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Abstract: Necessary and sufficient conditions are established for
the pointwise completeness of 2D standard and positive Fornasini-
Marchesini models with state-feedbacks. Similar relations are ob-
tained for the pointwise degeneracy of the 2D models with state-
feedbacks. It is shown that if the positive 2D model is pointwise
complete then there exists a gain matrix of the state-feedback such
that the closed-loop system is pointwise degenerated if both matri-
ces B1 and B2 of the 2D Fornasini-Marchesini model are nonzero.
The considerations are illustrated by numerical examples.
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1. Introduction

In positive systems, inputs, state variables and outputs take only non-negative
values. Examples of positive systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage systems, compart-
mental systems, water and atmospheric pollution models. A variety of models
having positive linear behavior can be found in engineering, management sci-
ence, economics, social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. There-
fore, the theory of positive systems is more complicated and less advanced. An
overview of the state of the art in positive systems theory is given in Farina and
Rinaldi (2000), and Kaczorek (2002).

The most popular models of two-dimensional (2D) linear systems are the
discrete models introduced by Roesser (1975), Fornasini and Marchesini (1976,
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1978), and Kurek (1985). These models have been extended for positive systems.
An overview of positive 2D system theory has been given in Kaczorek (2002).

A dynamical system described by homogenous equation is called pointwise
complete if every given final state of the system can be reached by a suitable
choice of its initial state. A system which is not pointwise complete, is called
pointwise degenerate.

Pointwise completeness and pointwise degeneracy belong to the basic con-
cepts of the modern control theory of 2D linear systems and they play an espe-
cially important role in positive 2D linear systems.

The pointwise completeness and pointwise degeneracy of linear continuous-
time system with delays have been investigated in Choundhury (1972), Olbrot
(1972), Popov (1972), and Weiss (1970), of discrete-time and continuous-time
systems of fractional order – in Busłowicz (2008) and Kaczorek and Busłowicz
(2009), and of positive discrete-time systems with delays in Busłowicz, Ko-
ciszewski and Trzasko (2006). The pointwise completeness of linear discrete-
time cone-systems with delays has been analyzed in Trzasko, Busłowicz and
Kaczorek (2007). The pointwise completeness and pointwise degeneracy of stan-
dard and positive linear systems with state-feedbacks have been investigated in
Kaczorek (2009, 2010a).

The pointwise completeness and pointwise degeneracy of 2D standard and
positive Fornasini-Marchesini models have been addressed in Kaczorek (2010b).

In this paper the pointwise completeness and pointwise degeneracy of stan-
dard and positive 2D Fornasini-Marchesini models with state-feedbacks will be
addressed.

The structure of the paper is as follows. In Section 2 the pointwise com-
pleteness of 2D standard Fornasini-Marchesini models with state-feedback is
addressed. The pointwise degeneracy of the same class of models is investigated
in Section 3. The pointwise completeness of 2D positive Fornasini-Marcheisni
models with state-feedback is analyzed in Section 4 and the pointwise degener-
acy in Section 5. Concluding remarks are given in Section 6. In the Appendix
two lemmas are presented which are used in the proof of the main result of the
paper.

2. Pointwise completeness of standard 2D

Fornasini-Marchesini models

2.1. Preliminaries and problem formulation

Let ℜn×m be the set of n × m real matrices and ℜn = ℜn×1. Consider the
autonomous 2D (second) Fornasini-Marchesini model, Fornasini and Marchesini
(1976, 1978), Kaczorek (1985):

xi+1,j+1 = A1xi,j+1 + A2xi+1,j i, j ∈ Z+ = {0, 1, , ...} (2.1)

where xij ∈ ℜn is the state vector at the point (i, j) and Ak ∈ ℜn×n, k = 1, 2.
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Boundary conditions for (2.1) are given by

xi,0 for i = 1, 2, . . . and x0,j for j = 1, 2, . . . (2.2)

The transition matrix Tij of the model (2.1) is defined as follows, Fornasini and
Marchesini (1976, 1978), Kaczorek (1985):

Tij =







In( the identity matrix) for i = j = 0

A1Ti−1,j + A2Ti,j−1 for i, j ∈ Z+ and i + j > 0

0( the zero matrix) for i < 0 or j < 0

(2.3)

The solution of the equation (2.1) with boundary conditions (2.2) has the
form, Fornasini and Marchesini (1976, 1978), Kaczorek (1985):

xij =

j
∑

l=1

Ti−1,j−lA1x0,l +

i∑

k=1

Ti−k,j−1A2xk,0

= T1(i, j)






x01

...
x0j




 + T2(i, j)






x10

...
xi0




 (2.4a)

where

T1(i, j) = [ Ti−1,j−1A1 ... Ti−1,0A1 ],

T2(i, j) = [ Ti−1,j−1A2 ... T0,j−1A2 ]. (2.4b)

Definition 2.1 The model (2.1) is called pointwise complete at the point (p, q)
if for every final state xf ∈ ℜn there exist boundary conditions

xi,0 for i = 1, . . . , p and x0,j for j = 1, . . . , q (2.5)

such that xpq = xf .

Theorem 2.1 (Kaczorek, 2010b) The model (2.1) is pointwise complete if
and only if

rank [ T1(p, q) T2(p, q) ] = n (2.6)

where T1(p, q) and T2(p, q) are defined by (2.4b) for i = p, j = q.

Theorem 2.2 The model (2.1) is not pointwise complete at the point (p, q) if

rank [ A1 A2 ] < n. (2.7)

Proof. From (2.3) we have

Tij = [ A1 A2 ]

[
Ti−1,j

Ti,j−1

]

, i, j ∈ Z+, i + j > 0 (2.8)
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Condition (2.7) implies rank Tij < n and from (2.4b) we obtain

rank [ T1(p, q) T2(p, q) ] < n (2.9)

and by Theorem 2.1 the model (2.1) is not pointwise complete at the point
(p, q).

Consider the 2D (second) Fornasini-Marchesini model

xi+1,j+1 = A1xi,j+1 + A2xi+1,j + B1ui,j+1 + B2ui+1,j , i, j ∈ Z+ (2.10)

with the state-feedback

uij = Kxij , i, j ∈ Z+ (2.11)

where xij ∈ ℜn, uij ∈ ℜm are the state and input vectors, Ak ∈ ℜn×n, Bk ∈
ℜn×m, k = 1, 2, and K ∈ ℜm×n is a gain matrix.

Assume that the model (2.10) is not pointwise complete at the point (p, q).
We are looking for a gain matrix K such that the closed-loop system

xi+1,j+1 = (A1 + B1K)xi,j+1 + (A2 + B2K)xi+1,j , i, j ∈ Z+ (2.12)

is pointwise complete at the point (p, q).

2.2. Problem solution

The following two cases will be considered. In both cases it is assumed that
(2.7) holds, i.e. the model (2.10) is not pointwise complete.

Case 1. It is assumed that

rank [ A1 B1 ] = n (2.13)

or
rank [ A2 B2 ] = n (2.14)

Case 2. It is assumed that

rank [ Ak Bk ] < n for k = 1, 2 (2.15)

but

rank [ A1 A2 B1 B2 ] = n (2.16)

First we shall consider Case 1, when the assumption (2.13) is satisfied.

Theorem 2.3 Let the condition (2.7) be satisfied and (2.14) ((2.13)) be not
satisfied. There exists a gain matrix K ∈ ℜm×n of the state-feedback (2.11)
such that the closed-loop system (2.12) is pointwise complete at the point (p, q)
if and only if the condition (2.13) ((2.14)) is met.
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Proof. From Lemma A.1 for q = n it follows that there exists a gain matrix K

such that the matrix

Ā1 = A1 + B1K (2.17)

is nonsingular if and only if the condition (2.13) is met.
Let T̄ij be the transition matrix defined by (2.3) for the pair (Ā1, Ā2). If Ā1

is nonsingular then from (2.4a) we have

rank [ T̄p−1,q−1Ā1 ... T̄p−1,1Ā1 Ā
p
1 ] = n (2.18)

since det Ā
p
1 6= 0 and by Theorem 2.1 the closed-loop system (2.12) is pointwise

complete at the point (p, q). In a similar way we may show the dual theorem.

Example 2.1 Consider the model (2.10) with the matrices

A1 =





1 −2 1
2 1 0
−2 4 −2



 , A2 =





0 1 2
1 0 1
0 −2 −4



 , B1 =





0
1
1



 , B2 =





0
2
0



 (2.19)

It is easy to check that the model with matrices (2.19) satisfies the assumption
of Theorem 2.3 since

rank [ A1 A2 ] = rank





1 −2 1 0 1 2
2 1 0 1 0 1
−2 4 −2 0 −2 −4



 = 2 < n = 3

and

rank [ A1 B1 ] = rank





1 −2 1 0
2 1 0 1
−2 4 −2 1



 = 3

rank [ A2 B2 ] = rank





0 1 2 0
1 0 1 2
0 −2 −4 0



 = 2 < n = 3.

Now, we want to find a gain matrix K = [ k1 k2 k3 ] such that the
closed-loop system is pointwise complete at the point (p, q) = (2, 1), and to find
initial conditions for a given final state xf .

We choose the gain matrix so that the matrix

Ā1 = A1 + B1K =





1 −2 1
2 1 0
−2 4 −2



 +





0
1
1



 [ k1 k2 k3 ]

=





1 −2 1
2 + k1 1 + k2 k3

k1 − 2 4 + k2 k3 − 2



 (2.20)

is nonsingular.
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For K = [ 2 −3 2 ] the matrix (2.20) has the form

Ā1 =





1 −2 1
4 −2 2
0 1 0



 (2.21)

and

Ā2 =A2 + B2K =





0 1 2
1 0 1
0 −2 −4



 +





0
2
0




[

2 −3 2
]
=





0 1 2
5 −6 5
0 −2 −4



 . (2.22)

Using (2.4b) and (2.3) for Ā1 and Ā2 we obtain

T̄1(2, 1) = [Ā2
1] =





−7 3 −3
−4 −2 0
4 −2 2



 ,

T̄2(2, 1) = [ Ā1Ā2 Ā2 ] =





−10 15 −12 0 1 2
−10 12 −10 5 −6 5
5 −6 5 0 −2 −4



 .

From (2.4a) for i = 2, j = 1 we have

xf = x21 = [ T̄1(2, 1) T̄2(2, 1) ]





x01

x10

x20



 = [ Ā2
1 Ā1Ā2 Ā2 ]





x01

x10

x20



 . (2.23)

Assuming x10 = x20 = 0 we can compute the initial condition

x01 = Ā−2
1 xf =





−1 0 −1, 5
2 −0, 5 3
4 −0, 5 6, 5



xf (2.24)

for any given final state xf .

Now let us consider Case 2.

Theorem 2.4 Let conditions (2.7) and (2.15) be satisfied. There exists a gain
matrix K ∈ ℜm×n of the state-feedback (2.11) such that the closed-loop system
(2.12) is pointwise complete at the point (p, q) if and only if the condition (2.16)
is met.

Proof. From comparison (A.2) and

[ Ā1 Ā2 ] = [ A1 A2 ] + [ B1 B2 ]

[
K 0
0 K

]

, (2.25)

as well as Lemma A.1, it follows that there exists a gain matrix K such that
the matrix [ Ā1 Ā2 ] has full row rank if and only if the condition (2.16) is
satisfied. This, by Lemma A.2, implies the condition (2.18) and the closed-loop
system (2.12) is pointwise complete at the point (p, q).
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Example 2.2 For the model (2.10) with matrices

A1 =





1 −2 −1
0 1 2
−1 2 1



 , A2 =





0 1 2
0 0 0
0 −1 −2



 , B1 =





0
1
0



 , B2 =





0
0
1



 (2.26)

find a gain matrix of the state-feedback (2.11) such that the closed-loop system
is pointwise complete at the point (p, q) = (1, 2).

For the model (2.10) with (2.26), the conditions (2.7), (2.15) and (2.16) are
satisfied, since

rank [ A1 A2 ] = rank





1 −2 −1 0 1 2
0 1 2 0 0 0
−1 2 1 0 −1 −2



 = 2 < n = 3

rank [ A1 B1 ] = rank





1 −2 −1 0
0 1 2 1
−1 2 1 0



 = 2 < n = 3 (2.27)

rank [ A2 B2 ] = rank





0 1 2 0
0 0 0 0
0 −1 −2 1



 = 2 < n = 3

and

rank [ A1 A2 B1 B2 ] = rank





1 −2 −1 0 1 2 0 0
0 1 2 0 0 0 1 0
−1 2 1 0 −1 −2 0 1



 = 3. (2.28)

We are looking for a gain matrix K = [ k1 k2 k3 ] such that the matrix

[ Ā1 Ā2 ] = [ A1 + B1K A2 + B2K ]

=





1 −2 −1 0 1 2
k1 k2 + 1 k3 + 2 0 0 0
−1 2 1 k1 k2 − 1 k3 − 2



 (2.29)

has full row rank. For k1 = 1, k2 = −1, k3 = 2, from (2.29) we obtain the
matrix

[ Ā1 Ā2 ] =





1 −2 −1 0 1 2
1 0 4 0 0 0
−1 2 1 1 −2 0



 (2.30)

with full row rank.

In this case the matrix
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[ T̄1(1, 2) T̄2(1, 2) ] =[ Ā2Ā1 Ā1 Ā2
2 ]=





−1 4 6 1 −2 −1 2 −4 0
0 0 0 1 0 4 0 0 0
−1 −2 −9 −1 2 1 0 1 2





(2.31)

has also full row rank, and by Theorem 2.1 the closed-loop system is pointwise
complete at the point (1,2).

3. Pointwise degeneracy of standard 2D

Fornasini-Marchesini models

Definition 3.1 The model (2.1) is called pointwise degenerate at the point
(p, q) in the direction ν if there exists a non-zero vector ν ∈ ℜn such that for
all boundary conditions (2.5) the solution (2.4) for i = p, j = q satisfies the
condition νT xpq = 0, where T denotes the transpose.

From Theorem 2.1 we have the following remark.

Remark 3.1 The model (2.1) is pointwise degenerate at the point (p, q) in the
direction ν if and only if

rank [ T1(p, q) T2(p, q) ] < n (3.1)

where T1(p, q) and T2(p, q) are defined by (2.4b).

The vector ν can be found from the equation

νT [ T1(p, q) T2(p, q) ] = 0. (3.2)

From Theorem 2.2 we have the following corollary.

Corollary 3.1 The model (2.1) is pointwise degenerate at the point (p, q) in
the direction ν if

rank [ A1 A2 ] < n (3.3)

and the vector ν is determined by the equation

νT [ A1 A2 ] = 0. (3.4)

Consider the 2D Fornasini-Marchesini model (2.10) with the state-feedback
(2.11). Let the model (2.10) be pointwise degenerate at the point (p, q). We are
looking for a gain matrix K ∈ ℜm×n of the state-feedback (2.11) such that the
closed-loop system (2.12) is pointwise complete at the point (p, q).

From Theorems 2.4 and 2.2 we have the following theorem.

Theorem 3.1 Let the model (2.10) be pointwise degenerate at the point (p, q).
There exists a gain matrix K ∈ ℜm×n of the state-feedback (2.11) such that the
closed-loop system (2.12) is pointwise complete at the point (p, q) if and only if
the condition (2.16) is satisfied.

Proof is similar to the proof of Theorem 2.4.
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4. Pointwise completeness of positive 2D

Fornasini-Marchesini models

Let ℜn×m
+ be the set of n×m real matrices with nonnegative entries and ℜn

+ =

ℜn×1
+ .

Definition 4.1 The model (2.10) is called positive, if xij ∈ ℜn
+, i, j ∈ Z+ for

any boundary conditions xi0 ∈ ℜn
+, i ∈ Z+, x0j ∈ ℜn

+, j ∈ Z+ and all input
sequences uij ∈ ℜm

+ , i, j ∈ Z+.

Theorem 4.1 (Kaczorek, 2002) The model (2.10) is positive if and only if

Ak ∈ ℜn×n
+ and Bk ∈ ℜn×m

+ for k = 1, 2. (4.1)

A matrix A ∈ ℜn×n
+ is called monomial if and only if its every row and column

have only one positive entry and the remaining entries are zero.

Definition 4.2 The positive model (2.10) is called pointwise complete at the
point (p, q) if for every final state xf ∈ ℜn

+ there exist boundary conditions

xi0 ∈ ℜn
+ for i = 1, ..., p and x0j ∈ ℜn

+ for j = 1, ..., q

such that xpq = xf .

Theorem 4.2 (Kaczorek, 2010b) The positive model (2.10) is pointwise
complete at the point (p, q) if and only if the matrix

[ T1(p, q) T2(p, q) ] (4.2)

contains n linearly independent monomial columns, where the matrices T1(p, q)
and T2(p, q) are defined by (2.4b).

Theorem 4.3 (Kaczorek, 2010b) The positive model (2.10) is pointwise
complete at any point (p, q) only if the matrix

[ A1 A2 ] (4.3)

contains n linearly independent monomial columns.

Theorem 4.4 (Kaczorek, 2010b) The positive model (2.10) is pointwise
complete at the point (1, q) for q > 1 ((p, 1) for p > 1) if and only if the
matrix (4.3) contains n linearly independent monomial columns.

The ith column ai ∈ ℜn
+ of the matrix A = [ a1 ... an ] is called the

standard monomial column if ai = ciei, where ei is the ith column of In and
ci > 0, i = 1, . . . , n.
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Theorem 4.5 (Kaczorek, 2010b) Let the matrix (4.3) contain n linearly in-
dependent monomial columns. The positive model (2.1) is pointwise complete
at the point (p, q) for p > 1, q > 1 if one of the following conditions is satisfied:

1) at least one of the matrices A1, A2 is a monomial matrix,

2) the matrix A1 contains k (k = 1, 2, . . . , n−1) different standard monomial
columns and the matrix A2 contains n − k different standard monomial
columns such that the matrix composed of all these columns is a monomial
matrix.

Consider the positive 2D Fornasini-Marchesini model (2.10) with the state-
feedback (2.11). Let the model be pointwise degenerate at the point (p, q). We
are looking for a gain matrix K ∈ ℜm×n of the state-feedback (2.11) such that
the closed-loop system (2.12) is positive and pointwise complete at the point
(p, q).

Further on, it is assumed that the following assumptions are satisfied.

Assumption 1 The positive model (2.10) is not pointwise complete at the point
(p, q) but the condition (2.16) is satisfied.

Assumption 2 The matrix (4.3) contains at least n − 1 columns with zero
entries in all rows corresponding to zero rows in the matrix

[ B1 B2 ] ∈ ℜn×2m
+ . (4.4)

Remark 4.1 If Assumption 2 is not satisfied then there does not exist a gain
matrix K ∈ ℜm×n such that the matrix

[ A1 + B1K A2 + B2K ] (4.5)

has n monomial columns.

Note that if Assumption 2 is satisfied, then we can choose from the matrix
(4.3) n columns

A1i1 , A1i2 , ..., A1ik
, A2ik+1

, ..., A2in
, k ∈ {0, 1, ..., n− 1} (4.6)

having zero entries in all rows corresponding to zero rows in the matrix (4.4).
For k = 0 the columns of A2 and for k = n − 1 the columns of A1 are selected.
The columns (4.6) will be called the columns of the desired monomial matrix

Ām = [ Ā1m Ā2m ] (4.7a)

where

Ā1m = [ A1i1 ... A1ik
] ∈ ℜn×k, Ā2m = [ A2ik+1

... A2in
] ∈ ℜn×(n−k)

(4.7b)

By Ã12 (Ã21) we will denote the matrix composed of the columns of A1 (A2)
which are not included in Ā1m (Ā2m).
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Theorem 4.6 Let Assumptions 1 and 2 be satisfied. There exists a gain matrix
K ∈ ℜm×n of the state-feedback (2.11) such that the closed-loop system (2.12)
is positive and pointwise complete at the point (p, q) if and only if for a given
matrix composed of standard monomial columns

Âm = [ Â1m Â2m ] = [ a1 ... ak ak+1 ... an ] (4.8)

the following holds

rank [ Bj Âjm − Ājm ] = rank Bj for j = 1, 2 (4.9)

and

Ã12 + B1K̃1 ∈ ℜ
n×(n−k)
+ , Ã21 + B2K̃2 ∈ ℜn×k

+ (4.10)

where K̃1 (K̃2) is the matrix composed of those columns of K, which correspond
to the columns of the matrix Ã12 (Ã21).

Proof. By the Kronecker-Cappeli theorem, the equations

BjKj = Âjm − Ājm, j = 1, 2 (4.11)

have solution K1, K2 if and only if condition (4.9) is satisfied. Note that the
matrix A

p
1 contains k different standard monomial columns if and only if matrix

A1 contains such columns, since if ai = ciei is the ith column of A1 then cie
p
i

is the ith column of A
p
1. Similarly, matrix A

q
2 contains n − k different standard

monomial columns if and only if A2 contains such columns. In this case from
(2.4b) it follows that the matrix [ T̄1(p, q) T̄2(p, q) ] contains a monomial
matrix and by Theorem 4.2 the closed-loop system (2.12) is pointwise complete
at the point (p, q). The matrices

Āj = Aj + BjK ∈ ℜn×n
+ for j = 1, 2 (4.12)

if and only if the conditions (4.10) are satisfied. In this case the closed-loop
system (2.12) is positive and pointwise complete at the point (p, q).

Remark 4.2 If the model (2.10) is positive (Ak ∈ ℜn×n
+ , Bk ∈ ℜn×m

+ for k =
1, 2) and not pointwise complete, then there does not exist K ∈ ℜm×n

+ such that
the closed-loop system is positive and pointwise complete at the point (p, q).

Example 4.1 For the positive model (2.10) with the matrices

A1 =





3 2 2
2 1 0
1 0 1



 , A2 =





3 2 4
1 4 3
0 0 2



 , B1 =





1
0
0



 , B2 =





0
1
0



 (4.13)

find a gain matrix

K = [ k1 k2 k3 ] (4.14)

of the state-feedback (2.11) such that the closed-loop system is positive and
pointwise compete at the point (p, q) = (1, 2).
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It is easy to check that the matrices (4.13) satisfy Assumptions 1 and 2. In
this case we choose as the columns of the desired monomial matrix (4.7) the
second column A12 and the third column A13 of the matrix A1 and the first
column] A21 of the matrix A2, i.e.

Ām = [ Ā1m Ā2m ] =





2 2 3
1 0 1
0 1 0



 (4.15)

and

Ã12 = A11 =





3
2
1



 , Ã21 = [ A22 A23 ] =





2 4
4 3
0 2



 ,

K1 = [ k1 k2 ], K2 = [k3] (4.16)

We choose

Â1m =





0 0
1 0
0 1



 , Â2m =





3
0
0



 . (4.17)

Conditions (4.9) are satisfied since

rank [ B1 Â1m − Ā1m ] = rank





1 −2 −2
0 0 0
0 0 0



 = rank B1 = rank





1
0
0



 = 1

rank [ B2 Â2m − Ā2m ] = rank





0 0
1 −1
0 0



 = rank B2 = rank





0
1
0



 = 1.

(4.18)

Equations (4.11) have the forms





1
0
0



K1 =





−2 −2
0 0
0 0



 ,





0
1
0



 K2 =





0
−1
0



 (4.19a)

and

K1 = [ k1 k2 ] = [ −2 −2 ], K2 = [k3] = [−1] (4.19b)
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Conditions (4.10) are satisfied, since the matrices

Ã12 + B1K1 =





3
2
1



 +





0
1
0



 [−1] =





3
1
1





Ã21 + B2K2 =





2 4
4 3
0 2



 +





0
1
0



 [ −2 −2 ] =





2 4
4 1
0 2





have nonnegative entries.
Using (2.3) and (2.4b) for the closed-loop system we obtain

[ T̄1(1, 2) T̄2(1, 2) ] = [ Ā2Ā1 Ā1 Ā2
2 ] =





14 2 4 2 0 0 9 10 22
5 2 1 2 1 0 0 4 4
2 0 2 1 0 1 0 0 4



 . (4.20)

Matrix (4.20) contains three linearly independent columns and by Theorem 4.2
the closed-loop system is positive and pointwise complete at the point (1, 2).

5. Pointwise degeneracy of the positive 2D

Fornasini-Marchesini models

Definition 5.1 The positive model (2.1) is called pointwise degenerate at the
point (p, q) in the direction ν if there exists a nonzero vector ν ∈ ℜn such that
for all boundary conditions xi0 ∈ ℜn

+, i = 1, . . . , p; x0j ∈ ℜn
+, j = 1, . . . , q the

solution (2.4) for i = p, j = q satisfies the condition νT xpq = 0.

Theorem 5.1 (Kaczorek, 2010b) The positive model (2.1) is pointwise de-
generate at the point (p, q) in the direction ν if the condition

rank [ T1(p, q) T2(p, q) ] < n (5.1)

is met, where T1(p, q) and T2(p, q) are defined by (2.4b). The vector ν can be
found from the equation

νT [ T1(p, q) T2(p, q) ] = 0. (5.2)

Theorem 5.2 (Kaczorek, 2010b) The positive model (2.1) is pointwise de-
generate at the point (p, q) in the direction ν if the matrix (4.3) does not contain
n linearly independent monomial columns.

Consider the positive 2D Fornasini-Marchesini model (2.10) with the state-
feedback (2.11). Let the model be pointwise complete at the point (p, q). We
are looking for a gain matrix K ∈ ℜm×n of state-feedback (2.11), such that
the closed-loop system (2.12) is pointwise degenerate at the point (p, q) in the
direction ν.
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Theorem 5.3 Let the positive 2D model (2.10) be pointwise complete at the
point (p, q). There exists a (nonzero) gain matrix K ∈ ℜm×n of the state-
feedback (2.10) such that the closed-loop system (2.12) is pointwise degenerate
at the point (p, q) in the direction ν if both matrices B1 and B2 are nonzero.

Proof. By Theorem 4.3 the positive model (2.10) is pointwise complete at the
point (p, q) only if the matrix (4.3) contains n linearly independent monomial
columns. If B1 and B2 are nonzero matrices, then there exists a nonzero gain
matrix K such that the matrix (4.5) has less than n linearly independent mono-
mial columns.

Example 5.1 Consider the positive 2D model (2.10) with matrices

A1 =





1 1 0
0 0 0
0 2 2



 , A2 =





2 0 1
1 1 0
2 0 1



 , B1 =





1
0
0



 , B2 =





0
0
1



 (5.3)

The model (2.10) with (5.3) is pointwise complete at the point (p, q) = (2, 2)
since the matrix

[ T11A2 T01A2 T11A1 T10A1 ] =





21 5 8 6 0 3 5 11 6 1 1 0
3 1 1 3 1 1 1 1 0 0 0 0
30 6 12 6 0 3 8 16 8 0 4 4



 (5.4)

contains the monomial matrix




0 1 0
1 0 0
0 0 4



 . (5.5)

We are looking for the gain matrix

K = [ k1 k2 k3 ] (5.6)

such that the matrix

[ Ā1 Ā2 ] = [ A1 + B1K A2 + B2K ]

=





k1 + 1 k2 + 1 k3 2 0 1
0 0 0 1 1 0
0 2 2 k1 + 2 k2 k3 + 1



 (5.7)

does not contain three linearly independent monomial columns and the closed-
loop system is degenerate at the point (2, 2). For example for k1 = 0, k2 = k3 =
1, we obtain the matrix

[ Ā1 Ā2 ] =





1 2 1 2 0 1
0 0 0 1 1 0
0 2 2 2 1 2



 (5.8)

with only one monomial column.
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The positive closed-loop system is degenerate at the point (2, 2) since the
matrix

[ T̄11Ā2 T̄01Ā2 T̄11Ā1 T̄10Ā1 ] =





39 16 22 6 1 4 8 30 22 1 4 3
6 3 3 3 1 1 1 4 3 0 0 0
48 22 28 9 3 6 8 36 28 0 4 4



 (5.9)

contains only one monomial column.

6. Concluding remarks

The pointwise completeness and pointwise degeneracy of 2D standard and pos-
itive Fornasini-Marchesini models with state-feedbacks have been addressed.
Necessary and sufficient conditions have been established for the pointwise com-
pleteness of the 2D standard and positive Fornasini-Marchesini models with
state-feedbacks. It has been shown that there exists a gain matrix K of the
state-feedback such that the standard closed-loop system is pointwise complete
at the point (p, q) if and only if the condition (2.13) is met. Similar result has
been also established for the 2D positive Fornasini-Marchesini models. It has
been also shown that if the standard model (2.10) is pointwise degenerate at
the point (p, q), then there exists a gain matrix K of the state-feedback such
that the closed-loop system (2.12) is pointwise complete at the point (p, q) if
and only if the condition (2.16) is satisfied.

If the model (2.10) is positive, but not pointwise complete, then there exists a
gain matrix K such that the closed-loop system (2.12) is positive and pointwise
complete at the point (p, q) if and only if for a given matrix composed of standard
monomial columns conditions (4.9) and (4.10) are satisfied. If the positive 2D
model (2.10) is pointwise complete, then there exists a gain matrix K such
that the closed-loop system is pointwise degenerate if both matrices B1, B2 are
nonzero.

These considerations can be extended to 2D linear systems described by the
standard and positive Roesser models and by the general Kurek type models.

An open problem is constituted by the extension of these considerations to
2D standard and positive systems of fractional orders.
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Appendix

Definition A.1 The following operations will be called elementary operations
on a real matrix A ∈ ℜn×m:

1) addition to any ith row of the jth row multiplied by any nonzero number
c. This operation will be denoted by L[i + j × c],

2) the interchange of the ith and jth rows. This operation will be denoted by
L[i, j],

It is well known, see Kaczorek (2007), that using those elementary operations it
is possible to reduce a real matrix A ∈ ℜn×m with rank A = p < n to the form
[

A1

0

]

, where rank A1 = p.

Lemma A.1 Let A ∈ ℜn×q (n ≤ q), B ∈ ℜn×m (m < n) and

rank A = p < n (A.1)

There exists K ∈ ℜm×q such that the matrix

Ā = A + BK ∈ ℜn×q (A.2)

has full row rank if and only if

rank [ A B ] = n (A.3)

Proof. Necessity. From (A.2) written in the form

Ā = [ A B ]

[
Iq

K

]

(A.4)

it follows that matrix Ā has full row rank only if the condition (A.3) is satisfied.

Sufficiency. The proof of sufficiency will be constructive. It is well known,
Kaczorek (2007) that if condition (A.3) is met, then there exists a nonsingular
matrix P ∈ ℜn×n of elementary row operations such that for p + m = n

P [ A B ] =

[
A1 0
0 B1

]

(A.5)

where A1 ∈ ℜp×n and B1 ∈ ℜ(n−p)×m have full row ranks. From (A.2) and
(A.4) we have

PĀ =

[
A1

0

]

+

[
0

B1

]

K =

[
A1

B1K

]

(A.6)

and

rank Ā = rank PĀ = rank

[
A1

B1K

]

. (A.7)

If m > n− p then we choose first p +m−n rows of K equal to zero. Therefore,
if (A.3) holds, then there exists K such that Ā has full row rank.
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From the proof of sufficiency we have the following procedure for computa-
tion of the gain matrix K such that the matrix (A.2) has full row rank.

Procedure A.1

Step 1. Using elementary operation (L) perform the reduction

[ A B In ]
L
→

[
A1

0
0

B1
P

]

(A.8)

and find the matrices A1, B1 and P .

Step 2. Choose K ∈ ℜm×q such that the matrix

[
A1

B1K

]

has full row rank

Step 3. Using

Ā = P−1

[
A1

B1K

]

(A.9)

find the matrix Ā.

Example A.1 Let

A =





1 −1 0 2
2 1 1 2
2 −2 0 4



 , B =





1
2
3



 . (A.10)

In this case n = 3, q = 4, m = 1 and rank A = p = 2. It is easy to check that
for the matrices (A.10) the condition (A.3) is satisfied. We are looking for a
matrix K = [ k1 k2 k3 k4 ] such that the matrix

Ā = A + BK =





1 −1 0 2
2 1 1 2
2 −2 0 4



 +





1
2
3



 [ k1 k2 k3 k4 ] (A.11)

has full row rank.

Using Procedure A.1 we obtain the following:

Step 1. Applying the elementary operations L[3 + 1 × (−2)], L[1 + 3 × (−1)],
L[2 + 3 × (−2)] to the matrix

[ A B In ] =





1 −1 0 2 1 1 0 0
2 1 1 2 2 0 1 0
2 −2 0 4 3 0 0 1



 (A.12)

we obtain

[
A1

0
0

B1
P

]

=





1 −1 0 2 0 3 0 −1
2 1 1 2 0 4 1 −2
0 0 0 0 1 −2 0 1



 (A.13)
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and

A1 =

[
1 −1 0 2
2 1 1 2

]

, B1 = [1], P =





3 0 −1
4 1 −2
−2 0 1



 (A.14)

Step 2. We choose K = [ k1 k2 k3 k4 ] such that the matrix

[
A1

B1K

]

=





1 −1 0 2
2 1 1 2
k1 k2 k3 k4



 (A.15)

has full row rank, for example

K = [ 1 0 0 0 ]. (A.16)

Step 3. Using (A.9) for (A.14) and (A.16) we obtain

Ā = P−1

[
A1

B1K

]

=





3 0 −1
4 1 −2
−2 0 1





−1 



1 −1 0 2
2 1 1 2
1 0 0 0



 =





2 −1 0 2
4 1 1 2
5 −2 0 4



 .

(A.17)

Lemma A.2 Let Ak ∈ ℜn×n, k = 1, 2 and

T (p, q) = [ T1(p, q) T2(p, q) ] (A.18a)

where

T1(p, q) = [ Tp−1,q−1A1 ... Tp−1,0A1 ] ∈ ℜn×qn

T2(p, q) = [ Tp−1,q−1A2 ... T0,q−1A2 ] ∈ ℜn×np
(A.18b)

and Tij, i, j ∈ Z+ is defined by (2.3). Then

rank T (p, q) = n (A.19)

if and only if

rank [ A1 A2 ] = n. (A.20)

Proof. Necessity of (A.20) follows immediately from (2.8). If detA1 6= 0 then
the matrix Tp−1,0A1 = A

p
1 is nonsingular and the condition (A.19) is satisfied,

since detA
p
1 6= 0. For detA2 6= 0 the proof is similar. Now we assume that

detA1 = 0 and detA2 = 0 but the condition (A.20) is met. From (A.18) we
have

T (p, q) = T̂p−1,q−1D(A1, A2) (A.21)
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where

T̂p−1,q−1 = [ Tp−1,q−1 ... Tp−1,0 Tp−1,q−1 ... T0,q−1 ] ∈ ℜn×(p+q)n (A.22)

D(A1, A2) = blockdiag [
A1 ... A1

︸ ︷︷ ︸

q

A2 ... A2
︸ ︷︷ ︸

p

] ∈ ℜ(p+q)n×(p+q)n

(A.23)

For p = q = 1 the hypothesis is true since from (A.21) we have

rank T (1, 1) = rank [ T1(1, 1) T2(1, 1) ] = rank [ A1 A2 ] (A.24)

Using (A.21) it is easy to show that

T (2, 1) = [ T1(2, 1) T2(2, 1) ] = [ A1 A2 ]

[
A1 A2 0
0 0 In

]

(A.25a)

and

T (1, 2) = [ T1(1, 2) T2(1, 2) ] = [ A1 A2 ]

[
0 In 0

A1 0 A2

]

. (A.25b)

From (A.25) we have

rank T (2, 1) = rank T (1, 2) = rank [ A1 A2 ] (A.26)

since

rank T (2, 1) = rank [ A1 A2 ] + rank

[
A1 A2 0
0 0 In

]

− 2n = rank [ A1 A2 ]

(A.27)

if and only if (A.20) holds.
We get a similar result for T (1, 2). Using (A.21) it is easy to show that

T (p, 1) = [ A1 A2 ]

[
T (p − 1, 1) 0

0 In

]

for p = 2, 3 . . . (A.28)

and

rank T (p, 1) = rank [ A1 A2 ] (A.29)

since

rank

[
T (p− 1, 1) 0

0 In

]

= 2n (A.30)

if and only if (A.20) holds.
Similarly

rank T (1, q) = rank [ A1 A2 ] for p = 2, 3 . . . . (A.31)

In general case

rank T (p, q) = rank [ A1 A2 ]. (A.32)


