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Abstract: Optimal boundary control problems for distributed
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1. Introduction

In this paper we consider linear retarded parabolic systems with non-homoge-
neous Dirichlet boundary conditions. The retarded argument appears in the
integral form with h ∈ (0, c) in the state equation. Using the transposition
method and some interpolation theorems sufficient conditions for the existence
of unique solutions for such retarded parabolic systems are proved. The perfor-
mance functional has the quadratic form. The time horizon T is fixed. Finally,
we impose some constraints on the boundary control. Necessary and sufficient
conditions of optimality for the non-homogeneous Dirichlet problem with the
quadratic performance functional and constrained control are derived. A sim-
ple example of application is also presented.

2. Existence of solutions in the space H2,1(Q)

Consider the distributed-parameter system described by the following parabolic
delay equation:

∂y

∂t
+A(t)y+

c
∫

0

b(x, t)y(x, t−h)dh = u x∈ Ω, t∈ (0, T ), h∈ (0, c) (2.1)
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y(x, t′) = Φo(x, t′) x∈ Ω, t′∈ [−c, 0) (2.2)

y(x, 0) = y0(x) x ∈ Ω (2.3)

y(x, t) = v(x, t) x∈ Γ, t∈ (0, T ), (2.4)

where Ω ⊂ Rn is a bounded, open set with boundary Γ, which is a C∞ manifold
of dimension (n − 1). Locally, Ω is totally on one side of Γ;

y ≡ y(x, t; u), u ≡ u(x, t), v ≡ v(x, t), Σ ≡ Γ × (0, T ),

Q = Ω × (0, T ), Q0 = Ω × [−c, 0),

where:
T is a specified positive number representing time horizon,
b is a given real C∞ function defined on Q̄ ,
h is a retarded argument such that h ∈ (0, c),
Φ0 is a initial function defined on Qo.

The parabolic operator ∂
∂t + A(t) in the state equation (2.1) satisfies the

hypothesis of Lions and Magenes (1972, Vol. 2, p. 2) and A(t) is given by

A(t)y = −

n
∑

i,j=1

∂

∂xi

(

aij(x, t)
∂y(x, t)

∂xj

)

(2.5)

where the functions aij(x, t) are real C∞ functions defined on Q̄ (closure of Q)
satisfying the ellipticity condition

n
∑

i,j=1

aij(x, t)ϕiϕj ≥ α

n
∑

i=1

ϕ2
i , α > 0, ∀(x, t) ∈ Q̄, ∀ϕi ∈ R. (2.6)

Equations (2.1) - (2.4) constitute a Dirichlet problem.
First we shall prove sufficient conditions for the existence of a unique solution

of the mixed initial-boundary value problem (2.1) - (2.4) in the space H2,1(Q).
For this purpose, for any pair of real numbers r, s ≥ 0, we introduce the Sobolev
space Hr,s(Q) (Lions and Magenes, 1972, Vol. 2, p. 6) defined by

Hr,s(Q) = H0(0, T ; Hr(Ω)) ∩ Hs(0, T ; H0(Ω)) (2.7)

which is a Hilbert space normed by





T
∫

0

‖ y(t) ‖2
Hr(Ω) dt+ ‖ y ‖2

Hs(0,T ;H0(Ω))





1/2

(2.8)

where the spaces Hr(Ω) and Hs(0, T ; H0(Ω)) are defined in Lions and Magenes
(1972, Vol. 1, Chapter 1).
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Theorem 2.1 Let y0, Φ0, v, u be given with y0 ∈ H1(Ω), Φ0 ∈ H2,1(Q0), v ∈

H
3

2
, 3

4 (
∑

) and u ∈ L2(Q) and the following compatibility relation is satisfied:

y0(x) = v(x, 0) on Γ (R.C.).

Then, there exists a unique solution y ∈ H2,1(Q) for the mixed initial-
boundary value problem (2.1) - (2.4).

Proof. The parabolic delay equations (2.1) with boundary conditions (2.2)–(2.4)
may be rewritten as

∂y

∂t
+ A(t)y = Ny + f (2.9)

where

f(x, t) := u(x, t) + b(x, t)

0
∫

min(0,t−c)

Φ0(x, τ) dτ (2.10)

Ny(x, t) := b(x, t)

t
∫

max(0,t−c)

y(x, τ) dτ . (2.11)

Let

G0 : H1(Ω) → H2,1(Q) (2.12a)

G1 : H
3

2
, 3

4 (Σ) → H2,1(Q) (2.12b)

S : L2(Q) → H2,1(Q) (2.12c)

denote the continuous solution operators provided by Theorem 6.1 and Remark
6.3 of Lions and Magenes (1972, Vol. 2, pp. 33 and 37). Then the problem (2.1)
- (2.4) is equivalent to the fixed point equation

y = G0y0 + G1v + Sf + SNy. (2.13)

We need to find an estimate for ‖SN‖L(H2,1(Q),H2,1(Q)). We have

‖SNy‖H2,1(Q) ≤ ‖S‖L(L2(Q),H2,1(Q)) ‖Ny‖L2(Q)

≤ c

t
∫

max(o,t−c)

‖y(x, τ)‖H2,1(Q) dτ ≤ cT ‖y‖H2,1(Q). (2.14)

From (2.14) we deduce

‖SN‖L(H2,1(Q),H2,1(Q)) < 1 if T <
1

c
.

Evidently, we can extend our result to any T < +∞.
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3. The adjoint problem

Consider now the adjoint problem in the context of the Theorem 2.1, that is

A∗(t)p − p′ +

c
∫

0

b(x, t + h)p(x, t + h)dh = ϕ in Q, (3.1)

p(x, t′) = 0, x ∈ Ω, t′ ∈ (T, c], (3.2)

p(x, t) = 0 on Σ, (3.3)

p(x, T ) = 0, x ∈ Ω, (3.4)

where

A∗(t)p = −

n
∑

i,j=1

∂

∂xj

(

aij(x, t)
∂p

∂xi

)

.

The problem (3.1) - (3.4) can be solved backwards in time. For this purpose,
we may apply Theorem 2.1.

The following result can be proved

Lemma 3.1 Let ϕ be given in L2(Q). Then, there exists a unique solution
p ∈ H2,1(Q) for the problem (3.1) - (3.4).

Let us denote by X(Q) the space described by the solutions of (3.1) - (3.4)
as ϕ describes L2(Q).

We have

X(Q) ⊂ H2,1(Q).

We can equivalently define

X(Q) =

{

p|p ∈ H2,1(Q) : p(x, t) = 0 on Σ, p(x, T ) = 0,

A∗p − p′ +

c
∫

0

b(x, t + h)p(x, t + h)dh ∈ L2(Q)

}

.

Providing X(Q) with the norm of the graph we get

P ∗(= A∗p − p′ +

c
∫

0

b(x, t + h)p(x, t + h)dh)

is an isomorphism of X(Q) onto L2(Q). (3.5)
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4. Transposition of the adjoint isomorphism

By transposition we deduce from (3.5)

Lemma 4.1 Let p → L(p) be a continuous linear form on X(Q). Then, there
exists a unique y ∈ L2(Q) such that

〈y, A∗p − p′ +

c
∫

0

b(x, t + h)p(x, t + h)dh〉 = L(p) ∀p ∈ X(Q) (4.1)

We choose L in the form

L(p)=

∫

Ω

c
∫

0

0
∫

−h

Φ0(t, x)b(x, t+h)p(x, t+h)dtdhdx+〈u, p〉+〈v, p|Σ〉+〈y0, p(x, 0)〉.

(4.2)

We take

Φ0 ∈ L2(Q0) (4.3)

u ∈ (H2,1(Q))′. (4.4)

Since p → p|Σ is a continuous linear mapping of X(Q) → H
1

2
, 1

4 (Σ) we may
take

v ∈ (H
1

2
, 1
4 (Σ))′. (4.5)

Similarly, since p → p(x, 0) is a continuous linear mapping of X(Q) → H1
0 (Ω),

we may take

y0 ∈ H−1(Ω). (4.6)

According to Lemma 4.1 we have

Theorem 4.1 Let Φ0, u, v, y0 be given with (4.3),(4.4),(4.5), and (4.6). There
exists a unique y ∈ L2(Q) such that (4.1) holds with (4.2).

5. Existence of solutions in the space H
1

2
,

1

4 (Q)

We shall now apply interpolation theory (Lions and Magenes, 1972, Vol. 1,
Chapter 1, Section 5).

We consider the mapping G

G : {Φ0, u, v, y0} → y = G(Φ0, u, v, y0), (5.1)
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then from Theorem 2.1 and Theorem 4.1 it follows that it is a continuous map-
ping of

H2,1(Q) × H0(Q) × (H
3

2
, 3

4 (Σ) × H1(Ω),R.C.) → H2,1(Q) (5.2)

and

(H0(Q) × H2,1(Q))′ × (H
1

2
, 1

4 (Σ))′ × (H1(Ω))′ → H0(Q). (5.3)

We shall now interpolate between (5.2) and (5.3). We set

A0 = (H
3

2
, 3

4 (Σ) × H1(Ω),R.C.) (5.4)

A1 = (H
1

2
, 1

4 (Σ))′ × (H1(Ω))′ (5.5)

Using the Theorem 14.1 of Lions and Magenes (1972, Vol. 2, p. 68) we have

[A0, A1]Θ= 3

4

= H0(Σ) × (H
1

2 (Ω))′. (5.6)

According to the results of Lions and Magenes (1972, vol.2, Chapter 4, Section
15.1 and 2.1) we have

[H0(Q), (H2,1(Q))′]Θ= 3

4

= (H
3

2
, 3

4 (Q))′, (5.7)

[H2,1(Q), H0(Q)]Θ= 3

4

= H
1

2
, 1
4 (Q). (5.8)

From (5.1) - (5.8) we deduce

Gdefined by (5.1) is a continuous linear mapping of

H
1

2
, 1

4 (Q) × (H
3

2
, 3

4 (Q))′ × H0(Σ) × (H
1

2 (Ω))′ → H
1

2
, 1
4 (Q)

}

. (5.9)

From (5.9) we obtain

Theorem 5.1 Let Φ0, u, v and y0 be given with Φ0∈H
1

2
, 1

4 (Q), u∈(H
3

2
, 3

4 (Q))′,

v ∈ L2(Σ), y0 ∈ (H
1

2 (Ω))′. Then, there exists a unique solution y ∈ H
1

2
, 1

4 (Q)
for the mixed initial - boundary value problem (2.1) - (2.4) (in the sense of
Theorem 4.1).

6. Optimal boundary control

We shall now formulate the optimal boundary control problem for the Dirichlet
problem (2.1) - (2.4) in the context of Theorem 5.1. Let us denote by U = L2(Σ)
the space of controls. The time horizon T is fixed in our problem.

The performance functional is given by

I(v) = λ1 |y(x, T ; v) − zd|
2
H−1(Ω) + λ2

∫

Σ

(Nv)vdΓdt (6.1)
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where: λi ≥ 0 and λ1 + λ2 > 0; zd is a given element in H−1(Ω); N is given,

N ∈ L(L2(Σ), L2(Σ)), (Nv, v)L2(Σ) ≥ µ‖v‖
2
L2(Σ), µ > 0.

Finally, we assume the following constraint on controls v ∈ Uad, where

Uad is a closed, convex subset of U. (6.2)

Let y(x, t; v) denote the solution of the mixed initial-boundary value problem
(2.1) - (2.4) corresponding to a given control v ∈ Uad. The starting point for
our considerations will be following theorem, which can be found in Lions (1971,
p.10).

Theorem 6.1 Assume that the function v → I(v) is strictly convex and dif-
ferentiable such that I(v) → +∞ as ‖v‖ → +∞, v ∈ Uad (the last hypothesis
may be omitted if Uad is bounded). Then the unique element v0 ∈ Uad satisfying
I(v0) = infv∈Uad

I(v) is characterized by

I ′(v0) · (v − v0) ≥ 0 ∀v ∈ Uad. (6.3)

The solving of the formulated optimal control problem is equivalent to seeking
a v0 ∈ Uad such that I(v0) ≤ I(v) ∀v ∈ Uad.
Then from Theorem 6.1 it follows that for λ2 > 0 a unique optimal control v0

exists; moreover, v0 is characterized by the condition (6.3).

Using the form of the performance functional (6.1) we can express (6.3) in
the following form

λ1〈y(x, T ; v0) − zd, y(x, T ; v) − y(x, T ; v0)〉H−1(Ω) + λ2

∫

Σ

Nv0(v − v0)dΓdt ≥ 0

∀v ∈ Uad. (6.4)

To simplify (6.4), we introduce the adjoint equation and for every v ∈ Uad, we
define the adjoint variable p = p(v) = p(x, t; v) as the solution of the equation

−
∂p(v)

∂t
+ A∗(t)p(v) +

c
∫

0

b(x, t + h)p(x, t + h; v)dh = 0,

x ∈ Ω, t ∈ (0, T ), h ∈ (0, c), (6.5)

p(x, t; v) = 0 x ∈ Ω, t ∈ (T, T + c), (6.6)

p(x, T ; v) = −λ1(−∆ + I)−1(y(x, T ; v) − zd) x ∈ Ω, (6.7)

p(x, t; v) = 0, x ∈ Γ, t ∈ (0, T ). (6.8)

The norm in the space H−1(Ω) is given by the following formula

‖f‖
2
H−1(Ω) =

∫

Ω

((−∆ + I)−1f)fdx (6.9)
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where:
(−∆ + I)−1f = Φ - the solution of the problem
(−∆ + I)Φ = f in Ω and Φ = 0 on Γ.
Moreover, ∆ is a Laplace operator on Ω.

The following lemma can be proved.

Lemma 6.1 For given zd ∈ L2(Q) and any v ∈ L2(Σ), there exists a unique

solution p(v) ∈ H
1

2
, 1

4 (Q) for the problem (6.5) - (6.8).

We simplify (6.4) using the adjoint equation (6.5) - (6.8). For this purpose,
setting v = v0 in (6.5) - (6.8), multiplying both sides of (6.5) by (y(v) − y(v0)),
then integrating over Q, we obtain

∫

Q

(−
∂p(v0)

∂t
+ A∗(t)p(v0)+

+

c
∫

0

b(x, t + h)p(x, t + h; v0)dh)(y(x, t; v) − y(x, t; v0))dxdt =

= −

∫

Ω

p(x, T ; v0)(y(x, T ; v) − y(x, T ; v0))dx+

+

∫

Q

p(v0)
∂

∂t
(y(v) − y(v0))dxdt +

∫

Q

A∗(t)p(v0)(y(v) − y(v0))dxdt+

+

∫

Ω

T
∫

0

c
∫

0

b(x, t + h)p(x, t + h; v0)(y(v) − y(v0))dhdtdx =

= λ1

∫

Ω

(−∆ + I)−1((y(x, T ; v0) − zd)(y(x, T ; v) − y(x, T, v0))dx+

+

∫

Q

p(v0)
∂

∂t
(y(v) − y(v0))dxdt +

∫

Q

A∗(t)p(v0)(y(v) − y(v0))dxdt+

+

∫

Ω

T
∫

0

c
∫

0

b(x, t + h)p(x, t + h; v0)(y(v) − y(v0))dhdtdx =

= λ1〈y(x, T ; v0) − zd, y(x, T ; v) − y(x, T ; v0)〉H−1(Ω)+

+

∫

Q

p(v0)
∂

∂t
(y(v) − y(v0))dxdt +

∫

Q

A∗(t)p(v0)(y(v) − y(v0))dxdt+

+

c
∫

0

∫

Ω

T
∫

0

b(x, t+h)p(x, t+h; v0)(y(x, t; v) − y(x, t; v0))dtdxdh = 0. (6.10)
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Using equation (2.1), the second term on the right-hand side of (6.10) can
be rewritten as

∫

Q

p(v0)
∂

∂t
(y(v) − y(v0))dxdt = −

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt−

−

c
∫

0

∫

Ω

T
∫

0

p(x, t; v0)b(x, t)(y(x, t − h; v) − y(x, t − h; v0))dtdxdh =

= −

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt−

−

c
∫

0

∫

Ω

T−h
∫

−h

p(x, t′ + h; v0)b(x, t′ + h)(y(x, t′; v) − y(x, t′; v0))dt′dxdh =

= −

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt−

−

c
∫

0

∫

Ω

0
∫

−h

p(x, t′ + h; v0)b(x, t′ + h)(y(x, t′; v) − y(x, t′; v0))dt′dxdh−

−

c
∫

0

∫

Ω

T−h
∫

0

p(x, t′ + h; v0)b(x, t′ + h)(y(x, t′; v) − y(x, t′; v0))dt′dxdh =

= −

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt−

−

c
∫

0

∫

Ω

T−h
∫

0

p(x, t′+h; v0)b(x, t′+h)(y(x, t′; v) − y(x, t′; v0))dt′dxdh. (6.11)

The third term on the left-hand side of (6.10), in view of Green’s formula,
can be expessed as

∫

Q

A∗(t)p(v0)(y(v) − y(v0))dxdt =

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt+

+

T
∫

0

∫

Γ

p(v0)(
∂y(v)

∂ηA
−

∂y(v0)

∂ηA
)dΓdt −

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(y(v) − y(v0)dΓdt.

(6.12)

Using the boundary condition (2.4), the last component on the right-hand
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side of (6.12) can be written as

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(y(v) − y(v0)dΓdt =

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(v − v0)dΓdt. (6.13)

Substituting (6.8) and (6.13) into (6.12) and then (6.11) and (6.12) into
(6.10) we obtain

λ1〈y(x, T ; v0) − zd, y(x, T ; v) − y(x, T ; v0)〉H−1(Ω) =

=

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt+

+

c
∫

0

∫

Ω

T−h
∫

0

p(x, t + h; v0)b(x, t + h)(y(x, t; v) − y(x, t; v0))dtdxdh−

−

∫

Q

p(v0)A(t)(y(v) − y(v0))dxdt +

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(v − v0)dΓdt−

−

c
∫

0

∫

Ω

T
∫

0

b(x, t + h)p(x, t + h; v0)(y(x, t; v) − y(x, t; v0))dtdxdh =

= −

c
∫

0

∫

Ω

T
∫

T−h

p(x, t + h; v0)b(x, t + h)(y(x, t; v) − y(x, t; v0))dtdxdh+

+

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(v − v0)dΓdt =

−

c
∫

0

∫

Ω

T+h
∫

T

p(x, t; v0)b(x, t)(y(x, t − h; v) − y(x, t − h; v0))dtdxdh =

=

T
∫

0

∫

Γ

∂p(v0)

∂ηA∗

(v − v0)dΓdt. (6.14)

Upon substituting (6.14) into (6.4) we obtain the formula
∫

Σ

(

∂p(v0)

∂ηA∗

+ λ2Nv0

)

(v − v0)dΓdt ≥ 0 ∀v ∈ Uad. (6.15)

Theorem 6.2 For the problem (2.1) - (2.4) with the performance functional
(6.1) with zd ∈ H−1(Ω) and λ2 > 0 and with constraints on controls (6.2),
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there exists a unique optimal control v0 which satisfies the maximum condition
(6.15).

We can also consider an analogous optimal control problem where the perfor-
mance functional is given by

Î(v) = λ1

∥

∥

∥

∥

∥

∂y(v)

∂ηA

∣

∣

∣

∣

∣

Σ

− zΣd

∥

∥

∥

∥

∥

2

H−1(Σ)

+ λ2

∫

Σ

(Nv)vdΓdt (6.16)

where zΣd is a given element in H−1(Σ).
The norm in the space H−1(Σ) is given by the following formula

‖g‖2
H−1(Σ) =

∫

Σ

[(−∆Σ + I)−1g]gdΓdt (6.17)

where ∆Σ is a Laplace - Beltrami operator on Σ. The Laplace-Beltrami operator
is taken with homogeneous boundary conditions at t = 0 and t = T .
The optimal control v0 is characterized by

λ1

〈

∂y(v0)

∂ηA

∣

∣

∣

∣

Σ

− zΣd,
∂y(v)

∂ηA
−

∂y(v0)

∂ηA

〉

H−1(Σ)

+

+λ2

∫

Σ

(Nv0)(v − v0)dΓdt ≥ 0 ∀v ∈ Uad. (6.18)

We introduce the following adjoint equation

−
∂p(v0)

∂t
+ A∗(t)p(v0) +

c
∫

0

b(x, t + h)p(x, t + h; v0) = 0,

x ∈ Ω, t ∈ (0, T ), h ∈ (0, c), (6.19)

p(x, t; v0) = 0 x ∈ Ω, t ∈ (T, T + c), (6.20)

p(x, T ; v0) = 0 x ∈ Ω, (6.21)

p(x, t; v0) = λ1(−∆Σ + I)−1

(

∂y(v0)

∂ηA

∣

∣

∣

∣

Σ

− zΣd

)

,

x ∈ Γ, t ∈ (0, T ) (6.22)

p(x, t; v0) = 0 x ∈ Γ, t = 0 and t = T. (6.23)

The following lemma can be proved:

Lemma 6.2 For given zΣd ∈ H−1(Σ) and any v0 ∈ L2(Σ), there exists a unique

solution p(v0) ∈ H
1

2
, 1

4 (Q) to the problem (6.19)-(6.23).
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In this case the condition (6.18) can be also rewritten in the form (6.15). The
following theorem now holds:

Theorem 6.3 For the problem (2.1) - (2.4) with the performance functional
(6.16) with zΣd ∈ H−1(Σ) and λ2 > 0 and with constraints on control (6.2),
there exists a unique optimal control v0 which satisfies the maximum condition
(6.15).

We must notice that the conditions of optimality derived above (Theorems
6.2 and 6.3) allow us for obtaining an analytical formula for the optimal control
in particular cases only (e.g. there are no constraints on controls). This results
from the following: determining the function p(v0) in the maximum condition
from the adjoint equation is possible if and only if we know y0 which corresponds
to the control v0. These mutual connections make the practical use of the derived
optimization formulas difficult. Therefore we resign from the exact determining
of the optimal control and we use approximation methods.

In the case of performance functionals (6.1), (6.16), with λ1 > 0 and λ2 = 0,
the optimal control problem reduces to minimizing the functional on a closed and
convex subset in a Hilbert space. Then, the optimization problem is equivalent
to a quadratic programming one which can be solved by the use of the well-
known algorithms, e.g. Gilbert’s (1966).

7. Application

Example 1 To illustrate the practical applications of the algorithm mentioned
above we shall formulate the following control problem as an example: equation
of the system control (2.1) - (2.4), performance functional (6.1) with λ1 = 1 and
λ2 = 0, i.e.

I(v) = ‖y(T )− zd‖
2
H−1(Ω) , (7.1)

and constraint on controls

Uad = {v ∈ L2(Σ) : ‖v(x, t)‖L2(Σ) ≤ 1}. (7.2)

We shall define the attainable set Yad

Yad = {y(T, v) :
∂y(v)

∂t
+ A(t)y(v) +

c
∫

0

b(x, t)y(x, t − h)dh = u in Q,

y(x, t′) = Φ0(x, t′), y(x, 0; v) = y0(x), y(x, t) = v in Σ, v ∈ Uad}. (7.3)

The following result can be proved.

Theorem 7.1 The set Yad is a closed, convex and a bounded one in the space
Y = H−1(Ω).
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The proof of this fact is obtained in a similar way as in the case of a parabolic
equation which is given in Malanowski (1974).

The control problem (2.1) - (2.4), (7.1), (7.2) can be considered as the one
of seeking an element y0, more precisely — the corresponding v0, belonging to
a closed, convex and a bounded set Yad in a certain Hilbert space, whose dis-
tance from a given element zd is minimal. Thus, it is a quadratic programming
problem in a Hilbert space.

Now we shall describe a certain iteration procedure for solving the quadratic
programming problem.

Let {Y i
ad} be a system of closed and convex subsets of the set Yad. We

denote by yi ∈ Y i
ad an element whose distance from element zd is minimal, i.e.

the following condition is fulfilled:
∥

∥yi(T ) − zd

∥

∥ = miny∈Y i
ad

‖y(T )− zd‖ . (7.4)

By yi+1(T ) we denote the element such that
〈

yi(T ) − zd, y(T )− yi+1(T )
〉

H−1(Ω)
≥ 0, ∀y ∈ Yad. (7.5)

The point yi+1(T ) is a support of the set Y i
ad determined by the hyperplane

M i orthogonal to the vector (zd − yi(T )).
In Malanowski (1974) it is shown that if the system of sets {Y i

ad} has the
structure

Y i+1
ad ⊃ yi ∪ yi+1 (7.6)

then the sequence {yi} is strongly convergent to y0 in the space Y .
The step-by-step algorithms for finding the sequence yi convergent to y0

differ from each other by the construction of the sets Y i
ad, only. The simplest

one of them has been proposed by Gilbert (1966) and applied in Kowalewski
and Duda (1992) for distributed parabolic systems with the Neumann boundary
conditions involving time delays.

Now we describe the method of determining the element yi+1(T ) for the
optimal control problem (2.1) -(2.4), (4.1) and (4.2).

We introduce the following notation:

yi(T ) = y(T ; vi), yi+1(T ) = y(T ; vi+1), pi = p(vi). (7.7)

Here, we introduce the adjoint equation

−
∂pi

∂t
+ A∗(t)pi +

c
∫

0

b(x, t + h)p(x, t + h; vi)dh = 0,

(x, t) ∈ Ω × (0, T ), h ∈ (0, c), (7.8)

pi(x, t) = 0 (x, t) ∈ Ω × (T, T + c), (7.9)

pi(x, T ) = −λ1(−∆ + I)−1(yi(x, T ) − zd), x ∈ Ω (7.10)

pi(x, t) = 0 x ∈ Γ, t ∈ (0, T ). (7.11)
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Proceeding in a similar way as in deriving the formula (6.15), the condition (7.5)
is written as

T
∫

0

∫

Γ

∂p

∂ηA∗

(v − vi+1)dΓdt =

〈

∂p

∂ηA∗

, v − vi+1

〉

L2(Σ)

≥ 0 ∀v ∈ Uad. (7.12)

Taking into account the form of the set Uad from the formula (7.12) we get

vi+1 = −

∂p
∂ηA∗

∥

∥

∥

∂p
∂ηA∗

∥

∥

∥

L2(Σ)

. (7.13)

Now, it is easy to notice that there are no mutual connections between the equa-
tion of the system control, the adjoint equation and the maximum condition,
which made impossible the determination of the optimal control, earlier. Hence,
from the formula (7.13) we find out vi+1 for pi which we determine from (7.8)
- (7.11) knowing yi(T ) from previous iteration. Then, having vi+1 we compute
yi+1(T ) from (2.1) - (2.4).

8. Conclusions

In this paper we have considered the optimal retarded parabolic systems with
the non-homogeneous Dirichlet boundary conditions.

The results presented in the paper can be treated as a generalization of the
results obtained by Kowalewski and Krakowiak (2001) onto the case of retarded
argument appearing in the integral form with h ∈ (0, c) in the state equations.

The existence and uniqueness of solutions for such retarded parabolic sys-
tems are proved — Theorems 2.1 and 5.1.

Necessary and sufficient conditions of optimality with the quadratic perfor-
mance functionals and constrained control are derived — Theorems 6.2 and 6.3.

A simple example of application is also presented — Example 7.1.
We can also consider boundary control problems for retarded parabolic sys-

tems with the Dirichlet boundary conditions involving retarded arguments given
in the integral form.

The ideas mentioned above will be developed in forthcoming papers.
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