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Abstract: The paper presents a new control strategy for ac-
tive vehicle suspensions using electrohydraulic actuators based on
Takagi-Sugeno (T-S) fuzzy modelling technique. As the electrohy-
draulic actuator dynamics is highly nonlinear, the T-S fuzzy mod-
elling technique using the idea of “sector nonlinearity” is applied to
exactly represent the nonlinear dynamics of electrohydraulic actua-
tor in a defined region at first. Then, by means of parallel distributed
compensation (PDC) scheme and Lyapunov method, a fuzzy H∞

controller is designed for the T-S fuzzy model to optimise the sus-
pension ride comfort performance, considering actuator input volt-
age saturation problem. The sufficient conditions for the existence
of such a controller are derived in terms of linear matrix inequalities
(LMIs). The advantage of this new control strategy for electro-
hydraulic active suspensions is that it directly aims at optimising
suspension performance with guaranteeing the closed-loop system
stability. Thus, two-loop control strategy, where the inner loop is
used to make the electrohydraulic actuator tracking a desired force
(pressure, or displacement, etc.), is not necessary. In addition, the
controller is simple in structure compared to the adaptive control
algorithms. A numerical example is used to validate the effective-
ness of the proposed approach. It is confirmed by the simulations
that the designed controller can achieve better performance than the
active suspension with optimal skyhook damper.
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1. Introduction

Active suspensions play an important role in modern vehicles in improving sus-
pension performance (Hrovat, 1997; Williams, 1997). It is noted that the inputs
to the active suspensions are usually given as actuator forces. To realise the de-
sired forces in real world applications, the actuators that fit into the suspension
packaging space and satisfy the practical power and bandwidth requirements
should be chosen. Electromagnetic actuators can be built for application in ve-
hicle electromagnetic suspensions with the developments in power electronics,
permanent magnet materials, and microelectronic systems in the last ten years
(Martins et al., 2006). However, their mass and bulky size with respect to the
desired suspension geometry and the unsprung mass dynamics will limit their
practical applications in the current state. On the contrary, electrohydraulic
actuators have been considered as one of the most viable choices for an active
suspension due to their high power-to-weight ratio and low cost. Therefore,
in recent years, many researches have been focused on electrohydraulic active
suspensions and various control algorithms have been proposed (Alleyne and
Hedrick, 1995; Tuan et al., 2001; Chantranuwathana and Peng, 2004; Zhang
and Alleyne, 2006; Huang and Chen, 2006; Chen and Huang, 2006; Kaddissi,
Kenne and Saad, 2007). Nevertheless, as proved by Alleyne and Liu (1999),
pure PID-like controllers are not capable of giving satisfactory performance in
the actuator force tracking problem, and more sophisticated control schemes
should be employed. Therefore, some attempts, for example by Alleyne and
Liu (1999, 2000a,b), Alleyne, Neuhaus and Hedrick (1993), and Thompson and
Davis (2001), have been made to compensate for this shortcoming through ad-
vanced inner loop force control algorithms. In addition, to overcome the diffi-
culty in achieving a desired force for an active suspension, Zhang and Alleyne
(2006) made effort to transform the force tracking problem to a displacement
tracking problem. Recently, the adaptive sliding control algorithm based on
the function approximation technique was presented (Huang and Chen, 2006;
Chen and Huang, 2006) for electrohydraulic active suspensions. However, as
pointed in Tseng, Chen and Vang (2001), chattering phenomenon is inevitable
in the sliding mode control, and it may excite unmodelled high-frequency dy-
namics, which degrades the performance of the system and may even lead to
instability. It is noted that, due to the highly nonlinear dynamics of electrohy-
draulic actuator, using the electrohydraulic actuators to track the desired forces
is fundamentally limited in its ability when interacting with an environment
possessing dynamics (see Alleyne and Liu, 1999). Therefore, developing direct
controller design approach for improving performance of electrohydraulic active
suspensions is becoming necessary.

In this paper, a new fuzzy control strategy is presented to improve the ride
comfort performance of active suspensions using electrohydraulic actuators. In
the past decades, fuzzy logic control has been proposed as an alternative ap-
proach to conventional control techniques for complex nonlinear systems. It was
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originally introduced and developed as a model-free control design approach.
However, it suffers from criticism of lacking systematic stability analysis and
controller design. In the recent ten years or so, prevailing research efforts on
fuzzy logic control have been devoted to model-based fuzzy control systems that
guarantee not only stability but also performance of closed-loop fuzzy control
systems (Feng, 2006). The Takagi-Sugeno (T-S) fuzzy system is one of the most
popular fuzzy systems in the model-based fuzzy control. It is described by fuzzy
IF-THEN rules, which represent local linear input-output relations of a nonlin-
ear system. The overall fuzzy model of the nonlinear system is obtained by
fuzzy “blending” of the linear models. The T-S model is capable of approximat-
ing many real nonlinear systems, e.g., mechanical systems and chaotic systems.
As it employs linear model in the consequent part, linear control theory can be
applied for the system analysis and synthesis accordingly based on the paral-
lel distributed compensation (PDC) scheme. And hence, the T-S fuzzy models
are becoming powerful engineering tools for modelling and control of complex
dynamic systems.

To apply the model-based fuzzy control strategy to the electrohydraulic ac-
tive suspensions, in this paper, the nonlinear dynamics of a suspension system
with electrohydraulic actuator is represented by a T-S fuzzy model at first.
Then, a fuzzy H∞ controller is designed for the fuzzy T-S model to improve
the ride comfort performance with consideration of the control input voltage
saturation problem. The sufficient conditions for the existence of the controller
are given in terms of linear matrix inequalities (LMIs), which can be solved very
efficiently by means of the most powerful tools available to date, e.g., Matlab
LMI Toolbox. The proposed control strategy is validated by simulations on a
quarter-car suspension model. Results of a comparison show that the designed
controller can achieve better performance than the passive suspension and the
active suspension with optimal skyhook damper.

The rest of this paper is organised as follows. Section 2 presents the model of
a quarter-car suspension system with electrohydraulic actuator. The T-S fuzzy
model of the nonlinear suspension model is given in Section 3. In Section 4, the
fuzzy H∞ state feedback controller is obtained based on the solvability of LMIs.
Section 5 presents the design result and simulations. Finally, we summarise our
findings in Section 6.

The notation used throughout the paper is fairly standard. For a real sym-
metric matrix W, the notation of W > 0 (W < 0) is used to denote its positive-
(negative-) definiteness. ‖·‖ refers to either the Euclidean vector norm or the
induced matrix 2-norm. I is used to denote the identity matrix of appropriate
dimensions. To simplify notation, ∗ is used to represent a block matrix which
is readily inferred by symmetry
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2. Electrohydraulic suspension model

A quarter-car suspension model shown in Fig. 1 is considered here for the con-
troller design. This model has been used extensively in the literature (see Al-
leyne and Hedrick, 1995; Chantranuwathana and Peng, 2004; Huang and Chen,
2006; Chen and Huang, 2006) and it captures many important characteristics of
more detailed models. In Fig. 1, zs(t), zu(t) are the displacements of the sprung
and unsprung masses, respectively; zr(t) is the road displacement input; ms is
the sprung mass, which represents the car chassis; mu is the unsprung mass,
which represents the wheel assembly; cs, ks are damping and stiffness, respec-
tively, of the passive suspension system; kt serves to model the compressibility of
the pneumatic tyre; ct serves to model the damping of the pneumatic tyre; Fa(t)
represents the active control force of the suspension system, which is generated
by means of an electrohydraulic actuator placed between the two masses. We
assume that zs(t) and zu(t) are measured from their static equilibrium positions
and that the tyre remains in contact with the road at all times.

car

suspension

wheel

tyre

sz

uz

rz

aF

sm

um

scsk

tk tc

Figure 1. Quarter-car suspension model

In this study, the electrohydraulic actuator dynamics is expressed as (Alleyne
and Hedrick, 1995; Chen and Huang, 2006; Alleyne and Liu, 1999, 2000a,b):

Ḟa(t) = −βFa(t)−αA2
s(żs(t)− żu(t))+γAs

√

Ps −
sgn(xv(t))Fa(t)

As

xv(t), (1)

where xv(t) is the spool valve displacement; As is the actuator ram area; Ps is
the hydraulic supply pressure. α = 4βe/Vt, where β = αCtm, γ = αCdω

√

1/ρ,
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and βe is the effective bulk modulus, Vt is the total actuator volume, Ctm is the
coefficient of total leakage due to pressure, Cd is the discharge coefficient, ω is
the spool valve area gradient, ρ is the hydraulic fluid density.

Considering the electrohydraulic actuator dynamics (1) and the quarter-car
suspension model, we define the state variables as follows:

x1(t) = zs(t) − zu(t), suspension deflection,

x2(t) = zu(t) − zr(t), tyre deflection,

x3(t) = żs(t), sprung mass velocity,

x4(t) = żu(t), unsprung mass velocity,

x5(t) = Fa(t), actuator force,

x6(t) = xv(t), spool valve displacement. (2)

Then, if the actuator friction is ignored, the state-space equation of a quarter-car
suspension system installed with electrohydraulic actuator can be represented
as:

ẋ(t) = Ax(t) + B1w(t) + B2u(t), (3)

where x(t) =
[

x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)
]T

is the state vector,
u(t) is the input voltage to actuator servovalve, w(t) = żr(t) is the road distur-
bance, and the matrices are

A =

















0 0 1 −1 0 0
0 0 0 1 0 0

− ks

ms
0 − cs

ms

cs

ms

1
ms

0
ks

mu
− kt

mu

cs

mu
− cs+ct

mu
− 1

mu
0

0 0 −αA2
s αA2

s −β γAsf(x5,x6, t)
0 0 0 0 0 − 1

τ

















,

B1 =

















0
−1
0
ct

mu

0
0

















, B2 =

















0
0
0
0
0

Kc

τ

















,

where τ is the time constant of the spool valve dynamics, Kc is the conversion
gain, and f(x5,x6, t) is the nonlinear function given as

f(x5,x6, t) =

√

Ps −
sgn(x6(t))x5(t)

As

. (4)
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3. Takagi-Sugeno fuzzy modelling

In order to design a controller for the nonlinear suspension model (3) through
fuzzy approach, the T-S fuzzy modelling technique will be applied. In this
paper, the idea of “sector nonlinearity” (Tanaka and Wang, 2001) is employed
to construct an exact T-S fuzzy model for the nonlinear suspension system (3).

Suppose the actuator force Fa(t) (x5(t)) is bounded by its minimum value
Fa min and its maximum value Fa max in practice, the nonlinear function f(x5,x6,
t) will be bounded by its minimum value fmin and its maximum value fmax.
Thus, the nonlinear function f(x5,x6, t) can be represented by

f(x5,x6, t) = M1(ξ(t))fmin + M2(ξ(t))fmax,

where ξ(t) = f(x5,x6, t) is the premise variable, M1(ξ(t)) and M2(ξ(t)) are
membership functions, and

M1(ξ(t)) =
fmax − f(x5,x6, t)

fmax − fmin

, M2(ξ(t)) =
f(x5,x6, t) − fmin

fmax − fmin

. (5)

It can be seen from (5) that M1(ξ(t)) > 0, M2(ξ(t)) > 0, and M1(ξ(t))+M2(ξ(t))
= 1.

Thus, the nonlinear suspension model (3) can be represented by the following
fuzzy models.

Model Rule 1:

IF ξ(t) is M1(ξ(t)),
THEN x(t) = A1x(t) + B1w(t) + B2u(t).

Model Rule 2:

IF ξ(t) is M2(ξ(t)),
THEN x(t) = A2x(t) + B1w(t) + B2u(t).

Where, A1 =

















0 0 1 −1 0 0
0 0 0 1 0 0

− ks

ms
0 − cs

ms

cs

ms

1
ms

0
ks

mu
− kt

mu

cs

mu
− cs+ct

mu
− 1

mu
0

0 0 −αA2
s αA2

s −β γAsfmin

0 0 0 0 0 − 1
τ

















, and

A2 =

















0 0 1 −1 0 0
0 0 0 1 0 0

− ks

ms
0 − cs

ms

cs

ms

1
ms

0
ks

mu
− kt

mu

cs

mu
− cs+ct

mu
− 1

mu
0

0 0 −αA2
s αA2

s −β γAsfmax

0 0 0 0 0 − 1
τ

















.
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And then, the T-S fuzzy model, which exactly represents the nonlinear
suspension model (3) under the assumption on bounds of the actuator force
Fa(t) ∈ [Fa min, Fa max] is obtained as:

ẋ(t) =

2
∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2u(t) (6)

where

hi(ξ(t)) = Mi(ξ(t)), hi(ξ(t)) > 0, i = 1, 2, and

2
∑

i=1

hi(ξ(t)) = 1.

In practice, the actuator force Fa(t) (x5(t)) and the spool valve position
xv(t) (x6(t)) can be measured, thus, the nonlinear function f(x5,x6, t) can be
calculated, and the T-S fuzzy model (6) can be realised.

Furthermore, in a real application, the input voltage to servovalve, u(t), will
be bounded. Denote by ū(t) =sat(u(t)) the saturating control input, where
sat(u(t)) is defined as

ū(t) = sat(u(t)) =







−ulim if u(t) < −ulim

u(t) if − ulim 6 u(t) 6 ulim

ulim if u(t) > ulim

(7)

where ulim is known saturated input bound, then, from (6) and (7), the fuzzy
system (6) becomes

ẋ(t) =
2

∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2ū(t)

=
2

∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2

1 + ε

2
u(t) + B2

(

ū(t) −
1 + ε

2
u(t)

)

= Ahx(t) + B1w(t) + B2

1 + ε

2
u(t) + B2

(

ū(t) −
1 + ε

2
u(t)

)

(8)

where Ah =
2
∑

i=1

hi(ξ(t))Ai, 0 < ε < 1.

Remark 1 It is well-known that
∥

∥ū(t) − 1+ε
2

u(t)
∥

∥ 6 1−ε
2

‖u(t)‖ as long as

|u(t)| 6
ulim

ε
. So, we have

[

ū(t)− 1+ε
2

u(t)
]T [

ū(t) − 1+ε
2

u(t)
]

6
(

1−ε
2

)2
uT (t)u(t)

for |u(t)| 6
ulim

ε
.

4. Fuzzy H∞ controller design

The fuzzy controller design for the T-S fuzzy model (8) will be carried out
based on the so-called parallel distributed compensation (PDC) scheme (Tanaka
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and Wang, 2001). In the PDC design, each control rule is designed from the
corresponding rule of a T-S fuzzy model, and the designed fuzzy controller shares
the same fuzzy sets with the fuzzy model in the premise parts.

For the T-S fuzzy model (8), we construct the fuzzy state feedback controller
via the PDC as:

Control Rule 1:

IF ξ(t) is M1(ξ(t)),
THEN u(t) = K1x(t).

Control Rule 2:

IF ξ(t) is M2(ξ(t)),
THEN u(t) = K2x(t).

The overall fuzzy controller is represented by

u(t) =

2
∑

i=1

hi(ξ(t))Kix(t) = Khx(t), (9)

where Kh =
2
∑

i=1

hi(ξ(t))Ki, Ki is the state feedback gain matrix to be designed.

For vehicle suspension design, it is well-known that ride comfort is an im-
portant aspect of performance. Ride comfort usually can be quantified by the
sprung mass acceleration. Therefore, in the controller design, the sprung mass
acceleration is chosen as the control output, i.e.,

z(t) = z̈s(t) = Cx(t), (10)

where C =
[

− ks

ms
0 − cs

ms

cs

ms

1
ms

0
]

.

In order to design an active suspension to perform adequately in a wide
range of shock and vibration environments, the L2 gain of the system (8) with
(10), which is defined as

‖Tzw‖∞ = sup
‖w‖

2
6=0

‖z‖2

‖w‖2

, (11)

where ‖z‖
2

2 =
∫ ∞

0
zT (t)z(t)dt and ‖w‖

2

2 =
∫ ∞

0
wT (t)w(t)dt, and the supremum

is taken over all non-zero trajectories of the system (8) with x(0) = 0, is chosen
as the performance measure. Our goal is to design a fuzzy controller (9) such
that the fuzzy system (8) with controller (9) is quadratically stable and the L2

gain (11) is minimised.
To design the controller, the following lemma from Zhou and Khargonekar

(1988) will be used.
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Lemma 1 For any matrices (or vectors) X and Y with appropriate dimensions,
we have

XT Y + Y T X 6 ǫXT X + ǫ−1Y T Y

where ǫ > 0 is any scalar.

Let us define a Lyapunov function for the system (8) as

V (x(t)) = xT (t)Px(t) (12)

where P is a positive definite matrix.

By differentiating (12), we obtain

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t)

=

[

Ahx(t) + B1w(t) + B2

1 + ε

2
u(t) + B2

(

ū(t) −
1 + ε

2
u(t)

)]T

Px(t)

+xT (t)P

[

Ahx(t) + B1w(t) + B2

1 + ε

2
u(t) + B2

(

ū(t) −
1 + ε

2
u(t)

)]

. (13)

By Lemma 1, Remark 1, and definition (9), we have

V̇ (x(t)) 6 xT (t)

[

AT
h P + PAh +

(

B2

1 + ε

2
Kh

)T

P + PB2

1 + ε

2
Kh

]

x(t)

+wT (t)BT
1 Px(t) + xT (t)PB1w(t)

+ǫ

(

ū(t) −
1 + ε

2
u(t)

)T (

ū(t) −
1 + ε

2
u(t)

)

+ ǫ−1xT (t)PB2B
T
2 Px(t)

6 xT (t)Θx(t) + wT (t)BT
1 Px(t) + xT (t)PB1w(t), (14)

where Θ =
[

AT
h P + PAh +

(

B2
1+ε
2

Kh

)T
P + PB2

1+ε
2

Kh + ǫ
(

1−ε
2

)2
KT

h Kh +

ǫ−1PB2B
T
2 P

]

, and ǫ is any positive scalar.

Adding zT (t)z(t) − γ2wT (t)w(t) to two sides of (14) yields

V̇ (x(t)) + zT (t)z(t) − γ2wT (t)w(t)

6
[

xT (t) wT (t)
]

[

Θ + CT C PB1

BT
1 P −γ2I

] [

x(t)
w(t)

]

. (15)

Let us consider

Π =

[

Θ + CT C PB1

BT
1 P −γ2I

]

< 0 (16)

then, V̇ (x(t)) + zT (t)z(t)− γ2wT (t)w(t) 6 0, and the L2 gain defined in (11) is
less than γ > 0 with the initial condition x(0) = 0 (Boyd et al., 1994). When the
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disturbance is zero, i.e., w(t) = 0, it can be inferred from (15) that if Π < 0, then
V̇ (x(t)) < 0, and the fuzzy system (8) with the controller (9) is quadratically
stable.

Pre- and post-multiplying (16) by diag
(

P−1 I
)

and its transpose, re-
spectively, and define Q = P−1, Yh = KhP−1, the condition Π < 0 is equivalent
to

Σ =







QAT
h + AhQ + 1+ε

2
Y T

h BT
2 + 1+ε

2
B2Yh

+ǫ
(

1−ε
2

)2
Y T

h Yh + ǫ−1B2B
T
2 + QCT CQ

B1

BT
1 −γ2I






< 0. (17)

By Schur complement, Σ < 0 is equivalent to

Ψ=















QAT
h +AhQ+ 1+ε

2

[

Y T
h BT

2 +B2Yh

]

+ǫ−1B2B
T
2 Y T

h QCT B1

∗ −ǫ−1

(

2

1−ε

)2

I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ2I















< 0.

(18)

By the definitions Ah =
2
∑

i=1

hi(ξ(t))Ai and Yh =
2

∑

i=1

hi(ξ(t))Yi, and the fact that

hi(ξ(t)) > 0 and
∑2

i=1 hi(ξ(t)) = 1, Ψ < 0 is equivalent to

Φ=















QAT
i +AiQ+ 1+ε

2

[

Y T
i BT

2 +B2Yi

]

+ǫ−1B2B
T
2 Y T

i QCT B1

∗ −ǫ−1

(

2

1−ε

)2

I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ2I















< 0,

i = 1, 2. (19)

On the other hand, from (9), the constraint |u(t)| 6
ulim

ε
can be expressed

as
∣

∣

∣

∣

∣

2
∑

i=1

hi(ξ(t))Kix(t)

∣

∣

∣

∣

∣

6
ulim

ε
. (20)

It is obvious that if |Kix(t)| 6
ulim

ε
, then (20) holds. Let Ω(K) =

{

x(t)| |xT (t)

KT
i Kix(t)| 6

(

ulim

ε

)2
}

, the equivalent condition for an ellipsoid Ω(P, ρp) =
{

x(t)| xT (t)Px(t) 6 ρp} being a subset of Ω(K) is (Cao and Lin, 2003):

Ki

(

P

ρp

)−1

KT
i 6

(ulim

ε

)2

. (21)
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By the Schur complement, inequality (21) can be written as







(

ulim

ε

)2
I Ki

(

P
ρp

)−1

(

P
ρp

)−1

KT
i

(

P
ρp

)−1






> 0. (22)

Using the definitions Q = P−1 and Yi = KiP
−1, we get that inequality (22) is

equivalent to

[
(

ulim

ε

)2
I Yi

Y T
i ρ−1

p Q

]

> 0. (23)

In summary, for given numbers 0 < ε < 1 and ρp > 0, if there exist matrices
Q > 0 and Yi, i = 1, 2, scalars ǫ > 0 and γ > 0 such that LMIs (19) and (23)
are satisfied, then the closed-loop system (8) with controller (9) is quadratically
stable and the L2 gain defined by (11) is less than γ. Moreover, the controller
gain can be obtained as Ki = YiQ

−1. If γ is minimised, then the optimal fuzzy
H∞ controller is obtained.

5. Numerical example

In this section, we will apply the proposed approach to design a fuzzy H∞ state
feedback controller for a quarter-car suspension model as described in Section
2. The quarter-car suspension model parameter values are listed in Table 1
(Alleyne and Hedrick, 1995; Chen and Huang, 2006) and the values of the
hydraulic actuator parameters used in the simulation are given in Table 2.

Table 1. Parameter values of the quarter-car suspension model

Parameter ms mu cs ks kt ct

Unit kg kg Nm/s N/m N/m Nm/s
Value 290 59 1000 16812 190000 0

Table 2. Parameter values of the hydraulic actuator

Parameter α β γ ps As τ Kc

Unit N/m5 s−1 N/m5/2/kg1/2 Pa m2 s m/V

Value 4.515 × 1013 1 1.545 × 109 10342500 3.35 × 10−4 0.003 0.001

In this study, we suppose that the input voltage of the spool valve is limited
as ulim = 2.5 V, and the applied value of the actuator output force is limited to
800 N such that the bounds of the nonlinear function (4) are given as fmin =
2800 and fmax = 3600. The fuzzy H∞ controller is implemented based on the
assumption that all the state variables defined in (2) can be measured. It is seen



1106 H. DU, N. ZHANG

from previous section that the controller gain can be determined by Ki = YiQ
−1,

i = 1, 2, if matrices Q and Yi are known. As matrices Q and Yi are required to
satisfy conditions (19) and (23) simultaneously, they can be obtained by solving
inequalities (19) and (23). It is noticed that in (19) and (23), ε and ρp are two
positive scalar parameters that can be chosen a priori. Once ε and ρp are given,
inequalities (19) and (23) become LMIs for matrices Q and Yi and scalars ǫ and
γ, and we can use software like Matlab LMI Toolbox to solve matrices Q and
Yi without much difficulties. Note that the selection of ε and ρp will definitely
affect the solutions of LMIs (19) and (23). For some chosen values of ε and ρp,
LMIs (19) and (23) are feasible to find solutions, and the controller gain Ki,
calculated with the feasible solutions of Q and Yi could make the control system
performance good or bad, which will be further validated through simulations.
However, for some values of ε and ρp, LMIs (19) and (23) may not be feasible
to find solutions. Choosing appropriate values for ε and ρp is a trial and error
process, and certainly, some search algorithms like genetic algorithms (GAs)
can be used to search for these two parameters. In general, small value of ε will
make the control input bigger such that it may reach the saturation limit and
big value of ρp will make the controller gain smaller so that it takes less affection
on the control performance and even may not allow for finding feasible solutions
in terms of the minimal solution for γ. By choosing ε = 0.516, ρp = 3.98×10−5,
and solving LMIs (19) and (23) for matrices Q > 0, Yi, i = 1, 2, scalar ǫ > 0,
with minimising the scalar γ > 0, we obtain the controller gains as follows:

K1 =

[

702.2128 318.4156 91.0434 −84.6707
−0.0426 −2.1854× 104

]

,

K2 =

[

746.8704 335.1144 86.4629 −79.7999
−0.0453 −2.3622× 104

]

. (24)

More design examples will be discussed in the end of this section.

Fig. 2 shows the schematic diagram of the suspension control system with an
electrohydraulic actuator. In the diagram, the electrohydraulic actuator is used
to provide active force Fa(t) to the suspension model. This electrohydraulic
actuator is simulated by the model (1). The box of Controller denotes the
fuzzy H∞ controller, which is designed according to the obtained T-S fuzzy
model (8). This controller is used to calculate the control input voltage sent
to servovalve. The measured variables x5(t) and x6(t) are used to calculate the
nonlinear function f(x5,x6, t) defined in (4) and accordingly the coefficient hi.
The measured state feedback variables x1(t) ∼ x6(t) are used to calculate the
voltage signal according to hi and Ki, as given above. With the control input
voltage, the electrohydraulic actuator will generate appropriate force to improve
the ride comfort performance under external road disturbance.

For comparison, a desired active suspension that is a passive suspension with
a “skyhook damper” attached (Alleyne and Hedrick, 1995) is also presented.
The optimal value of the skyhook damping coefficient is given as 3000 N/m/s.
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Figure 2. Schematic diagram of closed-loop control system

In Chen and Huang (2006), an adaptive sliding controller is designed to make
the actuator force following the desired skyhook dynamics so that better ride
comfort performance can be achieved. To compare the results, the same road
disturbance as given in Chen and Huang (2006) is used in the simulation, where
the road disturbance is given as:

zr(t) = 0.0254 sin2πt + 0.005 sin10.5πt + 0.001 sin21.5πt (m). (25)

It can be seen from (25) that the road disturbance is close to the car body
resonance frequency (1 Hz) with high frequency disturbance to simulate the
rough road surface. The simulation program is realised by Matlab/Simulink.

Fig. 3 shows sprung mass acceleration for three kinds of suspensions, i.e., pas-
sive suspension (Passive), active suspension with skyhook damper (Skyhook),
and active suspension with electrohydraulic actuator and fuzzy H∞ controller
(Fuzzy) as given in (24). It is clearly shown that the proposed fuzzy H∞ control
strategy improves the sprung mass acceleration magnitude significantly com-
pared to the passive suspension as well as the active suspension with skyhook
damper. It is noted that for the tracking control strategy, it can only realise
the ride comfort performance which is close to the desired skyhook dynamics.
However, the proposed fuzzy H∞ control strategy can improve the desired sus-
pension performance even with the highly nonlinear electrohydraulic actuator.
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Figure 3. Sprung mass acceleration

Fig. 4 shows the sprung mass displacement. It also shows clearly that the
proposed design achieves much less sprung mass displacement compared to the
passive suspension and the active suspension with desired skyhook damper.
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Fig. 5 shows the actuator forces. For the tracking control approach, it can
only follow the desired skyhook actuator force. On the contrary, the proposed
control strategy will provide more effective actuator force which directly aims
to minimise the sprung mass acceleration.
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Figure 5. Actuator output force

Fig. 6 shows the control input voltage, which is within the defined input
voltage range. Fig. 7 shows the nonlinear function output. It can be seen from
Figure 7 that the nonlinear function output is located within the estimated
bounds. In terms of the value of nonlinear function output, the grade of mem-
bership function hi (or Mi) can be calculated using equation (5). As the final

controller gain is determined by Kh =
2
∑

i=1

hi(ξ(t))Ki, it can be seen that this

gain is time-varying with respect to the time-varying value of hi. In fact, the
values of h1 and h2 can be regarded as weights for K1 and K2, respectively, at
each time instant. To see this clearly, the values for h1 and h2 are shown in
Fig. 8, where the effort done by each controller Ki on the plant can be observed.

As mentioned earlier, choosing different values for ε and ρp will affect the
possible solutions to the proposed controller design scheme. The above presented
example actually shows a good design with ε = 0.516 and ρp = 3.98 × 10−5

because the obtained suspension performance is validated as better than the
passive suspension and the active suspension with desired skyhook damper,
according to illustrations from Figs. 3 and 4. If we choose the values for ε and
ρp as ε = 0.9 and ρp = 10−5, by solving LMIs (19) and (23) for matrices Q > 0,
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Yi, i = 1, 2, scalar ǫ > 0, with minimising scalar γ > 0, we can obtain the
controller gains equal

K1 =

[

2249.0975 2461.8372 −618.7120 −51.7475
−0.7287 −7.1856× 104

]

,

K2 =

[

2285.6666 2513.4587 −651.1889 −31.1786
−0.7414 −8.0378× 104

]

. (26)

The suspension performance done by this newly designed controller (26) is
validated through the same simulation program and the road disturbance as
given in (25). For a clear comparison, and to save space, we only compare the
response on sprung mass displacement for three suspensions in Fig. 9 (left). It
can be seen that the newly designed controller achieves smaller sprung mass
displacement than passive suspension, however, its sprung mass displacement is
bigger than the active suspension with desired skyhook damper. Furthermore,
as the chosen value ε = 0.9 is close to 1, it is expected that the control input
voltage realised by this controller could be less saturated. In fact, it is observed
from Fig. 9 (right) that the control input voltage is really far less than the
saturation limit. We now modify ε as ε = 0.1 and keep ρp = 10−5, the controller
gains obtained are

K1 =

[

6379.0068 5337.0005 671.4731 −437.4303
−0.3854 −1.5696× 105

]

,

K2 =

[

6594.7211 5510.5861 667.1314 −425.3791
−0.3985 −1.6503× 105

]

. (27)
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Figure 9. Controller design result for ε = 0.9 and ρp = 10−5
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Figure 10. Controller design result for ε = 0.1 and ρp = 10−5
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Similarly, we validate this newly designed suspension performance using the
same simulation program and compare the response on sprung mass displace-
ment in Fig. 10 (left) for three suspensions. We observe from Fig. 10 (left) that
the this newly designed suspension performance is close to the active suspension
with desired skyhook damper. The control input voltage is shown in Fig. 10
(right), and this time, the control input voltage is highly saturated, as expected.
Compared to the suspension performance realised by controller (24), the newly
designed controllers, given in (26) and (27) cannot be accepted for a good de-
sign in terms of their performance. In addition, for some values of ε and ρp,
for example, ε = 0.5 and ρp = 108, no feasible solutions can be found which
indicates an infeasible design.

6. Conclusions

In this paper, we present a new fuzzy control strategy for electrohydraulic active
suspensions. Using the idea of “sector nonlinearity”, the nonlinear dynamics of
electrohydraulic actuator can be represented by a T-S fuzzy model in a defined
region. Thus, a fuzzy H∞ controller can be designed for the obtained T-S fuzzy
model by means of PDC scheme. In this study, the control objective is to
optimise the ride comfort performance in terms of the L2 gain from the road
disturbance to the sprung mass acceleration. At the same time, the actuator
input voltage saturation problem is considered. The sufficient conditions for
designing such a controller is expressed by LMIs. The advantage of the proposed
control strategy is that the optimal suspension performance is obtained directly.
It does not need an inner control loop for electrohydraulic actuator to track
the desired force (pressure, or displacement, etc.), does not need setting up
fuzzy rules according to expert experience. Since the T-S fuzzy model can
exactly represent the original model in a defined region, when the designed fuzzy
controller is applied to the original system, stability can be guaranteed. The
designed controller is simple in structure and can be easily realised in practice.
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