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Abstract: In this paper, the global exponential stability for
a class of uncertain Takagi-Sugeno (T-S) fuzzy singularly perturbed
systems is investigated. Based on time-domain approach with differ-
ence inequality technique, a simple criterion is derived to guarantee
the global exponential stability of such systems. The upper bound of
the singular perturbation parameter is also provided by estimating
the unique positive zero of specific function. Finally, two numerical
examples are given to demonstrate the feasibility and effectiveness
of the obtained result.
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1. Introduction

Recently, much effort has been devoted to the stability analysis, control design,
and industrial applications of singularly perturbed systems; see, for instance,
Alwan and Liu (2009), Chen et al. (2002a, 2002b), Meng and Jing (2009),
Prljaca and Gajic (2008), Sun et al. (1996), Sun (2009), Xu and Feng (2009),
and the references therein. This is due not only to theoretical interests, but
also to the relevance of this topic for various engineering applications. Typical
singularly perturbed systems include flexible mechanical systems, armature-
controlled DC motors, magnetic-ball suspension systems, direct-drive robots,
flexible joint robots, flexible space structures, high-gain control systems, tunnel
diode circuits, Josephson junction circuits, nonlinear time-invariant RLC net-
works, control system of an inverted pendulum, control system of an airplane,
and IEEE type 2 voltage regulators (Sun et al., 1996). Objectively speaking,
multiple time-scale phenomena are almost unavoidable in real systems and the
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singular perturbation methodology has proven to be an effective tool for sys-
tem analysis and control design in this context. Due to the very small singular
perturbation parameter , the stability analysis of singularly perturbed systems
consists in decomposition of the original system into two sub-problems, for the
slow and fast dynamics. The two respective stability criteria are then combined
to give a criterion for the full systems.

During the past decades, on the other hands, T-S fuzzy systems, with or
without uncertainties, have received a great deal of interest; see, for example,
Chen (2009), Chung and Wu (2009), Farzaneh and Tootoonchi (2009), Lagrat
et al. (2008), Lien (2006), Rhee and Won (2006), Tanaka and Sugeno (1992),
Yu (2009), Zhang et al. (2009). In particular, T-S fuzzy system models can
be viewed as complex nonlinear systems and these models frequently appear in
several engineering systems. Recently, the stability analysis for T-S fuzzy system
has been extensively explored; see, for instance, Chen (2009), Lien (2006), and
the references cited therein. Over the past years, various methodologies in
robust stability analysis for T-S fuzzy system have been offered, such as LMI
approach, Lyapunov-based methodology, time-domain approach, and frequency-
domain approach. In this paper, the robust stability for a class of uncertain
T-S fuzzy singularly perturbed systems will be studied. Based on time-domain
approach with difference inequality technique, a simple criterion will be derived
to guarantee the global exponential stability of such systems. Besides, the upper
bound of the singular perturbation parameter is given by estimating the unique
positive zero of a specific function. Finally, a simulation example is provided to
demonstrate the feasibility and effectiveness of the main result.

This paper is organized as follows. The problem formulation and the main
result are presented in Section 2. Two numerical examples are given in Section
3 to illustrate the main result. Finally, conclusions are drawn in Section 4.

2. Problem formulation and the main result

Notations

Z+ the set of all non-negative integers
ℜm×n the set of all real m by n matrices
|λ| the modulus of the complex number λ

||x|| the Euclidean norm of the vector x ∈ ℜp×1

λmax(A) the maximum eigenvalue of the matrix A with real eigenvalues
A∗ the conjugate transpose of the matrix A

||A|| the induced Euclidean norm of the matrix A; ||A|| = [λmax(A
∗A)]

1

2

m {1, 2, . . . , m}
m {0, 1, . . . , m}.

In this paper, we consider the following uncertain fuzzy singularly perturbed
systems, which is represented by a T-S fuzzy model (Lagrat, Ouakka, Boumhidi,
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2008) and composed by a set of fuzzy implications. Each implication is expressed
by the uncertain singularly perturbed time-varying systems and the ith rule of
the T-S model is written in the following form.

Rule j: If h1(t) is about S1,j , h2(t) is about S2,j, . . . , and hr(t) is about
Sr,j , then

x(k + n) =

n−1
∑

i=0

∆Ai,j(k)x(k + i) + ∆Bi,j(k)z(k + i), ∀k ≥ 0, (1a)

z(k + n) =

n−1
∑

i=0

ε∆Ci,j(k)x(k + i) + ε∆Di,j(k)z(k + i), ∀k ≥ 0 (1b)

[

x(k)
x(k)

]

= φj(k), 0 ≤≤ n − 1, (1c)

where h1(t), h2(t), . . ., hr(t), are premise variables, Si,j , ∀i ∈ r, j ∈ m, are fuzzy
sets, m is the number of If-then rules, x ∈ ℜp×1 is the slow state, z ∈ ℜq×1 is the
fast state, ∆Ai,j , ∆Bi,j , ∆Ci,j , and ∆Di,j are uncertain matrices of appropriate
dimensions, the singular perturbation parameter ε is a positive and sufficiently
small scalar, and φj(k) is the initial vector-valued function.

Before presenting the main result, we make an assumption as follows.
(A1) There exist nonnegative constants ai,j , bi,j , ci,j , and di,j such that

‖∆Ai,j(k)‖ ≤ ai,j , ‖∆Bi,j(k)‖ ≤ bi,j ,

‖∆Ci,j(k)‖ ≤ ci,j , ‖∆Di,j(k)‖ ≤ di,j , ∀i ∈ n − 1, j ∈ m, k ∈ Z+.

For brevity, let us define

pi := max
1≤j≤m

(ai,j + bi,j), qi := max
1≤j≤m

(ci,j + di,j), ∀i ∈ n − 1, (2)

g(x) := 1 −

n−1
∑

i=0

√

p2
i + q2

i x2, with x ≥ 0, (3)

y(k) :=

[

x(k)
z(k)

]

, ∆Ei,j(k) :=

[

∆Ai,j(k) ∆Bi,j(k)
ε∆Ci,j(k) ε∆Di,j(k)

]

, ∀i ∈ n − 1, j ∈ m.

If we use the standard fuzzy inference method (Takagi, Sugeno, 1985), i.e.
minimum fuzzy inference, singleton fuzzifier, and central-average defuzzifier,
system (1) is inferred as follows.

y(k + n) =
1

∑m

i=1 ui(h(t))
·

m
∑

i=1

ui(h(t)) · {∆En−1,i(k)y(k + n − 1)

+∆En−2,i(k)y(k + n − 2) + · · · + ∆E1,i(k)y(k + 1) + ∆E0,i(k)y(k)}, ∀k ≥ 0
(4a)

y(k) =
1

∑m

i=1 ui(h(t))
·

m
∑

i=1

[ui(h(t)) · φi(k)], 0 ≤ k ≤ n − 1, (4b)
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where ui(h(t)) =
r

∏

j=1

Φij(hj(t)) and Φij(hj(t)) is the grade of membership of

hj(t) in fuzzy set Sij . Define λi(h(t)) = ui(h(t))
∑

m

i=1
ui(h(t)) , and we assume, in this

paper, ui(h(t)) ≥ 0 for each i ∈ m and

m
∑

i=1

ui(h(t)) ≥ 0. Thus, the system (4)

can be represented as

y(k + n) =

m
∑

i=1

λi(h(t)) · {∆En−1,i(k)y(k + n − 1) + ∆En−2,i(k)y(k + n − 2)

+ · · ·+ ∆E1,i(k)y(k + 1) + ∆E0,i(k)y(k)}, ∀k ≥ 0, (5a)

y(k + n) =

m
∑

i=1

[λi(h(t)) · φi(k)], 0 ≤ k ≤ n − 1, (5b)

with 0 ≤ λi(h(t)) ≤ 1, ∀i ∈ m and

m
∑

i=1

λi(h(t)) = 1.

Now, we are in a position to present the main result.

Theorem 1 The uncertain T-S fuzzy singularly perturbed system (1) with (A1)
and 0 < ε < ε̄ is globally exponentially stable provided that

n−1
∑

i=0

pi < 1, (6)

where

ε̄ :=



























δ, if

n−1
∑

i=0

q2
i 6= 0

∞, if

n−1
∑

i=0

q2
i = 0

and δ is the unique positive zero of the function g (x).

Proof. Define ri,j :=
√

(ai,j + bi,j)2 + ε2(ci,j + di,j)2 and bi :=
√

p2
i + ε2q2

i . By
(2), it can be easily obtained that

bi ≥ ri,j , ∀i ∈ n − 1, j ∈ m. (7)

In addition, the function of g (x) is a decreasing function with

g(0) > 0, g(ε) > 0, ∀ε ∈ (0, δ), g(δ) = 0, if

n−1
∑

i=0

q2
i 6= 0;

g(ε) > 0, ∀ε ≥ 0, if

n−1
∑

i=0

q2
i = 0,
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in view of (6). This implies that

g(ε) > 0, ∀ ε ∈ (0, ε̄). (8)

From (A1), one has

‖∆Ei,j(k)‖ =

∥

∥

∥

∥

[

∆Ai,j(k) ∆Bi,j(k)
ε∆Ci,j(k) ε∆Di,j(k)

]∥

∥

∥

∥

= sup
∥

∥

∥

∥

∥

∥





x1

x2





∥

∥

∥

∥

∥

∥

=1

∥

∥

∥

∥

[

∆Ai,jx1 + ∆Bi,jx2

ε∆Ci,jx1 + ε∆Di,jx2

]∥

∥

∥

∥

≤ sup
∥

∥

∥

∥

∥

∥





x1

x2





∥

∥

∥

∥

∥

∥

=1

√

(‖∆Ai,j‖·‖x1‖+‖∆Bi,j‖·‖x2‖)2+(‖ε∆Ci,j‖·‖x1‖+‖ε∆Di,j‖·‖x2‖)2

≤
√

(‖∆Ai,j‖+‖∆Bi,j‖)2+(‖ε∆Ci,j‖+‖ε∆Di,j‖)2

≤
√

(ai,j + bi,j)2 + ε2(ci,j + di,j)2

= ri,j , ∀i ∈ n − 1, j ∈ m. (9)

From (4), (7)-(9), with (A1), it is easy to see that

‖y(k + n)‖ =
∥

∥

∥

m
∑

i=1

λi(h(t)) · {∆En−1,i(k)y(k + n − 1)

+∆En−2,i(k)y(k + n − 2) + · · · + ∆E1,i(k)y(k + 1) + ∆E0,i(k)y(k)}
∥

∥

∥

≤

m
∑

i=1

λi(h(t)) ·
{

‖∆En−1,i(k)‖ · ‖y(k + n − 1)‖

+‖∆En−2,i(k)‖ · ‖y(k + n − 2)‖ + · · ·

+‖∆E1,i(k)‖ · ‖y(k + 1)‖ + ‖∆E0,i(k)‖ · ‖y(k)‖
}

≤

m
∑

i=1

λi(h(t)) ·
{

rn−1,i · ‖y(k + n − 1)‖ + rn−2,i · ‖y(k + n − 2)‖ + · · ·

+r1,i · ‖y(k + 1)‖ + r0,i · ‖y(k)‖
}

≤
(

m
∑

i=1

λi(h(t))
)

· bn−1 · ‖y(k + n − 1)‖

+
(

m
∑

i=1

λi(h(t))
)

· bn−2 · ‖y(k + n − 2)‖ + · · ·

+
(

m
∑

i=1

λi(h(t))
)

· b1 · ‖y(k + 1)‖ +
(

m
∑

i=1

λi(h(t))
)

· b0 · ‖y(k)‖
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= bn−1 · ‖y(k + n − 1)‖ + bn−2 · ‖y(k + n − 2)‖ + · · ·

+b1 · ‖y(k + 1)‖ + b0 · ‖y(k)‖, ∀k ≥ 0. (10)

Now we define a scalar difference system

w(k + n) =

n−1
∑

i=0

biw(k + i), ∀k ≥ 0, (11a)

w(i) = ‖y(i)‖, ∀i ∈ n − 1. (11b)

From (10) and (11) with e(k) := ‖y(k)‖ − w(k), ∀k ≥ 0, it is easy to see that

e(n) ≤

n−1
∑

i=0

bie(i) = 0;

e(n + 1) ≤

n−1
∑

i=0

bie(i + 1) ≤ bn−1e(n) ≤ 0;

e(n + 2) ≤

n−1
∑

i=0

bie(i + 2) ≤ bn−1e(n + 1) ≤ 0;

e(n + 3) ≤

n−1
∑

i=0

bie(i + 3) ≤ bn−1e(n + 2) ≤ 0;

...

...

Consequently, we conclude that e(k) = ‖y(k)‖ − w(k) ≤ 0, ∀k ≥ 0, which
implies ‖y(k)‖ ≤ w(k), ∀ k ≥ 0. The characteristic polynomial of system (11)
is given by

G(z) = zn −

n−1
∑

i=0

biz
i. (12)

By Descartes’ rule of signs (Ledermann, Vajda, 1980) in (12), it is obvious
that the polynomial equation G(x) = 0 has a unique positive root, denoted α∗.
Moreover, it is easy to see that

G(x) < 0, ∀x ∈ (0, α∗), G(α∗) = 0, G(x) > 0, ∀x ∈ (α∗,∞) . (13)

By (8), we have G(1) = g(ε) > 0. This implies 0 < α∗ < 1. Now, let λ be any
root of the equation G(z) = 0. Then, we have

|λ|n =

∣

∣

∣

∣

∣

n−1
∑

i=0

biλ
i

∣

∣

∣

∣

∣

≤

n−1
∑

i=0

bi|λ|
i,
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from which we obtain G(|λ|) ≤ 0. Hence, from (13), one has |λ| ≤ α∗. Con-
sequently, we conclude that there exist β ≥ 1 and 0 < µ < 1 − α∗ such that
‖y(k)‖ ≤ w(k) ≤ β(α∗ + µ)k, ∀ k ≥ 0. This completes the proof.

Remark 1 In case of
∑n−1

i=0 q2
i 6= 0, it is easy to see that g

(

1
a

)

≤ 0 with a :=
max

i∈n−1
qi. It follows that the value of δ can be directly evaluated using the Newton’s

method in g(x) = 0 with the starting value x1 = 1
a
.

Remark 2 Consider the non-fuzzy discrete-time system described as in Sun
(2009):

[

x(k + n)
z(k + n)

]

=
n−1
∑

i=0

[

∆Ai(k) ∆Bi(k)
ε∆Ci(k) ε∆Di(k)

] [

x(k + i)
z(k + i)

]

.

This is the special case of (1) with m = 1. Then the result of Theorem 1
is exactly the same as Corollary 1 in Sun (2009). Obviously, our results are
nontrivial generalizations of recent results reported in Sun (2009) to the case
with multiple If-then rules (i.e., m > 1 or equivalently; standard T-S fuzzy
system).

3. Illustrative example

Example 1 An uncertain T-S fuzzy singularly perturbed system is given by

x(k + 2) =

[

−∆a sin(k) ∆b · e−k

∆b cos(k) ∆a

]

x(k + 1) +

[

1 5
2∆c 2∆d cos (k)

]

z(k)

+

[

−1 0
0 0

]

u1(k), ∀k ≥ 0;

z(k + 2) = ε

[

∆c −∆d

0 ∆c · e−k

]

x(k + 1) + ε

[

0 ∆d sin(k)
1 2∆d

]

x(k)

+ε

[

0 0
0 1

]

u2(k), ∀k ≥ 0.

where x(k) = [ x1(k) x2(k) ]T ∈ ℜ2×1, z(k) = [ z1(k) z2(k) ]T ∈ ℜ2×1, with
−3 ≤ ∆a, ∆b ≤ 0.3 and −0.1 ≤ ∆c, ∆d ≤ 0.1. We use the following fuzzy rules
for the fuzzy-model-based control:

If x+2(k) is about 0, then u1(k) =

[

1 5
0 0

]

z(k) and u2(k) =

[

0 0
−0.9 0

]

x(k).

If x+2(k) is about 1, then u1(k) =

[

0.8 5
0 0

]

z(k) and u2(k) =

[

0 0
−1 0

]

x(k).

Thus, the T-S fuzzy models can be constructed as follows.
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Rule 1:
If x2(k) is about 0, then

x(k + 2) =

[

−∆a sin(k) ∆b · e−k

∆b cos(k) ∆a

]

x(k + 1) +

[

0 0
2∆c 2∆d cos(k)

]

z(k),

∀k ≥ 0, (14a)

z(k + 2) = ε

[

∆c −∆d

0 ∆c · e−k

]

x(k + 1) + ε

[

0 ∆d sin(k)
0.1 2∆d

]

x(k),

∀k ≥ 0. (14b)

Rule 2:
If x2(k) is about 1, then

x(k + 2) =

[

−∆a sin (k) ∆b · e−k

∆b cos (k) ∆a

]

x(k + 1) +

[

0.2 0
2∆c 2∆d cos(k)

]

z(k),

∀k ≥ 0, (14c)

z(k + 2) = ε

[

∆c −∆d

0 ∆c · e−k

]

x(k + 1) + ε

[

0 ∆d sin(k)
0 2∆d

]

x(k),

∀k ≥ 0. (14d)

Comparing (14) with (1), one has n = 2, m = 2, p = q = 2, and

‖∆A1,1‖ ≤ 0.6, ‖∆A1,2(k)‖ ≤ 0.6, ‖∆B0,1(k)‖ ≤ 0.2828,

‖∆B0,2(k)‖ ≤ 0.3236, ‖∆C0,1(k)‖ ≤ 0.2414, ‖∆C0,2(k)‖ ≤ 0.2236,

‖∆C1,1(k)‖ ≤ 0.168, ‖∆C1,2(k)‖ ≤ 0.168,

‖∆A0,1(k)‖ = ‖∆A0,2(k)‖ = ‖∆B1,1(k)‖ = ‖∆B1,2(k)‖ = 0,

‖∆D0,1(k)‖ = ‖∆D0,2(k)‖ = ‖∆D1,1(k)‖ = ‖∆D1,2(k)‖ = 0.

This shows that (A1) is evidently satisfied with

a1,1 = 0.6, a1,2 = 0.6, b0,1 = 0.2828,

b0,2 = 0.3236, c0,1 = 0.2414, c0,2 = 0.2236,

c1,1 = 0.168, c1,2 = 0.168,

a0,1 = a0,2 = b1,1 = b1,2 = d0,1 = d0,2 = d1,1 = d1,2 = 0.

From (2), it follows that

p0 = 0.3236, p1 = 0.6, q0 = 0.2414, q1 = 0.168.

Hence, it can be verified that
∑1

i=0 pi = 0.9236 < 1. By (3), we obtain

g(x) = 1 −
√

0.105 + 0.058x2 −
√

0.36 + 0.028x2.
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The unique positive solution of g(x) = 0 is given by δ = 0.85. Consequently,
by Theorem 1, we conclude that the uncertain T-S fuzzy singularly perturbed
system (14) with 0 < ε < 0.85 is globally exponentially stable. The state
trajectories of the system (14) are depicted in Figs. 1 and 2.
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Figure 1. x (k) of the system (14)
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Figure 2. z (k) of the system (14)
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Example 2 Consider a DC servo motor with the transfer function

Y (s)

U(s)
=

b

s(s + a)
.

We can write, in matrix form,

ẋ =

[

0 0
0 −a

]

x +

[

1
1

]

u, y =
[

b
a

−b
a

]

x.

Thus, we have found the discrete state model to be

[

x (k + 1)
z (k + 1)

]

=

[

1 0
0 eaT

] [

x(k)
z(k)

]

+

[

T

a(1 − e−aT )−1

]

u(k),

y(k) =
[

b
a

−b
a

]

x(k),

where T is the sample period. For a = 20, T = 0.1, we use the following fuzzy
rules for fuzzy-model-based control:

If z(k) is about 0, then u(k) =
[

−10 0
]

[

x(k)
z(k)

]

;

If z(k) is about 1, then u(k) =
[

−10 2
]

[

x(k)
z(k)

]

.

Thus, the T-S fuzzy models can be constructed as follows.

Rule 1:

If z(k) is about zero, then

[

x (k + 1)
z (k + 1)

]

=

[

0 0
−0.5ε 0.156ε

] [

x(k)
z(k)

]

. (15a)

Rule 2:

If z(k) is not about zero, then

[

x (k + 1)
z (k + 1)

]

=

[

0 −0.2
−0.5ε 0.056ε

] [

x(k)
z(k)

]

, (15b)

with ε := 1− e−aT = 0.865. By comparing (15) and (1), one has n = 1, m = 1,
p = q = 1, and (A1) is evidently satisfied with

a0,1 = 0, b0,1 = 0, c0,1 = 0.5, d0,1 = 0.156,

a0,2 = 0, b0,2 = 0.2, c0,2 = 0.5, d0,2 = 0.056.

From (2), it results that

p0 = 0.2, q0 = 0.656.
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Thus, it can be verified that

0
∑

i=0

pi = 0.2 < 1. By (3), we obtain

g(x) = 1 −
√

0.04 + 0.43x2.

The unique positive solution of g(x) = 0 is given by δ = 1.494. Consequently,
by Theorem 1, we conclude that the controlled T-S fuzzy singularly perturbed
system (15) is globally exponentially stable. The state trajectories of the sys-
tem (15) are depicted in Fig. 3. Simulation results reveal the effectiveness and
accuracy of the main result.

Figure 3. x(k) and z(k) of the system (15)

4. Conclusions

In this paper, the global exponential stability of a class of uncertain T-S fuzzy
singularly perturbed systems has been investigated. Based on time-domain ap-
proach with difference inequality technique, a simple criterion has been derived
to guarantee the global exponential stability of such systems. The upper bound
of the singular perturbation parameter has also been provided by estimating the
unique positive zero of the specific function. Finally, two numerical examples
have been given to demonstrate the feasibility and effectiveness of the obtained
result.
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