i θi

+

p
∑

i=1

∂

∂X
L1

fhq∗i θi

...

+

p
∑

i=1

∂

∂X
Lr−1

f hq∗i θi





























(2.40)















η̇r+1(t)
η̇r+2(t)

...
η̇n−1(t)
η̇n(t)















=















qr+1(t)
qr+2(t)

...
qn−1(t)
qn(t)















+







































p
∑

i=1

∂

∂X
φr+1q

∗
i θi

p
∑

i=1

∂

∂X
φr+2q

∗
i θi

...
p
∑

i=1

∂

∂X
φn−1q

∗
i θi

p
∑

i=1

∂

∂X
φnq∗i θi







































(2.41)

y =
[

1 0 · · · 0 1
]

1×r















ξ1(t)
ξ2(t)

...
ξr−1(t)
ξr(t)















r×1

= ξ1(t) (2.42)

Upon combining equations (2.10), (2.12), (2.15) and (2.38), it can be easily
verified that equations (2.40)-(2.42) can be transformed into the following form:

η̇(t) = q(ξ(t), η(t)) + φηθ := q22(η(t), ẽ) + φηθ (2.43a)
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ε ˙̄e(t) = Acē + Bεr
{

δ1d − δ2c + δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e − m(1 + δ2)B
g ē
}

+φξθ (2.43b)

y(t) = ξ1(t). (2.44)

Under the coordinate transformation (2.19), the subsystem (2.43b) becomes

[

˙̃e1

˙̃e2

]

=
1

ε

[

MgAcM MgAcB
BgAcM BgAcB

] [

ẽ1

ẽ2

]

+

[

Mgφξθ
Bgφξθ

]

+

[

0(r−1)×1

1

]

[

εr−1
(

δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c − m(1 + δ2)B
g ē
)]

(2.45)

We consider V (ẽ, η), defined by a weighted sum of V0(η) and V1(ẽ),

V (ẽ, η) := V1(ẽ) + µV0(η) (2.46)

as a composite Lyapunov function of the system (2.43a) and (2.45) (Khorasani

and Kokotovic, 1986; Marino and Kokotovic, 1988), where V1(̃(e)) satisfies

V1(ẽ) :=
1

2
(α‖ẽ1‖2 + ‖ẽ2‖2) (2.47)

In view of (2.20)-(2.22), (2.24) and (2.25), the derivative of V (ẽ, η) along the
trajectories of (2.43a) and (2.45) is given by

V̇ = V̇1 + µV̇0 =
α

2

(

ẽT
1

˙̃e1 + ˙̃eT
1 ẽ1

)

+
1

2

(

ẽT
2

˙̃e2 + ˙̃eT
2 ẽ2

)

+ µ

(

∂V0

∂η

)T

η̇

=
α

2ε

[

ẽT
1 (MgAcMẽ1 + MgAcBẽ2 + Mgφξθ)

+(MgAcMẽ1 + MgAcBẽ2 + Mgφξθ)
T ẽ1

]

+
1

2ε

{

ẽT
2

[

BgAcMẽ1 + BgAcBẽ2

+εr(δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c − m(1 + δ2)B
g ē) + Bgφξθ

]

}

+
[

BgAcMẽ1 + BgAcBẽ2 + εr(δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c

−m(1 + δ2)B
g ē) + Bgφξθ

]T

ẽ2 + µ

(

∂V0

∂η

)T

q(ξ, η) + φηθ

=
α

ε
ẽT
1 (MgAcMẽ1 + MgAcBẽ2) +

α

ε
ẽT
1 Mgφξθ +

ẽT
2

ε

[

BgAcMẽ1

+BgAcBẽ2 + εr(δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c − m(1 + δ2)B
g ē)
]

+
ẽT
2

ε
Bgφξθ + µ

(

∂V0

∂η

)T

[q22(η, ẽ) + φηθ − q22(η, 0) + q22(η, 0)]
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=
α

ε
ẽT
1 MgAcMẽ1 +

α

ε
ẽT
1 MgAcBẽ2 +

α

ε
ẽT
1 Mgφξθ +

ẽT
2

ε
BgAcMẽ1

+
ẽT
2

ε
BgAcBẽ2 + ẽT

2 εr−1(δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c

−m(1 + δ2)B
ge + Bge − Bge) +

ẽT
2

ε
Bgφξθ

+µ

(

∂V0

∂η

)T

[q22(η, ẽ) + φηθ − q22(η, 0) + q22(η, 0)]

≤ α

ε
ẽT
1 Dẽ1+

1

ε
(α‖MgAcB‖+‖BgAcM‖) ‖ẽ1‖‖ẽ2‖ +

1

ε
‖ẽ2‖2‖BgAcB‖

+εr−1‖δ2y
(r)
d − (1 + 2δ2)ε

−r ¯̄e + δ1d − δ2c + Bg ē‖‖ẽ2‖ − ẽT
2 εr−1Bg ē

−ẽT
2 εr−1m(1 + δ2)B

g ē + µ

(

∂V0

∂η

)T

[q22(η, ẽ + φηθ − q22(η, 0) + q22(η, 0)]

+
α

ε
ẽT
1 Mgφξθ +

ẽT
2

ε
Bgφξθ

≤ −α

ε
λmin‖ẽ1‖2 +

1

ε
(α‖MgAcB‖ + ‖BgAcM‖) ‖ẽ1‖‖ẽ2‖

+
1

ε
‖ẽ2‖2‖BgAcB‖ + β2‖ẽ2‖2εr−1−‖ẽ2‖2εr−1(1+mβ1)

+
α

ε
‖ẽ1‖‖Mgφξ‖‖θ‖ +

1

ε
‖ẽ2‖‖Bgφξ‖‖θ‖ + µ‖∂V0

∂η
‖‖q22(η, ẽ1) − q22(η, 0)‖

+µ

[

(

∂V0

∂η

)T

q22(η, 0)

]

+ µ‖∂V0

∂η
‖‖φn‖‖θ‖

≤ −α

ε
λmin‖ẽ1‖2 +

(

α

ε
‖MgAcB‖ +

1

ε
‖BgAcM‖

)2

‖ẽ2‖2 +
1

4
‖ẽ1‖2

+
1

ε
‖ẽ2‖2‖BgAcB‖ + β2ε

r−1‖ẽ2‖2 − ‖ẽ2‖2εr−1(1 + mβ1)

+
α

ε
‖ẽ1‖‖Mgφξ‖‖θ‖ +

1

ε
‖ẽ2‖‖Bgφξ‖‖θ‖

+µLk4‖η‖ (‖ẽ1‖ + ‖ẽ2‖) − µk3‖η‖2 + µk4‖η‖‖φn‖‖θ‖

≤ ‖ẽ1‖2

(

−α

ε
λmin +

1

4
+
(α

ε
‖Mgφξ‖

)2
)

+‖ẽ2‖2

[

(

α

ε
‖MgAcB‖ +

1

ε
‖BgAcM‖

)2

+
1

ε
‖BgAcB‖ − εr−1(1 + mβ1)

+

(

1

ε
‖Bgφξ‖

)2

+ β2ε
r−1

]

+µLK4‖η‖ (‖ẽ1‖ + ‖ẽ2‖) − µk3‖η‖2 + (µk4‖φη‖)2 ‖η‖2 +
3

4
‖θ‖2
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= ‖ẽ1‖2

(

−α

ε
λmin +

1

4
+
(α

ε
‖Mgφξ‖

)2
)

+‖ẽ2‖2

[

(

α

ε
‖MgAcB‖ +

1

ε
‖BgAcM‖

)2

+
1

ε
‖BgAcB‖ − εr−1(1 + mβ1)

+

(

1

ε
‖Bgφξ‖

)2

+ β2ε
r−1

]

−µk3‖η‖2 + µLk4‖η‖‖ẽ1‖ + µLk4‖η‖‖ẽ2‖ + (µk4‖φη‖)2‖η‖2 +
3

4
‖θ‖2

≤ −‖ẽ1‖2

(

α

ε
λmin +

1

4
+
(α

ε
‖Mgφξ‖

)2
)

+‖ẽ2‖2

[

(

−α

ε
‖MgAcB‖ +

1

ε
‖BgAcM‖

)2

+
1

ε
‖BgAcB‖ − εr−1(1 + mβ1)

+

(

1

ε
‖Bgφξ‖

)2

+ β2ε
r−1

]

− µk3‖η‖2 + (µLk4)
2‖η‖2 +

1

4
‖ẽ1‖2

+4(µLk4)
2‖η‖2 +

1

16
‖ẽ2‖2 + (µk4‖φη‖)2‖η‖2 +

3

4
‖θ‖2

≤ −‖ẽ1‖2

(

α

ε
λmin − 1

2
−
(α

ε
‖Mgφξ‖

)2
)

−‖ẽ2‖2

[

εr−1 (1+mβ1)−
(

α

ε
‖MgAcB‖+

1

ε
‖BgAcM‖

)2

− 1

ε
‖BgAcB‖

− 1

16
−
(

1

ε
‖Bgφξ‖

)2

− β2ε
r−1

]

−‖η‖2
[

µk3 − 5 (µLk4)
2 − (µk4 ‖φη‖)2

]

+
3

4
‖θ‖2

≤ −N2

(

‖ẽ1‖2 + ‖ẽ2‖2 + ‖η‖2
)

+
3

4
‖θ‖2 := −N2‖ytotal‖2 +

3

4
‖θ‖2 (2.48)

where

‖ytotal‖2 := ‖ẽ1‖2 + ‖ẽ2‖2 + ‖η‖2. (2.49)

By virtue of (Khalil, 1996, Theorem 5.2), (2.48) implies the input-to-state
stability for the closed-loop system. Furthermore, it is easy to see that

ω1

(

‖ẽ1‖2 + ‖ẽ2‖2 + ‖η‖2
)

≤ V ≤ ω2

(

‖ẽ1‖2 + ‖ẽ2‖2 + ‖η‖2
)

i.e.

ω1 ‖ytotal‖2 ≤ V ≤ ω2 ‖ytotal‖2 (2.50)
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where ω1 := min
(

α
2 , 1

2 , µk1

)

, ω2 := max
(

α
2 , 1

2 , µk2

)

. From (2.48) and (2.50), we
get

V̇ ≤ −N2

ω2
V +

3

4
‖θ‖2 ≤ −N2

ω2
V +

3

4

(

sup
t0≤τ≤t

‖θ (τ)‖
)2

(2.51)

Hence,

V (t) ≤ V (t0)e
−

N2

ω2
(t−t0) +

3ω2

2N2

(

sup
t0≤τ≤t

‖θ (τ)‖
)2

(2.52)

which implies

|e1(t)| ≤
√

V (t0)e
−

N2

2ω2
(t−t0) +

√

3ω2

2N2

(

sup
t0≤τ≤t

‖θ (τ)‖
)

. (2.53)

Hence, statement (2.23b) is proved. From (2.19c) and (2.48), we get

V̇ ≤ −N2

(

‖ẽ1‖2 + ‖ẽ2‖2 + ‖η‖2
)

+
3

4
‖θ‖2 (2.54a)

i.e.

V̇ + N2 ‖e1‖2 ≤ −N2

(

‖ẽ2‖2 + ‖η‖2
)

+
3

4
‖θ‖2 (2.54b)

which implies
∫ t

t0

(y(τ) − yd(τ))2 dτ ≤ V (t0)

N2
+

3

4N2

∫ t

t0

‖θ(τ)‖2 dτ (2.55)

so that statement (2.23c) is satisfied. Finally, we will prove that the sphere Br

is a global attractor for the output tracking error of system (2.1). From (2.48)
and (2.26g), we get

V̇ ≤ −N2

(

‖ytotal‖2
)

+ N1 (2.56)

For ‖ytotal‖ ≥ r, we have V̇ < 0. Hence any sphere defined by

Br :=

{[

ē
η

]

: ‖ē‖2 + ‖η‖2 ≤ r

}

(2.57)

is a global final attractor for the tracking error system of the nonlinear control
systems (2.1). Furthermore, it is easy routine to see that, for ytotal /∈ Br, we
have

V̇

V
≤ −N2‖ytotal‖2 + N1

V
≤ −N2‖ytotal‖2 + N1

ω2‖ytotal‖2

≤ −N2

ω2
+

N1

ω2‖ytotal‖2
≤ −N2

ω2
+

N1

ω2r2
:= −α∗ (2.58)
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i.e.,

V̇ ≤ −α∗V

According to the comparison theorem (Miller and Michel, 1982), we get

V (ytotal(t)) ≤ V (ytotal(t0)) exp [−α∗(t − t0)]

Therefore,

ω1 ‖ytotal‖2 ≤ V (ytotal(t)) ≤ V (ytotal(t0)) exp [−α∗(t − t0)]

≤ ω2 ‖ytotal(t0)‖2
exp [−α∗(t − t0)] (2.59)

Consequently, we get

‖ytotal‖ ≤
√

ω2

ω1
‖ytotal(t0)‖ exp

[

−1

2
α∗(t − t0)

]

i.e., the convergence rate toward the sphere Br is equal to α∗/2. This completes
our proof.

If the relative degree of nonlinear control system is equal to one, then The-
orem 1 will be reduced to the simplified version as follows:

Assumption 3 For all t ≥ 0, η ∈ ℜn−r and ξ ∈ ℜr, there exists a positive
constant L such that the following inequality holds:

‖q22(η, ẽ) − q22(η, 0)‖ ≤ L (‖ẽ2‖) (2.60)

where q22(η, ẽ) := q(ξ, η).

Assumption 4 There exists known functions β1(·), β2(·) : ℜn → R+ such that

1 + δ2(X) ≥ β1 (2.61a)
∥

∥

∥
δ2y

(1)
d − (1 + 2δ2)ε

−1 ¯̄e + δ1d − δ2c + ē
∥

∥

∥
≤ β2‖ẽ2‖ (2.61b)

where

¯̄e = α1ē1. (2.62)

Theorem 2 Suppose that there exists a continuously differentiable function V0 :
ℜn−r → ℜ+ such that the following three inequalities hold for all η ∈ ℜn−r :

(a) k1‖η‖2 ≤ V0(η) ≤ k2‖η‖2, k1, k2 > 0 (2.63)

(b) (∇ηV0)
T q22(η, 0) ≤ −k3‖η‖2, k3 > 0 (2.64)

(c) ‖∇ηV0‖ ≤ k4‖η‖, k4 > 0, (2.65)
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then the tracking problem with almost disturbance decoupling is globally solvable
by the controller defined by

ufeedback = [Lgh(X(t))]−1
{

−L1
fh(X)+y

(1)
d −2ε1α1[L

0
fh(X)−yd]−mē

}

(2.66)

where m is adjustable positive constant. Moreover, the influence of disturbances
on the L2 norm of the tracking error can be arbitrarily attenuated by increasing
the adjustable parameter N2 > 1:

N2 = min{k22, k33} (2.67)

k22 := −1

ε
‖BgAcB‖ + mβ1 +

15

16
−
(

1

ε
‖Bgφξ‖

)2

− β2 (2.68)

k33 := µk3 − 5(µLk4)
2 − (µLk4‖φη‖)2 (2.69)

N1 :=
3

4

(

sup
t0≤τ≤t

‖θ (τ)‖
)2

. (2.70)

2.2. Fuzzy controller design

After using feedback linearization control as a guarantee of uniform ultimate
bounded stability, the multiple input/single output fuzzy control design can be
technically applied via human expert’s knowledge to improve the convergence
rate of tracking error dynamics. The block diagram of the fuzzy control is
shown in Fig. 1. In general, the tracking error e(t) and its time derivative ė(t)
are utilized as the input fuzzy variables of the IF-THEN control rules and the
output is the control variable ufuzzy.

differentiator

Tracking

Signal

d
y

Output

y

Fuzzifier
Inference

Engine
Defuzzifier fuzzyu

Rule Base

e

Figure 1. Fuzzy logic controller

For the sake of easy computation, the membership functions of the linguistic
terms for e(t), ė(t) and ufuzzy are all chosen to be the triangular shape function.
We define seven linguistic terms: PB (Positive big), PM (Positive medium), PS
(Positive small), ZE (Zero), NS (Negative small), NM (Negative medium) and
NB (Negative big), for each fuzzy variable, as shown in Fig. 2.
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1 0.5 0 0.5 1

PBPS

Z

NSNB PMNM

0.20.2 1 0.5 0 0.5 1

PBPS

Z

NSNB PMNM

0.20.2 1 0.5 0 0.5 1

PBPS

Z

NSNB PMNM

0.20.2

                                   (a)                 (b)                      (c) )(te )(te fuzzyu

Figure 2. Membership functions for (a) e(t) (b) e(t) and (c) ufuzzy

Fuzzy control rule table for ufuzzy is shown in Table 1. The rule base is
heuristically built by the standard McVicar-Whelan rule base (Yager and Filev,
1994) for usual servo control systems. The Mamdani method is used for fuzzy
inference. The defuzzification of the output set membership value is obtained
by the centroid method. Therefore, we can combine the designs of feedback
linearization control and fuzzy control to construct the overall controller as
follows:

ufe+fu := ufeedbackus(t) + ufuzzyus(t − t1)

= [LgL
r−1
f h(X(t))]−1

{

− Lr
fh(X) + y

(r)
d − 2ε−rα1[L

0
fh(X) − yd]

−2ε1−rα2[L
1
fh(X) − y

(1)
d ] − . . .

−2ε−1αr[L
r−1
f h(X) − y

(r−1)
d ] + mBgē

}

us(t) + ufuzzyus(t − t1) (2.71)

where us denotes the unit step function and t1 is the time when the tracking
error dynamics of the system touch the final attractor Br.

Table 1. Fuzzy control rule base

( )e t

fuzzy
u NB NM NS ZE PS PM PB

NB PB PB PB PB PM PS ZE

NM PB PB PB PM PS ZE NS

NS PB PB PM PS ZE NS NM

ZE PB PM PS ZE NS NM NB

PS PM PS ZE NS NM NB NB

( )e t

PM PS ZE NS NM NB NB NB

PB ZE NS NM NB NB NB NB
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3. Illustrative example

Figure 3. Inverted pendulum control system (θ: angle of pendulum)

The inverted pendulum on a cart, shown in Fig. 3, is a famous unstable highly
nonlinear system. The dynamic behavior of the inverted pendulum system is
described by four state variables: x=position variable of the cart on the track,
ẋ=velocity variable of the cart, θ=angle variable of the pendulum and θ̇=angular
velocity variable of the pendulum. Assume that the pendulum is freely hinged
to the cart, which is free to move on a horizontal track with no moment of inertia
and viscous friction for the motion of the cart. Then the dynamic equations of
motion for the inverted pendulum system can be derived as follows based on
the second motion law of Newton:

(M + m)ẍ + mlθ̈ cos θ − ml(θ̇)2 sin θ = u (3.1a)

ml2θ̇ + ml cos θẍ = mgl sin θ (3.1b)

where u is an input force, M is the mass of the cart, m is the mass of the
pendulum, 2l is the length of the pendulum and g is the gravitational constant.
Due to the thickness of the pendulum, the angle is not greater or equal to π/2
(i.e., θ < π/2). With the choices of the state variables and the output x1 = x,
x2 = ẋ, x3 = θ, x4 = θ̇, y = θ + θ̇, the dynamic equations of the inverted
pendulum system are









ẋ1

ẋ2

ẋ3

ẋ4









=

















x2

−mgl sinx3 cosx3 + ml2 (sinx3)x2
4

l(M + m) − ml cos2 x3

x4

g(M + m) (sinx3) − ml sin x3

(

x2
4

)

l(M + m) − ml cos2 x3

















+
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+















0
l

l(M + m) − ml cos2 x3

0
− cosx3

l(M + m) − ml cos2 x3















u +









1
0
0
0









θ (3.2a)

y = x3 + x4 (3.2b)

where the noises are assumed to be θ = sin(t − 2).

In the simulation, the true values of the parameters are M = 2kg, m = 0.2kg,
l = 0.6m and g = 9.8m/s2. Then the dynamics equations can be rewritten as
follows:









ẋ1

ẋ2

ẋ3

ẋ4









=













x2

−1.176 sinx3 cosx3 + 0.072 (sin x3)x2
4

1.32 − 0.12 cos2 x3
x4

21.56 sin x3−0.12 sin x3(x2

4)
1.32−0.12 cos2 x3













+











0
0.6

1.32−0.12 cos2 x3

0
− cosx3

1.32 − 0.12 cos2 x3











u +









1
0
0
0









θ (3.3a)

y = x3 + x4 = h(X) (3.3b)

We will consider exponential tracking of the output y(t) = h(X(t)) = x3+x4

to a desired signal yd(t) = 0 (the pendulum is located at vertical position,
i.e.,x3 = 0). The original system (3.3) is a system of relative degree one. It can
be verified that with the choice ε = 1, V0(η) = η2

2 + η2
3 + η2

4 , µ = 1.67, m = 2
and α1 = 1, the related conditions of Theorem 2 are satisfied with ξ1 = x3 +x4,
η2 = 0.1x3, η3 = 0.1x3, η4 = 0.1x3, r = 1, B = Bg = 1, L =

√
0.03 , Ac = −1,

k1 = k2 = 1, k3 = k4 = 2, ‖φζ‖ = ‖φη‖ = 0, k22 = 8.75, k33 = 8.34, N1 = 0.75,
N2 = 8.34, β1 = 1 and β2 = 0. The desired tracking controller is given below

ufe+fu =

( − cosx3

1.32 − 0.12 cos2 x3

)−1
(

−
(

x4 +
21.56 sinx3 − 0.12 sinx3(x

2
4)

1.32 − 0.12 cos2 x3

)

−(2ε−1α1 + 40)(x3 + x4)

)

us(t) + ufuzzyus(t − t1) (3.4)

The tracking errors driven by ufe+fu for (3.1) is depicted in Fig. 4.
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Figure 4. The tracking error driven by ufe+fu for (3.1)

4. Comparative example with an existing approach

It is shown in Marino and Tomei (1999) for the following example

[

ẋ1(t)
ẋ2(t)

]

=

[

x2

0

]

+

[

0
1

]

u +

[

θ1(t)
x3

2θ2(t)

]

(4.1a)

y(t) = x1(t) := h(X(t)) (4.1b)

that the tracking and almost disturbance decoupling problem cannot be solved,
with θ1 = θ2 = 0.5 sin t. The fuzzy feedback linearization control algorithm pro-
posed in this paper will solve it perfectly. Applying the same design procedures
of Theorem 1 yields the desired tracking and almost disturbance decoupling
controller as follows:

ufe+fu =
(

1 + x2
2

)

[− sin t−40(x1−sin t+tan−1 x2−cos t)]us(t)+ufuzzyus(t−t1)

(4.2)

The tracking error dynamics driven by ufe+fu for (4.1) is depicted in Fig. 5.

5. Conclusion

In this paper we have constructed a fuzzy feedback control algorithm which glob-
ally solves the tracking problem with almost disturbance decoupling. The dis-
cussion and practical application of input-output feedback linearization of non-
linear control systems with uncertainties by parameterized co-ordinate transfor-
mation have been presented. One comparative example is proposed to show the
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Figure 5. The tracking error driven by ufe+fu for (4.1)

significant contribution of this paper with respect to some existing approaches.
Moreover, a practical example of an inverted pendulum control system demon-
strated the applicability of the proposed differential geometry approach and
the composite Lyapunov approach. Simulation results exploited the fact that
the proposed methodology is successfully applied to input-output linearization
problem and achieves the desired tracking and almost disturbance decoupling
performances of the controlled system.
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