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Abstract: In this paper, the robust H∞ control problem is con-
sidered for uncertain neutral systems with discrete and distributed
time delays. Some sufficient conditions on H∞ robust performance
analysis are obtained in terms of linear matrix inequalities (LMIs)
by using a descriptor model transformation of the system and by
applying Park’s inequality for bounding cross terms. Based on these
conditions the state-feedback H∞ controller is designed. Numerical
examples are included to illustrate the proposed method.
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1. Introduction

Recently, neutral systems with time delay have attached much attention (see
Karimi and Luo, 2008; Xu, Lam and Yang, 2001; Chen et al., 2006). This
is because delay phenomena are frequently encountered in mechanics, physics,
biology, economics and engineering systems, and are a source of instability and
poor performance. Neutral delay systems constitute a more general class than
those of only the delay type, and therefore, stability of these systems is a more
complex issue because of the derivative of the delayed state involved. Stability
conditions on neutral delay system based on LMIs or Riccati equations have
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been obtained for both the delay-independent (Verriest and Niculescu, 1998)
and the delay-dependent (Fridman, 2001; Lien, Yu and Hsieh, 2000; Ivanescu
et al., 2000; Yue, Won and Kwon, 2003) cases. Note that unlike retarded type
systems, neutral systems may be destabilized by small changes in delays (see
Logemann and Townley, 1995). Concerning the H∞ control problem for neutral
systems, delay-independent and delay-dependent state-feedback solutions have
been achieved in Mahmoud (2000), Fridman and Shaked (2002), Yue, Won and
Kwon (2003), Chen et al. (2001), respectively. Recently, a new descriptor model
transformation has been introduced in Fridman (2001) for stability analysis of
systems with delays. This transformation transforms the original system to
an equivalent descriptor form representation, and therefore, does not introduce
any additional dynamics in the sense defined in Gu and Niculescu (2001). In
addition, fewer bounds are applied in this method. These bounds can now be
made tighter using the bound on cross terms that was introduced in Park (1999).

In this paper, we consider the problem of robust H∞ control for a class of
neutral time-delay systems with parameter uncertainties allowed to be time-
varying but norm-bounded. Our goal is to design a state-feedback controller
such that the closed-loop system is asymptotically stable and guarantees a pre-
scribed H∞ performance level for all admissible uncertainties. All the conditions
are given in terms of LMIs. Some numerical examples illustrate the effectiveness
of our solutions as compared to results obtained by other methods.

For simplification, we use the symbol Sym{·} to denote Sym{X}
def
= X+XT ,

the symbol ∗ to denote the symmetric part.

2. Problem formulation and preliminaries

Consider the following system with discrete and distributed delays and param-
eter uncertainties:

ẋ(t) =Ax(t) + A1x(t − τ1) + A2

∫ t

t−τ2

x(s)ds + A3ẋ(t − τ3) + B1w(t)

z(t) =Cx(t) + D1w(t) (1)

x(t) =ϕ(t), ∀t ∈ [−τ, 0]

where x(t) ∈ Rn is the state, z(t) ∈ Rr is the controlled output, w(t) ∈ Rl is
the disturbance of finite energy in the space L2[0,∞), and A, Ai, i = 1, 2, 3,
B1, C, D1 are known constant matrices of appropriate dimensions. The scalars
τi > 0, i = 1, 2, 3 are time delays. τ = max(τ1, τ2, τ3), ϕ(t) is a real-valued
continuous initial function on [−τ, 0]. Tzw is the transfer function from w to
z. Given a positive scalar γ > 0, define, for system (1), the performance index
J(w) :=

∫

∞

0
zT zdt −

∫

∞

0
γ2wT wdt, then ‖Tzw‖∞ < γ iff J(w) < 0, ∀w ∈

L2[0,∞).
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Lemma 1 (Park, 1999) Assume that a(α) ∈ Rnx and b(α) ∈ Rny are given for
α ∈ Ω. Then, for any positive definite matrix X ∈ Rnx×nx and any matrix
M ∈ Rny×ny , the following holds:

−2

∫

Ω

bT (α)a(α)dα ≤

∫

Ω

[

a(α)

b(α)

]T [

X XM

∗ (2, 2)

][

a(α)

b(α)

]

dα (2)

where (2, 2) denotes (MT X + I)X−1(XM + I).

Lemma 2 Let D, S, F be real matrices of appropriate dimensions and F satis-
fying FT F ≤ I. Then the following statements hold:

For any scalar ε > 0 and vectors x, y ∈ Rn,

2xT DFSy ≤ ε−1xT DDT x + εyT ST Sy.

3. Main results

3.1. H∞ performance analysis

Theorem 1 Assume τ1 > 0, τ2 > 0, γ > 0 are given positive scalars. The
system (1) is asymptotically stable and satisfies ‖Tzw‖∞ < γ, if there exist
symmetric and positive-definite matrices P1 > 0, S > 0, H > 0, U > 0, R1 > 0,
R3 > 0 and matrices P2, P3, R2, Wi, i = 1, · · · , 4 such that the following LMI
holds





































(1, 1) (1, 2) −W T

3 A1 P T

2 A2 P T

2 A3 τ1(W
T

1 + P1) (1, 7) P T

2 B1 CT

∗ (2, 2) −W T

4 A1 P T

3 A2 P T

3 A3 τ1W
T

2 (2, 7) P T

3 B1 0

∗ ∗ −S 0 0 0 0 0 0

∗ ∗ ∗ −H 0 0 0 0 0

∗ ∗ ∗ ∗ −U 0 0 0 0

∗ ∗ ∗ ∗ ∗ −τ1R1 −τ1R2 0 0

∗ ∗ ∗ ∗ ∗ ∗ −τ1R3 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I DT

1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I





































< 0 (3)

where

(1, 1) = Sym{PT

2 (A + A1) + WT

3 A1} + S + τ2
2 H

(1, 2) = P1 − PT

2 + (A + A1)
T P3 + AT

1 W4

(2, 2) = −PT

3 − P3 + U + τ1A
T

1 R3A1

(1, 7) = τ1(W
T

3 + PT

2 )

(2, 7) = τ1(W
T

4 + PT

3 )
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Proof. Represent (1) in the equivalent descriptor form:

ẋ(t) = y(t)

y(t) = Ax(t) + A1x(t − τ1) + A2

∫

t

t−τ2

x(s)ds + A3ẋ(t − τ3) + B1w(t). (4)

From the Newton-Leibniz Formula, we can get

y(t) = (A+A1)x(t)−A1

∫ t

t−τ1

y(s)ds+B1w(t)+A2

∫ t

t−τ2

x(s)ds+A3y(t−τ3).

Then, we can obtain

[

ẋ(t)

0

]

=

[

0 I

A + A1 −I

][

x(t)

y(t)

]

+

[

0

B1

]

w(t) −

[

0

A1

]

∫

t

t−τ1

y(s)ds

+

[

0

A2

]

∫ t

t−τ2

x(s)ds +

[

0

A3

]

y(t − τ3). (5)

Consider the following Lyapunov-Krasovskii functional candidate of the form

V (t) =

6
∑

i=1

Vi(t)

where

V1(t) =
[

xT (t) yT (t)
]

EP

[

x(t)

y(t)

]

E =

[

I 0

0 0

]

, P =

[

P1 0

P2 P3

]

V2(t) =

∫ t

t−τ1

xT (s)Sx(s)ds

V3(t) =

∫ 0

−τ1

∫ t

t+θ

yT (s)AT

1 R3A1y(s)dsdθ

V4(t) =

∫

t

t−τ2

[

∫

t

s

xT (θ)dθ]H [

∫

t

s

x(θ)dθ]ds

V5(t) =

∫

τ2

0

ds

∫

t

t−s

(θ − t + s)xT (θ)Hx(θ)dθ

V6(t) =

∫

t

t−τ3

yT (s)Uy(s)ds.
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The time derivative of V (t) along the trajectory of the system (1) is given by

V̇ (t) =

6
∑

i=1

V̇i(t) (6)

where

V̇1(t) = 2
[

xT (t) yT (t)
]

PT

[

ẋ(t)

0

]

(7)

V̇2(t) = xT (t)Sx(t) − xT (t − τ1)Sx(t − τ1)

V̇3(t) = τ1y
T (t)AT

1 R3A1y(t) −

∫ t

t−τ1

yT (s)AT

1 R3A1y(s)ds

V̇4(t) = 2

∫

t

t−τ2

(θ − t + τ2)x
T (t)Hx(θ)dθ −

[
∫

t

t−τ2

xT (θ)dθ

]

H

[
∫

t

t−τ2

x(θ)dθ

]

V̇5(t) =
1

2
τ2
2 xT (t)Hx(t) −

∫ t

t−τ2

(θ − t + τ2)x
T (θ)Hx(θ)dθ

V̇6(t) = yT (t)Uy(t) − yT (t − τ3)Uy(t − τ3).

Substitute (5) into (7). Define ξ =
[

xT (t) yT (t)
]

. From Lemma 1, we can

get the following inequalities:

−2ξPT

[

0

A1

]

∫ t

t−τ1

y(s)ds ≤

∫ t

t−τ1

yT (s)
[

0 AT
1

]

R

[

0

A1

]

y(s)ds

+2

∫

t

t−τ1

yT (s)
[

0 AT
1

]

RMPξT ds

+

∫ t

t−τ1

ξPT (MT R + I)R−1(RM + I)PξT ds (8)

where

R =

[

R1 R2

∗ R3

]

> 0.

Rearrange the terms of (8) and define the following equation

W = RMP =

[

W1 W2

W3 W4

]

.
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Then we can get

−2ξPT

[

0

A1

]

∫

t

t−τ1

y(s)ds ≤

∫

t

t−τ1

yT (s)AT

1 R3A1y(s)ds

+2(x(t) − x(t − τ1))
[

0 AT
1

]

WξT

+τ1ξ(W
T + PT )R−1(W + P )ξT . (9)

Now, by Lemma 2, it can be shown that

2xT (t)Q2x(θ) ≤ xT (t)Q2x(t) + xT (θ)Q2x(θ).

Therefore

V̇4(t) ≤

∫ t

t−τ2

(θ − t + τ2)x
T (θ)Hx(θ)dθ +

1

2
τ2
2 xT (t)Hx(t)

−

[
∫

t

t−τ2

xT (θ)dθ

]

H

[
∫

t

t−τ2

x(θ)dθ

]

.

Then we can get

V̇ (t) ≤ 2ξPT

[

0 I

A + A1 −I

]

ξT + xT (t)Sx(t)

+2ξPT

[

0

A2

]

∫

t

t−τ2

x(s)ds + 2ξPT

[

0

A3

]

y(t − τ3)

−xT (t − τ1)Sx(t − τ1) + τ1y
T (t)AT

1 R3A1y(t)

+2(x(t) − x(t − τ1))
[

0 AT
1

]

WξT + yT (t)Uy(t)

+τ1ξ(W + P )T R−1(W + P )ξT − yT (t − τ3)Uy(t − τ3) + τ2
2 xT (t)Hx(t)

−

(
∫

t

t−τ2

xT (s)ds

)

H

(
∫

t

t−τ2

x(s)ds

)

+ 2ξPT

[

0

B1

]

w(t).

When w(t) = 0, we can get V̇ (t) ≤ βT Ξβ, where

β =
[

ξ xT (t − τ1)
∫ t

t−τ2

xT (s)ds yT (t − τ3)
]

Ξ =

















(1, 1) (1, 2) (1, 3) (1, 4) τ1(W + P )T

∗ −S 0 0 0

∗ ∗ −H 0 0

∗ ∗ ∗ −U 0

∗ ∗ ∗ ∗ −τ1R
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(1, 1) = Sym

{

PT

[

0 I

A + A1 −I

]}

+ Sym

{

WT

[

0 0

A1 0

]}

+

[

S + τ2
2 H 0

∗ U + τ1A
T
1 R3A1

]

(1, 2) = −WT

[

0

A1

]

, (1, 3) = PT

[

0

A2

]

, (1, 4) = PT

[

0

A3

]

.

Now, from the LMI in (3), it is easy to see, by the Schur complement formula,
that (3) implies Ξ < 0. Then we can have V̇ (t) < 0 for all α(t) 6= 0 when
w(t) = 0. Therefore, the system (1) is asymptotically stable.

Next, we shall establish the H∞ performance of the system (1) under the
zero initial condition. Noting the zero initial condition, it can be shown that

J(w) =

∫

∞

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (t)]dt − V (∞)

≤

∫

∞

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (t)]dt.

Note

zT (t)z(t) =
[

xT (t)CT + wT (t)DT

1

]

[Cx(t) + D1w(t)] . (10)

Then we can get

zT (t)z(t) − γ2wT (t)w(t) + V̇ (t) ≤ αT Πα (11)

where,

α =
[

β w(t)
]

, Π =

[

Ξ (1, 2)

∗ −γ2I + DT
1 D1

]

,

(1, 2) =



















P T

[

0

B1

]

+ CT D1

0

0

0

0



















Π < 0 implies that J(w) < 0. By Schur complement Lemma, the inequality
Π < 0 can be equivalently changed to (3). This completes the proof.
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3.2. H∞ performance analysis for uncertain systems

Consider the following system with discrete and distributed delays and param-
eter uncertainties:

ẋ(t) = [A + ∆A(t)]x(t) + [A1 + ∆A1(t)]x(t − τ1)

+ [A2 + ∆A2(t)]

∫ t

t−τ2

x(s)ds + B1w(t) + [A3 + ∆A3(t)]ẋ(t − τ3)

z(t) =Cx(t) + D1w(t)

x(t) =ϕ(t), ∀t ∈ [−τ, 0] (12)

where ∆A(t), ∆A1(t), ∆A2(t), ∆A3(t) are unknown matrices representing time-
varying parameter uncertainties, the other signals are the same as in system (1).
In this paper, the parameter uncertainties are assumed to be of the form

[

∆A(t) ∆A1(t) ∆A2(t) ∆A3(t)
]

= DF (t)
[

E E1 E2 E3

]

(13)

where D, E, E1, E2, E3 are known real constant matrices of appropriate dimen-
sions. F (·) : R → Rk×l is an unknown time-varying matrix function satisfying

FT (t)F (t) ≤ I, ∀t. (14)

Assume that all the elements of F (t) are Lebesgue measurable. The uncertain
matrices ∆A(t), ∆A1(t), ∆A2(t), ∆A3(t) are said to be admissible if both (13)
and (14) hold.

Theorem 2 Assume τ1 > 0, τ2 > 0, γ > 0 are given positive scalars. The
system (12) is robustly asymptotically stable and satisfies ‖Tzw‖∞ < γ for all
admissible uncertainties, if there exist positive scalar ε > 0, symmetric and
positive-definite matrices P1 > 0, S > 0, H > 0, U > 0, R1 > 0, R3 > 0 and
matrices P2, P3, R2, Wi, i = 1, · · · , 4 such that the following LMI holds,









































(1, 1) (1, 2) −W T

3 A1 P T

2 A2 P T

2 A3 (1, 6) (1, 7) P T

2 B1 CT P T

2 D εET

∗ (2, 2) −W T

4 A1 P T

3 A2 P T

3 A3 τ1W
T

2 (2, 7) P T

3 B1 0 P T

3 D 0

∗ ∗ −S 0 0 0 0 0 0 0 εET

1

∗ ∗ ∗ −H 0 0 0 0 0 0 εET

2

∗ ∗ ∗ ∗ −U 0 0 0 0 0 εET

3

∗ ∗ ∗ ∗ ∗ −τ1R1 −τ1R2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −τ1R3 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I DT

1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI









































< 0

(15)
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where

(1, 1) = Sym{PT

2 (A + A1) + WT

3 A1} + S + τ2
2 H

(1, 2) = P1 − PT

2 + (A + A1)
T P3 + AT

1 W4

(1, 6) = τ1(W
T

1 + P1), (1, 7) = τ1(W
T

3 + PT

2 )

(2, 2) = −PT

3 − P3 + U + τ1A
T

1 R3A1, (2, 7) = τ1(W
T

4 + PT

3 )

Proof. Similarly to the proof of Theorem 1, system (12) is represented in the
equivalent descriptor form. Note that

[

ẋ(t)

0

]

=

[

0 I

A + A1 −I

] [

x(t)

y(t)

]

+

[

0

B1

]

w(t)

−

[

0

A1

]

∫

t

t−τ1

y(s)ds +

[

0

A2

]

∫

t

t−τ2

x(s)ds

+

[

0

A3

]

y(t − τ3) +

[

0 0

∆A + ∆A1(t) 0

][

x(t)

y(t)

]

+

[

0

∆A2(t)

]

∫ t

t−τ2

x(s)ds +

[

0

∆A3(t)

]

y(t − τ3)

−

[

0

∆A1(t)

]

(x(t) − x(t − τ1)). (16)

Substitute (16) to (7). Define

ξ =
[

xT (t) yT (t)
]

β =
[

ξ xT (t − τ1)
∫

t

t−τ2

xT (s)ds yT (t − τ3)
]T

Γ = εβT

















ET

0

ET
1

ET
2

ET
3

















[

E 0 E1 E2 E3

]

β.

Note that

2ξPT

{[

0 0

∆A + ∆A1(t) 0

] [

x(t)

y(t)

]

−

[

0

∆A1(t)

]

(x(t) − x(t − τ1))

+

[

0

∆A2(t)

]

∫ t

t−τ2

x(s)ds +

[

0

∆A3(t)

]

y(t − τ3)

}
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= 2ξPT

{[

0

DF (t)E

]

x(t) +

[

0

DF (t)E1

]

x(t − τ1)

+

[

0

DF (t)E2

]

∫ t

t−τ2

x(s)ds +

[

0

DF (t)E3

]

y(t − τ3)

}

= 2ξPT

[

0

D

]

F (t)
[

E 0 E1 E2 E3

]

β

≤ ε−1ξPT

[

0

D

]

[

0 DT

]

Pξ + Γ

3.3. H∞ control for uncertain systems

Consider the controlled form of a system with discrete and distributed delays
and parameter uncertainties:

ẋ(t) = [A + ∆A(t)]x(t) + [A1 + ∆A1(t)]x(t − τ1) + B1w(t) + B2u(t)

+[A2 + ∆A2(t)]

∫

t

t−τ2

x(s)ds + [A3 + ∆A3(t)]ẋ(t − τ3)

z(t) = Cx(t) + D1w(t) + D2u(t) (17)

where u(t) ∈ Rnu is the control input. Take the state-feedback control law

u(t) = Kx(t). (18)

Then the corresponding closed-loop system can be written down as

ẋ(t) = [Ac + ∆A(t)]x(t) + [A1 + ∆A1(t)]x(t − τ1) + B1w(t)

+[A2 + ∆A2(t)]

∫

t

t−τ2

x(s)ds + [A3 + ∆A3(t)]ẋ(t − τ3)

z(t) = Ccx(t) + D1w(t) (19)

where

Ac = A + B2K, Cc = C + D2K. (20)

Theorem 3 Assume τ1 > 0, τ2 > 0, γ > 0 are given positive scalars and λ
is a given scalar. There exists a state-feedback controller of the form (18) such
that the closed-loop system (19) is robustly asymptotically stable and satisfies
‖Tzw‖∞ < γ for all admissible uncertainties, if there exist positive scalar ε > 0,
symmetric and positive-definite matrices Q1 > 0, S̄ > 0, H̄ > 0, Ū > 0, R̄1 > 0,
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R̄3 > 0 and matrices Q2, Q3, R̄2, Y such that the following LMI holds,








































(1, 1) (1, 2) τ1(λ + 1)R̄3 (1, 4) (1, 5) (1, 6)

[

0 Q1E
T

ε̄D 0

]

∗ (2, 2) 0 0 0 0







0 ET

1

0 ET

2

0 ET

3







∗ ∗ −τ1

[

R̄1 R̄2

∗ R̄3

]

0 0 0 0

∗ ∗ ∗ (4, 4) 0 0 0

∗ ∗ ∗ ∗ −τ1R̄3 0 0

∗ ∗ ∗ ∗ ∗ (6, 6) 0

∗ ∗ ∗ ∗ ∗ ∗ −ε̄I









































< 0 (21)

where

(1, 1) =

[

Q2 + QT
2 Q3 − QT

2 + Q1(A + A1)
T + λQ1A

T
1 + Y T BT

2

∗ −Q3 − QT
3

]

(1, 2) =

[

0 0 0

−λA1S̄ A2H̄ A3Ū

]

, (1, 4) =

[

Q1 τ2Q1 QT
2

0 0 QT
3

]

(1, 5) = τ1

[

QT
2

QT
3

]

AT

1 , (1, 6) =

[

0 Q1C
T + Y T DT

2

B1 0

]

(2, 2) = (4, 4) = −diag{S̄, H̄, Ū}, (6, 6) =

[

−γ2I DT
1

∗ −I

]

.

Furthermore, if the above condition holds, the state-feedback gain is then given
by K = Y Q−1

1 .

Proof. Applying Theorem 2 to the closed-loop system (19). In order to obtain
an LMI, we have to restrict ourselves to the case of W = λP , where λ ∈ R is a
scalar parameter. It is obvious from the requirement of P1 > 0 and the fact that
in (15) −P3 − PT

3 must be negative definite, that P is nonsingular. Defining

Q = P−1 =

[

Q1 0

Q2 Q3

]

∆ = diag{Q, S−1, H−1, U−1, R−1
3 , R−1

3 , I, I, ε−1I, I}

we multiply (15) by ∆T and ∆ on the left and on the right, respectively. Ap-
plying the Schur complement Lemma to the quadratic term in Q, substitute
(20) into the obtained equation, defining S̄ = S−1, H̄ = H−1, Ū = U−1,
R̄1 = R−1

3 R1R
−1
3 , R̄2 = R−1

3 R2R
−1
3 , R̄3 = R−1

3 and denoting KQ1 by Y , we
can obtain (21).
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4. Illustrative examples

Example 1 Consider the system (1), with

A =

[

−0.9 0.2

0 −0.9

]

, A1 =

[

−1.1 −0.2

−0.1 −1.1

]

, A3 =

[

−0.2 0

0.2 −0.2

]

A2 = 0, B1 = C = D1 = 0

which was presented in Chen et al. (2001). By the criteria in Chen et al. (2001)
and Yue, Won and Kwon (2003), the nominal system is asymptotically stable
for any h satisfying h ≤ 0.5658 and h ≤ 1.5687, respectively. However, using
Theorem 1, we found the admissible bound of τ1 to be 1.71.

Example 2 Consider system (1) shown in Park and Won (2000) with

A =

[

−d1 0

0 −d2

]

, A1 =

[

b1 b2

−b2 b1

]

, A2 =

[

c1 c2

−c2 c1

]

A3 = B1 = C = D1 = 0

where

A =

[

−0.9 0.2

0 −0.9

]

, A1 =

[

−1.1 −0.2

−0.1 −1.1

]

, A2 = 0,

A3 =

[

−0.2 0

0.2 −0.2

]

and di, bi, ci, i = 1, 2 are constant coefficients. For the case when d1 = d2 = 0.9,
b1 = −1, b2 = c1 = c2 = −0.12 and τ2 = 1, using the discrete delay dependent
result given in Theorem 2 of Chen et al. (2001), it was found that the upper
bound of τ1 must be less than 0.9086 because of the constraint condition (8a)
of Chen et al. (2001). And using Theorem 1 of Yue, Won and Kwon (2003), it
was found that the upper bound of τ1 must be less than 1.8302. However, using
Theorem 1, we found the admissible bound of τ1 to be 2.2.
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Example 3 Consider the uncertain delay system (17), where

A =

[

0 0

0 1

]

, A1 =

[

−1 −1

0 −0.9

]

, A2 =

[

0.1 −0.3

0 0.1

]

A3 =

[

−0.1 0

0 −0.2

]

, B1 =

[

1

1

]

, B2 =

[

0

1

]

, D =

[

0.1

0.3

]

C =
[

0 1
]

, D1 = 0, D2 = 0.1

E =
[

−0.1 0.1
]

, E1 =
[

0.1 0.5
]

E2 =
[

0.3 −0.1
]

, E3 =
[

0.1 −0.1
]

τ2 = 0.5, λ = −0.3

In this example, the H∞ performance level γ is specified to be 0.5. We can solve
the LMIs in Theorem 3, and obtain the admissible bound of τ1 to be 0.9 and
the solution as follows:

Q1 =

[

7.8910 0.0308

0.0308 0.0792

]

× 103

Y =
[

−311.4860 −767.3463
]

.

Then we can get the gain matrix of the stabilizing state-feedback controller for
the system (17):

K =
[

−0.0017 −9.6865
]

.

5. Conclusions

In this paper, we have considered the design problem of robust H∞ state-
feedback controller for a class of neutral systems with discrete and distributed
time delays and time-varying norm-bounded parameter uncertainties. Robust
H∞ performance analysis conditions and state-feedback solutions are given in
terms of LMIs. Examples have been provided to illustrate the effectiveness of
the proposed approach.
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